
High Performance Graphics (2010)
M. Doggett, S. Laine, and W. Hunt (Editors)

A Lazy Object-Space Shading Architecture
With Decoupled Sampling

Christopher A. Burns1 Kayvon Fatahalian2 William R. Mark1

1Intel Labs
2Stanford University

Abstract

We modify the Reyes object-space shading approach to address two inefficiencies that result from performing
shading calculations at micropolygon grid vertices prior to rasterization. Our system samples shading of surface
sub-patches uniformly in the object’s parametric domain, but the location of shading samples need not correspond
with the location of mesh vertices. Thus we perform object-space shading that efficiently supports motion and de-
focus blur, but do not require micropolygons to achieve a shading rate of one sample per pixel. Second, our system
resolves surface visibility prior to shading, then lazily shades 2x2 sample blocks that are known to contribute
to the resulting fragments. We find that in comparison to a Reyes micropolygon rendering pipeline, decoupling
geometric sampling rate from shading rate permits the use of meshes containing an order of magnitude fewer ver-
tices with minimal loss of image quality in our test scenes. Shading on-demand after rasterization reduces shader
invocations by over two times in comparison to pre-visibility object-space shading.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Over 20 years ago, the Reyes rendering system demonstrated
an efficient approach for rendering anti-aliased motion blur
and depth-of-field effects. Reyes achieves its efficiency by
performing shading computations in object space prior to
visibility testing, so that each expensive shading computa-
tion is reused by many visibility samples, even in the pres-
ence of motion blur and defocus blur. However, the Reyes
system has two limitations that would be desirable to over-
come for interactive use on modern hardware: the decision
to shade at triangle vertices requires that surfaces always
be tessellated to pixel-size micropolygons, which increases
visibility-testing costs; and the system performs occlusion
culling at a coarse granularity only, resulting in many un-
necessary shading computations. In this paper, we extend
the Reyes object-space shading technique to overcome these
limitations. Our approach builds on techniques originally de-
veloped for GPU pipelines that shade in image space.

In Reyes, input primitives are split into small sections
called grids, which are diced into micropolygons approxi-

mately one or one half pixel in size. The micropolygons are
shaded at the vertices in object space prior to visibility. In-
stead of shading on grids of vertices, our system shades on
2x2 blocks of surface samples that are uniformly distributed
in object space within a grid. This change allows our system
to improve performance in two ways:

• The system shades approximately once per pixel without
requiring that triangles be tessellated to one-pixel (mi-
cropolygon) size. Triangle size is set independently from
shading rate, with the size based only on the required geo-
metric detail. Using fewer but larger triangles reduces the
cost of visibility testing.

• The system shades each 2x2 block of pixels on demand,
after performing fine visibility testing. By doing this, we
avoid excess shading associated with conservative ap-
proximations of visibility. Because the 2x2 block of shad-
ing samples contains many fewer shading samples than a
typical Reyes grid, we further reduce the number of sam-
ples that are shaded but not used. The net result is that our
system shades fewer samples.

c© The Eurographics Association 2010.

C. Burns, K. Fatahalian, W. Mark / A Lazy Object-Space Shading Architecture With Decoupled Sampling

Supersampling MSAA [RKLC*10]

Lazy
Shading Grid

Shading
Grid

Lazy Vertex
Shading

Reyes Vertex
Shading

Shade
After

Visibility

Shade
Before

VisibilityShade in
Object
Space

Shade in
Image
Space

Visibility
Sample Coupled

Vertex
Coupled

Decoupled

Figure 1: A shading architecture design space. Red dots
indicate shading samples, black dots are visibility samples,
and hollow dots are unevaluated samples. Shading can be
computed in object space or image space, and may be cou-
pled with vertices or visibility samples, respectively. This pa-
per presents the "Lazy Shading Grid".

Decoupling shading from triangle vertices presents ben-
efits to the Reyes pipeline analogous to the advantages that
adaptive multisampling has over supersampling in an image-
space shading system. Surface tessellation fidelity can now
be driven solely by required geometric detail, which is gen-
erally coarser than the required density of shading samples.
We show that this change can halve the cost of visibility test-
ing using stochastic rasterization, as compared to Reyes mi-
cropolygon shading, with very little loss in image quality for
our test scenes.

To reduce unnecessary shader invocations, we implement
and evaluate a mechanism to defer shading until precise vis-
ibility information is known. By shading lazily, we avoid
shading portions of grids that are occluded, back-facing, or
outside the current view frustum. In scenes with many sil-
houettes, small occluders, and high depth complexity the
savings can exceed 2x. For rendering systems that tile the
frame buffer and process tiles independently in parallel, the
benefits are even greater, as we show in our evaluation.

This paper focuses on algorithmic improvements to
object-space shading pipelines, rather than an optimized im-
plementation. A recent line of research has investigated mi-
cropolygon rendering using image-space shading [FBH∗10].
We build on some key ideas from this previous work, but
consider our object-space approach to be an alternative
to these image-space approaches; for evolutionary reasons
some system designers will have an a-priori preference for
either object-space or image-space shading, and we are not
attempting to argue that shading in object space is inherently
better or worse than shading in image space. We begin with
an analysis of the design space and previous work.

Fine
Occlusion

Culling

Shading
Reuse
Across
Pixels

Shading
Reuse at
Triangle
Edges

Supports
Non-micro
Triangles

GPU + Fragment
Merge [FBH*10]

GPU + Memoization
Cache [RKLC*10]

Reyes [CCC87]

Lazy Shading Grid

(1) (2) (3) (4)

Figure 2: Ours is the only shading system with these four
performance-related features, which we discuss in Section 2.
Shading reuse across pixels is especially important to sup-
port motion blur and depth-of-field effects efficiency.

2. The Design Space

The design space of shading architectures, illustrated in Fig-
ure 1, can be divided into two groups according to the co-
ordinate space in which surface shading is sampled. Image
space shading systems compute surface color at image co-
ordinates after geometry has been projected and visibility
determined, while object-space techniques compute sample
locations in object-space, usually prior to visibility testing.
Figure 2 complements this taxonomy with a feature compar-
ison checklist for the most relevant related systems.

2.1. Object-Space Shading

Object-space shading architectures are typified by the Reyes
architecture [CCC87], which tessellates surfaces into mi-
cropolygons that are shaded prior to visibility. The principle
advantage of the Reyes architecture is that shading results for
a surface can be reused for many pixels, efficiently support-
ing complex blur effects important for cinematic rendering
such as motion blur and camera defocus (Fig. 2, col. 2).

There are two serious disadvantages to this approach.
Since shading is performed at triangle (or quad) vertices,
triangle size must be kept small to support the requirement
for a high density of shading samples, even when a surface
is flat and larger triangles would provide sufficient geomet-
ric detail (Fig. 2, col. 4). Small triangles impose a signifi-
cant burden on the rasterizer [FLB∗09]. Second, surfaces are
shaded before precise visibility information is available, pre-
venting precise occlusion culling (Fig. 2, col. 1). This results
in several forms of extraneous shading relative to a fragment-
shading system. To the authors’ knowledge, post-visibility
object-space shading has not been explored in the literature.
Despite these drawbacks, there is increased interest in Reyes
as a viable real-time graphics architecture with the addition
of dynamic tessellation to the DX11 pipeline [Mic10], and
recent efforts to implement the Reyes pipeline on current
GPU hardware [ZHR∗09] [PO08].

c© The Eurographics Association 2010.

20

C. Burns, K. Fatahalian, W. Mark / A Lazy Object-Space Shading Architecture With Decoupled Sampling

Tess
(Split/Dice)

Surface
Evaluation

Surface
Shader Rast

Back-
face
Cull

Z-Max
Cull

GridCurved
Surface

Figure 3: Data flow diagram of the standard Reyes micropolygon rendering pipeline. The tessellator produces a stream of
small triangle meshes called grids from an input curved surface representation. The surface attributes are evaluated at the
triangle vertices and optionally displaced. After culling, the triangle vertices are lit and shaded, and finally rasterized.

Tess
(Split/Dice)

Surface
Evaluation

Surface
Shader

Rast
Back-
face
Cull

Z-Max
Cull

Color
Lookup

Polygon Grid

Shading Grid

Curved
Surface

Figure 4: Data flow diagram of the Reyes pipeline modified to support both the shading grid and lazy shader execution.
Rasterization on the polygon grid generates a list of fragments that determine precisely which samples in the shading grid
require shading. The fragments look up their final color from the shading grid. Note that both the polygon grid and the shading
grid pass through the surface evaluation stage.

2.2. Image-Space Shading

All modern GPU-accelerated real-time rendering systems
couple shading samples to image space visibility samples.
The simplest of these approaches is supersampling, which
executes the surface shader for every visibility sample taken.
The technique is inefficient because anti-aliased visibility
generally requires a higher sampling rate than does shad-
ing. Accordingly, most GPUs today compute one shading
sample per pixel regardless of the visibility sampling rate
(shaders are expected to band-limit themselves), an opti-
mization known as multi-sampled anti-aliasing (MSAA)
[Ake93].

The earliest attempt to support blur effects within these
systems required rendering the scene multiple times for dif-
ferent lens coordinates u and v and/or time values t, and
compositing these results together with an accumulation
buffer [HA90]. Shading is decoupled from spatial coordi-
nates (x,y), but remains coupled to the values of u,v and
t. Stochastic rasterization as proposed by Akenine-Möller et
al. retains this partial coupling and requires shader execution
per pixel proportional to the number of temporal/lens sam-
ples used to resolve motion blur or defocus blur [AMMH07].

Fully decoupling sampling under motion and defocus blur
in a way that permits reuse of previously computed shading
samples requires managing a complex many-to-one mapping
of visibility samples to shading samples. Ragan-Kelley et al.
show that this is possible in the context of a stochastic GPU
fragment shading pipeline [RKLC∗10]. In their decoupling,
a memoization cache stores shading results computed at a
5D visibility sample (x,y,u,v, t) that is mapped to a canon-
ical coordinate frame (x′,y′,0,0,0). When additional shad-

ing samples are requested that map to the same coordinate
(x′,y′,0,0,0), the cached value is used if available. This ar-
rangement permits flexible per-primitive shading rates, and
reuse of shading samples across pixels in a GPU fragment
shading pipeline (Fig. 2, col. 2). Their formalization of the
decoupled sampling concept applies to object-space shading
methods as well. If Reyes vertex shading is viewed as map-
ping visibility samples to triangle vertices, our method uses
an alternative object-space mapping that avoids vertex cou-
pling. While the resulting benefits of our approach and that
of Ragan-Kelley et al. are similar, we achieve them by evolv-
ing the Reyes object-space shading architecture rather than
by evolving sort-last fragment shading systems.

The main benefit of decoupling sampling from visibility
in a GPU is that it permits reuse across pixels under condi-
tions in which objects are blurred. However, current GPUs
(and the system implemented by Ragan-Kelley et al.) shade
triangles individually and do not track continuity informa-
tion between adjacent triangles. As a result there is no reuse
of shading results at triangle boundaries (Fig. 2, col. 3).
GPUs shade on blocks of four pixels (quads) at a time to sup-
port finite difference calculations. Each quad is shaded once
for each triangle touching it because shading results are only
reused within a single triangle. Recent work has proposed a
quad-merge pipeline stage to recover the lost continuity in-
formation [FBH∗10] in a standard GPU fragment pipeline,
without blur effects. Their work shows the penalty for not
reusing shading samples across triangles is severe in the case
of micropolygons half a pixel in area, but still costs a factor
of two for triangles 5-7 pixels in area.

Successfully combining the fragment merging technique
with either the memoization cache or stochastic rasterization

c© The Eurographics Association 2010.

21

C. Burns, K. Fatahalian, W. Mark / A Lazy Object-Space Shading Architecture With Decoupled Sampling

has the potential to deliver an image-space shading architec-
ture that efficiently supports blur effects with small triangles,
but this combination is non-trivial and has not yet been done.
The object-space shading architecture presented in this paper
provides all the advantages listed in Figure 2 via improve-
ments to the basic Reyes pipeline.

3. The Standard Reyes Pipeline

The canonical micropolygon rendering pipeline is known as
the Reyes algorithm [CCC87] and is commonly used for of-
fline cinematic rendering workloads (Figure 3). The renderer
receives as input a collection of curved surfaces (though al-
most any boundary representation can be supported). These
surfaces pass through a two-stage tessellation process known
as split-dice. During split, patches are recursively subdivided
into approximately flat sub-patches small enough to dice
into a micropolygon grid, referred to simply as a grid. The
polygons must be small enough to meet the user-requested
shading rate, typically one half a pixel in area.

The grid passes through a surface evaluation stage (known
as the domain shader in the DX11 pipeline) that evaluates
the surface position, normals, texture coordinates, and other
attributes at the vertex locations. This stage also optionally
evaluates a displacement shader at all vertices. Surface shad-
ing is performed at the vertices prior to rasterization, which
is typically done with many jittered samples per pixel. Color
is interpolated from the shaded vertices, and fragments are
z-tested and blended with the framebuffer.

4. The Shading Grid

To decouple shading samples from vertices (Fig. 2, col. 4),
we add an object called a shading grid as output from the
tessellation stage alongside the usual grid, which we rename
the polygon grid to emphasize that it contains only surface
attributes necessary for visibility. The shading grid is an im-
plicit grid of UV locations on which surface shading takes
place. The dimensions of this grid are computed to provide
approximately one shade point per pixel. The polygon grid
is not shaded, but passes straight to the rasterizer. When a
triangle in the polygon grid is rasterized, output fragment
colors are sampled and interpolated from the shading grid.

We think of the shading grid as a small multi-channel tex-
ture map that is streamed from the tessellator, through the
shaders, and discarded after rasterized fragments consume
the results. Thus it should always remain in cache, avoiding
the long latencies normally associated with texture lookups.
Our reference implementation is in software, though hard-
ware texture sampling units could be exploited in a perfor-
mance implementation.

4.1. Smooth Derivative Values

Shaders often require the derivatives of certain surface pa-
rameters with respect to neighboring shading samples. In

practice, shading samples are executed in 2x2 blocks and
finite differencing is used to compute these derivatives. For
a parameter p shaded on a grid in object-space, we wish to
compute ∂p

∂u and ∂p
∂v . However, discrete changes in the object-

space sampling rate at grid boundaries can sometimes result
in visible artifacts. The solution employed by modern Reyes
implementations is described as estimating the "ideal" mi-
cropolygon size at a surface location and using that instead
of the actual micropolygon size [AG00]. Since the ideal mi-
cropolygon edge is one pixel long in screen-space, this is
equivalent to computing screen-space derivatives ∂p

∂x and ∂p
∂y .

The shading grid simplifies this computation. Shading
samples are distributed uniformly in object-space across the
face of a sub-patch, and finite differencing within 2x2 sam-
ple quads provides the derivatives ∂p

∂u and ∂p
∂v for surface at-

tribute p. To compute "smooth" derivatives (i.e. screen-space
derivatives) we employ the chain rule and evaluate the par-
tial derivatives ∂u

∂x , ∂u
∂y , and ∂v

∂x , ∂v
∂y . The complete derivation is

provided in Appendix A.

4.2. Shading Grid Resolution

To accurately achieve the target shading rate, we must es-
timate the projected screen-space area of a sub-patch prior
to rasterization. We use this estimate to determine the res-
olution of the shading grid. This is similar to the task of
determining the tessellation rate of the polygon grid, with
the exception that we can ignore potential "T"-junctions at
boundaries, since only shading is computed on this grid, not
visibility. Therefore we arrange samples in an implicit regu-
lar grid spanning the entire sub-patch domain.

During the split phase of tessellation, the tessellator evalu-
ates the projected, displaced screen position of a small series
of samples along a patch edge. The screen-space length of
this edge is used to determine whether the (sub-)patch needs
further splitting, or can be diced. We also use this arc length
to approximate the number of shading samples needed along
that edge to achieve the target shading rate for that primitive.
We round these estimates to the next largest even number so
that we can shade at a 2x2 block granularity to allow deriva-
tive calculation as described in the preceding section.

However, relying on the screen-space edge lengths alone
will result in significant over-shading for sub-patches that
are distorted by perspective, or that project to the camera
at an oblique angle. This problem is identified by Fisher et
al. [FFB∗09] and is solved by "interior scaling". They es-
timate the screen-space area of the sub-patch and evaluate
an equation expressing triangle count as a function of that
area. We follow the same principle, except with two modifi-
cations. First, we estimate the sub-patch area by differential
geometry calculations, rather than by assuming it to be four
times the largest of its four quadrant areas as in Fisher et
al. We empirically determined that our approach gave more
consistent results for the shading grid than the approach of

c© The Eurographics Association 2010.

22

C. Burns, K. Fatahalian, W. Mark / A Lazy Object-Space Shading Architecture With Decoupled Sampling

Fisher et al. Second, we compute two scale factors instead
of one, to better handle rectangular sub-patches (though the
splitter attempts to generate square grids, dimensions may
vary by up to a factor of two). We now describe how these
two factors are computed.

4.3. Anisotropic Grid Scaling

We can estimate the screen-space area of a shading grid
"texel" in a manner similar to the way renderers compute
mipmap LOD levels. We will evaluate the differential geom-
etry properties of the sub-patch at each of the four corners,
and use them to compute a "best-fit" shading grid resolution
in each parametric coordinate direction that will conserva-
tively shade the entire patch at a rate nowhere less than the
target shading rate.

At each corner of the shading grid, we compute the partial
derivatives ∂u

∂x , ∂u
∂y , ∂v

∂x , ∂v
∂y as described in Appendix A. These

quantities relate the size of a shading sample to the size of a
screen pixel. We use these to compute a pair of values indi-
cating the screen-space size of a texel at each corner of the
sub-patch:

Su =

√(
∂u
∂x

)2

+
(

∂u
∂y

)2

Sv =

√(
∂v
∂x

)2

+
(

∂v
∂y

)2

Due to curvature, the perspective transform, and displace-
ment mapping, the four pairs of quantities Su and Sv will usu-
ally differ. We take a conservative approach and choose the
largest value, and use the reciprocal of this quantity to adjust
the estimated shading grid resolution. Note that this does not
guarantee a local lower bound on shading rate unless the sub-
patch is flat - high frequency variation across the patch could
potentially result in a large variation in shading rate in some
localized areas within the sub-patch. However the assump-
tion of an approximately linear sub-patch is a reasonable one
given the design of the split-dice algorithm. Without using
grid scaling, shader executions increase by between 30 and
50% for most scenes, with zone plate and furball exhibiting
penalties of more than 100%.

The extra work required to compute the anisotropic scale
factors at each corner of the patch is small relative to the cost
of over-shading. For sub-patches that are ultimately diced
and shaded, the screen-space derivatives at the corners of
the patch are required for smooth screen-space derivatives,
as explained in Section 4.1. For sub-patches interior to the
split tree (those that require further splitting), it only repre-
sents a few additional surface evaluations per patch, depend-
ing on how careful the implementation is to reuse previously
computed values at shared corners and edges.

4.4. High-frequency Displacement

Displacement mapping can distort our estimate of the shad-
ing grid resolution. It sometimes means that our assumption

Figure 5: High frequency displacement mapping can ob-
struct estimation of shading grid resolution if not properly
filtered, shown on the left. Dark blue pixels indicate one
shader execution, and warmer colors indicate additional
shader executions. Displacement detail is filtered in the right
image as described in Section 4.4, resulting in more accurate
estimation of shading grid resolution.

of an approximately flat sub-patch fails in an arbitrary and
unpredictable way. In particular, high frequency detail can
introduce wildly inaccurate results since the scale factors are
calculated from the surface orientation locally at the corners.

To address this issue, we enlarge the displacement sam-
pling filter width when computing the grid scale factors de-
scribed in Section 4.3. Our filter is half the width of the sub-
patch’s longest edge, effectively filtering out displacement
frequencies that do not meaningfully contribute to the gen-
eral orientation of the patch. The resulting improvement of
this filter bias is shown in Figure 5. Note that both shading
samples and grid vertices are ultimately computed using the
unfiltered displacement shader, and this approximation does
not limit the detail visible in the final rendered image. Geo-
metric detail is only limited by the size of the triangles output
from the tessellator, which in our system is user-specified on
a per-primitive basis.

5. Lazy Shader Execution

The second pipeline modification we implement is post-
visibility shader execution. The traditional Reyes pipeline
shades the entire grid if any portion of it is conservatively
estimated to be visible. This results in over-shading at sil-
houettes, frustum boundaries, and where occluding geome-
try is fine-grained (Fig. 2, col. 1).

During rasterization, visibility samples that pass an early
Z test are stored in a fragment buffer. Shading grid samples
required to color these fragments are tagged as "requested" if
they are not already shaded. Processors shade the requested
samples in 2x2 blocks (quads) to support finite difference
calculations: if any sample in a quad is requested, the entire
quad is shaded. After shading, waiting fragments interpolate
color from their UV location in the shading grid and proceed
to the frame buffer for blending.

The fragment buffer stores sample hits generated by the
rasterizer. Data include depth, parametric UV coordinates,
and a coverage mask if the rasterizer delivers fragments in

c© The Eurographics Association 2010.

23

C. Burns, K. Fatahalian, W. Mark / A Lazy Object-Space Shading Architecture With Decoupled Sampling

Sample Test Efficiency v. Triangle Area

0 5 10 15 20 25 30 35 40 45 50

35 %

30 %

25 %

20 %

15 %

10 %

5 %

0 %

4 Samples per Pixel
16 Samples per Pixel

Sample Test
Efficiency

Triangle Area
In Pixels

2D Rasterization with 4x4 Sample Stamp

Figure 6: Rasterization efficiency increases rapidly as tri-
angles grow from sub-pixel sizes to about 5 pixels in area,
but more slowly thereafter. These data points were generated
from the big guy scene, though all tested scenes produced
very similar curves.

blocks. The UV coordinates are used to request and later
query samples in the shading grid. We use a fragment buffer
large enough to cover 1024 pixels, the largest allowable
shading grid in our configuration.

The lazy shading method described here could be imple-
mented without the shading grid, i.e. while shading at the
vertices of a micropolygon grid. Identifying which vertices
are requested for a given fragment becomes slightly simpler,
and fragments store triangle index and barycentric coordi-
nates instead of grid UV coordinates to facilitate lookup af-
ter vertex shading. Derivative calculation becomes slightly
more complicated, however.

6. Evaluation

We evaluate image quality and algorithmic performance
with three pipelines. A Reyes vertex shading pipeline as
shown in Figure 3, a modified pipeline that uses the shading
grid, and a lazy shading grid pipeline that shades after raster-
ization as shown in Figure 4. Entirely backfacing grids are
discarded after surface evaluation and displacement. This is
followed by a Z-max occlusion culling stage. A low resolu-
tion Z-buffer with a guaranteed conservative Z value for ev-
ery 8x8 pixel block is maintained and used to cull occluded
grids. This type of culling is commonly employed in today’s
real-time systems and is simple to implement [AMHH08].

We chose a variety of scenes that exhibit a range of depth
complexity and geometric detail, including displacement
mapped geometry. The spheres, army, and furball scenes il-
lustrate coarse, medium, and fine grain occlusion, respec-
tively. The turbulence and zone plate scenes consist of a
single surface with displacement mapping. The zone plate

Sample Test Efficiency (STE) Improvement
Scene Tri. Area (relative to STE of 1/2 pixel micropolygons)

0x 1x 2x 3x 4x 5x

Army 4.9 px
Big Guy 5.9 px

Furball 5.0 px
Spheres 5.6 px

Turbulence 7.6 px
Zone Plate 2.1 px

Figure 7: Observed improvement in STE for our test scenes
as a direct result of increased triangle size. Sample test-
ing accounts for approximately 65% of both stochastic and
stamp rasterization costs [FLB∗09].

is particularly challenging since the displacement introduces
significant self-occlusion and many silhouette edges.

In our results, we use a maximum shading grid size of
1024 samples. This choice follows the RenderAnts system
[ZHR∗09], but differs from the RenderMan specification de-
fault of 256 samples [AG00]. Like Zhou et al. we empirically
determined that the benefits of larger grid sizes for a real-
time system outweigh their costs, but it is particularly so in
light of our enhancements. The benefits include less redun-
dant work at grid boundaries, and increased available paral-
lelism within a grid. The costs of larger grids in a non-lazy
Reyes shading system include increased over-shading at sil-
houette edges and tile boundaries, and less effective coarse
Z culling of grids. Our modifications directly attack these
disadvantages, making larger grids even more desirable.

We also implement a sort-middle pipeline, where input
primitives are bucketed into screen-space tiles, which are
then processed independently and in parallel. Many real-
time systems are sort-middle [AMHH08], and we will show
that lazy shading can significantly improve the efficiency of
object-space shading in a sort-middle pipeline. More flexi-
ble approaches to sorting and scheduling such as that used
in RenderAnts [ZHR∗09] merit additional research, but fu-
ture scaling of many-core hardware architectures are likely
to reward systems with less synchronization.

6.1. Shading Grid Evaluation

The purpose of the shading grid is to decouple the shad-
ing samples from the vertices, thereby allowing the system
to use larger triangles where the geometry is less detailed.
Our observational experiments with the scenes shown in Fig-
ure 10 indicate that a maximum triangle edge length of 4.0
pixels is more than sufficient except in the case of zone plate,
where we use 3.0 because of the high frequency displace-
ment shader. An ideal tessellator would adaptively choose
the triangle size, concentrating smaller triangles at silhouette
edges and curves, and using larger triangles in smoother ar-
eas. The development of such a "smart" tessellator is beyond
the scope of this paper, and we use the DiagSplit split-dice

c© The Eurographics Association 2010.

24

C. Burns, K. Fatahalian, W. Mark / A Lazy Object-Space Shading Architecture With Decoupled Sampling

Lazy Shading Effectiveness (not tiled)

0 % 20 % 40 % 60 % 80 % 100 %

In
 F

oc
us

Army
Big Guy

Furball
Spheres

Turbulence
Zone Plate

D
ef

oc
us

ed

Army
Big Guy

Furball
Spheres

Turbulence
Zone Plate

Z-Max + Lazy Z-Max Only

Figure 8: Lazy shading reduces shader execution for oc-
cluded and partially occluded grids. Z-Max culling only
culls entire grids against a conservative low-resolution Z-
buffer. Scenes such as Army and Furball benefit the most
from fine grained occlusion culling. 100% is defined as shad-
ing all front-facing geometry (shorter bars are better). We
used a maximum shading grid size of 1024 samples, as de-
scribed in Section 6.

tessellation algorithm by Fisher et al. [FFB∗09]. Our config-
uration results in a triangle count reduction in all scenes be-
tween 8x-10x, and an increase in average triangle area from
0.4 pixels to between 4.9 and 7.0 pixels.

A ten-fold increase in triangle size reduces visibility costs
in two ways. First, fewer triangles means fewer per-triangle
costs such as bounding box computation. Second, larger tri-
angles result in improved sample test efficiency (STE), de-
fined as the ratio of samples covered to samples tested. Fig-
ure 6 illustrates the relationship between triangle size and
STE, and Figure 7 shows the observed STE improvement for
our test scenes. Sample testing and bounding box computa-
tion comprise between two thirds to three quarters of rasteri-
zation costs by operation count [FLB∗09]. This implies that
a 3.5x improvement in STE, as we show for most scenes in
Fig 7, reduces visibility costs by nearly 2x. While our choice
of tessellation rate (4.0 pixel edge length) is somewhat arbi-
trary, we have been very conservative in our quality judge-
ments, especially in view of the reduced performance bene-
fits of further increasing triangle size.

Like Reyes vertex shading and Ragan-Kelley et al., the
shading grid allows the user to specify an arbitrary shad-
ing rate, expressed in shading samples per pixel. We use a
value of 1.0, though other values may be useful in certain
shaders or other conditions. For example, it may be accept-
able to reduce the shading resolution for blurred objets. Note
that unlike with image-space shading systems, this parame-
ter is only a target, not a guaranteed result. Some grids may
have fewer, or more than, one shading sample per pixel on

Lazy Shading Effectiveness (tiled)

0 % 20 % 40 % 60 % 80 % 100 %

In
 F

oc
us

Army
Big Guy

Furball
Spheres

Turbulence
Zone Plate

D
ef

oc
us

ed

Army
Big Guy

Furball
Spheres

Turbulence
Zone Plate

Z-Max + Lazy Z-Max Only

Figure 9: Same as Figure 8, except with sort-middle screen
space tiling (tiles are 64x64 pixels). Lazy shading is more
effective relative to Z-Max culling in this case because of
bin-spread, discussed in Section 6.2.

average. The quality of the resulting shading is similar to
that of vertex shading, with slightly more variation between
surfaces, which we attribute to the constraint that grid di-
mensions are rounded-to-even, and the slightly larger av-
erage grid size. Occasionally we have observed a few sig-
nificantly under-shaded grids in anomalous cases, but the
slightly blurry results in these cases are temporally transient
and unlikely to be a problem for most real-time applications.
This problem is not unique to our method, but related to the
general problem of assigning shading points in object space
according to a desired screen-space distribution.

There are two new potential sources of artifacts that are
worth pointing out, even though we did not observe them.
First, the shading grid generates shading samples at 3D lo-
cations which lie on the limit surface, but not necessar-
ily on the surface defined by the tessellated polygon grid.
It is unclear whether secondary visibility calculations per-
formed at shading samples will therefore fail in unexpected
ways. It may, for example, exaggerate depth bias issues with
shadow maps, or self-intersections for secondary rays cast
from shading locations. The second possibility results from
the fact that samples along shading grid boundaries are not
"aligned" in the way that border vertices must align to avoid
cracks in the mesh. In principle (and in our experience) this
is not a problem, but it is imaginable that some shaders may
exaggerate numerical inconsistencies in surface attributes
along these edges.

6.2. Lazy Shading Evaluation

The lazy shading mechanism is designed to give object-
space shading architectures the ability to avoid shading oc-
cluded or otherwise invisible geometry at a granularity finer
than an entire grid, thus resolving one of its largest disad-

c© The Eurographics Association 2010.

25

C. Burns, K. Fatahalian, W. Mark / A Lazy Object-Space Shading Architecture With Decoupled Sampling

vantages relative to fragment shading architectures. The first
significant cause of overshading in Reyes is partial occlu-
sion of grids, either due to silhouette edges or depth com-
plexity. Coarse occlusion culling can be performed without
shading lazily via Z-max occlusion culling [AMHH08]. This
form of culling is inherently conservative: roughly a quarter
to a third of shaded grids in our tested scenes were fully
occluded but escaped Z-max culling. This culling pass is
ineffective for scenes with many silhouette edges or small
thin occluders (zone plate, furball). The zone plate scene is a
special case where the displacement function creates signif-
icant occlusion and many silhouette edges. Since the Z sort
occurs prior to tessellation and displacement, grids are not
rendered in Z order and occlusion culling is ineffective alto-
gether. Figure 8 illustrates the effectiveness of lazy shading
on the tested scenes.

The second major cause of over-shading that we analyze
is an artifact of screen-space tiling. The original Reyes sys-
tem tiled the frame buffer and rendered each tile serially
to minimize the renderer’s memory footprint. Grids which
overlapped a tile boundary were shaded once and "pushed"
to neighboring tiles and reused. In modern real-time tiled
renderers, however, tiles are processed independently and
in parallel without the synchronization burdens of passing
shaded grids between neighboring tiles. This results in re-
dundant shading of grids that overlap tile boundaries. The
percentage increase in shading due to screen-space tiling is
called bin-spread. A comparison of Figures 9 and 8 suggests
that tiling tends to cause more over-shading than occlusion.
Without lazy shading, a real-time tile-based renderer will
suffer from significant over-shading at tile boundaries.

Table 1 quantifies the amount of over-shading caused by
64x64 pixel tiling against 1024 sample grids. Shading lazily
can reduce the bin-spread overhead to around 12% for all
scenes in the absence of screen-space blur effects. When
surfaces are blurred and visible in multiple buckets, how-
ever, redundant shading is forced by the requirement that
the tiles consist of independent workloads. The remaining
bin-spread is proportional to the size and quantity of blur in
the scene, and lazy shading cannot address this inefficiency.
The army, big guy, and spheres scene have blur widths sim-
ilar to the tile width, resulting in around 2x bin-spread even
with lazy shading (See Ragan-Kelley et al. for a detailed ex-
amination of the relationship between blur effects and tile
size [RKLC∗10]). This penalty is significant, and alternative
sorting and scheduling algorithms for real-time object-space
shading renderers may be worth further investigation.

7. Costs and Limitations

There are several storage and computation overheads asso-
ciated with the changes we’ve made to the Reyes pipeline.
These costs are reasonable relative to the existing demands
of the system and the benefits derived from them for typical

Shading Bin Spread, 64x64 pixel tiles
Scene Sharp Depth-of-Field

Eager Lazy Eager Lazy
Army 73.3% 10.1% 203.1% 90.4%

Big Guy 118.3% 13.5% 317.3% 116.6%
Furball 120.6% 7.8% 167.0% 17.4%
Spheres 96.7% 12.8% 205.5% 80.2%

Turbulence 136.1% 12.8% 224.1% 44.0%
Zone Plate 86.0% 13.0% 170.0% 45.9%

Table 1: Lazy shading significantly reduces the costs of bin-
spread in a tile based renderer. Bin spread is defined as the
percentage increase in shader execution when the screen is
tiled versus execution for a single full-screen tile. Blur effects
worsen the problem by increasing the screen-space area of
surfaces, causing them to spill into neighboring bins.

scenes. We also describe a few of the practical limitations of
our approach.

The limit surface is evaluated both at the shading sam-
ples in the shading grid, and at the vertex locations in the
polygon grid. With a shading rate of 1.0, the ratio of shading
samples to vertices is roughly on the order of the number of
pixels per triangle, approximately 6:1 for our scenes, imply-
ing a 16.7% increase in work. Furthermore, not all surface
attributes are evaluated at the vertices of the polygon mesh
(only those required to compute vertex position). The addi-
tional storage for this polygon grid is small relative to the
size of the shading grid, based on a similar analysis.

The more interesting overhead is the shading grid color
lookup following rasterization and shading. In a vertex shad-
ing system, the color is interpolated from the vertices us-
ing the barycentric coordinates of the screen-sample. In
our system, the parametric u,v coordinates are interpolated
from the vertices, and then used to perform an interpolated
lookup from the shading grid. As mentioned, the shading
grid should be small enough so that it remains in on-chip
cache to avoid latency. Furthermore, this operation is well
understood and is frequently implemented in hardware even
as GPUs trend toward more general computing capabilities
[SCS∗08]. The precise break-even point where the compu-
tational cost of shading grid resampling exceeds the benefits
of larger triangles depends largely on the implementation.

The lazy shading mechanism requires additional storage
for the fragment buffer. In our software implementation,
with 4 samples per pixel and 4 pixels per stamp, each entry
is 74 bytes (per sample depth, coverage mask, and a single
UV pair). For a 1024 pixel buffer, this comes to just under
19 kilobytes. This is an additional cost relative to what a
traditional Reyes system requires, but it is similar to what
real-time fragment shading renderers already require, as of-
ten hundreds of fragments (which include all the above data

c© The Eurographics Association 2010.

26

C. Burns, K. Fatahalian, W. Mark / A Lazy Object-Space Shading Architecture With Decoupled Sampling

plus surface attributes for the shader) are in-flight simultane-
ously and require storage on chip.

The utility of the shading grid is predicated on two as-
sumptions. First, we assume that the limit surface can be di-
rectly evaluated at an arbitrary parametric coordinate. Some
subdivision surfaces lack this property and would be difficult
to efficiently support. Second, we assume the split phase of
tessellation produces quadrilateral domains. A triangular do-
main may be supported by creating a degenerate edge in the
shading grid, but this would exhibit poor shading efficiency
and most likely create aliasing problems near the degenerate
edge. We finally note that the benefit of larger triangles as
a result of decoupling shading from vertices cannot be cap-
italized on when per-pixel detail is necessary to adequately
render a surface. This may be the case with very detailed dis-
placement, highly curved surfaces, or when the input primi-
tives themselves are very small.

8. Future Work and Conclusion

We have presented a shading architecture which satisfies
four important performance criteria that no other current sys-
tem can completely offer. Our modified Reyes pipeline al-
lows fine-scale occlusion culling and relaxed triangulation
requirements, matching the advantages fragment shading
systems have had over Reyes. We also preserve Reyes’ natu-
ral advantages in handling camera blur effects and avoiding
redundant shading operations at small triangle boundaries -
advantages which no current fragment shading architecture
fully provides.

While we present our analysis on an algorithmic level,
we do so with an eye toward interactive rendering on future
many-core parallel hardware. As future work, an implemen-
tation on a suitable hardware platform in the spirit of pre-
vious efforts to implement Reyes for interactive rendering
would be worthwhile. Additionally, an adaptive tessellator
that uses small triangles only where they are needed (tak-
ing into consideration silhouettes and displacement) would
better exploit our decoupled shading mechanism.

Our results further the goal of eventually developing a
real-time rendering pipeline that efficiently supports accu-
rate depth-of-field and motion blur, as well as high geomet-
ric complexity. They are most likely to be of interest to those
seeking to improve the performance of the Reyes algorithm
and adapt it to the needs of parallel real-time applications.
Ongoing research seeks to achieve largely the same goals
by addressing inefficiencies in current fragment shading sys-
tems [FBH∗10] [RKLC∗10]. A shading solution fit for mod-
ern parallel hardware that meets our efficiency criteria may
ultimately have elements of both Reyes and GPU pipelines.

Acknowledgements

The authors would like to thank everyone who took the time
to carefully read early drafts of this work, especially Greg

Johnson, Manfred Ernst, and Warren Hunt and the rest of
the Visual Applications Research group at Intel Labs. We
also especially thank Solomon Boulos, Pat Hanrahan and the
Stanford Graphics Lab for advice and for providing access
to crucial source code and test scenes.

References

[AG00] APODACA A. A., GRITZ L.: Advanced RenderMan:
Creating CGI for Motion Pictures. Morgan Kauffman, 2000.

[Ake93] AKELEY K.: RealityEngine graphics. In Proceedings
of SIGGRAPH 93 (1993), Computer Graphics Proceedings, An-
nual Conference Series, ACM, ACM Press / ACM SIGGRAPH,
pp. 109–116.

[AMHH08] AKENINE-MÖLLER T., HAINES E., HOFFMAN N.:
Real-Time Rendering, 3 ed. A. K. Peters, Ltd., 2008.

[AMMH07] AKENINE-MÖLLER T., MUNKBERG J., HASSEL-
GREN J.: Stochastic rasterization using time-continuous tri-
angles. In GH ’07: Proceedings of the 22nd ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware
(2007), Eurographics Association, pp. 7–16.

[CCC87] COOK R., CARPENTER L., CATMULL E.: The Reyes
image rendering architecture. In Computer Graphics (Proceed-
ings of SIGGRAPH 87) (1987), vol. 27, ACM, pp. 95–102.

[FBH∗10] FATAHALIAN K., BOULOS S., HEGARTY J., AKE-
LEY K., MARK W. R., HANRAHAN P.: Reducing shading on
gpus using quad-fragment merging. In SIGGRAPH ’10: Pro-
ceedings of the 37th annual conference on Computer graphics
and interactive techniques (2010), ACM.

[FFB∗09] FISHER M., FATAHALIAN K., BOULOS S., AKELEY
K., MARK W. R., HANRAHAN P.: DiagSplit: parallel, crack-
free, adaptive tessellation for micropolygon rendering. ACM
Transactions on Graphics 28, 5 (2009), 1–10.

[FLB∗09] FATAHALIAN K., LUONG E., BOULOS S., AKELEY
K., MARK W. R., HANRAHAN P.: Data-parallel rasterization
of micropolygons with defocus and motion blur. In HPG ’09:
Proceedings of the Conference on High Performance Graphics
2009 (2009), ACM, pp. 59–68.

[HA90] HAEBERLI P., AKELEY K.: The accumulation buffer:
hardware support for high-quality rendering. In SIGGRAPH ’90:
Proceedings of the 17th annual conference on Computer graph-
ics and interactive techniques (1990), vol. 24, ACM, pp. 309–
318.

[Mic10] MICROSOFT: Programming guide for Direct3D
11, 2010. http://msdn.microsoft.com/
en-us/library/ff476345.

[PO08] PATNEY A., OWENS J. D.: Real-time Reyes-style adap-
tive surface subdivision. ACM Transactions on Graphics 27, 5
(2008), 1–8.

[RKLC∗10] RAGAN-KELLEY J., LEHTINEN J., CHEN J.,
DOGGETT M., DURAND F.: Decoupled sampling for real-time
graphics pipelines. Tech. Rep. MIT-CSAIL-TR-2010-015, MIT
Computer Science and Artificial Intelligence Laboratory Techni-
cal Report Series, 2010.

[SCS∗08] SEILER L., CARMEAN D., SPRANGLE E., FORSYTH
T., ABRASH M., DUBEY P., JUNKINS S., LAKE A., SUGER-
MAN J., CAVIN R., ESPASA R., GROCHOWSKI E., JUAN T.,
HANRAHAN P.: Larrabee: a many-core x86 architecture for vi-
sual computing. ACM Transactions on Graphics 27, 3 (2008),
1–15.

c© The Eurographics Association 2010.

27

http://msdn.microsoft.com/en-us/library/ff476345
http://msdn.microsoft.com/en-us/library/ff476345

C. Burns, K. Fatahalian, W. Mark / A Lazy Object-Space Shading Architecture With Decoupled Sampling

Figure 10: Suite of test scenes used. All images were rendered at 1920x1080 resolution and 64x64 pixel screen tiles. The right
half of each image displays the camera defocus effect as used in reported statistics. From left to right, top to bottom: army,
big guy, furball, spheres, turbulence, zone plate. Sharp renderings use 4 samples per pixel, and defocus renderings use the
interleaved stochastic rasterization algorithm from Fatahalian et al. with 16 samples per pixel [FLB∗09].

[ZHR∗09] ZHOU K., HOU Q., REN Z., GONG M., SUN X.,
GUO B.: RenderAnts: interactive reyes rendering on gpus.
vol. 28, ACM, pp. 1–11.

Appendix A: Screen-space derivatives derivation

Here we present the method by which the screen-space par-
tial derivatives of a surface attribute p are computed in
object-space prior to rasterization.

We assume the surface attribute p is a function of surface
parameters u and v, and the camera projection determines
the functions x(u,v) and y(u,v) which give the screen loca-
tion (x,y) of an arbitrary surface location (u,v). Therefore,
the screen-space partial derivatives of p(x(u,v),y(u,v)) are
given by the chain rule:

∂p
∂x

=
∂p
∂u

∂u
∂x

+
∂p
∂v

∂v
∂x

∂p
∂y

=
∂p
∂u

∂u
∂y

+
∂p
∂v

∂v
∂y

(1)

We use finite differencing in object-space to determine
partial derivatives with respect to coordinates (u,v). Since
x(u,v) and y(u,v) are not generally invertible functions, our
strategy is to convert partials with x or y in the denominator
to expressions only containing partials with u or v in the de-
nominator, and perform finite differencing in an object-space
coordinate grid. If we take a small step in the u coordinate
direction and measure the difference in screen-space coordi-
nates, we compute ∆su = (∂x

∂u , ∂y
∂u). This is the first column

of the jacobian matrix:

J =

 ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v



The dot-product of this vector ∆su with the gradient of u
with respect to screen-space coordinates (x,y) gives the u
component of the vector in object space, which we know to
be 1. A similar calculation involving a finite difference in
the v direction (second column of J) gives us a system of
two equations with unknowns ∂u

∂x and ∂u
∂y :

∆su ·∇u =
∂x
∂u

∂u
∂x

+
∂y
∂u

∂u
∂y

= 1 (2)

∆sv ·∇u =
∂x
∂v

∂u
∂x

+
∂y
∂v

∂u
∂y

= 0 (3)

Solving these equations gives:

∂u
∂x

=
∂y
∂v

(det(J))−1 ∂u
∂y

=− ∂y
∂u

(det(J))−1 (4)

A similar system of equations can be set up using ∇v,
providing solutions to solve for ∂v

∂x and ∂v
∂y . Using these re-

sults, combined with the chain rule in Equations (1), and
simplifying, we have our final expressions for the screen-
space derivatives:

∂p
∂x

=
∂p
∂u

[
∂y
∂v

(det(J))−1
]

+
∂p
∂v

[
∂y
∂u

(−det(J))−1
]

(5)

∂p
∂y

=
∂p
∂u

[
− ∂y

∂u
(det(J))−1

]
+

∂p
∂v

[
∂y
∂v

(det(J))−1
]

(6)

c© The Eurographics Association 2010.

28

