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Abstract 
Purpose 

Iron deficiency anaemia (IDA) is a global public health problem. Treatment with the 

standard of care ferrous iron salts may be poorly tolerated leading to noncompliance 

and ineffective correction of IDA. Employing supplements with higher bioavailability 

might permit lower doses of iron to be used with fewer side effects, thus improving 

treatment efficacy. Here we compared the iron bioavailability of ferrous sulphate 

tablets with alternative commercial iron products, including three liquid based 

supplements. 

Methods 

Iron bioavailability was measured using Caco-2 cells with ferritin formation as a 

surrogate marker for iron uptake. Statistical analysis was performed using one-way 

ANOVA followed by either Dunnett’s or Tukey’s multiple comparisons tests. 

Results 

Spatone Apple® (a naturally iron-rich mineral water with added ascorbate) and Iron 

Vital F® (a synthetic liquid iron supplement) had the highest iron bioavailability. 

There was no statistical difference between iron uptake from ferrous sulphate tablets, 

Spatone® (naturally iron-rich mineral water alone) and Pregnacare Original® (a multi-

mineral/vitamin tablet).  

Conclusion 

In our in vitro model naturally iron-rich mineral waters and synthetic liquid iron 

formulations have equivalent or better bioavailability compared with ferrous iron 

sulphate tablets. If these results are confirmed in vivo, this would mean that at risk 

groups for IDA could be offered a greater choice of more bioavailable and potentially 

better tolerated iron preparations. 
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Introduction 
 

Iron deficiency is a global health problem; 2 billion people suffer from anaemia and 

the World Health Organization (WHO) estimates that iron deficiency accounts for 

50% of these cases [1]. Although the prevalence of iron deficiency anaemia (IDA) is 

highest in developing countries, inadequate iron status is also a significant public 

health problem in developed countries in high-risk groups including the elderly, post-

bariatric surgery patients, toddlers, and pregnant women and women of child bearing 

age [2,3].   

 

Three ferrous iron salts, sulphate, fumarate and gluconate, are the standard 

recommended supplements for IDA [4,5]. Clinical trials with pregnant women 

document that these iron supplements do improve IDA [6], however, non-compliance 

secondary to supplement-associated gastro-intestinal (GI) problems, such as 

constipation, black stools, nausea, reflux and vomiting, means that real life efficacy 

may be low [7-9]. Pregnancy itself induces gastrointestinal symptoms, related to the 

mechanical effects of the growing foetus, changes in water homestasis, and hormonal 

effects on GI motility -  all of which contribute to increased incidence of reflux, 

constipation and bloating [10,11].  Higher doses of iron increase gastro-intestinal (GI) 

symptoms in pregnant women [12], and studies document that lower doses are 

associated with fewer GI symptoms [6,13], thus it is possible that the use of iron 

preparations with higher bioavailability, enabling lower absolute doses of iron to be 

ingested, may cause less GI upset.  

 

IDA is associated with increased health risks to both mother and foetus (reviewed in  

[14]), and it is therefore vital that effective supplement forms are available to 

pregnant women. A human volunteer study demonstrated that iron absorption from a 

naturally iron-rich mineral water (Spatone Iron-Plus) was higher compared with 

ferrous sulphate tablets (FeSO4) [15]. Furthermore, a subsequent study looking 

specifically at pregnant women with IDA found that the mean absorption from 25 mg 
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of Spatone derived Fe was 28% - comparable or greater to that reported from a higher 

dose of FeSO4 [16].  

 

The physical form of iron administered in supplements could have a bearing on 

bioavailability. A recent in vitro study found that dissolution rates varied significantly 

amongst different iron tablet formulations; FeSO4 conventional-release tablets 

dissolved most quickly at 48-64 minutes, and this was associated with the highest iron 

uptake in the in vitro Caco-2 cell model used in this study [17].  We hypothesized 

therefore that liquid iron formulations, whether naturally occurring or synthetic, might 

provide alternative supplement forms that have higher bioavailability compared with 

iron delivered in tablet form.  

 

In this study we have employed the Caco-2 cell in vitro digestion model to assess iron 

bioavailability, using cell ferritin as a surrogate marker for iron absorption, from five 

commercially available iron formulations including three liquid iron supplements 

[18]. This model is used worldwide to measure iron bioavailability from different 

substances, and has been validated by human studies [19]. We compared two 

naturally mineral rich waters, Spatone® and Spatone Apple® (Spatone with added 

apple flavour and ascorbate), Iron Vital F® (a synthetic liquid iron supplement with 

added ascorbate and other micronutrients), immediate release FeSO4 tablets, and 

Vitabiotics Pregnacare® (a multivitamin and mineral tablet marketed to pregnant 

women). 
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Materials &Methods 
 

Reagents 

Chemicals, hormones and enzymes were purchased from Sigma-Aldrich, UK, unless 

otherwise noted.  Cell culture media, flasks, tissue culture plates and culture reagents 

were obtained from Thermo Fisher Scientific, and acids used in ICP analysis, 

digestions and for glassware cleaning were purchased from VWR, UK. Glass and 

plastic ware used in experiments were soaked in 10% trace metal grade 68% nitric 

acid for 24 hours prior to use, and then rinsed with 18 mΩ pure water. 

 

Commercial iron preparations were purchased from Boots Pharmacy, UK. These 

consisted of: Spatone® & Spatone Apple® (A Nelson & Co Ltd, UK); Iron Vital F® 

(Anton Hubner Gmbh & Co Germany); Pregnacare Original® (Vitabiotics Ltd. UK), 

and Almus Ferrous Sulphate tablets (Almus Pharmaceuticals, UK). Table one 

provides iron concentration for the different formulations.  

 

Cell culture 

Caco-2 cells (TC7 clone), gifted to the Sharp lab by Monique Rousset and Edith Brot-

Laroche [20], were used from cell passages 46-49. The TC7 clone has been validated 

for use in studies on iron metabolism [21], and has been used in our previous 

published work on iron bioavailability [22]. Cells were grown in T75 tissue culture 

flasks and subcultured every 7 days. For experiments, cells were grown in 6 well 

tissue cultures plates seeded at a density of 1x10 4 cells/cm2 and used on days 13-15 

post seeding in the method developed by the Glahn lab [18,19].  Cells were grown in 

Dulbecco’s Modified Eagle Medium (DMEM, Gibco, 41965) supplemented with 10% 

v/v fetal bovine serum (LCG Standards, 30-2020), 1% penicillin-streptomycin, 4 

mmol/L L-glutamine, 1% non-essential amino acids, and Plasmocin 5 mg/ml (Source 

Bioscience). 

 

24 hours prior to the initiation of in vitro digestion experiments media was changed to 

supplemented MEM without foetal bovine serum but with 10 mmol/L PIPES 

(piperazine-N, N’-bis- [2-ethanesulfonic acid]), 1% antibiotic/ antimycotic solution, 

11 mmol/L hydrocortisone, 0.87 mmol/L insulin, 0.02 mmol/L sodium selenite 
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(Na2SeO3), 0.05 mmol/L triiodothyronine and 20 mg/L epidermal growth factor, as 

developed by Glahn et al, in order to ensure adequate cell growth but with low basal 

media iron levels [18,19].  

 

Iron supplements and in vitro digestions 

Iron-containing tablets were sealed inside a disposable plastic sleeve and crushed with 

a mortar and pestle; the particles were then solubilised in 250 ml 0.2 mol/L 

hydrochloric acid (HCl) [23]. Liquid formulations were used directly from the sachets 

(Spatone®and Spatone Apple®), or the bottle (Iron Vital F®). The supplements all had 

different iron concentrations; therefore, the volumes of prepared solutions, or liquid 

supplements, were adjusted (based on the manufacturers reported iron concentrations) 

to achieve a final digest iron concentration of 50 µmol/L. 

 

Fresh tablet solutions were prepared and new sachets were used for every experiment. 

In addition, all experiments had a set of controls consisting of: a digest with no added 

iron to ensure no iron contamination of our system; a reference digest of 50 µmol/L 

Fe added as Fe solubilized in 1% HCl (High-Purity Standards, 100026-2); and a 

positive control digest of 50 µmol/L Fe and 500 µmol/L ascorbate.  

 

Iron levels of digests were quantitatively analysed by Inductively Coupled Plasma – 

Optical Emission Spectrometry (ICP-OES). All iron containing digests, and undiluted 

samples of Spatone® and Spatone Apple®, were subjected to microwave digestion 

using an accelerated reaction system (CEM MARS 5H with XP-1500 vessels). 0.5 ml 

of the solutions (in triplicate) was added to 5.0 ml concentrated 68% trace analysis 

grade nitric acid. Samples were processed for 20 minutes at 400-psi pressure and 

1200-W power. After digestion samples were reconstituted with 50 ml 18 mΩ water 

and aliquots used to measure iron levels on a Perkin Elmer Optima 4300 DV ICP-

OES. 

 

Digests were prepared as previously described [22].  Briefly, iron solutions were 

added to 10 ml of 140 mmol/L NaCl and 5 mmol/L KCl followed by the sequential 

addition of pepsin (1 hour in the shaking incubator, pH 2 digests), and then bile and 

pancreatin digestive enzymes (1 hour in the shaking incubator, pH 7 digests) to mimic 

the digestive process. 1.5 ml of the above digests was then placed in a chamber 
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suspended over a layer of Caco-2 cells grown on the bottom of the tissue culture wells 

of a six well plate. The upper chamber was created using a 15,000 molecular weight 

cut-off dialysis membrane (Tubing Spectra/Por 7 dialysis membrane, Fisher 

Scientific) fitted over a Transwell insert and held in place with a silicon ring (Web 

Seal). Plates were placed on a platform fitted Multi-function 3D rotator (Fisher 

Scientific PSM3D) set at 6 oscillations per minute in a 37°C incubator with a 5% 

CO2/95% air atmosphere at constant humidity for 60 minutes. Inserts were then 

removed and an additional 1 ml of supplemented MEM added to the cells, which were 

returned to the incubator for a further 22 hours, and then harvested for ferritin. All 

supplements were tested on three separate occasions, with n=6 for each treatment. 

 

Direct application of iron supplements onto Caco-2 cells to assess dose and treatment 

duration responses 

Caco-2 cells were seeded and maintained as described for in vitro digestion 

experiments.  On the day of the experiment fresh solutions of Spatone®, Spatone 

Apple® and ferric ammonium citrate (FAC) were mixed with plain MEM (herein 

referred to as MEM) and placed directly onto the cell monolayers at iron 

concentrations of 10, 30 and 100 µmol/L. In order to assess ferritin formation as a 

function of treatment duration/time, one set of cells was treated for a full 24 hours, 

while another set was treated for fours hours (begun 20 hours after media was 

changed to MEM). At the end of both time periods cells were harvested for ferritin. 

Experiments were repeated on three separate occasions with n = 6 for each treatment. 

  

Cell harvest and ferritin analysis 

Cells were harvested as previously described [22].  Briefly, rinsed cell monolayers 

were detached with the proprietary cell lysis buffer CelLytic™ (Sigma-Aldrich) with 

added protease inhibitor. Cells were shaken for 15 minutes on ice on an orbital shaker 

at 300 rpm, and then spun at 6000 x g for 6 minutes in a 5804R Eppendorf centrifuge. 

The supernatant was aspirated and stored in a -80°C freezer. For analysis, samples 

were thawed on ice and ferritin measured with SpectroFerritin MT Enzyme Linked 

Immunoassay (ELISA; RAMCO). Final ferritin levels were adjusted for cell protein 

also measured from the supernatants using Pierce Protein BCA Assay (Fisher 

Scientific, 23227). 
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Statistical analysis 

Statistical analysis of the data was performed using GraphPad Prism (v.6.0c 

GraphPad Software, San Diego, CA). Digest experiments were analysed using the 

statistical methods of Motulsky [24].  Data are presented as means ± S.E.M and were 

analysed by one-way ANOVA followed by Tukey’s multiple comparisons test (all-

pairwise across experimental groups); where the comparison was made to a single 

control Dunnett’s post-hoc test was used. Except as noted differences between means 

were considered significant at p ≤ 0.05. 
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Results 
 

Iron supplements contained different iron concentration (Table 1). Each was prepared 

to give a notional iron concentration of 50 µmol/L. However, ICP-OES measurements 

revealed that the iron content of digests varied between different iron sources (Table 

2). To adjust Caco-2 cell ferritin levels for the variable iron content of digests we 

carried out a dose-response study to measure ferritin formation following exposure to 

different concentrations of iron (Supplementary figure 1). The dose response study 

demonstrated that ferritin levels in digests were proportional to the log of iron 

concentration, and thus measured ferritin levels were adjusted using the equation: Fadj 

= F x ln(50)/ln(Feicp) where Fadj equals adjusted ferritin, and Feicp equals ICP 

measured digest iron levels. 

 

Caco-2 cell ferritin levels were highest in cells exposed to Spatone Apple® (Figure 1). 

Levels were approximately 500% higher than both Spatone® original and FeSO4  

tablets. Iron Vital F® (IVF) induced ferritin formation was approximately 100% 

higher compared with FeSO4, Spatone®, and Pregnacare Original® (PG) but was only 

about a third that of Spatone Apple® (Figure 1). Ferritin formation following exposure 

to Pregnacare Original® was equivalent to that of cells treated with Spatone® and 

FeSO4. 

 

We further investigated the effects of Spatone® and Spatone Apple® on ferritin levels 

in Caco-2 cells over a range of iron concentrations, and following different exposure 

times. Exposure to Spatone Apple® for either 4 h (Figure 2A) or 24 h (Figure 2B) 

resulted in significantly enhanced ferritin levels at all concentrations compared with 

the untreated controls. Spatone Apple®-induced ferritin levels were significantly 

higher than those produced following exposure to iron alone (all concentrations at 

both 4 h and 24 h time points) and Spatone® original (all concentrations at 24 h; 30 & 

100 µmol/L at 4 h).  
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Discussion 

 
Current strategies for the treatment of IDA are based on oral ferrous iron 

supplements; however, these are poorly tolerated by patients due to a range of GI 

side-effects [6-9]. This in turn leads to poor compliance with therapy, which has 

consequences for the efficacy of treatment.  Iron preparations with higher 

bioavailability, thus enabling lower absolute doses of iron to be ingested, may cause 

less GI upset and be better tolerated by patients. This notion is supported by a study 

undertaken in pregnant women who had been non-compliant with taking FeSO4 

tablets, and were switched to Spatone iron rich water; 57% of subjects were compliant 

with the new iron supplement compared with 67% in the controls given placebo (plain 

water), and dyspepsia scores did not differ between the two groups [25].  

 

We have compared the bioavailability of a range of commercially available iron 

supplements using a well-characterized in vitro digestion model [18,19]. Spatone, and 

ferrous sulphate tablets had equivalent  bioavailability in the in vitro model, which is 

consistent with previous absorption studies in human volunteers [16]. The iron in 

Spatone® is FeSO4; this suggests that being in liquid form per se doesn’t increase iron 

bioavailability. Spatone Apple® demonstrated the highest iron bioavailability in the in 

vitro model, followed by the synthetic liquid iron formulation Iron Vital F®; this 

result remained highly significant even after adjustment for the increased iron in 

Spatone Apple® digests. Both Spatone Apple® and Iron Vital F® contain added 

ascorbate, a known enhancer of iron uptake. While Spatone Apple® has 80 mg 

ascorbate/sachet  (E Hunt, Product & Consumer Information Officer for Nelson & 

Co., personal communication, 2014) giving an iron:ascorbate molar ratio of 1:16, the 

iron:ascorbate ratio in Iron Vital F is 1:6 according to the supplement label.  The 

enhancing effects of ascorbate on iron bioavailability are dose dependent [26], 

therefore the higher ascorbate:iron ratio in Spatone Apple® may explain the difference 

in iron uptake between the two supplements.  Furthermore, Iron Vital F®, according to 

the manufacturer’s ingredients list, also contains plant extracts, pectin and thickening 
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agents. These dietary factors are sources of polyphenols and phytates, both of which 

inhibit iron absorption and are only partly counteracted by ascorbate [26].  

Interestingly, Vitabiotics Pregnacare® had the same bioavailability as FeSO4, despite 

having added ascorbate (70 mg/tablet). The iron:ascorbate molar ratio, however, is 

only 1:4, which may not be optimal for improving iron uptake. In addition, the 

presence of other minerals contained in Pregnacare®, such as zinc, may partially 

inhibit iron uptake [27]. 

 

Pregnant women are at high risk for IDA [28], however iron supplement 

recommendations during pregnancy differ between countries. The WHO and the 

United States of America (USA) recommend that all pregnant women receive 

prophylactic prenatal iron [29-31].  Currently, the United Kingdom (UK) does not 

suggest routine prenatal iron supplementation [32]; historically pregnant women in 

the UK were advised to take iron but this was found to be either ineffective [33], or to 

have no demonstrated benefit on maternal or foetal outcomes [34,35]. Recent research 

may challenge current UK guidelines [36]; two large systematic reviews with meta-

analyses found that daily prenatal iron reduced maternal anaemia, IDA and risk of 

foetal low birth weight [37,38]. However, one of the reviews noted that dose and 

regimen recommendations for routine iron supplementation need refining and 

updating [37], and within this context our results suggest that further research with the 

tested formulations used in our study are warranted.  

 

Another group that might benefit from both Spatone Apple® and Iron Vital F® are 

post-bariatric surgery patients who are at high risk of IDA [39-41], and in whom 

treatment with standard iron tablets is often ineffective [42,43]. In one study post-

operative gastric bypass patients given 100 mg FeSO4 tablets as an oral challenge 

absorbed inadequate amounts of iron as measured by change in serum iron 

concentration [44]; altered gut physiology after bariatric surgery may not allow for 

iron absorption from FeSO4 tablets. Furthermore, several studies have also 

documented low vitamin C levels in patients after bypass procedures [45,46], 

therefore liquid iron preparations with added ascorbate - such as Spatone Apple® and 

Iron Vital F® (which also has other micronutrients) - may be helpful in this 

population.  
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The data presented here for Spatone Apple® suggest that this, or similar products, are 

highly bioavailable as they gave rise to a rapid increase in cell ferritin in our in vitro 

model. Furthermore, 10 µmol/L iron given as Spatone Apple® gave a comparable 

ferritin response to 100 µmol/L ferric ammonium citrate and a higher ferritin level 

than 100 µmol/L FeSO4 (from Spatone®). An important caveat is that we have only 

performed in vitro studies to date. The bioavailability of Spatone Apple® has not been 

assessed in human volunteers, and our data suggest that these studies are warranted. 

The Caco-2 in vitro digestion model provides a validated method for screening iron 

bioavailability of a range of compounds and test meals. Furthermore, it has been 

shown to predict the direction, but not necessarily the magnitude, of iron 

bioavailability in humans [47]. If our in vitro results are confirmed in vivo it would 

suggest that lower doses of a more bioavailable iron form could be effective in 

combating iron deficiency.  This would be particularly advantageous for groups who 

are both at increased risk of IDA and less tolerant to high doses of iron, such as 

pregnant women. 

 

In conclusion, the results of this in vitro study demonstrate that naturally iron-rich 

mineral waters, or synthetic liquid iron formulations, are equivalent to the standard of 

care FeSO4 recommended for IDA; and those with added ascorbate have increased 

bioavailability.  If these results are confirmed in randomized control studies in human 

volunteers at risk for IDA, such subjects could then be offered a greater choice of 

more bioavailable and potentially better tolerated iron preparations. 

 

 

Acknowledgments: This work was supported by the Faculty of Engineering & 

Science at the University of Greenwich, and the Diabetes & Nutritional Sciences 

Division at King’s College London. We thank David Scott Ganis for assistance with 

statistical and numerical analysis. 

 

The manuscript does not contain clinical studies or patient data. 

 

On behalf of all authors, the corresponding author states that there is no conflict of 

interest. 

 



 13 

 

 
 
 
 
 
 
 

References 
 

1. McLean E, Cogswell M, Egli I, Wojdyla D, de Benoist B (2009) Worldwide 
prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 
1993-2005. Public Health Nutr 12 (4):444-454. doi:10.1017/S1368980008002401 
2. Shankar P, Boylan M, Sriram K (2010) Micronutrient deficiencies after bariatric 
surgery. Nutrition 26 (11-12):1031-1037. doi:10.1016/j.nut.2009.12.003 
3. Miller JL (2013) Iron deficiency anemia: a common and curable disease. Cold 
Spring Harb Perspect Med 3 (7). doi:10.1101/cshperspect.a011866 
4. Andrews NC (1999) Disorders of iron metabolism. New Engl J Med 341 
(26):1986-1995. doi:10.1056/NEJM199912233412607 
5. Pavord S, Myers B, Robinson S, Allard S, Strong J, Oppenheimer C, British 
Committee for Standards in H (2012) UK guidelines on the management of iron 
deficiency in pregnancy. Brit J Haematol 156 (5):588-600 
6. Zhou SJ, Gibson RA, Crowther CA, Makrides M (2009) Should we lower the dose 
of iron when treating anaemia in pregnancy? A randomized dose-response trial. Eur J 
Clin Nutr 63 (2):183-190. doi:10.1038/sj.ejcn.1602926 
7. Hyder SM, Persson LA, Chowdhury AM, Ekstrom EC (2002) Do side-effects 
reduce compliance to iron supplementation? A study of daily- and weekly-dose 
regimens in pregnancy. J Health Popul Nutr 20 (2):175-179 
8. Seck BC, Jackson RT (2008) Determinants of compliance with iron 
supplementation among pregnant women in Senegal. Public Health Nutr 11 (6):596-
605. doi:10.1017/S1368980007000924 
9. Habib F, Alabdin EH, Alenazy M, Nooh R (2009) Compliance to iron 
supplementation during pregnancy. J Obstet Gynaecol 29 (6):487-492. 
doi:10.1080/01443610902984961 
10. Keller J, Frederking D, Layer P (2008) The spectrum and treatment of 
gastrointestinal disorders during pregnancy. Nat Clin Pract Gastr  5 (8):430-443. 
doi:10.1038/ncpgasthep1197 
11. Bonapace ES, Jr., Fisher RS (1998) Constipation and diarrhea in pregnancy. 
Gastroenterol Clin N 27 (1):197-211 
12. Beard JL (2000) Effectiveness and strategies of iron supplementation during 
pregnancy. Am J Clin Nutr 71 (5 Suppl):1288S-1294S 
13. Ekstrom EC, Kavishe FP, Habicht JP, Frongillo EA, Jr., Rasmussen KM, Hemed 
L (1996) Adherence to iron supplementation during pregnancy in Tanzania: 
determinants and hematologic consequences. Am J Clin Nutr 64 (3):368-374 



 14 

14. Stoltzfus RJ (2011) Iron interventions for women and children in low-income 
countries.  J Nutr 141 (4):756S-762S. doi:10.3945/jn.110.128793 
15. Worwood M, Evans WD, Villis RJ, Burnett AK (1996) Iron absorption from a 
natural mineral water (Spatone Iron-Plus). Clin Lab Haematol 18 (1):23-27 
16. Halksworth G, Moseley L, Carter K, Worwood M (2003) Iron absorption from 
Spatone (a natural mineral water) for prevention of iron deficiency in pregnancy. Clin 
Lab Haematol 25 (4):227-231 
17. Zariwala MG, Somavarapu S, Farnaud S, Renshaw D (2013) Comparison study of 
oral iron preparations using a human intestinal model. Sci Pharm 81 (4):1123-1139. 
doi:10.3797/scipharm.1304-03 
18. Glahn RP, Lee OA, Yeung A, Goldman MI, Miller DD (1998) Caco-2 cell ferritin 
formation predicts nonradiolabeled food iron availability in an in vitro 
digestion/Caco-2 cell culture model. J Nutr 128 (9):1555-1561 
19. Yun S, Habicht JP, Miller DD, Glahn RP (2004) An in vitro digestion/Caco-2 cell 
culture system accurately predicts the effects of ascorbic acid and polyphenolic 
compounds on iron bioavailability in humans. J Nutr 134 (10):2717-2721 
20. Caro I BX, Rousset M,  Meunier V, Bourrie M, Julian B, Joyeux H, Roques C, 
Berger Y,  Zweibaum A,  Fabre G (1995) Characterisation of a newly isolated Caco-2 
clone (TC-7), as a model of transport processes and biotransformation of drugs. Int J 
of Pharm 116:147-158 
21. Sharp P, Tandy S, Yamaji S, Tennant J, Williams M, Singh Srai SK (2002) Rapid 
regulation of divalent metal transporter (DMT1) protein but not mRNA expression by 
non-haem iron in human intestinal Caco-2 cells. FEBS letters 510 (1-2):71-76 
22. Christides T, Sharp P (2013) Sugars increase non-heme iron bioavailability in 
human epithelial intestinal and liver cells. PloS one 8 (12):e83031. 
doi:10.1371/journal.pone.0083031 
23. Glahn RP, Rassier M, Goldman MI, Lee OA, Cha J (2000) A comparison of iron 
availability from commercial iron preparations using an in vitro digestion/Caco-2 cell 
culture model. J Nutr Biochem 11 (2):62-68 
24. Motulsky H (2010) Intuitive Biostatistics. 2nd ed. Oxford University Press, 
Oxford, UK 
25. McKenna D, Spence D, Haggan SE, McCrum E, Dornan JC, Lappin TR (2003) A 
randomized trial investigating an iron-rich natural mineral water as a prophylaxis 
against iron deficiency in pregnancy. Clin Lab Haematol 25 (2):99-103 
26. Teucher B, Olivares M, Cori H (2004) Enhancers of iron absorption: ascorbic acid 
and other organic acids. Int J Vitam Nutr Res 74 (6):403-419 
27. Olivares M, Pizarro F, Ruz M, de Romana DL (2012) Acute inhibition of iron 
bioavailability by zinc: studies in humans. Biometals 25 (4):657-664. 
doi:10.1007/s10534-012-9524-z 
28. Scholl TO (2005) Iron status during pregnancy: setting the stage for mother and 
infant. Am J Clin Nutr 81 (5):1218S-1222S 
29. CDC (1998) Recommendations to prevent and control iron deficiency in the 
United States. MMWR Recomm Rep, vol 47. Centers for Disease Control and 
Prevention  



 15 

30. WHO (World Health Oreganization)(2012) Guideline: Daily iron and folic acid 
supplementation in pregnant women. Geneva, World Health Organization  
31. WHO (World Health Organization)(2012) Guideline: Intermittent iron and folic 
acid supplementation in non-anaemic pregnant women. Geneva, World Health 
Organization 
32. NICE (2008) Antenatal care: Routine care for the healthy pregnant woman. 
National Institute for Clinical Excellence, London 
33. Fenton V, Cavill I, Fisher J (1977) Iron stores in pregnancy. Brit J Haematol 37 
(1):145-149 
34. Cuervo LG, Mahomed K (2001) Treatments for iron deficiency anaemia in 
pregnancy. Cochrane DB Syst Rev (2):CD003094. doi:10.1002/14651858.CD003094 
35. Pena-Rosas JP, Viteri FE (2009) Effects and safety of preventive oral iron or 
iron+folic acid supplementation for women during pregnancy. Cochrane DB Syst Rev 
(4):CD004736. doi:10.1002/14651858.CD004736.pub3 
36. Krafft A (2013) Iron supplementation in pregnancy. Brit Med J 347:f4399. 
doi:10.1136/bmj.f4399 
37. Pena-Rosas JP, De-Regil LM, Dowswell T, Viteri FE (2012) Daily oral iron 
supplementation during pregnancy. Cochrane DB Syst Rev  12:CD004736. 
doi:10.1002/14651858.CD004736.pub4 
38. Haider BA, Olofin I, Wang M, Spiegelman D, Ezzati M, Fawzi WW, Nutrition 
Impact Model Study G (2013) Anaemia, prenatal iron use, and risk of adverse 
pregnancy outcomes: systematic review and meta-analysis. Brit Med J 346:f3443. 
doi:10.1136/bmj.f3443 
39. Jauregui-Lobera I (2013) Iron deficiency and bariatric surgery. Nutrients 5 
(5):1595-1608. doi:10.3390/nu5051595 
40. Bal BS, Finelli FC, Shope TR, Koch TR (2012) Nutritional deficiencies after 
bariatric surgery. Nat Rev Endocrinol 8 (9):544-556. doi:10.1038/nrendo.2012.48 
41. Stein J, Stier C, Raab H, Weiner R (2014) Review article: the nutritional and 
pharmacological consequences of obesity surgery. Aliment Pharm Ther 40 (6):582-
609. doi:10.1111/apt.12872 
42. Sawaya RA, Jaffe J, Friedenberg L, Friedenberg FK (2012) Vitamin, mineral, and 
drug absorption following bariatric surgery. Curr Drug Metab 13 (9):1345-1355 
43. Gasteyger C, Suter M, Gaillard RC, Giusti V (2008) Nutritional deficiencies after 
Roux-en-Y gastric bypass for morbid obesity often cannot be prevented by standard 
multivitamin supplementation. Am J Clin Nutr 87 (5):1128-1133 
44. Gesquiere I, Lannoo M, Augustijns P, Matthys C, Van der Schueren B, Foulon V 
(2014) Iron deficiency after Roux-en-Y gastric bypass: insufficient iron absorption 
from oral iron supplements. Obes Surg 24 (1):56-61. doi:10.1007/s11695-013-1042-8 
45. Clements RH, Katasani VG, Palepu R, Leeth RR, Leath TD, Roy BP, Vickers SM 
(2006) Incidence of vitamin deficiency after laparoscopic Roux-en-Y gastric bypass 
in a university hospital setting. Am Surgeon 72 (12):1196-1202; discussion 1203-
1194 
46. Netto BD, Moreira EA, Patino JS, Beninca JP, Jordao AA, Frode TS (2012) 
Influence of Roux-en-Y gastric bypass surgery on vitamin C, myeloperoxidase, and 



 16 

oral clinical manifestations: a 2-year follow-up study. Nutr Clin Pract 27 (1):114-121. 
doi:10.1177/0884533611431462 
47. Fairweather-Tait S, Lynch S, Hotz C, Hurrell R, Abrahamse L, Beebe S, Bering S, 
Bukhave K, Glahn R, Hambidge M, Hunt J, Lonnerdal B, Miller D, Mohktar N, 
Nestel P, Reddy M, Sandber AS, Sharp P, Teucher B, Trinidad TP (2005) The 
usefulness of in vitro models to predict the bioavailability of iron and zinc: a 
consensus statement from the HarvestPlus expert consultation. Int J Vitam Nutr Res 
75 (6):371-374 
  
 
 
 
 
 
 
  



 17 

 
Table 1 Manufacturers’ information including reported iron content for tested iron preparations 
Product name Reported iron content Manufacturer 

Spatone® 0.25 mg FeSO4/ml  A Nelson & Co Ltd  
(UK) 

Spatone Apple®  0.20 mg FeSO4/ ml A Nelson & Co Ltd  
(UK) 

Iron Vital F®  1 mg iron-II-gluconate/ml Anton Hubner Gmbh & Co 
(Germany) 

Pregnacare Original® 51.4 mg ferrous fumarate equivalent to 17 mg 
ferrous iron/tablet 

Vitabiotics Ltd.  
(UK) 

Almus Ferrous 
Sulphate tablets  

200 mg FeSO4 equivalent to 65 mg ferrous 
iron/tablet 

Almus Pharmaceuticals  
(UK) 

 

 
 

Table 2 Iron digest levels and Caco-2 cell ferritin after treatment with iron supplements - unadjusted 
for iron digest levels  

Product name Digest iron concentrations  (mg/L) ng ferritin/mg protein (unadjusted) 
FeSO4 2.80±0.10(0%) 11.82±0.67 (0%) 
Iron Vital F®(IVF) 2.90±0.37 (4%) 25.76±2.07 a (118%) 
Pregnacare Original®(PG) 2.83±0.68 (1%) 10.35±0.82 (-12%) 
Spatone® 3.40±0.62 (18%) 12.24±0.91 (4%) 
Spatone Apple® 4.00±0.75*(30%) 83.94±4.46 b (610%) 

Ferritin levels of Caco-2 cells unadjusted for differing digest iron levels as measured by ICP-OES.  Expressed as the mean ± SEM.  
Means with different superscript letters or asterisk in a column are statistically different. Percentage figures in parenthesis by 
digest iron levels is the percent by which the mean digest iron levels of other formulations compared with mean FeSO4 iron digest 
levels; percentage figures in parenthesis by ferritin values are the percent by which the mean ferritin levels of cells treated with the 
other formulations compared with ferritin of FeSO4 treated cells. Digest iron concentrations for IVF, PG and Spatone®, were not 
statistically different from that of FeSO4, however digest iron concentrations in Spatone Apple® were significantly different based 
on one-way ANOVA followed by Tukey’s multiple comparison test (p<0.05). Ferritin levels were highest in Spatone Apple® 
treated cells followed by IVF; levels of the three other treatments were not statistically significantly different based on one-way 
ANOVA followed by Tukey’s multiple comparison test (p<0.05) 
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Fig. 1:  Comparison of ferritin formation from digests with different commercial iron 
formulations adjusted for measured iron levels in digests 
Measurement of Caco-2 cell ferritin formation from digests of FeSO4 tablets, Iron Vital F® (IVF, a 
synthetic liquid iron supplement), Vitabiotics Pregnacare® tablets (PG, a mineral and multivitamin 
supplement marketed to pregnant women), Spatone® and  Spatone Apple® (naturally iron-rich mineral 
waters, the latter with added ascorbate). Digests with no added Fe (Blank) were used to rule out iron 
contamination; digests with Fe alone and Fe plus ascorbic acid (Fe + AA) were used as reference 
controls and positive controls, respectively (not unadjusted for digest iron levels). Treatment with 
Spatone Apple® yielded the highest ferritin levels followed by IVF treatment; ferritin levels from the 
three other supplements were equivalent. Values are means of data adjusted for the iron content of the 
digests (as determined by microwave analysis) ± SEM, n=18. Based on an ANOVA (p<0.0001) with 
Tukey’s multiple comparisons test post-hoc analysis done on an all-pairwise basis after log adjustment, 
bar values with no letters in common are significantly different (p ≤ 0.01) 
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Fig. 2a:  Caco-2 cell ferritin levels as a function of iron dose and time – 4 h exposure  
Caco-2 cells were treated for four hours with three different concentrations of iron. Ferritin levels 
increased as a function of concentration with treatments with Spatone® and Spatone Apple®; this only 
reached statistical significance for Spatone Apple®. Ferritin levels were highest after treatment with 
Spatone Apple® at all three iron doses tested. Asterisks represent treatments with mean values of 
ferritin that are significantly greater than the blank control value (labelled untreated) based on 
Dunnett’s multiple comparisons test.  Columns connected by lines have significantly different means 
from one another based on ANOVA followed by Tukey’s multiple comparisons test where the Tukey’s 
adjusted p-value is shown within the line (p ≤ 0.05 is considered significant) 
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Fig. 2b:  Caco-2 cell ferritin levels as a function of iron dose and time – 24 h exposure  
Caco-2 cells were treated for twenty-four hours with three different concentrations of iron. Ferritin 
levels increased as a function of concentration with treatments with Spatone® and Spatone Apple®; this 
only reached statistical significance for Spatone Apple®. Ferritin levels were highest after treatment 
with Spatone Apple® at 30 and 100 µmol/L iron. Asterisks represent treatments for which mean values 
of ferritin are significantly greater than the blank control value (labelled untreated) based on Dunnett’s 
multiple comparisons test. Columns connected by lines have significantly different means from one 
another based on ANOVA followed by Tukey’s multiple comparisons test where the Tukey’s adjusted 
p-value is shown within the line (p ≤ 0.05 is considered significant) 
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Supplementary fig.1: Caco-2 cell ferritin levels as a function of iron dose  
Caco-2 cells were treated for 24 hours with increasing concentrations of iron ranging from 1-100 
µmol/L. Ferritin levels increased as a function of the log of iron concentration   
 
 
 
 
 

 
 
 
 


