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Abstract

The modern real-time graphics pipeline is a versatile parallel architecture that accom-

modates a wide range of rendering techniques. The architecture is implemented by

heavily optimized graphics processors (GPUs) that employ a mixture of application-

programmable and fixed-function processing resources, yet its design lends itself to a

simple programming model easily understood by non-expert programmers.

A major goal of future graphics systems is rendering geometrically complex, film-

quality scenes in real time. Unfortunately, current GPU implementations not only

require additional compute capability to handle high-resolution surfaces represented

by subpixel-area micropolygons, the fundamental graphics pipeline operations of sur-

face tessellation, rasterization, and shading execute inefficiently under this advanced

workload.

This dissertation evolves the graphics pipeline architecture and its associated ren-

dering algorithms to increase system efficiency when processing micropolygons. The

proposed redesign extends the pipeline with a new parallel algorithm for high-quality,

adaptive surface tessellation, making it possible to generate crack-free meshes that

represent surfaces accurately, but without excessive numbers of micropolygons. It in-

creases rasterization throughput using micropolygon-parallel processing and analyzes

the cost of rasterizer support for motion blur and camera defocus. It also adds pipeline

logic to detect and avoid redundant shading computations, reducing shading costs

more than eight times. The resulting real-time micropolygon rendering pipeline ar-

chitecture increases rendering efficiency and, due to its evolutionary nature, maintains

the graphics pipeline’s simple programming model and the throughput-optimized de-

sign of a GPU’s programmable processing cores.
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Chapter 1

Introduction

When I take a look around my surroundings I see many complex surfaces. Highly

curved objects lie about my apartment and on my office desk. My clothes are full of

complicated folds. Out my window, I see natural surfaces that are rough or bumpy

as well as foliage with intricate shape (a towering redwood tree dominates my view

to the west). Complex surfaces like these are pervasive in our world. They make

environments visually compelling and enrich them with style and character.

The importance of accurately modeling complex surface detail has always been

fundamental to the design of offline rendering systems [Cook et al. 1987]. These

systems use high-resolution meshes to accurately capture shapes meticulously created

by film artists. It is common for film scenes to consist of hundreds of millions of tiny

polygons, called micropolygons, that are about a pixel or less in area. Because of

the small size of micropolygons, rendered images contain no evidence that surfaces

are approximated discretely by polygon meshes. While it is acceptable for an offline

renderer to take minutes or hours to process a frame, real-time graphics systems must

synthesize images in only a few milliseconds. As a result, the geometric complexity

in film scenes dwarfs that present in interactive environments. Objects in games

have traditionally been represented using low-resolution meshes. Game artists must

choose to omit complex objects from environments, or approximate them coarsely

using polygons that cover many pixels on screen.

1
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Although today’s games do not yet equal the visual quality of early computer-

generated animated films, the magnitude of compute resources available to interactive

graphics systems is staggering. A graphics processor (GPU) in a high-end desktop

PC today has over three orders of magnitude more compute capability (FLOPS/sec)

than Pixar’s entire render farm for Toy Story 1 [Snider 1995; Henne et al. 1996]. As

compute capability continues to increase, more rendering techniques become viable

for inclusion in games. A major challenge facing GPU architects is how to most

efficiently organize these resources to produce the best images possible in real time.

While advances in animation, lighting, and anti-aliasing are all clearly needed to

close the gap between real-time and film rendering [Andersson 2010], I believe one

of the most important ways to leverage increasing compute power is to dramatically

increase the geometric detail present in interactive scenes. Future graphics systems

should provide games the ability to render richly detailed scenes, with artifact-free,

micropolygon-resolution surfaces in real time. In pursuit of this goal, this dissertation

focuses on reoptimizing the real-time graphics pipeline for micropolygon workloads.

1.1 Why Micropolygons

The stone house pictured at the top of Figure 1.1 features many complex surfaces.

Bumpy cornerstones extrude from the house’s walls and curved red tiles cover its

roof. The detail in these surfaces is easy to observe along the house’s silhouettes.

The roof tiles and cornerstones also cast accurate shadows that effect illumination

of themselves (self-shadowing) and of the house’s walls. These details are rendered

accurately because house geometry is represented using a high-resolution triangle

mesh.

The lower image in Figure 1.1 is a rendering of the same house using the same

texturing and soft shadowing techniques, but with scene geometry represented using

a low resolution triangle mesh. Now, the house’s roof and walls are modeled as flat

planes and surface details such as the cornerstones, roof tiles, and even the windows

on the left side of the image are represented using texture maps, not mesh triangles.
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Low-Resolution Triangle Mesh

High-Resolution Triangle Mesh

Textured window and
shingled roof exhibit
perspective distortion.

Rich surface detail
along silhouettes 

Accurate shadows 

Object silhouettes 
are !at.

Shadow cast from
shingled roof is !at.

Window sill does not
cast a shadow.

Accurate "ne-scale
geometry 

Figure 1.1: Renderings of a stone house using a high-resolution (top) and low-
resolution (bottom) triangle mesh. A lack of geometric detail in the bottom image
results in visible artifacts. House image by Unigine Engine, c� Unigine Corporation
(used with permission).
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In some areas of the image, texture mapping is a convincing substitute for fine-

scale geometric detail. Unfortunately, the illusion does not work along the house’s

silhouettes, where it is clear that geometry is flat. Similarly, the roof tiles and windows

on the left side of the image appear distorted because these features are viewed from

a glancing angle. The actual geometry of the house is non-planar in these areas

and approximating it with a textured plane does not yield correct perspective or

occlusions. These artifacts become even more noticeable when objects are moving on

screen. A third artifact caused by the low resolution mesh is incorrect shadowing.

Since the cornerstones don’t actually protrude from the house, they do not cast

shadows on its walls. Also, the shadow cast by the roof onto the wall is flat. It lacks

the curved appearance of the shadow in the top rendering of the home.

Rendering methods such as precomputing static illumination, bump mapping,

normal mapping and occlusion mapping leverage texture mapping to compensate for

a lack of geometric detail in interactive applications [Akenine-Möller et al. 2008].

These techniques have low rendering cost and are used effectively in games. However,

they are prone to artifacts like the ones discussed above. Ironically, as shown by

the incorrect shadowing in Figure 1.1, artifacts due to texture-based approximations

can become more pronounced as the sophistication of shading or lighting simulation

increases.

Put simply, complex surfaces must be represented accurately for high-quality ren-

dering. Micropolygons have proven to be a robust and effective (although brute force)

surface representation for offline rendering. Ubiquitous use of micropolygons in real-

time graphics systems would significantly advance the visual quality of interactive

applications.

1.2 Micropolygon Challenges

Graphics applications abstract the process of rendering a picture from a 3D repre-

sentation of a scene as a pipeline of operations. This pipeline computes how input

primitives, such as triangles, influence the color of final image pixels. For interac-

tive rendering, this sequence of operations is defined by a real-time graphics pipeline
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architecture like OpenGL [Segal and Akeley 2010] or Direct3D [Blythe 2006]. Since

these two architectures are similar in structure and designed for implementation by

GPUs, for convenience, I will often refer to real-time graphics pipeline as the GPU

pipeline in this dissertation (However, the reader is encouraged to recognize that a

GPU is an implementation of the GPU pipeline architecture).

Because of the high cost of 3D graphics operations, it is critical for GPU imple-

mentations of the real-time graphics pipeline to be very efficient systems. Interactive

applications benefit from as much performance as a GPU can deliver, and to meet

this demand GPUs contain a large collection of programmable and fixed-function pro-

cessing resources. Under the rendering workloads of current games, a GPU sustains

high utilization of its compute resources to maximize rendering performance.

However, micropolygon workloads present new challenges for the GPU pipeline.

Clearly, representing surfaces using high-resolution micropolygon meshes requires the

GPU pipeline to process many more polygons each frame, increasing rendering cost.

But rendering micropolygons using the GPU pipeline is not only expensive, it is

inefficient. That is, maintaining the current GPU pipeline architecture and simply

scaling up current GPU designs to feature more processing and more bandwidth would

yield an inefficient system for real-time micropolygon rendering.

Three important sources of inefficiency are:

1. Parallel, adaptive tessellation is missing from the GPU pipeline. For

many reasons it is not practical for an interactive application to precompute and store

a high-resolution mesh representation of an entire scene. For example, doing so incurs

substantial storage and bandwidth costs, increases the cost of non-rendering opera-

tions like simulation and animation that do not require high-resolution meshes, and

makes it challenging to provide the appropriate level of mesh detail for all possible

views. Instead, micropolygon meshes are generated on-demand in the GPU pipeline

from a compact surface representation. This process, called tessellation, generates

high-quality micropolygon meshes by adapting mesh resolution to surface proper-

ties and camera view, such that the surface is represented accurately, but without

an exceedingly large number of polygons. Existing tessellation algorithms are not
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amenable to high-performance parallel execution and are not expressible using cur-

rent GPU pipeline abstractions. As a result, there is currently no efficient way to

generate micropolygons in a real-time system.

2. Pixel-parallel rasterization is inefficient. Rasterization is the process of

determining what image pixels a polygon overlaps. Current GPUs achieve high ras-

terization throughput by executing rasterization computations for many pixels cov-

ered by a polygon in parallel. Unfortunately, this parallelization strategy provides

little benefit when polygons are less than a pixel in area. Micropolygon rendering in-

creases polygon count and leads to less efficient rasterizer execution. GPU rasterizer

implementations must be reoptimized to efficiently process micropolygons.

3. GPU pipeline implementations perform many redundant shading com-

putations. Shading, or computing the appearance (color) of a surface, involves all

the light and material simulation in a scene. As a result, shading is often the most

expensive computation in a GPU pipeline. Unfortunately, when processing surfaces

tessellated into micropolygons, implementations of the GPU pipeline must perform

many redundant shading computations. Given the high cost of shading, these extra

computations severely reduce overall rendering performance.

1.3 Evolving the GPU Pipeline

Despite the challenges described in the previous section, I have chosen to pursue

the goal of real-time micropolygon rendering by evolving the existing GPU pipeline

and its associated rendering algorithms. The result of this evolution is the modified

GPU pipeline shown in Figure 1.2. This pipeline, which I will refer to as the real-time

micropolygon pipeline, exhibits two significant extensions to the current GPU pipeline

architecture (highlighted in red). These extensions enable new functionality that

overcomes the GPU pipeline’s inefficiencies in tessellation and shading. Figure 1.2 also

highlights several pipeline stages in yellow. The architecture of these stages undergoes

little to no change in the real-time micropolygon pipeline, but their implementation

is modified to meet the needs of micropolygon rendering.
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Real-Time Micropolygon Pipeline

DiagSplit Uniform
Tessellation

Vertex
Processing Rast Merge Fragment

Processing Pixel Ops

Chapter 3:
DiagSplit: parallel, adaptive tessellation Chapter 4:

Micropolygon-parallel rasterization

Chapter 6:
Quad-fragment merging

Chapter 5:
Rasterizing micropolygons
with motion and defocus blur

Figure 1.2: A micropolygon rendering pipeline for real-time rendering. Extensions
to the current GPU pipeline are highlighted in red. Stages colored yellow exist in
the current GPU pipeline, but their implementation is modified to meet the needs of
micropolygon rendering. See Figure 7.1 at the end of this dissertation for a complete
list of changes made to the GPU pipeline and its associated rendering algorithms.

This dissertation describes numerous solutions that enable the pipeline architec-

ture and pipeline implementation changes summarized in Figure 1.2. It makes the

following specific contributions:

1. Identification of GPU pipeline inefficiencies. It identifies three significant prob-

lems that prevent efficient micropolygon rendering on GPUs: a lack of high-

quality, adaptive tessellation, insufficient parallelism in rasterizer implementa-

tions, and generation of redundant fragment-shading work.

2. DiagSplit tessellation. It provides a new algorithm for parallel, adaptive tessella-

tion called DiagSplit. DiagSplit efficiently generates high-quality micropolygon

meshes from parametric surfaces and integrates into the GPU pipeline as an

extension of existing tessellation mechanisms. DiagSplit was designed in col-

laboration with Matthew Fisher, who proposed most of the algorithm’s key

ideas.
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3. Micropolygon-parallel rasterization. It reoptimizes rasterization for micropoly-

gon workloads using simpler algorithms and by processing many micropolygons

in parallel.

4. Interleaved sampling technique for rasterization with motion and defocus blur.

It analyzes the cost of adding support for motion and defocus blur effects to a

micropolygon rasterizer and provides a new coverage-sampling technique based

on interleaved sampling. This technique achieves greater rasterization efficiency

than previous methods under high motion or moderate defocus.

5. Quad-fragment merging. It introduces quad-fragment merging to identify and

remove redundant shading work from the GPU pipeline. When rendering sur-

faces tessellated into micropolygons, quad-fragment merging reduces the num-

ber of shading computations by more than a factor of eight while maintaining

high image quality.

The decision to evolve, not replace, the existing GPU pipeline was motivated

by performance; modifying the highly-optimized GPU pipeline architecture (and its

rendering algorithms), rather than improving the performance of offline rendering

systems, seemed a more likely path to real-time micropolygon rendering. However,

this strategy has the added benefit of maintaining development continuity for real-

time graphics applications. In fact, many optimizations presented here also improve

GPU performance when rendering small, but not necessarily subpixel-area, poly-

gons. Whenever possible, I have looked to isolate or compartmentalize change. Many

components of the current GPU pipeline and current GPU implementations remain

unmodified. As a result, this dissertation describes a path of technology evolution

that I hope will allow existing real-time graphics applications to transition gradually

from today’s level of geometric complexity towards micropolygon rendering as GPU

compute power increases.

In future chapters I will suggest that several of the contributions listed above are

best realized through changes to GPU hardware and likely will not be implemented

by software in a performant system. However, the complex task of building and

conducting an end-to-end evaluation of a new graphics processor is beyond this scope
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of this dissertation. While the ultimate goal of this work is real-time micropolygon

rendering, this dissertation does not attempt to build a GPU that achieves required

performance levels. Rather, the new techniques and algorithms proposed here are

evaluated in detail using software implementations. Suggested GPU implementation

changes are influenced by numerous conversations with GPU architects and they are

intended to be consistent with the spirit of highly optimized GPU designs. Of course,

it is possible that additional performance problems could be discovered if or when a

full implementation of the proposed micropolygon rendering pipeline is built.

1.4 Dissertation Road Map

The organization of this dissertation follows the order of processing in the GPU

pipeline. Chapter topics begin at the beginning of the pipeline and work downstream.

Chapter 2 provides an overview of the current real-time graphics pipeline architec-

ture and its current GPU implementations. It enumerates strengths of the pipeline ar-

chitecture that this dissertation seeks to preserve. It also describes the Reyes pipeline

architecture for offline micropolygon rendering. Many of the contributions of this dis-

sertation are influenced by ideas from Reyes.

Chapter 3 describes how the real-time micropolygon pipeline generates micropoly-

gons using the DiagSplit algorithm for parallel, adaptive tessellation.

Chapters 4 and 5 focus on parallel algorithms for rasterizing micropolygons. Chap-

ter 4 provides a more efficient implementation of existing GPU rasterizer functionality.

Chapter 5 adds functionality for simulating motion blur and camera defocus effects.

Chapter 6 focuses on shading. It describes quad-fragment merging and then briefly

contrasts the relative merits of this approach with those of shading mechanisms used

in the Reyes pipeline.

Chapter 7 discusses the resulting micropolygon pipeline architecture as a whole. It

highlights key interactions between new pipeline components, lists important design

principles, and suggests immediate areas of future work.



Chapter 2

Graphics Pipelines

In both real-time and offline rendering, graphics systems must strike a balance be-

tween the conflicting goals of enabling high performance, achieving high image quality,

and providing a simple, but versatile, interface for describing rendering computations.

This balance is achieved by abstracting the rendering process as a pipeline of oper-

ations on intuitive structures such as vertices, polygons, and pixels. This chapter

provides an overview of two widely used graphics pipeline architectures. The first is

the real-time graphics pipeline (GPU pipeline). This architecture is used by interac-

tive applications, is accelerated by GPU implementations, and serves as the starting

point for the micropolygon rendering pipeline proposed in this dissertation. The sec-

ond is the Reyes pipeline, which produces high-quality images and is used heavily

in offline rendering for film. Reyes is designed to render surfaces represented by mi-

cropolygon meshes. Not surprisingly, many ideas from Reyes were considered when

evolving the GPU pipeline for micropolygon rendering.

The ensuing discussion provides a high-level view of the structure and operation

of these two pipelines. Detailed descriptions of the architecture and implementation

of key pipeline stages are deferred until necessary in the subsequent chapters.

10
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2.1 The GPU Pipeline

2.1.1 GPU Pipeline Architecture

Pipeline Structures

The upper half of Figure 2.1 shows a seven-stage GPU pipeline that is similar to

the pipeline architectures defined by OpenGL 4 [Segal and Akeley 2010] and Di-

rect3D 11 [Mic 2010b]. This pipeline has support for surface tessellation, which is a

new feature in the latest generation of these architectures. The stage names estab-

lished in Figure 2.1 will be used consistently throughout this document. They are

chosen for clarity and sometimes differ from the official names adopted by OpenGL

and Direct3D. For simplicity, the illustration omits two pipeline stages (the Geom-

etry Shader and Stream Output) that are not essential to the discussion of pipeline

behavior in this dissertation. Each GPU pipeline stage generates or operates on one

of five types of entities: parametric patches, vertices, triangles, fragments, or pixels.

Entities are communicated between pipeline stages in data streams (black arrows).

The process of generating a picture by manipulating the five types of GPU pipeline

entities is summarized below.

Graphics applications and games have traditionally provided the GPU pipeline

with a stream of triangles as input. However, when configured with tessellation

functionality enabled, the GPU pipeline renders surfaces represented by paramet-

ric patches (e.g., Bezier patches). The pipeline tessellates each surface patch into a

triangle mesh. The Uniform Tessellation stage emits the mesh as a stream of ver-

tices. Then, Vertex Processing evaluates the parametric surface’s position at each

vertex and projects the result onto the screen. As illustrated in Figure 2.2, surface

evaluation during Vertex Processing may utilize displacement mapping to produce

fine-scale surface detail. After Vertex Processing vertices are regrouped into a stream

of triangles. Rasterization (Rast) computes the screen coverage of each triangle and

generates a stream of fragments. Each fragment represents a region of a triangle that

overlaps one screen pixel (in the context of this dissertation, a pixel is a square region

of the screen). Next, Fragment Processing performs a shading computation for each
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Base Patches Smooth Mesh
(without vertex displacement)

Final Detailed Mesh
(with vertex displacement)

Figure 2.2: Tessellation of a complex surface represented using displaced Bezier
patches. Left: Patch primitive boundaries. Center: Triangle mesh with vertex po-
sitions computed by direct evaluation of the Bezier surface. Right: Final detailed
surface; vertex positions have been displaced in the direction of the Bezier surface
normal (displacement magnitudes are obtained from a texture map). Surface evalua-
tion, including both Bezier evaluation and displacement, is performed in the Vertex
Processing stage of the GPU pipeline.

fragment (shading computes the color of the triangle at the overlapped pixel). Last,

fragments visible from the virtual camera (they are not occluded by other fragments

that are closer to the camera at the same pixel) are blended into the frame buffer,

changing the value of image pixels (Pixel Ops).

In a GPU pipeline with tessellation, the Coarse Vertex Processing and Patch

Generation stages (not mentioned in the preceding description) are important because

they allow surface manipulations to be performed on the GPU, but at a much lower

resolution than the final rendered mesh. In practice, applications do not directly

provide the GPU pipeline with parametric patch primitives. Instead, they provide a

low-resolution mesh representation of a surface. Given this coarse mesh, the Coarse

Vertex Processing stage performs per-vertex manipulations, such as animation (via

skinning or blend shapes) or physical simulation, that can be carried out cheaply at

low frequency. The Patch Generation stage then constructs parametric patch inputs

from the resulting vertices. For example, given skinned vertices from a coarse mesh

face and its one-ring, the Patch Generation stage can be used to compute control



CHAPTER 2. GRAPHICS PIPELINES 14

points for a Bezier patch. The Coarse Vertex Processing and Patch Generation stages

are useful regardless of whether patch primitives are ultimately tessellated into small

polygon or micropolygon-resolution meshes. However, since this dissertation makes

no modifications to these pipeline stages they are rarely discussed in the subsequent

chapters and are omitted from illustrations of the real-time micropolygon pipeline

(Figures 1.2 and 7.1).

Shader Programming

Figure 2.1 colors pipeline stages to indicate whether they are fixed-function stages

whose behavior defined by the pipeline architecture (gray boxes) or programmable

stages whose behavior is defined by application code (yellow boxes). To program

the GPU pipeline an application must set the configuration of fixed-function stages

and provide programs (called “shader programs”) that execute within environments

associated with each programmable stage.

Shader programs are expressed using high-level graphics programming languages

like Cg [Mark et al. 2003], HLSL [Mic 2010b], and GLSL [Kessenich 2009]. They

execute on individual entities from a stage’s input stream and emit entities to the

stage’s output stream. For example, a shader program that defines the behavior

of Fragment Processing accepts one rasterized fragment as input and produces one

shaded (colored) fragment as output. Shader programs are C-like functions that may

contain data-dependent control-flow, manipulate complex data structures, and access

large data buffers (e.g., textures) in addition to stream entities.

Although the shader programming model is flexible, shader programs are sub-

ject to pipeline constraints to ensure performant execution. For example, the GPU

pipeline abstracts each shader program invocation as an independent sequence of logic

that executes serially and in complete isolation from the processing of other stream

entities. This abstraction permits data-parallel program execution on multiple stream

entities without violating program correctness. Also, shader programming abstrac-

tions explicitly differentiate data access to streams, buffers, and textures, allowing

GPUs to implement custom data paths for each form of communication.
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GPU Pipeline Benefits

Over the past two decades, the GPU pipeline has transitioned steadily from its earliest

incarnation as an entirely fixed-function architecture (OpenGL 1.0, introduced in

1992) to the programmable pipeline described above. Its ubiquitous use in interactive

graphics stems from how successive pipeline evolutions have consistently met the

needs of both application developers and system implementers. It is modern form,

the GPU pipeline provides the following key benefits.

• Programming simplicity. The high-level, graphics-specific pipeline abstrac-

tion makes programming simple. A programmer that understands how a picture

is made using the five graphics entities described above has basic knowledge of

how to use the GPU pipeline. Shader programming abstractions keep program-

ming simple by providing sequential execution semantics and a per-element

execution model.

• Versatility. Programmable stages allow the GPU pipeline to accommodate a

wide variety of rendering techniques. Graphics applications are free to define

the surface representations, material models, and lighting techniques used for

rendering.

• High performance. The pipeline abstraction and accompanying shader pro-

gramming model provide significant optimization opportunities for GPU imple-

menters. Most notably, they expose large amounts of parallelism (both task

parallelism across stages and data-parallelism within stages), provide semantics

for different forms of data access, and isolate fixed-function operations. As dis-

cussed in the next section, GPU designers exploit these properties to achieve

efficient, high-performance GPU pipeline implementations.

For interested readers, Segal and Akeley summarize the original motivations and

design goals for the OpenGL 1.0 pipeline architecture in [Segal and Akeley 1994].

Additional background on the history and design of the GPU pipeline is available in

more recent articles by Blythe [2006; 2008] and Fatahalian and Houston [2008].
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2.1.2 GPU Pipeline Implementation

GPU implementations of the real-time graphics pipeline employ sophisticated opti-

mizations to achieve high rendering performance given limits on processor transistor

count and power consumption.

Some key GPU optimizations are algorithmic. For example, it is common for

GPUs to avoid expensive Fragment Processing work by detecting and discarding oc-

cluded fragments from the pipeline immediately following rasterization [Morein 2000].

This is a valid optimization because eliminating these hidden fragments prior to Frag-

ment Processing does not impact the final rendered image (recall the GPU pipeline

architecture only specifies a logical sequence of operations to make a picture; imple-

mentations may reorder processing as needed, so long as their results are consistent

with the architectural specification). Additional examples of algorithmic optimiza-

tions implemented by GPUs include compression of pipeline data structures (e.g.,

the frame buffer) to reduce rendering bandwidth requirements, and caching of Ver-

tex Processing results to avoid duplicating computation when a vertex is shared by

multiple triangles in a mesh.

In addition to algorithmic optimizations, many important GPU optimizations

involve the design and capabilities of its processing resources. Modern GPUs feature

a heterogeneous collection of programmable and fixed-function processing resources

heavily optimized to execute specific aspects of the GPU pipeline workload.

Throughput-Optimized Programmable Cores

A majority of a GPU’s resources are organized into programmable processing cores

whose primary responsibility is to execute pipeline shader programs. Unlike CPU pro-

cessing cores, which provide excellent performance to applications employing only a

few threads of control, GPU cores are designed to maximize overall pipeline through-

put when executing many shader program invocations simultaneously. GPU process-

ing cores feature large numbers of floating-point ALUs and achieve high ALU uti-

lization by pushing throughput-computing techniques such as SIMD execution and

hardware multi-threading to extreme scales [Fatahalian and Houston 2008; Lindholm
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et al. 2008; Fatahalian 2010].

For example, a processing core in an NVIDIA GeForce GTX 480 GPU con-

tains 32 ALUs, each capable of performing a single-precision floating-point multiply-

accumulate operation per clock [NVI 2009]. The core efficiently uses these ALUs by

invoking the same shader program on different GPU pipeline entities in parallel. For

example, the pipeline’s vertex processing shader program is simultaneously run on

multiple vertices. In addition to processing groups of 32 entities in parallel, the core

also interleaves execution of instructions from up to 48 different groups [NVI 2010a].

This form of fine-grained hardware multi-threading allows the core to avoid stalls

caused by high-latency memory operations (e.g., texture fetches) by running instruc-

tions from any of the 48 groups of entities. The NVIDIA GeForce GTX 480 GPU

features 15 of these programmable processing cores [NVI 2009] which provide over

1.3 teraflops of aggregate computing performance: more than nine times the peak

capability of a high-end, six-core Intel Core i7 CPU. Similarly, an ATI Radeon HD

5870 GPU uses 20 cores and 64-wide SIMD processing to provide over 2.7 teraflops

of peak performance for shader programs [Houston 2008; Fowler 2010].

GPU processing cores trade-off single-threaded performance for the advantages of

increased compute density and large-scale multi-threaded execution. Each NVIDIA

core described above processes over 1,500 pipeline entities at a time using 32 ALUs

(overall, the 15 cores process over 23,000 entities). In this design, logic associated with

any one of these shader program invocations takes longer to complete because it shares

processor resources many other invocations. As a result, GPU processing cores excel

at processing large batches of data-parallel work but they do not efficiently execute

latency-sensitive or non-data-parallel components of the graphics pipeline. Rather

than limit peak compute capability by designing a more versatile programmable core,

GPU architects choose to delegate these computations to fixed-function processing.

Fixed-Function Processing

The fixed-function components of a GPU provide power and area-efficient implemen-

tations of pipeline operations not assigned to programmable cores. Fixed-function

operations fall loosely into one of the following three categories.
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First, fixed-function processing accelerates compute-intensive operations that would

require many instructions if implemented on programmable cores. For example, the

pipeline’s rasterization stage is implemented efficiently in custom hardware using

reduced-precision fixed-point operations. Texture filtering and transcendental opera-

tions (sin, cos) are additional examples of expensive graphics operations accelerated

using fixed-function processing.

Next, GPUs rely on fixed-function processing to perform computations that map

poorly to regular, data-parallel execution. Important pipeline tasks like culling,

grouping vertices into primitives, data compression, and frame-buffer update involve

irregular control, synchronization, and communication when implemented in paral-

lel. These operations cannot be implemented efficiently on the GPU’s programmable

cores.

Last, fixed-function logic assumes responsibility for dynamically organizing and

scheduling pipeline computations onto the GPU’s collection of compute resources. For

example, scheduling tasks include distributing work to programmable cores, packing

entities into blocks of work for data-parallel processing, and coordinating access to

input and output streams. Low-latency, fine-grained pipeline scheduling is important

because it allows GPUs to run efficiently despite wide and unpredictable variation

in pipeline workload characteristics. Variation in load is common as applications

frequently change the shader programs used to define stage behavior.

In summary, although a large fraction of a modern GPU’s resources reside within

programmable processing components, fixed-function processing continues to plays a

critical role in the efficiency of modern GPUs. Not only does it provide efficient im-

plementations of compute heavy tasks, it ensures programmable components of GPU

are utilized well. Many of the GPU pipeline changes I propose in this dissertation

also stand to benefit from implementations that make judicious use of fixed-function

processing.
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2.2 The Reyes Pipeline

2.2.1 Reyes Architecture

The Reyes rendering architecture was developed at Pixar in the mid-1980s to meet

the explicit goal of rendering high-quality images of geometrically complex scenes for

use in film [Cook et al. 1987]. Reyes remains the industry standard for film rendering

today, and Pixar’s implementation of Reyes, RenderMan [Apodaca and Gritz 2000],

has served as the core rendering system for all of Pixar’s feature-length animated

films. A simplified Reyes pipeline is shown below the GPU pipeline in Figure 2.1.

The illustrations are aligned to facilitate comparison of the two architectures.

In the Reyes pipeline, there is no equivalent of the GPU pipeline’s Coarse Vertex

Processing and Patch Generation stages. Reyes assumes final surface patch prim-

itives are generated using separate modeling and animation software and provided

directly to the rendering pipeline. Like the GPU pipeline, Reyes tessellates input

primitives into polygons. However, Reyes uses an adaptive, two-phase algorithm to

produce high-quality tessellations and it seeks to tessellate all surfaces, regardless of

their geometric complexity, into high-quality micropolygon meshes (a variant of this

tessellation scheme is integrated into the GPU pipeline in Chapter 3). Following tes-

sellation, a programmable Vertex Processing stage allows fine-scale surface detail to

be added to the resulting mesh using per-vertex displacements.

The GPU and Reyes pipelines also differ notably in their approach to shading.

While the GPU pipeline computes surface shading once for each rasterized fragment,

the Reyes pipeline performs a shading computation for each mesh vertex prior to

rasterization. Since the sampling rate of both surface position and shading is deter-

mined by the density of mesh vertices, Reyes requires micropolygon meshes to achieve

high-quality shading (it is often desirable to perform at least one shading computa-

tion per image pixel; Reyes requires meshes to contain one vertex per pixel to achieve

this shading density). The original Reyes architecture contained only a single Vertex

Processing stage for computing both surface displacement and shading at each mesh

vertex. However, as shown in the figure, subsequent evolutions of the Reyes pipeline

provide separate stages for these two operations. This design allows for optimizations
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such as culling to take place after the final position of micropolygon vertices is known,

but prior to shading.

Following Vertex Processing, Reyes computes micropolygon-screen coverage (Rast).

Then, the pipeline interpolates surface color stored at each micropolygon vertex to

determine the color of covered frame-buffer pixels (Pixel Ops). While the Reyes

pipeline’s Rast and Pixel Ops stages are conceptually similar to their counterparts

in the GPU pipeline, they support more advanced rendering features. For example,

the Reyes rasterizer’s micropolygon-screen coverage computations simulate the effect

of camera motion blur and defocus (the cost of adding this feature to a rasterizer

is investigated in Chapter 5). Also, unlike the GPU pipeline, which processes all

geometry in the order it is received from the application, Reyes guarantees accurate

rendering of transparent surfaces by blending rasterized surface samples at the same

screen location into the frame buffer in depth order.

2.2.2 Reyes Implementation

Although the design of Reyes coincided with efforts at Pixar to develop parallel hard-

ware systems for graphics [Levinthal et al. 1987], modern Reyes systems (including,

to my knowledge, implementations of RenderMan used to create Pixar’s feature films)

are implemented as software applications running on commodity CPUs. In the film

domain, artifact-free rendering quality, flexibility to support advanced rendering tech-

niques, and integration into production work flows (features that save artists time)

take precedence over realizing the most highly optimized rendering system. As a

result, the Reyes pipeline has not been subjected to the same level of sustained,

aggressive optimization as the GPU pipeline.

Even so, reducing Reyes rendering costs is important to film production. Recent

RenderMan releases enable support for multi-core CPU execution and researchers

have explored the possibility of accelerating Reyes performance using GPUs. For ex-

ample, Wexler et al. [2005] generate and shade micropolygons using a software Reyes

implementation and then render the resulting geometry using the GPU pipeline (to

accelerate rasterization and frame-buffer operations). More recently, aspects of the
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Reyes pipeline [Patney and Owens 2008], or even simplified versions of the entire

pipeline [Zhou et al. 2009; Eisenacher and Loop 2010], have been ported to run on

the GPU’s programmable cores. However, as was the case with the GPU pipeline,

many Reyes pipeline operations do not map efficiently to regular data-parallel pro-

cessing, resulting in inefficient execution. GPU-based implementations of Reyes do

benefit from the high compute capability of GPUs and can achieve higher rendering

performance than CPU-based RenderMan implementations, but none of these efforts

demonstrate real-time performance on complex film-quality (or even game-quality)

scenes.

2.3 Alternative Graphics Pipelines

Historically, the GPU pipeline architecture was the only programming interface that

provided graphics applications access to the substantial compute capability of GPUs.

However, current parallel programming languages like CUDA [NVI 2010a] or OpenCL

[Khronos 2010] allow developers to write software that runs as a “compute mode”

program on a GPU’s programmable cores (the ports of Reyes described above are

examples of such programs). In addition, upcoming compute-optimized multi-core

processors like Intel’s Larrabee [Seiler et al. 2008] or heterogeneous multi-core chips

from Intel (Sandy Bridge) and AMD (Fusion) will also provide teraflops of computing

performance and be programmable using traditional parallel programming languages

and APIs.

The increasing availability of compute-rich parallel processing platforms has spurred

interest in exploring alternatives to the rendering methods used by the GPU and

Reyes pipelines. For example, high-performance ray tracing using GPUs and multi-

core CPUs is an area of active work [Wald et al. 2007; Aila and Laine 2009; Parker

et al. 2010]. Graphics researchers [Pharr et al. 2007; Mark 2008; Seiler et al. 2008]

and prominent game developers like Tim Sweeney have argued that a fixed pipeline

architecture that requires applications to use specific, pipeline-accelerated rasteriza-

tion, z-buffering, and anti-aliasing algorithms to achieve good performance diminishes

the overall visual experience expert developers can achieve [Sweeney 2009]. Sweeney
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calls for graphics platforms to provide flexible processors and programming models

that allow game-engine developers complete freedom to choose and implement the

algorithms used for rendering.

Clearly, the freedom to develop new high-performance renderers from scratch, or

programmatically create custom graphics pipelines using frameworks like GRAMPS

[Sugerman et al. 2009], provides exciting opportunities for future innovation in real-

time graphics. However, ubiquitous programmable parallelism does not imply that

the high level of efficiency achieved through tight co-design of algorithms, heteroge-

neous hardware processing resources, and the GPU pipeline abstraction is no longer

necessary. In fact, looming challenges presented by chip power and area constraints

make efficiency increasingly important. While the GPU pipeline’s inefficient behav-

ior when rendering micropolygons could be interpreted as further evidence of the

need to discard the fixed-pipeline architecture and start anew, the remainder of this

dissertation shows that the pipeline can be modified to correct these problems, en-

larging its application scope to include micropolygon rendering while also retaining

the significant implementation benefits of high-level, domain-specific abstractions.



Chapter 3

DiagSplit Tessellation

The micropolygon rendering pipeline must tessellate surface primitives into microp-

olygon meshes. As will become increasingly evident throughout this dissertation,

performing good tessellation is very important for efficient micropolygon rendering.

Clearly, one goal of tessellation is to generate micropolygon meshes that capture

complex surface detail accurately. But tessellation properties such as the shape of

micropolygons and even the order they are produced are also important to the de-

sign and performance of subsequent pipeline stages that perform rasterization and

shading.

This chapter describes DiagSplit [Fisher et al. 2009], an algorithm for tessellating

parametric surfaces into meshes where nearly all polygons, regardless of surface shape

or view, closely approximate an application-specified size. One focus of DiagSplit’s

design is mesh quality. When configured to produce subpixel-area polygons, DiagSplit

produces high-quality meshes that accurately represent complex surfaces and do not

contain artifacts like T-junctions or cracks. The other focus is performance. DiagSplit

is designed to meet the high-throughput requirements of real-time rendering. It is

amenable to fine-granularity parallel execution and it integrates into the GPU pipeline

as an extension of existing, highly optimized tessellation mechanisms.

23
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NoSplit

BinSplit

IsoSplit

DiagSplit

Tessellation Algorithm Adaptive Crack-FreeParallel
no subpatch
adaptivity

overtessellates(Reyes)

(Reyes)

(D3D11/OGL4)

(T-junctions)

Table 3.1: Tessellation schemes adopted by the GPU and Reyes pipelines choose
different quality and efficiency trade-offs. The DiagSplit algorithm combines the
strengths of these existing approaches.

3.1 Tessellation Requirements

Following the design of the GPU pipeline from Section 2.1.1, input primitives to

the real-time micropolygon pipeline are defined by parametric patches. For exam-

ple, the test scenes used in this chapter feature surfaces represented by displaced

Bezier patches (see Figure 3.12). Similar to triangle inputs typically provided to

GPU pipelines today, surface patches exhibit large variation in size: patches covering

only a few pixels and as well as patches covering hundreds or thousands of pixels may

be present in the same scene. Given these inputs, tessellation should produce meshes

containing polygons (specifically triangles) that are subpixel in area and, ideally, all

about the same size.

Undersampling a complex surface (creating polygons that are too large) results

in geometric artifacts due to piecewise linear interpolation of surface x-y position

(e.g., silhouette errors) and depth (e.g., occlusion errors). The stone house example

in Figure 1.1 showed how undersampling a surface also affects lighting and shading,

for example, due to incorrect shadowing. In addition, in a pipeline that shades

vertices, rather than rasterized fragments (a technique not common in GPUs today

but possible in a future micropolygon pipeline: see Chapter 6), undersampling mesh

geometry results in low-quality faceted shading.

Oversampling a surface (creating polygons that are too small) hurts rendering per-

formance. Complex surfaces such as displaced, bicubic surfaces are costly to evaluate
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Patch 2D Parametric Domain
(uniform tessellation)

Polygon Mesh
u

v overtessellation:
polygons too small

undertessellation:
polygons too large

Figure 3.1: Uniform tessellation of a surface results in wide variation in polygon size.

Mesh Cracks

Figure 3.2: A surface tessellation with cracks. Cracks in the surface appear when
adjacent tessellations approximate the surface with different numbers of polygons.

so computing surface position and shading attributes at extra mesh vertices intro-

duces significant extra work. A tessellation that oversamples a surface also generates

more polygons that must be culled, rasterized, and potentially shaded by the pipeline.

Sampling a surface at any fixed resolution produces a static tessellation that,

depending on view, may contain either too few or too many polygons. For exam-

ple, Figure 3.1 shows a uniform tessellation of a parametric surface; the tessellation

partitions the surface equally into five polygons in both parametric directions. The

resulting polygons are too large near the camera and too small at a distance. Adap-

tive tessellation is needed to produce a mesh containing the desired screen density of

micropolygons regardless of variation in surface detail or camera location.
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In addition to producing polygons that are the right size, adaptive tessellation

must avoid frame-to-frame discontinuities (“popping”) as tessellation changes in re-

sponse to object or camera movement, and it must avoid producing mesh cracks.

Cracks, as illustrated in Figure 3.2, occur when tessellations of different regions of a

surface do not align at region boundaries. Micropolygons are sufficiently small that

popping artifacts are rarely visible. Cracks, however, allow surfaces occluded from

view to be visible in rendered output, producing objectionable artifacts.

Last, to be viable for real-time use, a tessellation algorithm must achieve high

performance. A single input patch may result in thousands of micropolygons, so the

process of computing its tessellation must be parallelizable. As shown in Table 3.1, the

most widely used tessellation schemes meet some, but not all, of the three tessellation

requirements: adaptivity to surface complexity and camera view, crack-free meshes,

and parallelizable implementation.

3.2 Background

DiagSplit combines ideas from tessellation schemes used in the Reyes and GPU

pipelines. To facilitate comparison, it is useful to introduce all three of these schemes

in the context of the Split-Dice algorithm for adaptive surface tessellation.

3.2.1 Split-Dice

Split-Dice is a powerful algorithm, based on the Lane-Carpenter algorithm [Lane et al.

1980], that is used by the Reyes pipeline to tessellate surfaces into micropolygons.

The two-phase, divide-and-conquer process of Split-Dice is illustrated in Figure 3.3.

The first phase, Split, recursively subdivides patches to create smaller subpatches.

In the figure, patch B is split into two subpatches. Splitting terminates when the

algorithm estimates that uniform parametric tessellation of all subpatches will pro-

duce micropolygons that are approximately the same pre-specified area on screen.

Therefore, Split produces subpatches that correspond to local regions of the surface
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Input: Two Parametric Base Patches

Output: !ree Micropolygon Grids (a mesh)

2D Parametric Domain Polygon Mesh

2D Parametric Domain Surface

Split-Dice Process

cracks

Figure 3.3: Split-Dice tessellation generates three micropolygon grids from two para-
metric patches. Top: Input surface patches and their corresponding 2D parametric
domains. Middle: Patch A is not split, but Patch B is split into subpatches B1 and
B2. Bottom-left: Partitioning of A and B’s parametric domains into triangles. Tes-
sellations of A and B sample the surface at different domain points (black dots) along
their shared boundary. Bottom-right: The resulting triangle mesh; Cracks appear
along the A-B boundary.
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that are small and flat. Then, the Dice phase uniformly tessellates subpatches gener-

ated by Split into micropolygon meshes. In this document, I will borrow terminology

from Reyes and refer to each micropolygon mesh produced by dicing a subpatch as a

grid. Although the term grid originally referred to a regular matrix of quadrilateral

micropolygons [Cook et al. 1987], it is used more generally here to refer to any con-

nected micropolygon mesh (tessellation algorithms in this chapter generate triangle

micropolygons). The output of Split-Dice is a collection of grids.

Each grid is permitted to have a different density of polygons across the surface,

so performing splits allows a tessellation to adapt to variations in the projection of

the surface to screen coordinates. The advantage of using both Split and Dice is that

Split provides reasonable adaptivity to varying surface complexity, while Dice retains

the efficiency of uniform tessellation at subpatch granularity.

The decision to split or dice a patch is made by estimating the variation in the

surface’s screen-space derivative with respect to each parametric direction. Surfaces

whose derivative varies significantly across the patch are not suitable for uniform tes-

sellation and should be split. For example, patches with poorly distributed control

points, varying curvature, or which undergo perspective foreshortening (recall Fig-

ure 3.1) undergo splits. Surfaces whose derivative is approximately constant across

the patch are diced using a number of micropolygons determined by this constant.

For many surface types, such as Bezier patches [Catmull 1974; Blinn 1978; Clark

1979], it is possible to compute surface derivatives analytically. However, analytic

techniques only approximate surface derivatives when the surface is displaced.

Dice lends itself to data-parallel execution because surface position and attributes

at each vertex in the output mesh can be evaluated in parallel. In contrast, Split

presents two challenges that make high-performance implementation difficult. First,

much like rasterization of large triangles, Split performs unbounded data amplifica-

tion, potentially generating a large number of subpatches from a single base primitive.

Second, it complicates crack avoidance by dynamically introducing new boundaries

between subpatches in addition to boundaries between the original base primitives.

Split-Dice implementations must ensure the final mesh is crack-free along these new

edges.
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EdgeDice
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BinDice
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(S=1)

Figure 3.4: Comparison of dicing methods: The Reyes pipeline’s implementation of
Dice (uvDice) accepts unique tessellation factors for a patch’s u and v parametric di-
rections. It produces a uniform mesh tessellation according to these factors. BinDice
is similar, but constrains tessellation factors to power-of-two values. Dicing in the
GPU pipeline (EdgeDice) accommodates unique per-edge factors and an interior
scaling factor S. Intuitively, grids produced by EdgeDice contain a uniform interior
mesh stitched to uniform length segments along grid edges.

To understand how cracks occur, consider the boundary between adjacent surface

patches A and B in Figure 3.3. Patch A is not split during tessellation. It is diced

uniformly using six micropolygons along each edge. Patch B is split at its midpoint

in the v parametric direction creating subpatches B1 and B2. B1 and B2’s span of

the A-B edge is diced using two and four micropolygons respectively. As a result,

Patch A’s tessellation along this edge does not match that of Patch B (bottom-left).

Different samplings of the curved surface cause cracks in the final micropolygon mesh

(bottom-right).

3.2.2 Reyes Tessellation

The Reyes pipeline directly implements the Split-Dice algorithm. Reyes divides

application-provided surface base patches into subpatches by partitioning along isopara-

metric directions. Throughout the remainder of this chapter, Reyes-style isopara-

metric splitting is referred to as IsoSplit (Table 3.1–third row). The dice phase

tessellates each subpatch emitted by Split into a regular grid of micropolygons by

uniformly partitioning the subpatch in each parametric direction. The output of this

implementation of dicing, referred to as uvDice, is illustrated in Figure 3.4-left. The
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Figure 3.5: Grid stitching eliminates cracks but creates dependencies between sub-
patches created by IsoSplit. Left: A patch’s parametric domain is partitioned into
seven subpatches (the six splits are labeled s1-s6). Right: subpatch adjacency needed
for stitching is encoded as a tree. Vertex position information from subpatches A,
C, D, and E must be maintained in memory to stitch subpatch B to its neighbors.
Dependencies between subpatches are shown as gray dotted lines.

decisions of whether to split or dice, and, if dicing, the number of segments to tessel-

late in each direction, are determined by computing derivatives across the subpatch

interior.

Many approaches have been taken to produce a crack-free mesh using Reyes.

Some Reyes implementations [Apodaca and Gritz 2000; Foster 2009], most notably

Pixar’s RenderMan, fix cracks by leveraging information from adjacent subpatches to

“stitch” grids together once final vertex positions are known. Figure 3.6-left shows a

strip of triangles used to stitch micropolygons from two adjacent uvDice grids (stitch

triangles are colored red). Stitching implementations maintain adjacency information

during the splitting process by storing pointers between grids and maintaining struc-

tures, like those shown in Figure 3.5, to represent splitting decisions. Interior nodes

of this tree correspond to patch splits. Leaf nodes correspond to diced subpatches.

In this example, fixing cracks along the edges of subpatch B using stitching requires

access to vertex information from four neighboring subpatches (A,C,D,E). Therefore,

stitching introduces dependencies between subpatches as indicated by the dotted lines.

The positions of vertices along subpatch B’s boundaries cannot be determined until

the tessellation of subpatches A,C,D,E is known. Conversely, positioning vertices in

grids corresponding to subpatches A,C,D,E depends upon the tessellation of B. These
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dependencies make it difficult to stream subpatch data through the graphics system

(subpatch edge information must be retained in memory until the entire base prim-

itive is complete), bloating working sets and preventing large-scale parallelism. For

this reason, crack fixing by maintaining adjacency information is not a viable solution

for a real-time graphics pipeline.

Other Reyes implementations avoid cracks without maintaining subpatch adja-

cency information. Instead, they constrain dicing to use only power-of-two tessellation

factors (binary dicing, see BinDice, Figure 3.4) and modify splitting to ensure sub-

patches agree on the number of segments a surface tessellation requires along shared

boundaries. Binary dicing guarantees that subpatches diced at a higher resolution

than the boundary requirement still contain some vertices that align perfectly with

boundary segment vertices (Figure 3.6-center, black dots). To avoid cracks, tessella-

tion positions extra grid vertices (red dots) to lie on boundary segments by linearly in-

terpolating the position of boundary-aligned vertices (“pasting”) [Apodaca and Gritz

2000]. Although pasting is effective, the resulting meshes contain T-junctions and is

not watertight. A Split-dice implementation that relies on binary dicing is referred

to as BinSplit (Table 3.1–second row). While binary dicing is attractive due to its

simplicity, it unfortunately results in poor tessellations. For example, if a patch is

optimally diced with 12 segments in one parametric direction, binary dicing requires

it to either be diced with eight segments (undertessellation) or 16 segments (overtes-

sellation). In practice, enabling binary dicing and rounding tessellation factors up to

the nearest power of two increases tessellation polygon count more than two times.

It is desirable to avoid this inflation of polygon count in a real-time graphics pipeline.

3.2.3 GPU Tessellation

Tessellation functionality supported by the Direct3D 11 and OpenGL 4 pipelines does

not provide the ability to split base primitives, but provides three pipeline stages [Mic

2010b; Segal and Akeley 2010] that cooperate to provide a flexible implementation of

Dice (this scheme is referred to as NoSplit, Table 3.1–first row). The GPU pipeline’s

Patch Generation stage emits surface patches parametrized on either a quadrilateral
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uvDice + stitching BinDice + pasting EdgeDice

Figure 3.6: Three strategies for eliminating cracks between adjacent grids with dif-
ferent tessellations: Left: Stitching inserts a strip of triangles to connect two uvDice
grids. Center: Pasting, used in conjunction with binary dicing, positions extra grid
vertices (red dots) on segments that connect vertices shared by both grids. Right:
EdgeDice matches different interior grid tessellations to segments defining the sur-
face tessellation along grid boundaries.

or triangular domain and surface tessellation factors along each domain edge. Then,

a fixed-function Uniform Tessellation stage generates a mesh with vertices at domain

points (u, v) determined by the tessellation factors [Moreton 2001]. Last, the Vertex

Processing stage evaluates the surface’s position and custom vertex attributes at each

point, yielding a renderable mesh.

In contrast to uvDice, which utilizes only two independent tessellation factors

(one for each parametric direction), the Uniform Tessellation stage generates a trian-

gle mesh from four independent factors (one for each domain edge). This more flexible

dicing strategy, called EdgeDice, is illustrated in Figure 3.4-right. In EdgeDice,

both the edges and the interior of the patch are uniformly tessellated in the paramet-

ric domain. The number of interior segments in a given parametric direction is taken

to be the maximum of the two opposing edge factors, scaled by an interior tessellation

scale parameter S between 0 and 1 (although the Uniform Tessellation stage allows

different scaling factors in each parametric direction, only isotropic scaling is used in

this work). Triangles along the edge of the tessellation stitch the uniform interior to

edge segments.

GPU tessellation is designed for real-time performance. Each base primitive is

processed independently, enabling parallelism. EdgeDice is implemented efficiently
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in fixed-function hardware and surface evaluation at mesh vertices is data-parallel.

However, the performance benefits of this design are tempered by three notable con-

straints.

First, as stated above, the scheme lacks the adaptability of split (DiagSplit will

overcome this limitation).

Second, the three-stage GPU tessellation architecture requires surface primitives

to support arbitrary parametric evaluation. This enables surface evaluation to be

expressed as a Vertex Processing shader program that operates on a single paramet-

ric location. However, the convenience of this per-vertex abstraction prevents the

use of efficient forward differencing schemes to efficiently evaluate uniformly spaced

domain points [Lien et al. 1987]. While many subdivision surfaces can be evaluated

directly [Stam 1995], these techniques often require one to two levels of subdivision

to meet the conditions for direct evaluation; This diminishes the benefit of tessella-

tion. Furthermore, direct evaluation of patches with extraordinary vertices is more

computationally expensive than that for regular bicubic patches. Fortunately, recent

work has developed schemes to approximate subdivision surfaces (including support

for creases and corners) using Bezier and Gregory patches [Loop and Schaefer 2008;

Kovacs et al. 2009; Loop et al. 2009]. These efficient parametric approximations are

the surface representation most frequently used with GPU tessellation.

Third, independent patch processing requires special care by application develop-

ers to prevent cracks. The parametric location of vertices generated by the Uniform

Tessellation stage is determined entirely by a patch’s edge and interior scaling fac-

tors. Thus, to produce tessellations that align at patch boundaries, Patch Generation

shader programs must produce identical tessellation factors for shared edges. Also,

Vertex Processing shader programs must always compute the same surface position

for a parametric point along an edge, regardless of which edge-adjacent patch the

vertex was generated from. These properties are non-trivial for a shader author to

guarantee. A particularly tricky, but common, case arises when displacement maps

are represented using texture atlases. When the boundary between two patches coin-

cides with a texture atlas seam, the same parametric point on the edge has different

texture coordinates in each patch. Filtered displacement map lookups during Vertex
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Processing may not produce the same result, leading to inconsistent evaluation of

surface position at edge vertices. Displacement maps must be carefully authored and

Patch Generation and Vertex Processing shader programs must adhere to strict edge-

ordering policies and precisely order floating-point arithmetic to ensure consistent

evaluation of tessellation factors and vertex positions [Ni et al. 2009].

3.3 DiagSplit Algorithm

DiagSplit is a variant of the Split-Dice algorithm designed for use in the real-time

micropolygon rendering pipeline. It adapts well to surface complexity, does not rely

on stitching across subpatch boundaries to eliminate cracks, and does not incur the

overtessellation of binary dicing.

Following the NoSplit and BinSplit algorithms described in Section 3.2, Di-

agSplit determines surface tessellation along subpatch edges using only properties

of the edge. Subsequently, DiagSplit determines surface tessellation of the sub-

patch interior using the Split-Dice algorithm. The interior tessellation is guaranteed

to match the previously determined edge behavior, ensuring that there are no T-

junctions or cracks. DiagSplit meets this requirement via two significant modifica-

tions to the Split-Dice implementation in Reyes:

• DiagSplit is permitted to split subpatches along non-isoparametric directions

(hence the name DiagSplit). Non-isoparametric splits occur only when nec-

essary to prevent cracks.

• DiagSplit requires EdgeDice dicing to stitch tessellations of subpatch inte-

riors to the tessellation required along edges.

In addition to these changes, DiagSplit also considers the final, displaced po-

sition of the surface when computing edge tessellation factors and sets EdgeDice’s

interior tessellation scale parameter S to produce micropolygons that closely approx-

imate an application-specified target area.
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T(0,1) = NonUniform

T(0, .5) = 2

T(.5, .75) = 4 T(.75, 1) = 2

T(.5, 1) = NonUniform

u=0 u=1

Figure 3.7: DiagSplit produces tessellations that are piecewise-uniform along edges.
In this example, tessellation along an edge over the 0–1 parametric domain is deter-
mined by T . T computes an integer tessellator factor when the surface should be
tessellated uniformly along an edge. Otherwise, DiagSplit will perform a split di-
viding the edge at its parametric midpoint and T is used to set the tessellations along
the two partitions.

3.3.1 DiagSplit

Recall that the GPU pipeline’s Patch Generation stage computes uniform tessellation

factors for all patch edges. DiagSplit defines the tessellation along an edge using

the function T . Given an edge, T either designates that the edge can be uniformly

diced using t segments, or that non-uniform tessellation along the edge is necessary.

If non-uniform tessellation is required, the edge is partitioned at its parametric mid-

point, and T is used to determine the tessellation along each partition. This process,

applied recursively, fully determines a piecewise-uniform adaptive tessellation along

the original edge (Figure 3.7).

DiagSplit ensures that the tessellation of the interior of the patch generated

by the Split-Dice process conforms to the behavior along edges dictated by T . This

guarantee holds for edges of base patches and also holds recursively for subpatch edges

introduced by splits.

DiagSplit’s behavior is simple when T dictates that tessellation along all edges

of a subpatch is uniform. The subpatch is diced using EdgeDice according to
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Figure 3.8: DiagSplit produces tessellations that adhere to edge behavior defined
by T . Top: When tessellation along both edges in the same parametric direction is
non-uniform, DiagSplit splits the subpatch along the line through the midpoint of
both edges. Middle, Bottom: When only one of the edges in a parametric direction
requires a split, the split runs through the vertex on the opposite edge closest to the
edge midpoint. Subedges of the uniform edge are constrained to ensure agreement
with the tessellation factor dictated by T . Bottom: Partitioning a uniform edge
requiring an odd number of tessellation segments requires a non-isoparametric split.

the four edge tessellation factors. If at least one subpatch edge requires non-uniform

tessellation, the subpatch cannot be diced and must be split. Consider the case where

the tessellation must be non-uniform along both edges in the u parametric direction

(Figure 3.8-top). In accordance with the edge behavior described above, DiagSplit

will split the subpatch along the line connecting the parametric midpoint of each edge

(orange line). Notice that this behavior is equivalent to that of IsoSplit.

When only one edge in the u parametric direction forces non-uniform tessellation

(Figure 3.8-middle, bottom), DiagSplit will split the subpatch along the line be-

tween the parametric midpoint of the non-uniform bottom edge and some point in the

uniform tessellation along the top edge. Our implementation chooses the point closest
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to the parametric midpoint. If the edge tessellation factor for the top edge is odd,

this split occurs along a non-isoparametric line (a diagonal in parametric space). As

a result, DiagSplit can generate subpatches with non-isoparametric quadrilateral

domains. When splitting is required along both parametric directions, DiagSplit is

free to choose which split to perform first or it can implement a split that directly

produces four subpatches.

Following the behavior described above, DiagSplit (like GPU tessellation) gen-

erates tessellations where adjacent subpatch interior regions are connected using two

rows of triangles [Rockwood et al. 1989]. Each subpatch’s uniform interior tessellation

is independently stitched to segments along its own edges by EdgeDice. Adjacent

subpatches stitch to the same segments along their shared edge, so no stitching across

subpatches is required to prevent cracks.

Pseudocode for a recursive implementation of DiagSplit operating on quadrilat-

eral domain subpatches is given in Figure 3.9. The function DiagSplit carries out the

splitting procedure given a subpatch defined by its four parametric corners (SubPatch)

and tessellation factors (EdgeFactors) for all edges (note that edge tessellation factors

can take on the special value NonUniform). The subroutine PartitionEdge is used to

compute split points and tessellation factors for new subedges when splits occur. The

provided implementation easily extends to triangle domains where each triangle sub-

patch is split into triangular subpatches. Although not shown in the example, in the

rare condition that an edge with a tessellation factor of one is partitioned in a split,

DiagSplit produces a triangular child subpatch and proceeds with triangle-domain

tessellation.

One aspect of the DiagSplit pseudocode was not discussed in the description of the

DiagSplit algorithm above. When partitioning an edge that is assigned a uniform

tessellation factor (the “else” clause of PartitionEdge), DiagSplit derives tessellation

factors for subedges without additional calls to T . This ensures that subpatch tes-

sellations together contain exactly t uniform segments as required. Calling T to

determine the tessellation along each subedges is incorrect in this case, as there is no

guarantee the resulting edge factors sum to the value t. Depending on the values of

the edge tessellation factors passed to DiagSplit, between one and five calls to T are
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made for each subpatch split.

The GPU pipeline’s EdgeDice implementation positions mesh vertices within the

[0, 1]2 domain. AlthoughDiagSplit produces subpatches spanning non-isoparametric

quadrilateral domains, EdgeDice can be used unchanged if the parametric location

of subpatch corners is propagated to the pipeline’s Vertex Processing stage. The Ver-

tex Processing shader program uses these coordinates to map EdgeDice’s output in

the unit square to the base patch’s parametric domain (using bilinear interpolation).

The surface is then evaluated directly at these parametric locations.

3.3.2 Computing Edge Tessellation Factors

DiagSplit’s tessellation quality depends heavily on the implementation of T . Ideally,

T should be inexpensive to compute and accurately estimate the number of segments

needed for a tessellation to closely approximate surface position along subpatch edges.

In accordance with the tessellation requirements from Section 3.1, the screen spacing

of vertices along a subpatch edge should be approximately uniform and not exceed

a maximum-specified screen space length (to generate micropolygons, this length is

the width of a pixel, or less).

Both analytic and sampling-based methods have been used to compute edge tes-

sellation factors. For example, it is possible to bound surface derivatives of a Bezier

patch directly from patch control points and use these bounds to compute conservative

tessellation factors for an edge [Clark 1979; Rockwood et al. 1989]. Large variation

in surface derivative along an edge indicates a need for non-uniform sampling. In

this case, the subpatch containing the edge should be split. One disadvantage of

this analytic approach is that it does not account for the displaced position of the

surface. Also, it is more complicated to apply to non-isoparametric subpatch edges.

Non-isoparametric edges of a Bezier patch are not Bezier curves. Analytic techniques

can be applied to non-isoparametric edges, albeit at higher computational cost. For

example, one way to bound the tessellation factor for a non-isoparametric edge is to

compute derivative bounds for the surface corresponding to an isoparametric region

surrounding the edge.



CHAPTER 3. DIAGSPLIT TESSELLATION 39

DiagSplit(SubPatch = {P00, P10, P11, P01},
EdgeFactors = {tv=0, tu=1, tv=1, tu=0})

if tv=0 or tv=1 = NonUniform

{Pv=0, tav=0, t
b
v=0} ← PartitionEdge(P00, P10, tv=0)

{Pv=1, tav=1, t
b
v=1} ← PartitionEdge(P01, P11, tv=1)

tsplit ← T (Pv=0, Pv=1)
DiagSplit({P00, Pv=0, Pv=1, P01}, {tav=0, tsplit, t

a
v=1, tu=0})

DiagSplit({Pv=0, P10, P11, Pv=1}, {tbv=0, tu=1, tbv=1, tsplit})
else if tu=0 or tu=1 = NonUniform

...

else
emit {SubPatch, EdgeFactors} to Uniform Tessellation stage

PartitionEdge(Pstart, Pend, EdgeFactor = t)

if t = NonUniform

P ← (Pstart + Pend)/2
t0 ← T (Pstart, P )
t1 ← T (P , Pend)

else

Choose vertex index I = floor(t/2) as split vertex
P ← Parametric coordinates of vertex I
t0 ← I,
t1 ← t− I

return {P , t0, t1}

tu=0 tu=1

tv=1 = 7

tv=0 = NonUniformP00

P01 P11

P10

Pv=0

Pv=1

tsplit

tv=0 tv=0

tv=1=4 tv=1=3

a

a

b

b

Figure 3.9: The DiagSplit splitting algorithm: DiagSplit accepts as input a sub-
patch (defined by its four parametric corners and four edge tessellation factors) and
emits subpatches that can be diced into grids containing near-uniform area polygons.
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T (Pstart, Pend)

for i = 0 to N − 1
Pi = Pstart + (i/(N − 1)) ∗ (Pend − Pstart)
Li = ToScreenCoords(Pi) − ToScreenCoords(Pi−1)

tmin =
�
(
�N−1

i=1 Li)/R
�

tmax = �(N ∗maxi(Li)/R)�
if tmax − tmin ≥ SplitThreshold

return NonUniform

else
return tmax

Figure 3.10: T samples surface position at N points along the edge to estimate
whether uniform tessellation using t segments will yield vertices spaced on screen by
approximately R pixels (for micropolygons, R=1). If T estimates uniform tessellation
cannot meet this goal, it returns the value NonUniform to trigger a subpatch split.

The implementation of T given in Figure 3.10 does not use analytic methods. It

coarsely samples the screen-space position of the surface at N uniformly spaced para-

metric locations along the edge. Then, it approximates the surface along the edge

as a piecewise-linear curve consisting of N − 1 segments connecting the points (seg-

ment lengths are given by Li’s in the pseudocode). The sum of all segment lengths

constitutes a lower bound on the edge’s actual screen-space length. Using this length

estimate, T computes tmin, a lower bound for the edge tessellation factor. It also

estimates a tessellation factor upper bound, tmax, based upon the longest of the N−1

segments. When the difference between tmin and tmax exceeds an application-specified

SplitThreshold, T concludes uniform tessellation along the edge is inadequate. Oth-

erwise, T returns tmax as the tessellation factor for the edge.

To ensure a crack-free mesh, evaluation of T on an edge shared between two sub-

patches must always return the same result regardless of which subpatch is currently

being processed by DiagSplit. Therefore, T must depend only on surface properties

along the edge. It cannot depend on properties associated with a subpatch’s interior

region (this information is not available to both subpatches). Implementations of T
used with DiagSplit must use techniques established for GPU tessellation [Ni et al.

2009], described previously in Section 3.2.3, to ensure consistent numerical evaluation.
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3.3.3 Adjusting Tessellations of Subpatch Interiors

One drawback of making splitting decisions using only surface information along

subpatch edges is the inability to make guarantees about tessellation quality for a

subpatch’s interior. For example, T bounds segment length, resulting in tessellations

that sample a surface at the desired density in the direction of subpatch edges. But

it does not prevent oversampling along other screen directions when a subpatch has

poor screen-space aspect ratio. This behavior is evident in the DiagSplit tessel-

lation at left in Figure 3.11. Bold lines in the figure indicate subpatch boundaries

(grid boundaries). Subpatches near object silhouettes have poor aspect ratio due to

perspective. Although vertices along subpatch boundaries are spaced about a pixel

apart, the resulting triangles are very small. The size of tessellation triangles, relative

to a 0.5-pixel target area, is visualized in the renderings at bottom. Pixels covered

by 0.5-pixel-area triangles are green.

To achieve a more uniform distribution of triangle areas across entire objects and

scenes, DiagSplit adjusts subpatch interior tessellations by modifying EdgeDice’s

interior scale parameter S ∈ [0, 1]. S isotropically scales the interior tessellation in

each parametric direction. Varying S controls the number of triangles in the final

tessellation and, correspondingly, the area of these triangles. The results of interior-

area scaling are shown in the top-right of Figure 3.11. Vertex positions on subpatch

boundaries are not changed by area scaling (doing so would result in cracks).

DiagSplit computes S using a coarse estimate of the subpatch’s screen-space

area. Prior to dicing a subpatch, DiagSplit evaluates surface position at a 3×3

grid of points (the grid consists of the subpatch’s corners, its edge midpoints, and its

center). These points define four quadrilaterals, and the subpatch’s area, Apatch, is

estimated to be four times the area of the largest of these quads. To approximate

the target micropolygon area of Atri pixels, DiagSplit sets S so that the subpatch’s

diced grid contains Apatch/Atri triangles.

Given subpatch edge tessellation factors a, b, c, d the number of triangles contained

in a quadrilateral-domain EdgeDice grid is (Mu and Mv are the maximum factors

in the u and v parametric directions):
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.25x 2x.5x

Overtessellation
(poor perf)

Undertessellation
(poor quality)

(Target) 4x.125x 8x
Micropolygon Area: Relative to 0.5-Pixel Target Area

Without Grid Interior Area Scaling With Grid Interior Area Scaling
DiagSplit Tessellations

Figure 3.11: Interior-area scaling normalizes triangle areas by adjusting the
EdgeDice interior tessellation scale factor S for each subpatch. Top-Left: Microp-
olygon mesh from a DiagSplit tessellation that does not use interior area scaling.
Grid boundaries are shown as dark lines. Bottom-Left: Visualization of triangle size.
The tessellation contains triangles that are smaller than the target size when sub-
patches have poor screen aspect ratio (red regions). Right: DiagSplit with interior-
area scaling produces a mesh containing uniform-area triangles. In this example,
interior-area scaling also reduces triangle count by 28%.
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Ntris = 2((SMu − 2)(SMv − 2) +

(SMu − 2) + (SMv − 2)) + a+ b+ c+ d

Given a desired triangle count, the interior tessellation scaling factor is determined

by solving the above equation for S.

Estimating the interior scaling factor S makes three assumptions: a 3×3 uniform

grid is a good estimate of the subpatch’s actual screen area, triangles in the grid

produced by dicing all have the same area (splitting makes this a safe assumption),

and integer rounding of interior tessellation factors after scaling by S does not severely

impact the tessellation. Nevertheless, as shown by right side of Figure 3.11, interior-

area scaling produces very uniform-area micropolygons in practice.

DiagSplit tessellation with interior-area scaling prioritizes generating triangles

that closely match a target area over bounding the spacing between vertices in sub-

patch interiors. The entire splitting process is carried out based on micropolygon

edge lengths and interior-area scaling serves as a final “correction” to subpatch in-

terior tessellations based on an estimate of micropolygon area. Interior-area scaling

causes micropolygons within subpatch interiors to have longer edges than the lengths

determined by T along subpatch boundaries. As a result, interior-area scaling re-

duces oversampling due to poor subpatch aspect ratio, but also increases the risk of

undersampling surface detail in the interior areas of these patches. Depending on

scene characteristics, interior-area scaling reduces overall micropolygon count in tes-

sellations by 10% to 60% (it yields a 28% reduction in triangle count in Figure 3.11).

3.4 Evaluation

We evaluated DiagSplit by comparing its quality and performance against the al-

ternative tessellation algorithms described in this chapter. For high visual quality, we

sought to produce triangle micropolygons that are approximately 0.5 pixels in area.

At this resolution, the distance between neighboring vertices in diced grids is about
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one pixel. For high performance, DiagSplit must avoid overtessellation and the cost

of performing splits must be kept low.

Our DiagSplit implementation uses the splitting algorithm described in Sec-

tion 3.3, EdgeDice with interior-area scaling for dicing, and an implementation of

T that samples an (optionally displaced) surface at four points along subpatch edges

(N=4, R=1, SplitThreshold=3). To constrain footprint, diced grids contain at most

256 vertices. Splitting continues until subpatches are small enough to meet this dic-

ing constraint. By construction, DiagSplit permits subpatch-parallel execution. We

compared this configuration of DiagSplit against the following three alternatives

listed in Table 3.1.

• NoSplit: This configuration mimics the behavior of GPU pipeline tessellation.

It is subpatch-parallel, does not perform splits, uses EdgeDice dicing with

interior-area scaling, and uses a similar edge-based T as DiagSplit. Unlike

DiagSplit, surface evaluations by T do not account for displacement.

• BinSplit: This configuration performs isoparametric splitting with binary

uvDice dicing. Dicing factors are computed using T (without displacement),

but are rounded up to the nearest power of two. Like DiagSplit and NoS-

plit, BinSplit is amenable to subpatch-parallel execution. When configured

to output micropolygons, tessellation algorithms proposed by Eisenacher et

al. [2009] and Patney [Patney and Owens 2008; Patney et al. 2009], produce

tessellations similar to BinSplit (although [Patney and Owens 2008] contains

no mechanism for preventing cracks).

• IsoSplit: This configuration mimics an advanced Reyes implementation and

performs isoparametric splitting and uvDice dicing. IsoSplit evaluates the

surface at a 4×4 grid of points spanning the subpatch to make splitting decisions

and determine dicing factors. LikeNoSplit andBinSplit, this evaluation does

not account for displacement. Post-tessellation stitching removes cracks, but

requires complex data structures that preclude efficient parallel implementation.

Stitch geometry is not included in tessellation statistics in this evaluation.
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LongPlane
1 patch (with displacement)

SineWave
1 patch (with displacement)

MonsterFrog
1,292 patches (with displacement)

BigGuy
2,570 patches

Bumpy
6 patches (with displacement)

Zinkia
151,651 patches

Columns
13,044 patches

Figure 3.12: Renderings of the seven scenes used to evaluate DiagSplit visualize the
parametric coordinate system of base patches. The LongPlane, MonsterFrog,
Bumpy, and SineWave scenes contain displaced surfaces. (Zinkia scene c� Zinkia
Entertainment, S.A.).
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We evaluated the four algorithms using the seven example scenes shown in Fig-

ure 3.12 rendered at 1728× 1080 resolution. To assist understanding of scene proper-

ties, the coordinate system of base patches is shown in the renderings. Scene geometry

is modeled using Catmull-Clark subdivision surfaces that are directly evaluated using

the Loop-Schaefer approximation scheme [Loop and Schaefer 2008]. The seven scenes

test different aspects of tessellation:

• LongPlane consists of a single large patch undergoing severe perspective fore-

shortening. Surface detail is supplied using textured displacement (the magni-

tude of displacement grows in the u parametric direction). LongPlane is a

pathological case for NoSplit and requires adaptive tessellation to avoid sub-

stantial undertessellation near the camera and overtessellation at a distance.

• BigGuy and MonsterFrog are simple character tests. BigGuy’s surface is

smooth but MonsterFrog features textured displacement.

• Bumpy and SineWave use high-frequency procedural displacement to create

surface detail (the subdivision base cages are a cube and plane respectively).

• Columns and Zinkia are full scenes featuring significant variation in base-

patch size.

3.4.1 Algorithm Comparisons

Figure 3.13 visualizes the quality and performance of all algorithms by coloring im-

ages according to the average area of micropolygons overlapping each pixel. Properly

tessellated areas containing 0.5-pixel-area micropolygons are green, areas overtessel-

lated by at least four times are red (poor performance) and undertessellated areas

are blue (poor quality).

DiagSplit, NoSplit, and BinSplit each provide subpatch-parallelizable, crack-

free tessellation solutions. Of these three algorithms, only DiagSplit consistently

produces good tessellations. While DiagSplit meets the target area very well (most
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.25x 2x.5x

Overtessellation
(poor perf)

Undertessellation
(poor quality)

(Target) 4x.125x

DiagSplitIsoSplit
(Reyes)

BinSplitNoSplit
(GPU Tessellation)

8x
Micropolygon Area: Relative to 0.5-Pixel Target Area

Micropolygon Area Visualization

Figure 3.13: Visualization of triangle size: Green pixels are covered by micropolygons
close to the 0.5-pixel-area target size. Red and blue pixels indicate overtessellation
and undertessellation respectively.
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regions of the DiagSplit images are green), NoSplit generates areas of overtessel-

lation and undertessellation. The problem is acute in the pathological case of Long-

Plane, where NoSplit’s uniform tessellation is too coarse near the viewer and too

fine at a distance. Removing undertessellation by tessellating LongPlane conserva-

tively (so that the near region of the plane becomes green) increases overtessellation

afar and yields a mesh with seven times as many vertices as DiagSplit.

BinSplit is adaptive but it rounds dicing factors up to powers of two and lacks

DiagSplit’s interior-area scaling capabilities (unlike EdgeDice, uvDice cannot

modify its interior tessellation independently from tessellation at subpatch edges).

As a result of these two deficiencies, BinSplit overtessellates severely. In the charac-

ter and full-scene tests, BinSplit generates between 2.2× (MonsterFrog) to 3.1×
(Columns) more vertices than DiagSplit. With the exception of LongPlane,

BinSplit’s tessellations contain more micropolygons than NoSplit’s. In addition,

because BinSplit tessellation factors jump between powers of two, it produces tessel-

lations that are less locally uniform than those of the other three algorithms. Modify-

ing BinSplit to round edge factors to the nearest power of two (rather than rounding

up) reduces overtessellation, but introduces large regions of undertessellation.

DiagSplit is designed for subpatch-parallel execution while IsoSplit is not.

However, because IsoSplit does not rely on preserving agreement along edges to

prevent cracks, it is able to make splits and set tessellation rates using information

from subpatch interiors as well as edges. Further, IsoSplit does not need to deter-

mine subpatch tessellation factors until a decision to dice is made (it requires no edge

constraints). Despite retaining more flexibility, we found that in tests where displace-

ment is not present, both IsoSplit and DiagSplit tessellations approximate the

desired micropolygon area well. In scenes without displacement, there is never more

than a 7% difference in the total number and average area of micropolygons produced

by DiagSplit and IsoSplit.

When displacement is present, DiagSplit produces better tessellations than

IsoSplit because it accounts for the displaced position of the surface (not just the

subdivision limit surface) in T . The disparity in tessellation output is notable when

displacement magnitudes are large. For example, IsoSplit (as well as NoSplit
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.25x 2x.5x

Overtess.
(poor perf)

Undertess.
(poor quality)

(Target) 4x.125x 8x
Micropolygon Area: Relative to 0.5-Pixel Target Area

N=2 N=3 N=4 N=5 N=16

Figure 3.14: DiagSplit tessellation quality improves as the number of surface sam-
ples used by T increases. Errors due to sparse edge sampling are particularly apparent
in SineWave, which contains a surface with high frequency detail. The DiagSplit
implementation evaluated in this section uses four samples to determine the tessella-
tion factor for an edge (N=4).

and BinSplit) consistently undertessellates SineWave because splitting decisions

assume the surface is a flat plane. Similar undertessellation is visible on the right side

of LongPlane, the spikes in MonsterFrog, and near the silhouette of Bumpy.

In offline rendering, manually increasing tessellation amounts for such objects is a

reasonable solution to this problem. However, it is labor intensive, view-dependent,

and causes overtessellation in areas of a surface without significant displacement. Ac-

counting for displacement during tessellation requires no user input and yields a better

approximation to the final surface. Modifying IsoSplit to account for displacement

yields tessellations of approximately the same quality as DiagSplit’s. Accounting

for displacement in NoSplit has less benefit because the scheme is incapable of

adapting to the increased surface detail.
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3.4.2 Edge Sampling

DiagSplit uniformly samples surface position along an edge to compute tessellation

factors. Experiments show that four samples per edge (N=4) yields a good balance

between cost to compute T and overall tessellation quality. Figure 3.14 visualizes

tessellations that result from a range of edge sampling rates.

Even when surfaces contain no high frequency detail, approximating an edge as

a line formed by its endpoints (N=2) results in poor quality at silhouettes. When

an edge spans a surface silhouette, it is common for the projected position of its

endpoints to fall nearly on top of each other. As a result T estimates edge length

to be near zero and incorrectly computes a tessellation factor of one segment. This

form of sampling error is troublesome because high-quality silhouettes are a major

motivation for micropolygon rendering.

In practice we found that N=3 often suffices for smooth, undisplaced surfaces

and that N=4 yields good results for most displacements. Of course, any point

sampling of an edge is prone to aliasing. Artifacts due to aliasing are clearly present

in the SineWave scene (surface detail becomes very high frequency in the top-right

corner of the plane). However, with the exception of pathological cases such as

SineWave, tests indicate that using values of N greater than five provide little

benefit to tessellation quality and simply introduce higher T evaluation costs. We

have not studied the impact of irregular or adaptive sampling techniques in T ; the

advantage of adaptivity is largely achieved through splitting and it is important that

the cost of T remain as small as possible to keep the overhead of producingDiagSplit

tessellations low.

3.4.3 DiagSplit Characteristics

Table 3.2 quantifies DiagSplit tessellation characteristics for the seven example

scenes. The table corroborates the results illustrated by Figure 3.13; on all scenes

except SineWave, DiagSplit generates triangles that are, on average, within 26%

of the 0.5 pixel target area. Micropolygons of this size do not approximate the high

frequency detail of SineWave well, so DiagSplit tessellates more finely to yield a
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close approximation to the surface (for efficient rendering, it would be preferable to

pre-filter SineWave geometry).

Table 3.2 also provides insight into the overhead of adaptivity. The cost of deter-

mining where DiagSplit places tessellation vertices is dominated by point sampling

surface position. These evaluations, which occur in T and to compute interior scale

parameters prior to dicing, add to the fundamental cost of evaluating surface position

and shading interpolants at final micropolygon vertex locations. When subpatches are

large on screen, less than 13% of all surface evaluations constitute overhead of com-

puting the split-dice tessellation. This fraction grows to 19% and 24% in Columns

and Zinkia, which contain many small base patches (these scenes have the small-

est number of vertices per diced subpatch). However, small base patches are rarely

split (e.g., despite having several large patches, Zinkia’s average split-tree depth is

0.1), so DiagSplit incurs essentially the same overhead to compute edge factors as

NoSplit.

3.4.4 Prototype Parallel Implementation

Although DiagSplit is designed for integration into the GPU pipeline (Section 3.5

describes the DiagSplit tessellation pipeline architecture), we have developed a pro-

totype parallel implementation for multi-core CPUs. This implementation leverages

locality inherent in split-dice by processing split subpatches in depth-first order. It

represents subpatches compactly as 52-byte records (four parametric coordinates,

four tessellation factor constraints, and a pointer to the base patch). As a result,

a 20-element stack requires less than 1 KB of storage (Table 3.2 indicates this is

more than sufficient for most scenes). Depth-first implementation runs almost en-

tirely out of local data caches and does not exhibit the large memory footprint or

high-bandwidth limitations of breath-first tessellation [Eisenacher et al. 2009; Patney

and Owens 2008].

A single core of a 3 GHz Intel Core i7 processor tessellates Approximate Catmull-

Clark (ACC) surfaces [Loop and Schaefer 2008] into micropolygon meshes at a rate of

21 million triangle micropolygons per second (MPs/sec). This timing includes the cost
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of converting the base mesh to ACC patches, as well as evaluation of surface normals,

tangents, and texture coordinates for shading. About 70% of overall execution time is

spent evaluating these surface attributes at final vertex positions (this code has been

optimized using vector instructions). Performance drops to 11 million MPs/sec when

evaluating displaced surfaces because the cost of filtering texture data in software is

expensive. The implementation achieves parallel execution across multiple cores by

placing all subpatches generated by splits into a work queue accessed by all processors.

This simple design scales moderately well out to eight processors (6.2× for non-

displaced surfaces, 6.7× for displaced ones). An eight core Intel Core i7 system

tessellates ACC surfaces at a rate of 130 million MPs/sec (73 million MPs/sec when

displaced). This high performance is achieved while generating high-quality meshes

that do not contain excessive numbers of polygons.

3.5 Pipeline Integration

The subpatch-parallel properties of DiagSplit facilitate its integration into the mi-

cropolygon pipeline as an extension of the GPU pipeline’s tessellation architecture. A

four-stage DiagSplit tessellation pipeline is shown in Figure 3.15. The three-stage

GPU tessellation pipeline is provided alongside for comparison. The DiagSplit

pipeline adds a new stage to the GPU pipeline (labeled DiagSplit). This stage ac-

cepts as input a stream of base patches from the Patch Generation stage and outputs

a stream of records representing diceable subpatches. Each subpatch record specifies

the parametric coordinates of subpatch corners, edge tessellation factors, and a sub-

patch interior scaling factor. The remainder of the DiagSplit tessellation pipeline

is essentially identical to that of the GPU pipeline. The fixed-function Uniform

Tessellation stage generates an EdgeDice triangle grid from subpatch records and

data-parallel Vertex Processing computes final vertex positions. In the DiagSplit

pipeline, base patch data emitted by the Patch Generation is automatically passed

down the pipeline and made available to all Vertex Processing shader program invo-

cations for grids generated from this base patch. In the GPU pipeline, base patch

data need only be provided to Domain shader invocations for a single grid.
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Uniform Tess
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(subpatch clip-space bounding box)

Programmable

Fixed-Function

Figure 3.15: A DiagSplit tessellation pipeline architecture: The DiagSplit
pipeline extends the GPU pipeline with a new stage (DiagSplit) that performs sub-
patch splits. This stage is not fully programmable, but operates in conjunction with
application-provided, surface-specific functions that compute edge tessellation and
interior scaling factors.
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Recall the DiagSplit pseudocode in Figure 3.9 is not specific to any parametric

surface type. Surface-specific components of the implementation involve the edge tes-

sellation factor function T and evaluation of the surface for area scaling (not shown in

pseudocode). Correspondingly, the DiagSplit stage is not fully programmable. That

is, the application programmer is not responsible for implementing the pseudocode

in Figure 3.9. Instead the application provides the pipeline several surface-specific

functions that are used in conjunction with the pipeline-supplied DiagSplit imple-

mentation to produce diceable subpatches.

• T : Computes the tessellation factor for an edge given patch data and the

parametric location of edge endpoints. An example implementation of T was

given in Figure 3.10.

• InteriorScale: (optional) Computes a subpatch interior-area scaling factor S

from patch data and the parametric location of subpatch corners. If this func-

tion is not provided by the application, the interior scale factor for subpatches

defaults to 1.

• BBox: (optional) Computes the clip-space bounding box of a subpatch from

path data and the parametric location of subpatch corners. This function is

not required by the DiagSplit algorithm, but provides surface semantics that

enable many useful pipeline optimizations.

Constraining the programmability of the DiagSplit stage’s architecture provides

flexibility for pipeline implementations to be highly optimized. The space of viable

implementations is large. In a micropolygon pipeline, the process of splitting base

patches into subpatches plays a role similar to that of the rasterizer in a system op-

timized for large polygons. Split serves as a work generator, producing semi-regular

pieces of work (subpatches) for consumption by the remainder of the pipeline. As is

the case when rasterizing large triangles featuring significant variation in size, strate-

gies for generating subpatches in parallel and for dynamically redistributing the re-

sulting computations across many execution units (balancing the conflicting goals of
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locality and parallelism) benefit from global knowledge of hardware characteristics

and pipeline behavior. They are best left under system control.

Also, in addition to making splitting decisions that yield a high-quality mesh, imple-

mentations of the DiagSplit stage may include optimizations such as:

• Hierarchical frustum and occlusion culling. Given the spatial bound of a sub-

patch (computed by BBox) the pipeline can discard off-screen or occluded

subpatches prior to dicing [Apodaca and Gritz 2000; Boulos et al. 2010]. Split-

ting provides the opportunity to perform these culling checks on progressively

smaller surface regions, not just original base patches or individual micropoly-

gons. This optimization is similar to hierarchical occlusion techniques used on

aggregate scene geometry [Greene et al. 1993] or regions of large triangles [Mor-

ein 2000]. When rendering the Columns and Zinkia scenes, using conservative

bounds to occlusion-cull subpatches prior to dicing reduces the number of Vertex

Processing shader program invocations by 3.5 and 5.1 times.

• Eye-plane splits. Continuing to split a subpatch until its spatial bound lies

entirely in front of the eye plane allows the pipeline rasterizer to avoid eye-

plane clipping of individual micropolygons [Apodaca and Gritz 2000].

Rather than extending the existing pipeline architecture with a new stage as

proposed above, one alternative way to integrate DiagSplit in the GPU pipeline

is to extend the existing Patch Generation stage to output an unlimited number

of patch records for each input patch received. (Patch Generation currently emits

one output patch record for each input.) With this capability, it is possible for

the application to implement the entire DiagSplit process as a Patch Generation

stage shader program that outputs diceable subpatches. While the simplicity of this

interface change is attractive, placing the entire splitting process under application

control serializes the execution of splits for each base patch and precludes many of

the global pipeline optimizations described above.
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3.6 Discussion

DiagSplit adapts the Split-Dice algorithm to split subpatches in non-isoparametric

directions and use a dicing scheme that supports different tessellation factors for each

subpatch edge. With these modifications, DiagSplit retains the adaptivity and

crack-free quality of advanced Reyes implementations but can also process individ-

ual subpatches in parallel. Adaptivity allows DiagSplit to generate tessellations

containing fewer and more uniform micropolygons than existing parallel methods.

This reduces the overall cost of tessellation and also leads to more efficient process-

ing by downstream pipeline stages. Subpatch-parallelism enables implementation via

extension of the GPU pipeline’s tessellation architecture. As an extension of GPU

tessellation, the DiagSplit tessellation pipeline assumes its benefits; it is versatile

(programmable vertex evaluation) and also amenable to high-performance implemen-

tation (data-parallel vertex evaluation, special-purpose hardware for dicing). How-

ever, the DiagSplit pipeline also assumes the GPU pipeline’s constraints (limitation

to parametric surfaces, tedious coding to ensure a crack-free mesh). Given the rapid

adoption of tessellation in current and near future games, these limitations appear to

be acceptable for real-time graphics.

When considered in the context of current GPU pipeline implementations, the

overhead of processing non-isoparametric subpatches, compared to iso-parametric

subpatches, is small. While non-isoparametric subpatches make surface evaluation us-

ing efficient forward-differencing schemes more difficult, the GPU tessellation pipeline

already precludes use of these methods in favor of a simple per-vertex program-

ming model and brute-force, data-parallel evaluation. Also, the preceding evaluation

showed it is beneficial to account for surface displacement when making splitting deci-

sions and setting edge tessellation factors. Although it is more costly to use analytic

techniques to make these decisions for non-isoparametric subpatches, direct point

sampling methods are unaffected by non-isoparametric properties of subpatches and

can easily account for the displaced position of the surface.

Although crack prevention requires DiagSplit to adhere to tessellation proper-

ties determined along subpatch edges to prevent cracks, it need not make splitting
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decisions based only on edges. For example, the DiagSplit implementation eval-

uated in Section 3.4 performs additional subpatch splits to ensure that diced grids

are limited in vertex count. (These splits, which are omitted from the pseudocode

in Figure 3.9, are not required by edges.) DiagSplit’s splitting rules and edge con-

straints ensure these additional splits do not introduce cracks. Further extensions of

DiagSplit could split subpatches if greater surface detail is needed within subpatch

interior regions, or choose different non-isoparametric partitions to create subpatches

with better screen aspect ratio.



Chapter 4

Micropolygon Rasterization

Micropolygons place new demands on a GPU rasterizer. The rasterizer in a microp-

olygon pipeline must excel at processing large numbers of polygons that rarely overlap

more than a few pixels on screen. In contrast, current GPU rasterizers are tuned to

process polygons that cover tens of pixels; they are not designed to be efficient for mi-

cropolygon workloads. In pursuit of a rasterizer better optimized for micropolygons,

this chapter analyzes the costs of computing micropolygon-screen coverage. It shows

that for micropolygons (specifically those generated by DiagSplit tessellation), it is

preferable to use a simpler rasterization algorithm to reduce computational cost, and

that micropolygon-parallel, rather than sample-parallel, execution is a more effective

way to scale rasterizer throughput.

The analysis provided in this chapter (initially presented in [Fatahalian et al.

2009]) focuses on the algorithmic efficiency of micropolygon rasterization and the

characteristics of its mapping to data-parallel execution. It does not attempt to design

and evaluate the performance of a specific, highly optimized hardware or software

implementation. The design of a custom ASIC that implements the micropolygon

rasterization algorithm described in this chapter is explored by Brunhaver et al. [2010].

For completeness, a summary of Brunhaver et al.’s findings is provided in Section 4.5.

59
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Rasterization With 4x Multi-Sampling

Multi-Sample Points Multi-Sample Bu!er Final Pixel Values

Figure 4.1: Computing a triangle’s screen coverage using 4× multi-sampling: Left:
Multi-sample points on a pixel grid. Covered multi-sample points are red. Center:
The triangle contributes to the multi-sample buffer at all covered multi-sample points.
Right: Filtering the multi-sample buffer’s contents results in anti-aliased triangle
edges in the final image.

4.1 GPU Rasterization

The GPU pipeline’s rasterization stage is responsible for computing a polygon’s cov-

erage of screen pixels and for generating fragments for subsequent pipeline processing.

A region of a pixel is said to be covered by a polygon if it falls within the polygon’s

2D screen projection. GPU rasterizers approximate coverage discretely by sampling

it multiple times per pixel. Figure 4.1-left shows a pixel grid and the position of

four sample points, referred to as multi-sample points, in each pixel. Covered multi-

sample points are highlighted in red. Sampling coverage four times per pixel (4×
multi-sampling) is common in current games, however, to more accurately estimate

partial-pixel coverage (that is, to reduce aliasing at polygon edges), high-end GPUs

support rendering modes with up to 32 multi-sample points per pixel [NVI 2010b].

For clarity, Figure 4.1 also illustrates how the results of rasterization are used to

make an image. The GPU pipeline stores one color value per multi-sample point (the

multi-sample buffer: Figure 4.1-center). If a polygon covers a multi-sample point,

its color (as determined by shading; see Chapter 6) is potentially blended with the

corresponding frame-buffer value (alpha, stencil, or depth tests performed by the

pipeline after rasterization can prevent frame-buffer update). When rendering of the
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frame is complete, the pipeline filters the multi-sample buffer’s contents to produce

final pixel values (Figure 4.1-right).

A rasterizer must identify all multi-sample points covered by a polygon. Re-

gardless of whether rasterization is implemented using fixed-function hardware or

optimized software [Abrash 2009], finding these points involves three key steps: per-

forming per-polygon preprocessing (“polygon setup”), quickly establishing a set of

possibly-covered multi-sample points, and performing individual point-in-polygon

tests.

Polygon setup encapsulates computations, such as clipping, back-face culling, and

computing edge equations, that are performed once per polygon. Some setup op-

erations (e.g., computing edge equations) decrease the cost of subsequent point-in-

polygon tests. When polygons are large, the cost of setup is amortized over many

tests, so it need not be widely parallelized. In fact, high-end ATI GPUs [Adv 2010]

as well as NVIDIA GPUs prior to the GF100 (“Fermi”) architecture serialize polygon

setup (high end GF100 generation GPUs can set up four triangles in parallel) [NVI

2010b].

Next, rasterizers compute polygon overlap with coarse screen tiles [Fuchs et al.

1989; McCormack and McNamara 2000] or use hierarchical techniques [Greene 1996;

McCool et al. 2001; Seiler et al. 2008] that utilize multiple tile sizes. Coarse overlap

tests allow the rasterizer to quickly classify large regions of the screen as completely

inside (Figure 4.2-orange 2×2 pixel tiles) or outside (white 2×2 pixel tiles) a polygon

without performing individual point-in-polygon tests. Avoiding tests in regions falling

outside the polygon is important because the polygon does not contribute to the image

at these multi-sample points (performing many point-in-polygon tests to determine

this result is wasteful). A rasterization scheme’s sample-test efficiency (STE), the

percentage of point-in-polygon tests that identify covered multi-sample points, is a

measure of this waste.

the percentage of point-in-polygon tests that identify 
covered multi-sample points.

Sample-Test Efficiency (STE):
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40-pixel-area triangle
46% sample-test e!ciency

four “all-in” tiles

0.5-pixel-area triangle
6% sample-test e!ciency

no “all-in” tiles

Rasterization With 4x Multi-Sampling (4x4-sample stamp)

Tile entirely within polygon, multi-sample points need not be tested
Multi-sample points tested against triangle

Figure 4.2: Rasterization of two triangles onto a 4× multi-sampled frame buffer
using a 4×4 multi-sample stamp. Multi-sample points in regions highlighted blue
undergo coverage tests. Orange regions fall entirely within the triangle, so point-in-
polygon tests need not be performed in these areas. The 0.5-pixel-area triangle is
small compared to the size of the 4×4 multi-sample stamp, resulting in low STE.
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Last, rasterizers perform point-in-polygon tests to determine coverage of individ-

ual multi-sample points. Point-in-polygon tests are executed efficiently by testing

contiguous blocks of multi-sample points (“stamps”) against a single polygon in par-

allel. This approach was introduced in Pixel Planes [Fuchs et al. 1985] which tested

all image multi-sample points against a polygon simultaneously. Other rasterizers

use tile sizes ranging from 4×4 to 128×128 multi-samples [Pineda 1988; Fuchs et al.

1989; Seiler et al. 2008]. Modern GPU rasterizers simultaneously test 64 or more

multi-sample points against a single polygon using data-parallel units [Houston 2008;

NVI 2010b].

In summary, modern rasterizers rely on per-polygon preprocessing, bulk accep-

tance (or rejection) of large tiles of candidate multi-sample points, and wide data-

parallel coverage tests to achieve high throughput. Unfortunately, these optimizations

are ineffective when polygons shrink to subpixel sizes. First, under micropolygon

workloads, the frequency of setup operations increases dramatically and its cost is

no longer amortized over many point-in-polygon tests. Setup must be minimized or

parallelized when possible. Second, it is unnecessary to use hierarchical schemes to

computing candidate sets of multi-sample points. A micropolygon’s screen bounding

box describes a tight candidate set that contains only a few uncovered multi-sample

points. Last, large stamp sizes are inefficient because the screen area covered by a

stamp is significantly larger than a micropolygon. The inefficiency of a 4×4-multi-

sample stamp (small by modern GPU standards) is illustrated in Figure 4.2. In the

figure, screen regions containing multi-sample points tested against the two trian-

gles are blue. STE is 46% for the 40-pixel-area triangle at left, but drops to 6% for

the 0.5 pixel-area-micropolygon at right (rasterizing the large triangle also benefits

from several completely covered tiles). Large raster stamps trade off extra processing

near polygon edges in exchange for efficient data-parallel execution. When rendering

micropolygons, all candidate multi-sample points are near a polygon edge.
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MPRAST
for each MP:                  // (parallel)

Setup
Bound

Test

Process
Hit

Back-face cull                // 24 ops 

Compute MP bbox               // 27 ops 

for each sample in bbox:
   Compute sample XY          // 29 ops
   Test MP-sample coverage    // 24 ops

If sample covered
   Update current fragment 

Figure 4.3: The mprast micropolygon rasterization algorithm relies on parallel exe-
cution over many micropolygons (parallelism over the outermost loop). Data-parallel
operation counts (which include data-movement and mask operations in addition to
mathematical operations) correspond to the mprast implementation evaluated in
Section 4.4.

4.2 The MPRAST Algorithm

Pseudocode for a simple, but efficient, micropolygon rasterization algorithm (mprast)

is given in Figure 4.3. This algorithm omits many common optimizations found in

GPU rasterizers (see Section 4.1). For example, coarse or hierarchical methods are

not used to accept or reject blocks of multi-sample points. Instead, mprast sim-

ply computes a tight axis-aligned bounding box for each micropolygon and tests all

multi-sample points within this bound.

The setup phase of mprast is minimal. In setup, each micropolygon processed

by mprast undergoes a sidedness check (to support front or back-face culling). At

low multi-sampling rates, it is advantageous to avoid the overhead of explicitly pre-

computing and storing micropolygon edge equations during setup. Instead, mprast

conducts each point-in-polygon test by translating micropolygon vertices into a 2D

coordinate system with the multi-sample point at the origin. These point-in-polygon

tests are more expensive than tests that use explicit edge equations (each requires

three additional ops). Therefore, edge precomputation in setup remains beneficial

when rasterizing larger micropolygons or at high multi-sampling rates. A micropoly-

gon’s bounding box must contain more than seven multi-sample points to overcome

the overhead of precomputation.
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The bound phase of mprast computes an axis-aligned bounding box for the

micropolygon. This box is clamped to sub-pixel, not pixel, boundaries to minimize

the number of point-in-polygon tests performed. mprast multi-sample points are

generated using stratified sampling [Cook 1986], so bounding boxes are clamped to

strata boundaries (see [Cook et al. 1990] for a clever implementation of generating

stratified sample positions from a small lookup table).

The test phase of mprast iterates over all multi-sample points in the bounding

box, performing point-in-polygon tests. The size of a bounding box and, correspond-

ingly, the STE of mprast, is sensitive to the area, aspect ratio, and orientation of

micropolygons. To maximize STE, it is important for pipeline tessellation to generate

“good” micropolygons that are similar in these properties. In general, quadrilateral

micropolygons fill the area of their bounding box better than triangles. The regular

interior region of grids produced by EdgeDice features pairs of adjacent triangles

that can easily be treated at quadrilaterals (recall Figure 3.4-right). Instead of pro-

cessing each triangle independently, one mprast optimization is to treat pairs of

triangles together, performing two point-in-triangle operations using five edge tests.

This optimization halves the number of bounding boxes computed by mprast, since

only each pair of triangles needs to be bounded.

When a micropolygon covers a multi-sample point, fragments must be gener-

ated for subsequent shading and frame-buffer processing (Process Hit). The require-

ments for generating fragments depend on whether fragment shading is enabled in

the pipeline. When fragment shading is not enabled, for example, when generating

shadow maps or if shading is computed prior to rasterization at mesh vertices, the

rasterizer need only interpolate micropolygon depth and (potentially) color at the

covered multi-sample point. When fragment shading is enabled, the rasterizer’s task

is more complex. For example, it must compute interpolation equations for vertex

attributes accessed during shading. The problem of computing micropolygon-multi-

sample coverage is challenging regardless of the shading method used by the pipeline.

The remainder of this chapter focuses only on the rasterizer’s responsibilities for

computing coverage. It does not consider the costs of generating inputs for shading.

Shading in a micropolygon pipeline is discussed in detail in Chapter 6.
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4.3 Parallelizing MPRAST

Consider a rasterizer featuring 64 execution units for performing parallel point-in-

polygon tests. For a typical subpixel-area micropolygon, the bounding box computed

by mprast will not contain enough multi-samples to utilize all execution units. More-

over, even if the bounding box were to contain more than 64 multi-sample points,

sample testing work would not divide evenly onto the units, resulting in low uti-

lization. Testing many multi-sample points against a single micropolygon in parallel

would be a poor way to scale mprast throughput. Instead, scaling mprast requires

parallelization across many micropolygons.

mprast carries this strategy to an extreme. Given N execution units, it tests

N unique micropolygons against N unique multi-sample points in parallel. In the

context of the mprast pseudocode in Figure 4.3, this is parallelism over the outermost

loop. There is no shortage of micropolygons reaching the rasterizer, so this approach

scales to large numbers of execution units without incurring the overhead of large

multi-sample stamps. However, micropolygon-parallel scaling does introduce new

implementation costs that stand to mitigate the algorithmic efficiency of mprast.

For example, micropolygon-parallel execution is less amenable to sharing control

and data across the rasterizer’s execution units. In a stamp-based rasterizer, this

sharing is trivial. All execution units access the same triangle data, and only a

single iterator is needed to advance the rasterizer from stamp to stamp. In mprast,

state and control of iteration over multi-sample points must be handled separately

for each micropolygon. Further, micropolygon-parallel rasterization is susceptible to

load imbalance across execution units because the number of multi-sample points

contained in each micropolygon’s bounding box varies. If parallel rasterization of

many micropolygons proceeds in lockstep, execution-unit utilization depends heavily

on micropolygons having bounding boxes of similar size (tessellation must produce

micropolygons of approximately the same size, orientation, and aspect ratio).

Parallelization across micropolygons also increases footprint (data for many mi-

cropolygons must be maintained by the rasterizer), requires flexible access to multi-

sample position data (unlike stamp-based rasterization, there is no longer a fixed



CHAPTER 4. MICROPOLYGON RASTERIZATION 67

mapping between multi-sample points and execution units), and identifies covered

multi-sample points out of micropolygon arrival order. Fortunately, although the

GPU pipeline defines strict rules for ordering fragments from different input prim-

itives, it does not specify an ordering for fragments from micropolygons generated

from the same input base patch. Pipeline implementations are free to rasterize mi-

cropolygons from the same base patch in any desired order.

The impact of these costs on the performance and efficiency of mprast depends

heavily on the details of a particular parallel implementation. For example, managing

simultaneous iteration over many bounding boxes introduces instruction overhead to a

vectorized software implementation. In contrast, its cost to an ASIC implementation

of mprast manifests as additional chip area and power.

4.4 Evaluation

This section studies the behavior of a parallel implementation of mprast in two

key areas. First, it compares the sample-test efficiency of mprast against that of

stamp-based approaches. Second, it measures the impact of variance in micropolygon

bounding-box size on the utilization of data-parallel execution units.

We implemented mprast using a library of fixed-width, data-parallel operations.

Four implementations utilizing 8-, 16-, 32-, and 64-wide operations were created. In

addition to standard floating-point and integer operations, the library supports data

gathers/scatters and the ability to manipulate vector masks. Data-parallel operation

counts for the Setup, Bound, and Test phases of mprast are given in Figure 4.3.

These counts correspond to an implementation that does not precompute edge equa-

tions in Setup and processes triangle micropolygon individually (no triangle-pairs

optimization).

Parallel execution occurs exactly as described in Section 4.3: all rasterizer exe-

cution units operate in lockstep, rasterizing different micropolygons in parallel. Pro-

cessing for all active micropolygons must complete before a subsequent batch of mi-

cropolygons is accepted by the rasterizer. Our implementations make no attempt
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to dynamically correct for load imbalance caused by variance in the amount of per-

micropolygon work. Thus, utilization reported here should be considered a low wa-

termark for future optimized implementations.

We conducted experiments using micropolygons generated by DiagSplit for a large

collection of test scenes. Subpatch-granularity occlusion-culling is enabled in the ren-

dering pipeline prior to rasterization (as described in Section 3.5), so a large fraction

of micropolygons that reach the rasterizer are visible to the camera and front facing

(very few micropolygons fail the sidedness check in the rasterizer).

4.4.1 Sample-Test Efficiency

Figure 4.4 quantifies the STE benefit of avoiding large multi-sample stamps when ras-

terizing micropolygons. Each graph plots rasterizer STE for various multi-sampling

rates (1, 4, and 16 multi-sample points per pixel) given a stream of micropolygon in-

puts of the specified size (the four graphs correspond to 0.25, 0.5, 1.0, and 2.0-pixel-

area triangle micropolygons). Recall from Chapter 3 that a DiagSplit tessellation

containing 0.5-pixel-area triangles features about one mesh vertex per pixel.

mprast employs a raster stamp containing one multi-sample point (1×1 stamp,

red bars). When multi-sampling is disabled, the screen area of this “stamp” is al-

ready larger than a 0.5-pixel-area micropolygon. Testing larger multi-sample stamps

against a single micropolygon at once quickly results in low STE, as illustrated by

the gold bars in the figure. For example, consider the case of using an 8×4 multi-

sample stamp to rasterize 0.5-pixel-area micropolygons to a 4× multi-sampled frame

buffer (this data point is interesting because 4× multi-sampling is commonly used

in games and each rasterizer unit in an NVIDIA GTX 480 GPU tests an eight-pixel

stamp of samples against a polygon per clock [NVI 2010b]). The 8×4 multi-sample

stamp results in 3% STE. In contrast, mprast’s single multi-sample stamp yields

19% STE under this configuration (on average, a micropolygon bounding box over-

laps approximately 11 multi-sample strata). mprast performs over six times fewer

point-in-polygon tests. Across all conditions, the STE difference betweenmprast and
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Figure 4.4: Under the load of micropolygons mprast (red bars) realizes higher STE
than stamp-based rasterization. The benefit of mprast is greatest when micropoly-
gons are small relative to the density of multi-sample points (small micropolygons,
low multi-sampling).
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the 8×4 multi-sample stamp rasterizer ranges from 2.2 times (for 2-pixel-area trian-

gles at 16× multi-sampling) to 12.6 times (0.25-pixel-area triangles with no multi-

sampling). When compared to the 8×8 multi-sample stamp under conditions of no

multi-sampling, mprast performs up to 23 times fewer point-in-polygon tests.

Even though mprast achieves higher STE than stamp-based approaches, STE

when rasterizing micropolygons is fundamentally lower than when polygons are large.

At multi-sampling rates feasible for real-time rendering, the size of multi-sample strata

is large relative to micropolygon area. Even during 16× multi-sampling, mprast’s

STE for 0.5-pixel-area micropolygons is only 27%. Shrinking micropolygons size to

0.25 pixels further reduces STE to 23%.

4.4.2 Utilization and Cost

Table 4.1 breaks down the cost of the Setup, Bound, and Test phases of mprast

during processing of 0.5-pixel-area micropolygons. Results for implementations using

8, 16, 32, and 64 data-parallel execution units are given. Average execution-unit

utilization by each phase of mprast appears in parenthesis. Setup utilization falls

short of 100% because our implementation processes in parallel only micropolygons

from the same DiagSplit grid. The number of micropolygons in a grid is rarely an

exact multiple of the number of rasterizer execution units. Bound achieves nearly

the same utilization as Setup because most grids reaching the rasterizer contain all

front-facing micropolygons.

Even at low sampling rates, over 84% of all mprast operations constitute part

of Test. Fortunately, DiagSplit produces high-quality tessellations, so variance in

the number of multi-sample points tested per micropolygon is low and Test main-

tains high utilization of many data-parallel execution units. In the common case of

4× multi-sampling, Test sustains approximately 81% utilization of eight data-parallel

execution units. Scaling the implementation eight-fold to 64 units drops utilization

only to 63%. mprast implementations that dynamically rebalance or pack sample

testing work for data-parallel execution can only achieve, at most, a modest 1.6×
improvement in utilization. This result suggests micropolygon-parallel rasterization



CHAPTER 4. MICROPOLYGON RASTERIZATION 71

Data-Parallel Execution Units
8 16 32 64

No multi-sampling
Setup .07 (.99) .07 (.98) .06 (.96) .06 (.92)
Bound .18 (.98) .08 (.97) .08 (.94) .07 (.90)
Test .84 (.78) .85 (.72) .86 (.66) .87 (.60)
Overall Util .81 .76 .70 .64

Par Ops/MP 42.40 22.78 12.27 6.69
4× multi-sampling
Setup .03 (.99) .03 (.98) .03 (.96) .03 (.92)
Bound .04 (.98) .04 (.97) .04 (.94) .04 (.90)
Test .92 (.81) .93 (.75) .93 (.70) .93 (.63)
Overall Util .82 .77 .71 .65

Par Ops/MP 87.02 46.50 25.10 13.78
16× multi-sampling
Setup .01 (.99) .01 (.98) .01 (.96) .01 (.92)
Bound .02 (.98) .02 (.97) .02 (.94) .01 (.90)
Test .97 (.85) .97 (.80) .97 (.74) .97 (.68)
Overall Util .85 .80 .75 .68

Par Ops/MP 225.33 119.61 64.39 35.23

Table 4.1: mprast execution breakdown for 0.5-pixel-area triangle micropolygons.
Table cells report the fraction of mprast execution time spent in the Test, Bound,
and Setup phases of the algorithm. Execution-unit utilization for these stages is
given in parenthesis. mprast execution time is dominated by performing point-in-
micropolygon tests (Test). Even though micropolygon bounding boxes vary in size,
execution-unit utilization in Test remains above 60%.
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is not limited by variance in the amount of work per micropolygon. Maintaining state

for many micropolygons, or the added complexity of generating fragments from many

micropolygons at once, are more likely to limit the scalability of optimized mprast

implementations.

The average cost of rasterizing a micropolygon using mprast is also given in

Table 4.1. Operation counts refer to data-parallel operations, so wide data-parallel

processing yields lower per-micropolygon operation counts. Although this imple-

mentation of mprast can benefit from further optimization (for example, Roca et

al. [2010] suggest mprast optimizations for increasing STE and reducing the cost

of point-in-micropolygon tests), micropolygon rasterization simply has high compu-

tational cost. There are no trivial “all-in” cases that accelerate large blocks of tests

and, when tests are performed, STE is lower than that for large triangles. As a re-

sult, mprast performs a lot of multi-sample testing work. For example, during 4×
multi-sampled rendering, a 32-wide version of mprast performs 25 data-parallel op-

erations per micropolygon. Sustaining a rasterization rate of a billion micropolygons

per second (approximately 16 million micropolygons at 60 Hz) requires processing

throughput of 25 billion 32-wide operations per second, roughly equivalent to the

entire programmable compute capability of a high-end NVIDIA GTX 480 GPU.

Recently, other researchers have attempted to rasterize micropolygons in soft-

ware using compute-mode programming on GPUs. Consistent with our results, these

implementations either do not achieve real-time performance [Zhou et al. 2009] or

consume significant fractions of GPU compute resources to rasterize very simple

scenes [Eisenacher and Loop 2010]. The high cost and the brute-force nature of

mprast strongly suggest that an efficient implementation of the micropolygon ren-

dering pipeline should feature fixed-function hardware for rasterization.

4.5 Fixed-Function Implementation

Motivated by the analysis of mprast in the previous section, Brunhaver et al. [2010]

have conducted an initial exploration of the design of custom hardware for microp-

olygon rasterization. The results of this exploration are summarized briefly here. The
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Fixed-Function Micropolygon Rasterizer Design Template

Figure 4.5: Basic structure and key design parameters for a fixed-function micropoly-
gon rasterization unit that implements a variant of mprast. The unit shown above
achieves limited parallelism through pipelined execution and optional use of small
multi-sample stamps. To achieve high throughput, the unit is replicated to allow for
processing multiple micropolygons in parallel (not shown).

reader is referred to Brunhaver et al. [2010] for complete details of this work.

Figure 4.5 illustrates the basic structure of Brunhaver et al.’s pipelined microp-

olygon rasterization unit, which closely follows the mprast algorithm. The unit

takes as input a single micropolygon (or a pair of edge-adjacent micropolygons)

with vertex positions represented as fixed-point values. It computes an axis-aligned

bounding box for the micropolygon (BBox), and then tests the micropolygon’s cov-

erage of all multi-sample points within this bound. In the figure, the Iterator block

generates micropolygon-sample pairs and the Sample Test block performs point-in-

micropolygon tests.

Brunhaver et al. use the design in Figure 4.5 as a template for exploring opti-

mizations that increase the area and power efficiency of their rasterizer. First, they

implement the triangle-pairs optimization described in Section 4.2. This optimiza-

tion increases hardware complexity: BBox must compute a bound over four vertices

(rather than three) and Sample Test must perform five edge tests (rather than three).
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Even so, experiments show synthesized designs that employ the triangle-pairs opti-

mization achieve higher area and power efficiency that design that do not.

Second, they exploit the small size of micropolygons to reduce the precision of

operations in Sample Test. Although not guaranteed by DiagSplit, the bounding box

of nearly all micropolygons reaching the rasterizer spans fewer than eight pixels in

width or height. By representing vertex positions using 12-bit fixed-point values, the

cost (in terms of both energy and area per operation) of performing point-in-polygon

tests is reduced by nearly a factor of two. (4.8 fixed-point format is used to provide

eight bits of subpixel precision as required by the Direct3D architecture.) This design

requires a separate, low-performance data path for rare cases where micropolygons

do not meet this assumption.

Third, Brunhaver et al. depart from the mprast algorithm described in this

chapter and explore the use of small multi-sample stamps (hardware blocks for pro-

cessing multiple multi-sample points in parallel are indicated by the dotted boxes

in Figure 4.5). During 4×-multi-sampled rendering, their results indicate the most

efficient designs employ a stamp size of one multi-sample. However when render-

ing uses 16× multi-sampling, Brunhaver et al.’s results show that the low cost of a

reduced-precision Sample Test unit makes a 2×2-multi-sample stamp a more efficient

hardware solution.

Overall, Brunhaver et al. estimate that a hardware rasterizer formed by aggre-

gating many of the units shown in Figure 4.5 (leveraging wide micropolygon-parallel

execution to increase throughput) could process billions of micropolygon per second

and consume only a small fraction of the area and power budget of a current GPU.

4.6 Discussion

This chapter advocates micropolygon-parallel execution to achieve high rasterizer

throughput. By eschewing the large multi-sample stamps used by current GPU ras-

terizers, mprast can reduce the number of multi-sample tests needed to rasterize

a scene substantially—up to 23 times in our experiments. The nearly uniform size
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of micropolygons and the relaxation of GPU pipeline ordering semantics for microp-

olygons generated from the same surface patch facilitates efficient implementation of

micropolygon-parallel rasterization.

Although mprast, as presented here, leverages only parallelism across micropoly-

gons to achieve performance scaling, micropolygon-parallel and multi-sample-parallel

execution are not mutually exclusive. Implementations striving for additional through-

put or better performance on small, but not necessarily sub-pixel, polygons may

choose to parallelize widely across polygons and then exploit small multi-sample

stamps for further scaling. In Section 4.5 I described how this strategy was used

by Brunhaver et al. [2010] to increase rasterizer efficiency. It is also adopted by

NVIDIA’s GF100 architecture [NVI 2010b], which anticipates smaller polygons pro-

duced by GPU tessellation by increasing rasterizer throughput by a factor of four over

previous NVIDIA architectures. GF100 does so not by increasing raster stamp size,

but by providing four rasterizers (each using large, eight-pixel stamps) that work on

different polygons in parallel.

Motivated by the relatively low cost of rasterization for large-triangle workloads,

Seiler et al. [2008] have recently questioned the merits of dedicated GPU hardware

support for rasterization. However, despite increases in efficiency, mprast still en-

tails extremely high cost. Its implementation, as shown by Brunhaver et al. [2010],

benefits greatly from fixed-function acceleration. In light of these results, although

micropolygons motivate reoptimization of GPU rasterizer designs, it seems likely that

future designs will continue to utilize efficient, fixed-function processing.



Chapter 5

Rasterization With Motion and

Defocus Blur

The mprast algorithm from the previous chapter computes a micropolygon’s screen

coverage at a single instant in time. It generates images, like an ideal pinhole camera,

where all scene objects are perfectly focused. However, real cameras do not always

produce perfectly sharp pictures. Scene objects move over the duration of a frame’s

exposure, causing blur in the final image (motion blur, Figure 5.1-left). Objects

positioned far from the camera’s focal plane are also blurred in photographs, due to

defocus (defocus blur, Figure 5.1-right).

Simulating motion blur and defocus blur accurately is a key feature of high-quality

offline rendering systems. Camera focus (or a lack thereof) is manipulated by artists

to achieve visual style and guide viewer attention to critical parts of a scene [Arijon

1991]. Motion blur is important for producing realistic-looking animations, especially

when scene objects undergo rapid motion. When rendered without motion blur,

object movement appears choppy (the result of temporal aliasing). Motion-blurred

animation appears realistic and smooth.

This chapter considers the problem of augmenting a micropolygon rasterizer to

simulate motion blur and defocus blur. GPU rasterization must already undergo

change to improve micropolygon rendering performance (the topic of Chapter 4). The

additional rasterizer changes explored here improve rendering quality. To generate

76
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Motion Blur Defocus Blur

Figure 5.1: Images rendered with motion blur (left) and defocus blur (right).

motion blur and defocus blur effects, this work follows previous approaches [Cook

et al. 1984; Cook 1986; Cook et al. 1987; Akenine-Möller et al. 2007; Egan et al.

2009] and integrates micropolygon coverage over time (for motion blur) and camera

lens aperture (for defocus) using stochastic point sampling. Specifically, it analyzes

the cost and algorithmic efficiency of two algorithms for stochastic rasterization. The

first is a data-parallel implementation of a previously published method by Pixar.

The second algorithm leverages interleaved sampling to decouple rasterization cost

from the amount of scene motion or defocus. At the cost of some loss in image quality,

this algorithm outperforms the Pixar approach when rendering objects undergoing

moderate defocus or high motion. It has the added benefit of predictable performance

and is attractive for real-time use.

As in Chapter 4, the analysis provided here (initially presented in [Fatahalian et al.

2009]) focuses specifically on the problem of sampling micropolygon-screen coverage.

Motion and defocus blur also require change to how shading is performed in the GPU

pipeline. The problem of shading blurred micropolygons is discussed in Chapter 6.
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Figure 5.2: Left and center: A polygon moving through (XY,T) space with linear
motion. On screen, its motion is in the positive X direction. Right: A simplified
illustration showing only one spatial dimension (X,T plane). Sample points are strat-
ified in space and time. Only points lying inside the shaded region result in hits.

5.1 5D Rasterization

A camera’s sensor (or film) measures the amount of light entering the camera over the

duration of an exposure. The analog of this process when rasterizing micropolygons

with motion blur is to integrate micropolygon-screen coverage over the same period

of time.

Figure 5.2 shows a blue micropolygon that moves two pixels horizontally during

a frame. Its position at the start (t=0) and the end (t=1) of the frame’s exposure is

shown on the 3×3 pixel grid at left. As the micropolygon moves, its 2D projection

sweeps out a volume in a three-dimensional space of screen coordinates and time.

This (XY,T)-space volume is illustrated in the center of the figure. For clarity, a

simplified view of (XY,T) space displaying only the X spatial dimension is shown

at right. In this projected (X,T) view, the volume corresponding to the moving

micropolygon is now an area, and is shaded blue. This view spans three pixels in

the X direction and shows the location of four multi-sample points per pixel. Unlike

tradition rasterization, multi-sample points are now distributed in both space and

time.
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Estimating the integral of micropolygon-screen coverage from t=0 to t=1 involves

finding all multi-sample points in the 3D (XY,T) space that lie within the volume

swept out by the moving micropolygon. In the (X,T)-space diagram at right, multi-

sample points within the shaded area are covered by the micropolygon (they are

colored red). That is, at the time associated with the multi-sample point, the mi-

cropolygon covers the 2D screen position of the multi-sample point. In this case, since

the micropolygon covers exactly one multi-sample point in each of the pixels, in the

final rendered image, each pixel will be a quarter blue.

Figure 5.2 illustrates only motion-blurred rasterization, but a similar process is

used to simulate defocus (readers unfamiliar with the process of image formation

by a lens are referred to Kolb et al. [1995]). For defocus, multi-sample points are

distributed in a 4D (XY,UV) space of screen coordinates and lens aperture positions.

A micropolygon covers a multi-sample point in (XY,UV) space if its screen projection,

as seen from the point UV on the lens aperture, covers the 2D position of the multi-

sample point.

In general, rasterizing a defocused and motion-blurred micropolygon involves find-

ing all multi-sample points in a 5D (XY,UV,T) space that fall within the volume

representing the blurred micropolygon. 5D rasterization presents challenges for high-

performance implementation. First, point-in-polygon tests in higher dimensions are

expensive. Second, and more importantly, it is difficult to localize a moving, defocused

polygon in 5D, so generating a tight set of candidate multi-sample points (maintain-

ing high sample-test efficiency) is challenging. To understand why this is the case,

again consider the moving micropolygon in Figure 5.2. If the micropolygon was mov-

ing faster, the shaded region in the (X,T)-space diagram would be more slanted, but

the area of the region would remain the same. The number of multi-sample points

covered by an object is proportional its area, so the expected number of samples

covered by a moving micropolygon is the same as that when the micropolygon is sta-

tionary (assuming micropolygon size does not change greatly during motion). Thus,

for motion blurred rasterization to achieve STE (sample-test efficiency: see original

definition in Section 4.1 and the example in Figure 4.2) similar to the stationary case,

it must perform approximately the same number of point-in-micropolygon tests.
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Figure 5.3: Testing all multi-sample points within the spatial bounding box of a
moving polygon results in low STE. Point-in-polygon tests are performed against all
multi-sample points in the orange region. Only three of these multi-sample points
(shown in red) are covered by the micropolygon.

Recall from Chapter 4, that obtaining high STE when rasterizing micropolygons

without blur requires tight spatial bounds. A simple way to extend the mprast

algorithm to the (XY,T) domain is to spatially bound a micropolygon for an entire

interval of time, and test all multi-sample points within this bound. Figure 5.3 high-

lights the multi-sample points tested by this scheme in orange. Because a rapidly

moving micropolygon crosses a large region of space during the shutter interval, this

approach can result in a significant increase in total point-in-polygon tests. In many

cases, the micropolygon is far from a tested multi-sample point at the time associated

with the sample. The problem is acute for micropolygons as even small object motion

is significant in relation to micropolygon area. It is common for sub-pixel-area mi-

cropolygons to move tens of pixels between frames. Inflation of bounds due to defocus

is even worse; a modest defocus radius spreads a micropolygon’s spatial bound over

hundreds of pixels.

In 2D, an axis-aligned bounding box provides tight bounds because micropoly-

gons are compact on screen. However, blurred micropolygons form volumes shaped

like long slivers in higher dimensional space. Extending the technique described

above to use oriented bounding boxes [Akenine-Möller et al. 2007] or bounding poly-

gons [Wexler et al. 2005; McGuire et al. 2010] yields tighter spatial bounds under

conditions of non-screen-axis-aligned motion, but these tricks provide little benefit



CHAPTER 5. RASTERIZATION WITH MOTION AND DEFOCUS BLUR 81

x=9

t=1

t=0
x=0 B

B0

B1

B2

B3

x=9

t=1

t=0
x=0 A

B0

B1

B2

B3

B

Figure 5.4: interval uniformly partitions time into intervals, then bounds the XY
extent of the micropolygon in each interval. For each of the four intervals shown above,
multi-sample points lying within the time interval and within the micropolygon’s
spatial extent are tested against the micropolygon. Spatial bounds for each interval,
Bi, are tight when a polygon is moving slowly (A) but loosen as the amount of motion
increases (B). interval is most efficient for slow moving micropolygons.

for defocus blur and still fail to account for what part of a bounding region a microp-

olygon occupies at various moments during an exposure (or when viewed through

a specific part of the lens). The two algorithms described in the remainder of this

chapter increase the STE of 5D rasterization by bounding a micropolygon’s position

over compact intervals of time and aperture.

5.2 Interval Algorithm

A 5D rasterization approach by Pixar [Cook et al. 1990] leverages stratified sampling

to quickly compute a tighter candidate sample set for blurred micropolygons. For

simplicity, it is described here under conditions of only motion blur (the 3D (XY,T)

case) and then generalized to full 5D rasterization.
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Pixar’s approach generates a unique set of S stratified time values for each re-

gion of space (the published embodiment generates S stratified samples per pixel).

Stratification partitions the time domain into S intervals. For each micropolygon,

the algorithm iterates over all intervals, computing the spatial bounding box of the

micropolygon for a given interval of time. Given this bound for each interval, it

tests only the multi-sample points that fall within the interval’s spatial extent. There

is exactly one such multi-sample point per pixel due to the stratified nature of the

samples. Because this algorithm iterates over intervals of time (intervals of time and

lens aperture in the 5D case), it will be referred to as interval. Pseudocode for

interval is given below:

for each MP:

for each STRATUM: // S iterations

BBOX = compute axis-aligned pixel bbox for MP given STRATUM

for each pixel P in BBOX:

test MP against sample from STRATUM in P

The behavior of interval in the (X,T) plane is illustrated in Figure 5.4. Pixel

boundaries are indicated by vertical black lines. (X,T) strata boundaries appear

as dotted gray lines. Multi-sample points in the orange shaded region are tested

against the micropolygon. interval’s STE depends on the spatial bound, Bi, of

the micropolygon over the time range associated with each stratum. Therefore, STE

depends on object velocity. When the micropolygon is moving slowly (Figure 5.4-A),

interval yields high STE because the polygon can be tightly localized in space (the

Bi’s are small). For a stationary object, interval behaves similarly to mprast,

except spatial bounding boxes are clamped to pixel, rather than sub-pixel boundaries.

STE decreases as object motion becomes large (Figure 5.4-B). For example, an object

streaking across the screen can decrease the STE of interval sharply. Notice that

the STE of interval not only depends on the magnitude of motion, but also on its

direction (horizontal or vertical motion produce tighter bounds than diagonal motion).

Although not implemented in Cook et al. [1990], bounding the micropolygon using
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an oriented box decreases this directional dependence.

interval extends gracefully to full 5D (XY,UV,T) rasterization by pairing UV

and T strata. When constructing the 5D position of multi-sample points, interval

always pairs values from the same UV stratum with values from the same T stratum.

The association of ranges in T and UV can be constructed in any manner (our imple-

mentation uses a random pairing), but must be the same for all samples in the image

(it is XY invariant). Because of this property, the range of sample UV and T values

for the current stratum is immediately computable given a stratum index. interval

uses these bounds on sample UV and T values to bound the micropolygon spatially.

It places no other constraints on the properties of UV and T values used or on the

XY location of multi-sample points.

5.3 Interleave Algorithm

5.3.1 Algorithm

The interval algorithm exhibits two performance characteristics that are not de-

sirable in a real-time system. First, its efficiency decreases under conditions of high

motion and defocus blur, especially at real-time multi-sampling rates where only a few

multi-sample points per pixel and, correspondingly, a few intervals are used. Second,

real-time systems benefit from a predictable frame rate, so it is desirable to decrease

the sensitivity of rasterization performance to object velocity or defocus blur (object

velocity, in particular, is difficult for a game designer to constrain).

5D rasterization using interleaved sampling [Keller and Heidrich 2001; Mitchell

1991] in the UV and T dimensions avoids both of these problems. The key idea of this

approach is that every image multi-sample point is assigned one of N unique UVT

tuples uvti = (ui, vi, ti). Consider an image as a grid of tiles where each tile contains

N multi-sample points and covers a Kx by Ky region of the screen. Within a tile, each

multi-sample point is assigned a unique tuple uvti. Thus, each of the N tuples is used

exactly once per tile and all multi-sample points located at ti in 5D space are also

located at ui and vi. This property of the interleaved sampling pattern is exploited
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by the following algorithm for 5D rasterization (referred to as interleave):

for each MP:

for each unique UVT tuple (ui,vi,ti): // N iterations

MP_POSITION = compute MP position at ui,vi,ti

BBOX = compute tile-grid bbox from MP_POSITION

for each TILE in BBOX:

test MP against sample with tuple (ui,vi,ti)

The behavior of interleave in the simplified (X,T) case is illustrated in Fig-

ure 5.5. Notice that all multi-sample points in the image are assigned one of only

eight unique times (N=8). This assignment is repeated every two pixels in space

(Kx=2). The tile boundaries are illustrated by bold vertical black lines in the figure.

For each unique time, interleave computes the exact position of the micropoly-

gon at the time (this is not a bound over an interval of time) and determines mi-

cropolygon overlap with screen tiles. Our implementation uses the micropolygon’s

axis-aligned bounding box to quickly compute tile overlap. The micropolygon is then

tested against the one multi-sample point within each overlapped tile that is asso-

ciated with the current time. Recall that by construction, there is only one such

multi-sample point per tile.

The STE of interleave is independent of the amount of motion or defocus blur

of rasterized geometry. Any micropolygon, regardless of whether it undergoes slow

or fast motion, is tested against at least N multi-sample points (interleave’s loop

over UVT tuples involves N iterations). In practice, a micropolygon will be tested

against more than N multi-sample points due to overlap of multiple tiles for each

tuple. On average, this overlap depends only on the size of the micropolygon and

tiles.

The parameter N serves as a performance-quality knob for interleave. Large N

yields potentially higher sampling quality (more unique time and lens values are used)

at the expense of increased rasterization cost. Note that the spatial extent (Kx×Ky)
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Figure 5.5: interleave performs a separate rasterization step for each unique multi-
sample time value (indicated by horizontal dotted lines). The micropolygon’s position
is determined exactly at these times, so STE is independent of object velocity. Ap-
proximately the same number of tests are performed against the slow (A) and fast (B)
moving micropolygons. Bold vertical lines indicate tile boundaries for the interleaved
sample pattern (two-pixel tiles).

of tiles is fixed once a cost budget of N tuples and a desired multi-sampling rate is

selected. Said differently, for a given multi-sampling rate, the STE of interleave is

directly proportional to the size of the interleaving tile.

It is helpful to consider the relationship between interval’s per-strata polygon

spatial bounds (Bi in Figure 5.4) and interleave’s tile size (Kx in Figure 5.5).

Intuitively, the STE of interval and interleave can be compared by comparing

the average Bi to Kx. For example, interleave is more efficient when the tile size

is small in comparison to the amount of micropolygon translation over an interval of

time. In practice, comparing Bi to Kx provides only a coarse estimate of STE (and

overall cost) because a polygon may overlap multiple tiles. A detailed comparison of

the STE achieved by both algorithms is provided in Section 5.5.
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5.3.2 Permuting Sample Positions

Intuitively, interleave rasterizes a stationary micropolygon a total of N times, each

time to a multi-sample buffer containing 1/N of the samples in the full multi-sample

frame buffer. This approach is similar to Haeberli et al.’s [1990] procedure for render-

ing motion and defocus blur using the accumulation buffer. In fact, Haeberli et al.’s

method is an implementation of interleaved sampling with a tile size of one pixel (the

number of rendering passes is given by N). Both Keller et al. and Haeberli et al. arrive

at the use of interleaved sampling techniques in rasterization as extensions of uniform

sampling. Keller et al. emphasize the performance benefits of sampling on regular

grids then suggests interleaving regular sampling grids to reduce aliasing. Similarly,

Haeberli et al. introduce the accumulation buffer as a mechanism for integrating many

uniformly sampled images. In contrast, interleave leverages interleaved sampling

to bound blurred micropolygons tightly on screen, not to exploit a uniform 2D sam-

pling structure. Unlike these previous uses of interleaved sampling, interleave does

not position multi-sample points with the same UVT position on a uniform spatial

grid. It is important to distribute these multi-sample points non-uniformly in the

frame buffer to reduce aliasing.

Figure 5.6-left shows an interleaved sampling pattern constructed by repeating a

2×2 pixel tile across an image (Kx=2, Ky=2, N=16). All samples colored red share

the same UVT value. These samples form a regular grid on screen. This regularity

yields sampling artifacts even when N is made large enough to eliminate strobing in

blurred images. The middle column of Figure 5.7 (a defocused ruler) and Figure 5.8

(a motion-blurred resolution chart) show a zoomed view of artifacts resulting from

repeating 1×1-, 2×2-, 4×4-, and 8×8-pixel tiles across a 16×-multi-sampled image.

The size of the interleaving tile is particularly noticeable in the renderings of the

defocused ruler. Even though interleaved patterns with large tile sizes (lower rows)

employ more unique UVT values to sample coverage, artifacts from these sampling

patterns are arguably the most objectionable.

Without increasing the multi-sampling rate or N , image quality can be improved

by varying the XY position of a UVT tuple in each tile. interleave permutes the

mapping of UVT values to tile-relative XY positions on a per-tile basis (each tile is



CHAPTER 5. RASTERIZATION WITH MOTION AND DEFOCUS BLUR 87

Interleaved, uniform uvt pattern
2x2 pixel tile, N=16

Interleaved, permuted uvt pattern
2x2 pixel tile, N=16

Figure 5.6: Left: Interleaved sampling pattern constructed by repeating a 2x2 pixel
tile of UVT values across an image. Multi-sample points with the same UVT value
form a uniform grid (red dots). Right: The tile-relative XY position of multi-sample
points with the same UVT value is permuted on a per-tile basis, resulting in non-
uniform spacing across the image.

associated with one of 64 precomputed permutations). The permutations preserve

stratification of UVT values within each pixel. There remains exactly one sample per

image tile located at UV Ti, but these samples no longer form a regular grid across

the image. An example of an interleaved sampling pattern (Kx=2, Ky=2, N=16)

resulting from these permutations is shown at right in Figure 5.6.

The zoomed images in the right column of Figures 5.7 and 5.8 show the effect of

interleaved sampling with permutations. Although the same tile size and same UVT

values are used to render images in each row of the figures, the aliasing artifacts visible

in images in the center column are replaced by less objectionable high-frequency noise

in their counterparts at right.

Mitchell [1990] notes the connection between interleaved sampling to break up

banding caused by aliasing and the use of dithering to randomize quantization error.

In terms of this analogy, permutations improve the quality of dithering that occurs

when using interleaved sampling by assigning each pixel a different set of S of the

N total UVT values (there are N choose S such sets). When permutations are not

used, each pixel is assigned only one of only Kx ×Ky unique sets of UVT samples.
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N=16
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Figure 5.7: Repeating a tile of UV values over the image results in sampling artifacts
(center column). The artifacts, which have an appearance similar to the results
of poor image dithering, become more objectionable with increasing tile size—they
are most noticeable in the center-bottom image, which uses an interleaved sampling
pattern containing 1024 unique lens samples. Permuting the position of UV values
in each screen tile improves image quality (right column). For each value of N , the
same lens positions are used to render both images.
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Figure 5.8: Repeating a tile of T values over the image results in sampling artifacts
(center column) that become more noticeable with increasing tile size. As was the
case in Figure 5.7, images at the bottom of the center column exhibit the most
objectionable artifacts. Permuting the position of T values in each screen tile improves
image quality (right column). For each value of N , the same time values are used to
render both images. In this example, object motion is up and to the right.
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The implementation of interleave used to render the images in Figures 5.7 and 5.8

permutes only the pixel offset of a UVT tuple within a tile. Each UV Ti is always

paired with the same subpixel XY strata. This simplification assigns far fewer unique

sets of UVT values to pixels, but it produces satisfactory results, simplifies rasterizer

implementation, and permits compact representation of precomputed permutations.

Pseudocode that defines the assignment of UVT tuples to XY screen positions is given

in Appendix A.

5.4 Data-Parallel Implementation

The implementations of interval and interleave evaluated in this chapter use the

same library of fixed-width data-parallel operations used to implement and evaluate

mprast in Chapter 4. Figure 5.9 lists pseudocode for both data-parallel implemen-

tations along with operation counts for the case of full 5D sampling. Details of how

these implementations perform a 5D point-in-micropolygon test are provided in Ap-

pendix B.

Both interval and interleave test micropolygons against a large set of can-

didate multi-sample points. As a result, and in contrast to mprast, testing many

multi-sample points against a single blurred micropolygon in parallel is a viable strat-

egy for achieving high-throughput execution. Conveniently, interval’s loop over

intervals and interleave’s loop over UVT tuples (highlighted in blue in Figure 5.9)

do not involve dynamic loop bounds. The number of intervals or UVT tuples is a

property of the sampling scheme, so the number of iterations through these loops is

known prior to rendering and is micropolygon invariant. Implementations of the two

algorithms are parallelized across iterations of these loops. In a data-parallel imple-

mentation it is important to select multi-sampling rates so loop bounds (S or N) are

multiples of the data-parallel operation width.

Because the number of unique UVT tuples used by interleave is large (N ≥ 64

in the subsequent evaluation), interleave can make use of many execution units

while processing only a single micropolygon at a time. However, there are fewer in-

terval sampling intervals than interleave UVT tuples (S < N). When interval
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for each MP:                      // (optionally parallel)

INTERVAL (5D)

Setup

Bound

Test

Process
Hit

Back-face cull                    // 17 ops 

for each interval:                // S iters (parallel)            
   Compute MP bbox over interval  // 70 ops

   for each pixel in bbox:

      If sample covered
         Generate fragment

     

      Compute sample XYUVT        // 33 ops
      Position MP given UVT       // 36 ops
      Test MP-sample coverage     // 24 ops

for each MP:                      

INTERLEAVE (5D)

Setup

Bound

Test

Process
Hit

Back-face cull                    // 17 ops 

for each UVT tuple:               // N iters (parallel)            
   Position MP given UVT          // 36 ops

   for each tile in bbox:

      If sample covered
         Generate fragment

     

      Compute sample XY           // 23 ops
      Test MP-sample coverage     // 24 ops

   Compute MP tile bbox           // 27 ops

Figure 5.9: interval and interleave rasterization algorithms formatted to show
similarities in structure. Parallelization occurs over iterations of loops highlighted in
blue. Additional parallelization across micropolygons in interval occurs when there
are fewer intervals than data-parallel execution units. Operation counts correspond
to the case of full 5D sampling.
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utilizes fewer sampling intervals than rasterizer execution units, it processes a small

number of micropolygons simultaneously. For example, interval processes four mi-

cropolygons at once when executing with 16 intervals (S=16) on a platform with 64

data-parallel execution units.

In the data-parallel implementations of both algorithms, utilization of Test phase

operations depends on the variance of the dynamic loop bounds. For example, in-

terval’s Test phase will run at full utilization only if a micropolygon’s bounding

boxes for all intervals contain the same number of multi-sample points. Rasterizer

utilization decreases with increasing Test loop bound variance because units done with

testing work wait idle until the interval (or tuple) requiring the most point-in-polygon

tests completes.

5.5 Evaluation

Using the data-parallel implementations of interval and interleave from Sec-

tion 5.4, we measured the cost and efficiency of motion and defocus-blurred raster-

ization. In addition to comparing the performance of interval and interleave

against each other, we also measured their extra cost relative to the mprast algo-

rithm from Chapter 4.

This section follows the same methodology as the previous chapter’s evaluation

of mprast (the reader is expected to be familiar with Section 4.4). We produced

data-parallel versions of the interval and interleave algorithms using 8, 16, 32,

and 64-wide operations. Implementations execute the pseudocode from Figure 5.9

in lockstep and include no logic to dynamically correct load imbalance to improve

execution-unit utilization. We used these implementations to rasterize micropolygons

generated by DiagSplit tessellation of the four animated scenes shown in Figure 5.10

(DiagSplit tessellations target 0.5-pixel-area micropolygons). All animations contain

motion blur and are rendered at 1728× 1080. Talking also incorporates a defocus

effect to draw viewer attention to the character facing the camera. Rasterization

of Talking requires full 5D sampling. All other scenes only require only (XY,T)

sampling.
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BallRoll

ColumnPivot

SoccerJump

Talking

Figure 5.10: Animation sequences used in algorithm evaluation from left to right:
BallRoll, ColumnPivot, SoccerJump, and Talking. All scenes feature mo-
tion blurred geometry. Talking also features camera defocus and requires full 5D
(XY,UV,T) rasterization.
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Estimating time and lens integrals via stochastic sampling requires high sampling

rates to eliminate noise. Although the high multi-sampling rates used in offline ren-

dering for film (often more than 64 samples per pixel) will remain out of reach for

real-time systems for some time, we found that in many cases 16× multi-sampling is

sufficient to reduce noise to visually acceptable amounts. (This assessment is based

on personal opinion when inspecting image output, not a scientific study.) Our expe-

riences also indicate only a small number of UVT tuples is necessary for interleave

to generate acceptable image quality. In general, and especially under conditions

of only motion blur, we were satisfied with interleave’s output using 16× multi-

sampling, and 64 unique UVT tuples (N=64, 2×2 pixel tile size), although image

quality would not be satisfactory without the interleaving tile permutations described

in Section 5.3.2. Noise due to sparse sampling does appear in rendered frames, but

it is difficult to perceive under animation. Aliasing and noise in defocused images is

more objectionable because the scene is unchanging and a viewer can interrogate im-

age details more closely. Ideally, higher pixel sampling rates should be used for large

defocus. In this section, references to interleave imply N=64 unless otherwise

stated.

5.5.1 The Extra Cost of Blur

Switching rasterizer implementations from mprast to interval or interleave has

inherent cost, even when all scene geometry is stationary and in sharp focus. We

temporarily disabled object movement and defocus blur in the Talking scene, mak-

ing the visual output of all algorithms the same. Under these conditions, we found

that the STE of interval (10%) is twice as high as that of interleave (5%), but

less than half that of mprast (26%). Simply enabling support for motion and defo-

cus blur in the rasterizer decreases STE by 2.6×. interval’s STE is approximately

equal to that of rasterization without blur using a 4×4 multi-sample stamp. A 4×4

multi-sample stamp spans one pixel of a 16×-multi-sampled frame buffer, therefore

it clamps micropolygon bounds to a similar screen granularity as interval.

The overall cost of rasterizing a micropolygon using interval is 4.6× greater
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than mprast. This difference is nearly two times greater than the relative difference

in STE because sample tests in the full 5D (XY,UV,T) sampling case cost more.

Configuring interval to disregard defocus computations and use only 3D (XY,T)

sampling narrows the performance gap with mprast to 3×. interleave performs

6.7× (5D sampling) and 5.8× (3D sampling) more processing than mprast.

5.5.2 Animated Scene Costs

As stated in Section 5.2, as scene motion or defocus increases, the relative performance

of interleave improves with respect to that of interval. Figure 5.11, plots the

average cost of rasterizing a micropolygon using each algorithm, for all frames of the

four animations. In these sequences, the rasterizers simulate blur from a 1/48 of a

second exposure (a common exposure setting for film cameras). Operation counts

refer to 32-wide data-parallel operations.

As expected, interval’s performance fluctuates more widely over the sequences

than interleave’s. Even within a short sequence such as SoccerJump (1.5 sec),

the performance of interval varies as much as 4×. The performance of interleave

is not constant, but varies much less dramatically. We found that interleave’s STE

is nearly uniform over the sequences, and attribute its performance variation to two

causes. First, interleave’s utilization of parallel execution units is greater at low

amounts of blur (this effect is discussed further in the next section). Second, under

conditions of fast motion, the pipeline back-face culls fewer micropolygons prior to

sampling (polygons that begin the shutter interval back facing but flip as a result of

motion cannot be culled) resulting in increased average per-micropolygon cost.

The animations show that object motion must be very fast (quickly moving hands

in conversation, a camera jerk, an athletic jump) to equate algorithm performance.

Although interval may introduce variation in rasterization costs, these costs are

often lower than those of interleave. However, when defocus is present, inter-

leave outperforms interval. The difference in cost can be extreme. For example,

interleave performs seven times fewer operations per micropolygon than interval

when rendering Talking.
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Animated Scene Rasterization Costs

0.5-pixel-area micropolygons
16x multi-sampling
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Figure 5.11: interval exhibits significant variation in rasterization cost (measured in
data-parallel operations). In the SoccerJump animation sequence, interval’s per-
micropolygon rasterization cost varies by nearly 4× over just 45 frames of animation.
interleave’s cost is nearly invariant of the amount of scene motion or defocus.
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5.5.3 Controlled Study

To gain further insight into the amount of blur required to equate interval and in-

terleave performance, we constructed a scene containing randomly positioned and

randomly oriented triangle micropolygons of exactly 0.5 pixels in area. We measured

the STE and per-micropolygon operation-count of both algorithms as the magnitude

of micropolygon motion (Figure 5.12-top) or defocus blur (Figure 5.12-bottom) is

steadily increased.

The results in Figure 5.12 are consistent with those from the animation scenes.

The y-intercept of the STE curves is similar to the 5% and 10% STE measured

when rendering animation scenes without scene movement and in sharp focus. In

this controlled setup, between 21 and 40 pixels of motion blur are required to equate

interval’s STE with that of interleave. This corresponds to fast object motion

(an object motion crossing 40 pixels in 1/48 of a second will cross a 1728×1080 screen

in 0.9 seconds).

interleave obtains the same STE as interval when a micropolygon’s defocus

blur radius is only two pixels. At high screen resolutions, modest camera defocus

yields a blur radius significantly larger than this amount. Under these conditions,

the cost of interval increases greatly. With only ten pixels of defocus blur, inter-

leave can utilize 256 unique lens samples and still provide greater performance. This

explains the extreme difference in algorithm cost in Talking.

Figure 5.12’s STE and operation-count curves differ in two notable ways. First,

the interval-interleave crossover points shift upward when operation-count is

considered (between 38 and 60 pixels of motion blur is necessary to equate algorithm

cost). This is primarily due to higher utilization of data-parallel execution by inter-

val. Second, notice that for smaller amounts of blur, interleave’s STE curves are

flat, but its operation-count curves are not. This effect is also due to execution-unit

utilization. When a micropolygon is not blurred, it has the same tile bounds for all

UVT tuples; iteration in Test exhibits perfect utilization. As the polygon is blurred,

variance in tile bounds increases, dropping utilization. Utilization stabilizes once

blur becomes large with respect to the interleave tile size. This effect is partially

responsible for the dips in the interleave curves in Figure 5.11.
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Figure 5.12: interval’s STE (and performance) drops as motion blur (top) and
defocus blur (bottom) increase. At high motion, but only small defocus, inter-
val’s performance drops below that of interleave. interleave’s parameter N
determines where the performance crossover point lies.
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Data Parallel Execution Units
8 16 32 64

interval
Setup .01 (.12) .02 (.06) .02 (.06 .02 (.06)
Bound .06 (1.0) .05 (1.0) .05 (1.0) .05 (.99)
Test .93 (.92) .93 (.89) .94 (.86) .94 (.83)

Overall Util .92 .88 .86 .83
interleave N=64

Setup .01 (.12) .02 (.06) .04 (.03) .07 (.02)
Bound .23 (1.0) .23 (1.0) .21 (1.0) .20 (1.0)
Test .76 (.67) .76 (.63) .75 (.61) .73 (.60)

Overall Util .74 .70 .68 .64
interleave N=256

Setup .01 (.12) .01 (.06) .01 (.03) .02 (.02)
Bound .31 (1.0) .30 (1.0) .27 (1.0) .25 (1.0)
Test .69 (.67) .70 (.63) .72 (.55) .73 (.51)

Overall Util .77 .74 .67 .62

Table 5.1: Fraction of total execution time and data-parallel unit utilization (in paren-
theses) of each stage of interval and interleave (N=64 andN=256 configurations
shown).

5.5.4 Utilization

Table 5.1 provides detailed execution statistics for each phase of interval and in-

terleave. Statistics are averaged over a collection of frames from the four animation

scenes.

Both interval and interleave realize lower STE than mprast and correspond-

ingly spend an even higher fraction of time performing sample tests (positioning the

micropolygon is hoisted out of the inner loop of interleave, so much of the time

spent in Bound can be considered “testing” work). interval’s Test phase constitutes

over 93% of execution time and maintains over 83% utilization when scaling to 64

execution units. Dividing UVT-space into equal intervals yields similarly sized spatial

bounds for each interval, resulting in low variance in the number of iterations through

the inner Test loop. Recall that scaling interval to many execution units requires
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several micropolygons to be processed at once. Micropolygons reaching the rasterizer

in succession typically originate from the same region of a tessellated surface. They

undergo similar motion and have similarly-sized interval bounds.

interleave achieves lower utilization in these critical regions because there is

higher variance in micropolygon-tile overlap than in the size of interval’s bounding

boxes. Still, interleave remains amenable to wide data-parallel scale out. Although

interleave does not fully utilize eight execution units (67%), its utilization drops

only to 60% when scaling to 64 execution units. interleave spends a larger fraction

of time in Bound, which always runs at full utilization. As a result, further opti-

mization to increase utilization of Test, such as dynamically repacking sample testing

work into batches, will yield a performance benefit of at most 41%.

Although Table 5.1 only displays execution statistics for rasterizing 0.5-pixel-area

micropolygons at 16× multi-sampling, analysis of interval’s and interleave’s

execution under the load of different micropolygon sizes and different multi-sampling

rates exhibits very similar data-parallel behavior.

5.6 Discussion

This chapter analyzed the sampling cost of simulating motion and defocus blur in

a rasterizer. Depending on scene characteristics, the cost of rasterization with blur

exceeds that of rasterization without blur between three and seven times. Although

blurred rasterization does entail more expensive point-in-micropolygon tests, the key

to reducing sampling costs is limiting the number of sample tests performed. inter-

val and interleave take different approaches toward this goal. While the STE

of interval depends heavily on scene characteristics, interleave leverages inter-

leaved sampling to provide blur-independent performance. As a result, interval’s

performance varies from more than two times greater than interleave (in cases of

minimal blur) to up to seven times less (under moderate defocus). The predictable

performance of interleave is attractive for real-time rendering, however in the

(XY,T) sampling case, object motion must be large before interleave’s cost drops

below that of interval.
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Even though interval and interleave strive to bound micropolygons tightly,

in terms of STE, both algorithms are inefficient. At 16× multi-sampling, only one in

twenty tests performed by interleave identifies a covered multi-sample point; the

situation is even worse for interval under high blur. Although the compute-intensive

nature of 5D rasterization does lend itself well to fixed-function acceleration [Brun-

haver et al. 2010], further work should attempt to improve these ratios. For example,

extending the interval algorithm to operate on hierarchies of micropolygons, rather

than individual micropolygons, was considered during this work, but never pursued.

Optimal design of interleaved sampling patterns remains an interesting problem.

At low multi-sampling rates and small N , interleaving uniform grids of samples does

not produce satisfactory image quality. interleave became a viable algorithm only

when coupled with a sampling pattern that distributed UVT values non-uniformly

on screen. The method of generating these patterns described in this chapter is

admittedly ad hoc. A more principled approach to designing interleaved sample pat-

terns (and corresponding image reconstruction filters) will likely achieve even better

interleave image quality.

Last, in contrast to the 5D sampling approach pursued here, there are many tech-

niques for approximating motion and defocus blur effects cheaply by post-processing

rendered output. Sung et al. [2002] and Demers [2004] provide surveys of motion blur

and defocus blur techniques respectively. Listings of more recent techniques appear

in [Akenine-Möller et al. 2007; Lee et al. 2010; Ritchie et al. 2010]. These approaches

work well in some regions of a frame but often produce artifacts such as color bleeding

across depth or object discontinuities. Even so, many current games use image post-

processing to produce blur effects and force artists to carefully create content or limit

camera configurations to obtain good results. While there will always be a use for

fast approximations in real-time applications, the robustness and accuracy of directly

integrating micropolygon-screen coverage over time and lens aperture should moti-

vate its inclusion in future GPU rasterizers. Since motion is pervasive in games, and

motion-blurred (XY,T) rasterization requires less computational cost than defocus, it

is likely that GPU rasterizers will adopt 3D (XY,T) rasterization before supporting

full 5D sampling.



Chapter 6

Quad-Fragment Merging

Previous chapters have presented solutions that increase the efficiency of generating

and rasterizing micropolygons in the GPU pipeline. However, it is shading that

often constitutes the most expensive part of a rendering workload. Unfortunately,

the GPU pipeline performs many redundant shading computations when processing

surfaces tessellated into micropolygons. This extra shading can significantly decrease

rendering performance. This chapter describes a GPU pipeline extension, called quad-

fragment merging [Fatahalian et al. 2010], that overcomes this problem. Without

requiring action from the application developer, quad-fragment merging identifies

and eliminates many redundant shading computations from the GPU pipeline. On

average, this optimization reduces the number of shaded fragments by more than a

factor of eight while preserving high image quality.

This chapter begins with an extended description and evaluation of the quad-

fragment merging technique. It closes with a brief discussion of quad-fragment merg-

ing’s merits in comparison to two popular shading techniques that also avoid re-

dundant shading when processing micropolygons: deferred shading and Reyes-style

shading at each micropolygon vertex.

102
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6.1 GPU Shading

Shading a surface has high computational cost. It involves computing the illumi-

nation incident on the surface due to a scene’s many light sources and it requires

simulating how the surface scatters light towards the virtual camera. Current Frag-

ment Processing shader programs execute hundreds of instructions to perform these

computations. Shader program instruction counts will undoubtedly increase in future

games as the light and material models used by artists grow in sophistication (recall

that a large percentage of a GPU’s processing resources already are responsible for ex-

ecuting shading computations). Given the high cost of shading, current GPUs employ

three important strategies to limit the number of shading computations performed

when generating images.

• Occlusion culling prior to shading. GPUs discard surface regions from

the rendering pipeline prior to shading if they are occluded by other surfaces.

These surface regions are not visible from the camera and do not impact the

final image.

• Independent visibility and shading sampling densities. Although GPU

rasterizers sample triangle-screen coverage many times per pixel, GPUs shade

each triangle uniformly in screen-space at a density of one shading sample per

pixel. This technique is calledmulti-sample anti-aliasing (MSAA) [Akeley 1993].

It is acceptable to sample shading more sparsely than coverage because high-

frequency texture data is pre-filtered prior to sampling to avoid aliasing.

• Derivatives via finite differencing. To determine filter extents for textur-

ing, GPUs estimate surface texture-coordinate derivatives by taking differences

between texture coordinates for shading samples in neighboring pixels. Sharing

data between neighbors avoids re-computation of nearby shading results when

finite-difference derivatives are needed during shading.

The process of rasterizing and shading a triangle in a GPU pipeline is illustrated

in Figure 6.1 (the figure expands on Figure 4.1’s depiction of multi-sampled rasteriza-

tion). In this example, the rasterizer samples triangle coverage at four multi-sample
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1. multi-sample points 2. multi-sample coverage 3. shading sample points

4. shading results 5. multi-sample bu!er
(four color values per pixel)

6. "nal image pixels

Figure 6.1: Rendering a triangle to a 4×4-pixel screen region using 4× multi-sample
anti-aliasing: The triangle’s screen coverage is sampled four times per pixel (panels
1–2). Shading is sampled once per pixel, but at the granularity of 2×2 pixel blocks (3–
4). The results of coverage and shading computations are stored in the multi-sample
buffer (5) and subsequently filtered to produce final image pixels (6).

points per pixel (4× MSAA). Panel 1 of this figure shows a 4×4-pixel region of the

screen and, as in previous chapters, it represents multi-sample points as black dots.

Panel 2 highlights the multi-sample points covered by the triangle in red.

If any multi-sample point in a pixel is covered by the triangle, the pipeline will ex-

ecute a shading computation for that pixel. Inputs to the shading computation, such

as texture coordinates, are sampled by interpolating values stored at triangle vertices.

Typically the pixel center is used as the interpolation/sampling point [Kessenich 2009;

Mic 2010b]. Panel 3 shows these shading sample points as white dots. If the pixel

center lies outside the triangle, the shading inputs are extrapolated from values at

vertices. Alternatively, GPUs permit shading inputs to be sampled at the covered

multi-sample point which is closest to the pixel center (centroid sampling [Kessenich

2009; Mic 2010b]). Centroid sampling avoids errors due to extrapolation of shading

inputs, but results in a non-uniform screen-space sampling of shading near triangle

edges.
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Fragments emitted by rasterization encapsulate information needed to compute a

triangle’s contribution to the rendered image at a pixel. This information consists of

shading inputs, along with triangle coverage and depth information for each of the

pixel’s multi-sample points. (For convenience, a fragment is said to “cover” a multi-

sample point if the triangle it was created from did.) To support derivative estimates

using finite differencing, rasterization generates fragments in 2×2-pixel blocks [Akeley

1993; Kessenich 2009; Mic 2010b]. Blocks of four fragments, called quad fragments,

are the minimal granularity of shading work in the GPU pipeline. Panel 3 highlights

in gray the three quad fragments generated by rasterizing the triangle. Notice that

if the triangle covers any multi-sample point in a 2×2-pixel region, a quad fragment

is generated at these pixels and shading is computed at all four corresponding pixel

centers. The results of shading each fragment are given by the pixel colors in panel 4.

After a fragment is shaded, its color is blended with multi-sample buffer values for

all covered multi-sample points (panel 5). Finally, after all rendering for a frame is

complete, the multi-sample buffer’s contents are used to reconstruct final pixel values

(panel 6).

Ironically, quad-fragment shading and multi-sample anti-aliasing (two techniques

intended to limit the amount of shading-related work performed by the GPU pipeline)

cause GPUs to generate multiple quad-fragments at screen regions where two surface

triangles meet. This behavior is illustrated in Figure 6.2, which visualizes the number

of quad fragments shaded at each 2×2-pixel region of the screen. When triangles

are large (e.g., 50-pixel-area triangles, top row), most 2×2-pixel regions are covered

entirely by a single triangle, so the overhead of shading extra fragments near triangle

edges is low. However, as average triangle size is reduced, the amount of shading

performed by the pipeline grows rapidly. When the BigGuy character is tessellated

into one-pixel-area triangles (bottom row), it is shaded more than eight times at each

covered pixel. Most of this shading is redundant. Tessellating BigGuy into subpixel

micropolygons can cause the GPU pipeline to sample shading more frequently than

coverage (the opposite effect of what MSAA intends to achieve). In the worst case, if

each micropolygon covers only one multi-sample point, the GPU will sample shading

at four times the multi-sample rate.
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Figure 6.2: Visualization of the number of quad fragments shaded per pixel. The
amount of shading performed by the GPU pipeline increases as scene triangle size
shrinks. When this scene is tessellated into one-pixel area triangles, more than eight
shading computations occur at each covered pixel (zoomed view at left).
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Figure 6.3: A quad-fragment merging pipeline: tessellation produces grids of triangles
with adjacency. Triangles are rasterized to produce quad fragments. A new stage,
Merge, buffers rasterized quad fragments from nearby surface triangles and combines
them into a smaller number of quad fragments prior to shading.

6.2 Quad-Fragment Merging

To limit shading costs, it is desirable to shade entire surfaces, not just individual

micropolygons, at a density of about one sample per pixel. Quad-fragment merging

achieves this sampling density by merging rasterized quad fragments from microp-

olygons belonging to the same surface into a smaller number of quad fragments prior

to shading. An overview of the quad-fragment merging technique and its integration

into the GPU pipeline is provided in Figure 6.3.

In a micropolygon rendering pipeline, input to the rasterizer is not a stream of

arbitrary triangles. Micropolygons are generated by the pipeline during tessellation

(Chapter 3) so the connectivity of triangles in each micropolygon grid is known.

In Figure 6.3, this connectivity information is propagated through the pipeline. It

is included with the triangles emitted by tessellation and passed along with quad

fragments produced by rasterization. A new pipeline stage, called Merge, buffers

rasterized quad fragments from a grid. This stage identifies quad fragments (with

sparse multi-sample coverage) at the same screen location and from adjacent grid

triangles and merges them to reduce the total amount of pipeline shading work. The
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output of the Merge stage is a stream of quad fragments (with dense multi-sample

coverage). Like rasterized quad fragments in a current GPU pipeline, merged quad

fragments are shaded independently using data-parallel processing by the pipeline’s

Fragment Processing stage.

6.2.1 Merge-Buffer Structures

The primary component of Merge stage is a fixed-size buffer that stores quad frag-

ments for merging (the merge buffer). To facilitate description of the Merge stage’s

behavior in the ensuing sections, Figure 6.4 provides C-style definitions of a quad-

fragment record (quad fragment) and a merge-buffer entry (buffer entry). Quad-

fragment records contain surface coverage and depth information at each multi-sample

point within a 2×2-pixel region, as well as surface attributes sampled at each of the

four pixel centers (or, if centroid sampling, a multi-sample point in the pixel) that

are used as inputs for shading (shade input data). The content of shading inputs

is defined by the signature of fragment shaders bound to the pipeline at runtime

and includes all interpolated attributes (e.g., texture coordinates, position, normal).

The source triangle’s sidedness (facing) and its coverage of each fragment’s shading

sample point (shade coverage) are also stored in the quad-fragment record.

Each merge-buffer entry contains a quad-fragment record as well as two bitmasks.

The source triangle mask (tri mask) enumerates the triangles that have contributed

to the entry’s quad fragment. Bit i in the mask is set if the entry’s quad fragment was

generated by rasterizing grid triangle i, or if quad fragments from triangle i have been

merged into the entry. Bits in the adjacent triangle mask (adj mask) are set for all

triangles that share an edge with source triangles. In the implementation described

here, these masks are sized to support grids of up to 512 triangles (512-bit masks).

They could be sized differently to permit merging quad fragments from larger or

smaller groups of triangles.

After receiving a quad fragment from the rasterizer, the merging stage first de-

termines if it can be merged with an existing entry in the merge buffer. This logic
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quad_fragment {

  int           x, y;

  bool          facing;

  

  BITMASK       coverage;                // 4*MULTISAMPLES bits

  float         z[4][MULTISAMPLES];

  

  BITMASK       shade_coverage;          // 4 bits

  SHADER_INPUT  shade_input_data[4];

};

buffer_entry {

  quad_fragment frag;

  BITMASK       tri_mask;                // 512 bits

  BITMASK       adj_mask;                // 512 bits

};

bool can_merge(e1, e2) {

  return 

      e1.frag.x == e2.frag.x &&

      e1.frag.y == e2.frag.y &&

      e1.frag.facing == e2.frag.facing &&

     (e1.tri_mask & e2.adj_mask) &&

     (e1.frag.coverage & e2.frag.coverage) == 0;     

}

// merge quad-fragment in entry e2 into e1

void merge(e1, e2) {

  e1.tri_mask |= e2.tri_mask;

  e1.adj_mask |= e2.adj_mask;

  e1.frag.coverage |= e2.frag.coverage;

  copy_z(e1.frag, e2.frag);

  select_shading_inputs(e1.frag, e2.frag);

}

Figure 6.4: Each merge-buffer entry (buffer entry) contains a quad fragment and
bitmasks enumerating the quad fragment’s source triangles and the triangles that are
adjacent to source triangles. Determining whether two buffer entries can be merged
(can merge) involves only a few bitwise operations.
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is given by the can merge function in Figure 6.4 and is described in detail in Sec-

tion 6.2.3. If can merge returns true, the new quad fragment is merged with the

current contents of the entry. Otherwise, the quad fragment is placed in an available

buffer entry. If no entries are available, an occupied buffer entry is chosen for eviction

(our implementation evicts the oldest entry) and its quad fragment is emitted by the

Merge stage for shading.

The next two sections describe the two principal operations of quad-fragment

merging: constructing a merged quad fragment from mergeable inputs and determin-

ing when two quad fragments can be merged.

6.2.2 Performing Merges

Figure 6.5 shows two adjacent grid triangles that lie within the same 2×2-pixel region.

Rasterizing the triangles using 4×MSAA produces two quad fragments. Multi-sample

coverage for each quad fragment is depicted as a gray mask (cells shaded gray in the

mask correspond to covered multi-sample points). Notice that since the triangles are

small, their multi-sample coverage in the 2×2-pixel region is sparse. Shading inputs

for each fragment are represented by the large circles in the figure (four circles per

quad fragment). The circles are colored according to the triangle they were sampled

from. This visual representation of a quad fragment is used throughout the rest of

this chapter.

The function merge in Figure 6.4 describes the process of merging quad fragments

contained in merge-buffer entries e1 and e2. Precisely, the pseudocode merges the

total contents of the entries, not just their contained quad fragments. The reader

should consider a quad fragment arriving at the Merge stage to be represented by

an entry record with a single bit set in its tri mask and up to three bits set in its

adj mask.

The first step in merging two merge-buffer entries is to combine their coverage and

topology bitmasks as well as their depth information. Bitwise operations for com-

bining coverage and topology are given in the pseudocode for merge. Merging depth

values (copy z) is a data selection controlled by the two quad fragments’ coverage
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Figure 6.5: Merging two quad fragments involves combining multi-sample coverage
and depth information and selecting shading inputs for all four fragments. The ex-
ample above illustrated all three cases for selecting shading inputs for a merged quad
fragment. Case 1: the top-left and bottom-right fragments receive shading inputs
from the quad fragments that cover the pixel center. Case 2: the bottom-left frag-
ment is assigned shading inputs from quad fragment 1, because triangle 1 covers the
closest covered multi-sample point to the pixel center. Case 3: the top-right frag-
ment is not covered. It receives inputs from quad fragment 1 because its horizontal
neighbor (the top-left fragment) is covered by quad fragment 1.

masks. Merging multi-sample coverage and depth information is simple because quad

fragments with overlapping multi-sample coverage are never merged (conditions for

merging are given in Section 6.2.3).

Last, the Merge stage must associate shading inputs with fragments in the merged

result (select shading inputs). For each fragment in the merged quad fragment,

shading inputs are selected from one of the two input quad fragments according to

the following rules.

1. If the pixel center is covered by one of the input quad fragments (the top-left

and bottom-right fragments in Figure 6.5), shading inputs are selected from

the quad fragment that covers the pixel center. In the unlikely case that both

quad fragments overlap the pixel center but have non-overlapping multi-sample

coverage masks, the fragment is assigned shading inputs from the quad fragment

that arrived first at the Merge stage.

2. If the pixel center is not covered, but a multi-sample point within the pixel is
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(Figure 6.5: bottom-left fragment), shading inputs are selected from the quad

fragment featuring the closest (relative to the pixel center) covered multi-sample

point.

3. If neither the pixel center nor any multi-sample point within a pixel is covered

(Figure 6.5: top-right fragment), shading inputs are selected from the same input

quad fragment as a neighboring fragment that does feature a covered multi-

sample point. Our implementation assigns priority to the fragment’s horizontal,

vertical, and then diagonal neighbor. In the figure, since the top-left fragment

is assigned inputs from quad fragment 1, the top-right fragment is also assigned

shading inputs from quad fragment 1.

The first selection rule seeks to achieve a uniform, screen-space sampling of sur-

face shading. The second attempts to minimize artifacts when shading inputs are

extrapolated outside of triangle boundaries. The third aims to minimize errors in

derivative estimates when an entire pixel in a quad fragment is not covered by the

surface.

Unlike the quad fragments generated by rasterization, the merged quad fragment,

shown at right in Figure 6.5, represents surface coverage and shading inputs drawn

from two triangles. This quad fragment is emitted by the Merge stage for subsequent

shading. In general, when many triangles from a surface fall within the same 2×2-

pixel region, successive merges produce a quad fragment that represents the surface’s

total multi-sample coverage at these pixels (potentially from many triangles) and

contains four uniformly spaced surface shading samples from up to four unique surface

triangles. Since only one set of shading inputs is used per fragment, a pipeline with

quad-fragment merging will not necessarily sample shading inputs from all triangles

in a mesh.

6.2.3 Conditions for Merging

Ideally, to minimize shading costs, the Merge stage will merge all quad fragments

at the same screen location into a single quad fragment for shading. However, to
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Micropolygon grid Current GPU rendering
(silhouette is anti-aliased)

One-shade-per-pixel rendering
(silhouette exhibits aliasing)

Figure 6.6: A fold in a surface causes blue and gray triangles to project into the
same 2×2-pixel region. Center: the current GPU pipeline shades one quad fragment
for each triangle overlapping these pixels, then blends the results to produce an anti-
aliased silhouette. Right: shading only one quad fragment for the entire surface results
in aliasing along the silhouette since the results of a single shading computation are
applied to all covered multi-sample points in a pixel.

preserve high rendering quality, the Merge stage must avoid merges that introduce

visual artifacts.

Figure 6.6, which shows a micropolygon grid resulting from tessellation of a highly

curved surface, provides one example of how merging could introduce rendering ar-

tifacts. The surface contains a fold so blue and gray triangles that are far apart on

the surface project into the highlighted 2×2 pixel region. Because quad fragments

from both blue and gray triangles contribute coverage to these pixels, rendering this

grid using the current GPU pipeline with MSAA will produce light-blue pixels along

this silhouette edge (center image). However, if only a single merged quad fragment

is shaded for all triangles covering these pixels (right image), final pixel values will

either be blue or white (the results of a single shading computation are applied to all

multi-sample buffer values in each pixel). As a result, the rendered image exhibits

aliasing along the silhouette edge. In addition to aliasing, shading results may be

erroneous because differences between shading quantities in adjacent pixels are not

representative of the derivatives of these quantities along the surface. Quad-fragment

shading is based on the assumption that each quad fragment corresponds to a locally
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contiguous region of the surface. In this example, since there is a discontinuity be-

tween visible parts of the surface along the silhouette, this assumption does not hold

so it is inadequate to shade only a single quad fragment at the highlighted 2×2-pixel

region.

To prevent artifacts due to merges across surface discontinuities such as the sil-

houette in Figure 6.6 the merge stage will merge quad fragments only if they meet

the following four conditions:

1. They have the same screen pixel location.

2. They have the same sidedness (either front or back-facing).

3. They have source triangles that are adjacent in the mesh.

4. They do not cover the same multi-sample point (they do not occlude each other).

For a pair of merge-buffer entries, these four conditions can be checked using

simple bitwise operations (see function can merge, Figure 6.4). Preventing merges

between quad fragments with overlapping multi-sample coverage (rule four) obviates

the need to resolve occlusions in the Merge stage and simplifies coverage, depth, and

topology merging operations (Section 6.2.2). Rule four also ensures that depth and

stencil buffer contents are unaffected by the addition of quad-fragment merging to the

GPU pipeline (assuming the Fragment Processing shader program does not modify

a fragment’s depth values). Stencil-buffer algorithms and rendering of transparent

surfaces are also unaffected by the presence of quad-fragment merging.

Figure 6.7 illustrates the Merge stage’s behavior for a sequence of three triangles.

Rasterizing these triangles produces three quad fragments that are labeled according

to their order of arrival at the Merge stage. At the start of the sequence, the merge

buffer is empty. When the quad fragment from triangle 1 arrives at the Merge stage,

it is inserted into the empty merge buffer. Next, the quad fragment from triangle 2

is merged with the quad fragment in the buffer because triangle 2 is in the entry’s

adjacent-triangle mask (triangle 2 shares an edge with triangle 1). Finally, the quad

fragment from triangle 3 is merged with the buffered quad fragment (triangle 3 shares
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Figure 6.7: Behavior of the Merge stage on a stream of three quad fragments from
adjacent grid triangles. The first arriving quad fragment (from triangle 1) is inserted
into the merge buffer. The quad fragment from triangle 2 is merged with the buffered
quad fragment from triangle 1 (these triangles share an edge). The quad fragment
from triangle 3 is also merged with the buffered quad fragment because triangles 2
and 3 share an edge.
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Figure 6.8: Merging does not occur across the grid’s silhouette edge because triangles
in the red region of the surface (1,2,7,8) do not share an edge with triangles colored
in yellow (5,6,11,12). Brown-colored triangles (3,4,9,10) are back-facing so their quad
fragments cannot be merged with those of the red or yellow groups.

an edge with triangle 2). In this example, shading only the merged quad fragment,

rather than each rasterized quad fragment, reduces shading work by three times.

Together, the conditions above prevent merging across many types of discontinu-

ities, such as silhouettes or folds. In Figure 6.8, quad fragments from the front-facing,

red portion of the grid originate from triangles that do not share an edge with tri-

angles in the yellow region. The quad fragments from these two groups of triangles

are not merged (rule three). Nor are these two quad fragments, which originate from

front-facing triangles, merged with the quad fragment from the grid’s back-facing

triangles (rule two). Three quad fragments are shaded for this 2×2-pixel region. For

the top-right pixel, the pipeline’s multi-sample buffer will contain red and yellow

shading results from triangles 8 and 12. Filtering the multi-sample buffer’s contents

after rendering is complete produces an anti-aliased edge. Additionally, by shading

the three quad fragments separately, shader derivatives are representative of actual

screen-space derivatives for each group of triangles.
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view direction

one quad fragment shaded for surface

Figure 6.9: Four examples of surfaces with high curvature (only one screen dimension
is shown, so the surfaces appear as lines). Quad-fragment merging will produce one
fragment for all triangles from surfaces 1-3 because the triangles are connected, non-
occluding, front-facing, and fall within the same 2×2-pixel region. Sampling shading
only once per pixel for these surfaces may result in aliasing.

In many cases, application of the four merging rules produces a single quad frag-

ment for each grid that overlaps a 2×2-pixel region of the screen. This was the case

in Figure 6.7 and is true for the first three surfaces shown in Figure 6.9. (The illus-

tration shows only one screen spatial dimension, so surfaces are represented by lines;

each surface spans two pixels.) The fourth surface in Figure 6.9 folds over on itself.

Like the surface in Figure 6.8, it results in multiple shaded quad fragments.

Surfaces 1 through 3 have high curvature, therefore shading once per pixel will

undersample the surface and may cause aliasing. In contrast to current GPUs, which

perform a significant amount of extra shading in this case, quad-fragment merging

limits shading costs and requires geometry to be properly authored for the one-shade-

per-pixel requirement to avoid aliasing. Pre-filtering high-frequency geometry (surface

1) or aligning base patch boundaries at large surface discontinuities (surface 3) are

possible ways to limit aliasing.
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6.2.4 Optimizations

Three key optimizations to the quad-fragment merging implementation described in

the previous sections are required for the Merge stage to successfully identify a large

fraction of possible merges but operate using only a small amount of buffering.

1. Generate quad fragments that do not contribute coverage: In Figure 6.10-

left, three adjacent, front-facing triangles fall within the same 2×2-pixel region. How-

ever, the logic described in Section 6.2.3 will not merge the two rasterized quad frag-

ments from these triangles. Triangle 2 does not cover a multi-sample point, so its

rasterization generates no quad fragments. As a result, quad fragments from triangles

1 and 3 are not merged because these triangles do not share an edge. This problem is

particularly acute at low multi-sample rates, since it is more likely for small triangles

to not cover any multi-sample points.

This problem is overcome by modifying the rasterizer to generate quad fragments

with empty coverage masks whenever a triangle overlaps a 2×2-pixel region, but does

not cover a multi-sample point. In practice, determining if any triangle vertex lies

within the pixel is an inexpensive and sufficient overlap check. In Figure 6.10-left, the

Merge stage merges the empty quad fragment from triangle 2 with the quad fragment

from triangle 1 (this merge only updates the topology masks for the entry). Later,

the Merge stage merges the quad fragment from triangle 3 with this result. Quad

fragments with empty coverage masks are never emitted by the Merge stage so they

do not introduce extra shading. Averaged over test scenes presented in Section 6.3,

the empty quad-fragment optimization increases the number of merges performed by

the Merge stage 1.2 (16× MSAA) to 1.8 (4× MSAA) times.

2. Attempt to merge evicted quad fragments: Figure 6.10-right presents an-

other example where it is desirable to merge all rasterized quad fragments from a grid,

but merging behavior described in Section 6.2.3 does not. In this example, the order

triangles arrive at the Merge stage (triangle number indicates arrival order) results in

missed merges. Triangle 5 does not share an edge with triangles 1 through 4, so upon

arrival at the Merge stage, its rasterized quad fragment is not merged with existing

buffer entries (the quad fragment from triangle 6 has not yet been produced).
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Figure 6.10: Left: The pipeline rasterizer emits a quad fragment with an empty
coverage mask when a triangle overlaps a 2×2-pixel region but does not cover a
multi-sample point (triangle 2). The “empty” quad fragment causes the Merge stage
to update its adjacent triangle masks, leading to an eventual merge of quad fragments
from triangles 1 and 3. Right: The quad fragment from triangle 5 cannot merge with
the quad fragment from 1,2,3, and 4 until after the arrival of the quad fragment from
triangle 6. Attempting merges prior to evicting quad fragments from the merge buffer
increases Merge stage robustness to sub-optimal triangle ordering.

To avoid missing merges due to triangle ordering, when a quad fragment is chosen

for eviction from the merge buffer, the Merge stage attempts to merge the eviction

candidate with existing merge-buffer entries. If the quad fragment cannot be merged,

it is evicted and submitted for shading. In the case of Figure 6.10-right, after process-

ing all eight triangles, the merge buffer will contain separate entries for the merged

quad fragment from triangles 1 through 4 and that of triangles 5 through 8. At-

tempting a final merge prior to evicting either of these quad fragments will combine

them into a single quad fragment. The effect of the merge-on-evict optimization is

substantial. On average it increases the number of merges by 1.8 (16× MSAA) to 2.5

(4× MSAA) times.

3. Immediately evict fully covered quad fragments: When a merge operation

yields a fully covered quad fragment (all multi-sample points in the resulting quad

fragment are covered), no further merges are possible with this buffer entry. Fully

covered quad fragments are immediately evicted from the merge buffer.
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6.3 Evaluation

This section evaluates the performance and image quality of quad-fragment merg-

ing using two software rendering pipelines. The first pipeline, nomerge, mimics

the behavior of a current GPU by shading quad fragments from each triangle inde-

pendently. The second, merge, also shades quad fragments, but implements quad-

fragment merging as described in Section 6.2. In both pipelines DiagSplit tessellation

produces grids containing at most 512 triangles (recall the merge buffer entry’s topol-

ogy bitmasks are 512 bits). Both pipelines also occlusion cull quad fragments prior

to shading.

The two pipelines were used to render the eight scenes shown in Figure 6.11.

Plane is a basic test of merging behavior. SineWave’s camera position is chosen to

create many grazing triangles and serves as a quality test for merge. BumpyFrog

(which features high-frequency displacement) and BigGuy are standalone characters.

Zinkia and Army provide full scenes. PointCloud and Furball exhibit fine-

scale geometry and complex occlusion. The occlusion properties of these scenes will

be important when comparing quad-fragment merging to Reyes-style vertex shading

in Section 6.4.2. All scenes were rendered at 1728×1080 resolution.

6.3.1 Performance

Shaded Quad Fragment Counts

The red line in Figure 6.12 plots the average number of fragments shaded by nomerge

at each screen pixel when rendering BigGuy using 16× multi-sampling (pixels not

covered by geometry do not factor into this average). When BigGuy is tessellated

into 0.5-pixel-area triangle micropolygons, nomerge shades covered pixels nearly 14

times. Recall, only one shaded fragment per pixel is the desired sampling rate. A

notable amount of extra shading occurs even when triangles are large enough to cover

a few pixels. Ten-pixel-area triangles still result in nearly four shaded fragments per

pixel.
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Figure 6.11: Test scenes featuring high-frequency geometry (SineWave,
BumpyFrog), complex occlusion (PointCloud, Furball), grazing triangles
(SineWave), characters (BigGuy, Army), and environments (Zinkia).



CHAPTER 6. QUAD-FRAGMENT MERGING 122

Triangle area in pixels (avg)

nomerge
merge

bigguy: shaded fragments per covered pixel

Fr
ag

m
en

ts 
pe

r p
ix

el 
(a

vg
)

0 1084

2
4

6
8

10

12
14

2 6

Figure 6.12: When BigGuy is tessellated into 0.5-pixel-area triangles, nomerge
generates nearly 14 fragments per covered screen pixel. The merge pipeline shades
only 1.8 fragments per pixel. Even when triangles are ten pixels in area, merge
provides approximately a 2× reduction in shading work.

The merge pipeline (orange line) reduces the number of shaded fragments sub-

stantially. In many cases, all quad fragments at the same screen location are merged,

so the amount of shading is independent of the size of scene triangles. Although

quad-fragment merging was designed to enable efficient shading for micropolygons, it

provides a significant reduction in shading work even when rendering small (but not

necessarily sub-pixel) triangles.

On average, merge shades covered pixels approximately 1.8 times. This number

falls short of the ideal one-fragment-per-pixel rate for three reasons: merging does

not occur across grid boundaries, early occlusion culling in the pipeline is not perfect

(regions of objects are shaded but ultimately occluded), and multiple fragments must

be shaded in pixels containing object silhouettes. The images in Figure 6.13, which

visualize the number of fragments shaded at each pixel, show that merge indeed

shades many image pixels exactly once (DiagSplit is configured to target 0.5-pixel-

area micropolygons in these renderings; actual average triangle area varies from 0.37

to 0.50 pixels across the scenes). In these images dark blue pixels are shaded once,

bright green pixels four times, and dark red pixels at least eight. A majority of pixels
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Figure 6.13: Shaded fragments per pixel produced by merge (images are colored
according to the number of fragments shaded per pixel). Most scenes exhibit large
regions of dark blue, indicating one shaded fragment per pixel.
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Figure 6.14: Quad-fragment merging requires only a small amount of buffering to
capture a high percentage of possible merges. A 32-quad-fragment buffer captures
91% of the merges captured by a buffer of unbounded size.

in these images are dark blue. Pixels near grid boundaries are shaded more than

once because merging does not occur across grids. Extra shading at grid boundaries

creates the grid-like structure apparent in the visualizations. Shading also increases

near object silhouettes because the screen-projection of grids becomes long and skinny

(the area-to-perimeter ratio of these grids is small).

Comparison with Nomerge

Figure 6.14 plots the benefit of quad-fragment merging as the size of the merge buffer

is changed. Higher values on this graph indicate greater reduction in shading work

(in comparison to nomerge). On average, a 32-quad-fragment merge buffer reduces

the number of shaded fragments 8.1 times (16× multi-sampling). A merge buffer of

this size captures 91% of the merges found by an “ideal” buffer of unbounded size.

The benefits of merging decrease when multi-sampling is low. This result is not due

to any change in the behavior of merge: the number of quad fragments generated by

nomerge decreases at low multi-sampling because triangles are less likely to cover

multi-sample points (nomerge is less inefficient).
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Reduction in Shading Work by Quad-Fragment Merging
16x msaa, 32-quad-fragment merge bu$er

Plane
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BigGuy
Army
Zinkia
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nomerge shaded quad fragments
(relative to merge)
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Figure 6.15: On average, merge performs 8.1 times less shading work than
nomerge(average indicated by vertical dotted line). Scenes where the benefit of
merge is less, such as BumpyFrog and Furball provide fewer opportunities for
the pipeline to perform valid merges.

A 32-quad-fragment merge buffer constitutes only a small increase in the cur-

rent storage requirements for a modern GPU shader core. High-end GPU processing

cores [NVI 2009] simultaneously shade more than 256 quad fragments and must al-

ready store shading inputs and shader intermediate values for these quad fragments.

For the remainder of this evaluation, merge is configured to use a 32-quad-fragment

merge buffer and render images using 16× multi-sampling.

Figure 6.15 illustrates the benefit of merge on a scene-by-scene basis. The average

reduction in shading across all scenes (8.1×) is shown as a vertical dotted line. The

benefit of merge is the least for BumpyFrog and Furball because these scenes

exhibit characteristics that limit opportunities for merging. BumpyFrog’s high-

frequency surface displacement creates many folds and silhouettes. As described in

Section 6.2.3, extra shading is required for these features. All of Furball’s grids

are long and skinny (they represent hairs). Their poor area-to-perimeter ratio yields

fewer merging opportunities.
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merge-nomerge Di'erence Image
(pixel magnitudes scaled 10x)

bigguy

bumpyfrog

Figure 6.16: Difference images comparing merge and nomerge output (right col-
umn). For clarity, pixel intensities have been magnified ten times. Image output
when rendering BigGuy is nearly identical. merge’s sampling of BumpyFrog’s
detailed surface does result in many pixels with numerically different values, but these
differences are difficult to notice when visually comparing rendered output. The most
notable differences between merge and nomerge output occur in areas where the
surface is not flat in a 2×2-pixel region, such as along surface silhouettes.
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6.3.2 Visual Quality

We have visually inspected the quality of many rendered animations and observed

that merge commonly generates high-quality output that is comparable to that of

nomerge. For example, the zoomed difference image in Figure 6.16-top indicates

that many pixels in the two pipeline’s renderings of BigGuy are exactly the same

(pixel intensities in the difference image have been magnified ten times). Although

the quality of images produced by merge is high, the two pipelines do produce dif-

ferent images. As expected, we have observed increased aliasing when high-frequency

bumpy surfaces are undersampled by merge (both in a single frame, see Figure 6.16-

bottom, as well as temporal aliasing across frames). In addition to undersampling,

two additional sources of artifacts in images created by merge require mention.

Attribute Extrapolation Errors

Quad-fragment merging can exacerbate artifacts caused by extrapolating triangle

attributes to a shading sample points outside the triangle. Figure 6.17 highlights the

contents of the multi-sample frame buffer (top row) for one pixel of a rendering of

BumpyFrog. In this example, BumpyFrog is rendered using a phong shader with

a blue ambient term and a white specular highlight. The pixel boundary is shown

as a white square. The bottom row of the figure shows a portion of the final image

surrounding this pixel. No triangle covers the pixel center, but the multi-sample point

closest to the pixel center is covered by a nearly edge-on triangle. For this triangle,

shading at the pixel center produces an inaccurate, bright white result. In nomerge,

only one covered multi-sample is assigned this color, resulting in a subpixel error

in the final image (bottom-left). By contrast, merge uses the erroneous shading

result for all covered multi-samples in the pixel, producing a noticeable bright spot

in the final image (bottom-center). If extrapolation errors impact quad-fragment

derivatives, artifacts may spread to neighboring pixels as well. Centroid sampling

avoids these extrapolation errors, removing this artifact from both the multi-sample

results (top-right) and the final image (bottom-right).

Although centroid sampling is not commonly used in GPUs today, it is a useful
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Multi-Sample Frame-Bu!er Contents (16x msaa)

Final Pixels

Pixel with artifact

merge merge (with centroid)nomerge

One pixel

Figure 6.17: Sampling shading outside a grazing triangle can produce artifacts in
both nomerge (left column) and merge (center column). Shading artifacts from
the grazing triangle are more noticeable in merge because they are applied to all
multi-sample points in the pixel, not just the points covered by the triangle. Centroid
sampling avoids attribute extrapolation and is used to correct these artifacts in the
merge pipeline (right column).
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technique for the merge pipeline. To obtain accurate derivative estimates when

using centroid sampling, it is important to modify finite-difference calculations in

Fragment Processing to account for the actual positions of shading sample points.

It is more expensive to accurately compute derivatives when shading sample points

are not distributed uniformly on screen, so current GPU implementations assume

shading sample points are located at pixel centers when estimating derivatives [Mic

2010a], regardless of whether centroid sampling is enabled. This implementation

choice results in inaccurate derivative estimates when centroid sampling is used on

current GPUs.

Alternative mechanisms for mitigating artifacts caused by extrapolating shading

inputs from grazing triangles were considered during this work, but not explored.

For example, it may be possible to minimize extrapolation errors by modifying quad-

fragment merging’s shading input selection rules to draw shading inputs from the

triangle covering the most multi-sample points in a pixel (although this scheme risks

increasing temporal flicker). Future work should also explore augmenting the merging

conditions to prevent merges with grazing triangles.

Derivative Errors Near Silhouettes

Given the merging conditions discussed in Section 6.2.3, the Merge stage can emit

quad fragments corresponding to surface regions with high curvature (recall surfaces

1-3 in Figure 6.9). In these situations, finite difference computations during Fragment

Processing, which assume the corresponding surface is bilinear within a 2x2-pixel

region, may be inaccurate. Our experience indicates that derivative errors on bumpy

surfaces (e.g., Figure 6.9, surface 1) are largely imperceptible (errors are masked by

the detail in the surface), but it is possible to observe effects of derivative errors

on smooth surfaces that have rapidly varying screen-space derivatives (Figure 6.9,

surface 2). This behavior most commonly exists near silhouettes.

Figure 6.18 visualizes the mip-map level used to sample texture data for pixels near

the BigGuy character’s silhouette (map-map level is used as a proxy for visualizing

surface derivatives). The top images in the figure show the contents of the multi-

sample frame buffer after rendering is complete (16× multi-sampling). The bottom
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Figure 6.18: Visualization of the texture mip-map level accessed when shading Big-
Guy. merge (right column) estimates derivatives less accurately than nomerge
(left column) in 2x2-pixel regions where the surface exhibits high curvature, such as
object silhouettes (this is particularly clear when inspecting the output of the multi-
sample frame buffer (top row). The 2x2-granularity of quad-fragment derivatives is
clearly visible in the images generated by the merge pipeline.
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images show final pixel values after filtering the multi-sample frame buffer. The

results of the merge pipeline clearly show the 2×2-pixel granularity of quad-fragment

derivatives. Shading computations from pixels containing the silhouette access too

low a mip-map level (risking texture aliasing). Pixels adjacent to the pixels containing

the silhouette access too high of a mip-level (risking over-blurring). Errors in the mip-

map level accessed during shading can result in visible differences in rendered output

when high-frequency texture data is used. Notice that unlike the extrapolation error

example in Figure 6.17, which amplified a subpixel artifact into a pixel-sized artifact,

derivative errors in the merge pipeline impact rendered output for an entire 2×2

block of pixels.

Fortunately, we’ve found visual artifacts due to inaccurate derivatives to be rare

and difficult to observe under most rendering conditions. Even so, quad-fragment

merging improvements, such as preventing merges when quad-fragments originate

from triangles with widely varying normals, or, as suggested previously, preventing

merges with sufficiently grazing triangles, should be explored.

6.4 Quad-Fragment Merging Alternatives

Quad-fragment merging is an attractive solution to the problem of redundant shading

when rendering micropolygons. It achieves a shading density of nearly one sample per

pixel and, by building upon the quad-fragment representation, it also supports im-

portant GPU optimizations like efficient derivatives, fine-granularity occlusion culling,

and multi-sample anti-aliasing. However, there are two popular, alternative shading

strategies that also offer the promise of shading micropolygon meshes approximately

once per covered pixel. The first is deferred shading, which is implementable on cur-

rent GPUs and used by many games today. The second is Reyes-style per-vertex

shading. This section briefly contrasts quad-fragment merging with the merits of

these two alternative shading approaches.
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6.4.1 Deferred Shading

Rather than shade fragments immediately after rasterization, “deferred shading”

postpones shading computations until all scene geometry has been rasterized and

all occlusions resolved at the frame buffer [Deering et al. 1988]. The initial geometry

processing phase of deferred shading populates a “deep frame buffer” (often called

a geometry buffer, or G-buffer) that stores attributes sampled from scene geometry

visible to each screen sample point. The contents of the G-buffer are used as inputs

to shading computations performed in subsequent rendering passes.

Deferred shading offers the possibility of shading an entire scene (not just entire tri-

angles or surfaces) exactly once per pixel regardless of geometric detail or scene depth

complexity. However, it has traditionally been avoided by GPU architects as a core

pipeline mechanism because it interacts badly with multi-sample anti-aliasing. To

support anti-aliasing, previous hardware implementations of deferred shading stored

the G-buffer at multi-sample resolution and computed shading once per multi-sample

point, rather than once per pixel [Molnar et al. 1992].

Today, many game engines implement deferred shading as a software layer run-

ning on GPUs, but most do so by disabling multi-sample anti-aliasing and accepting

the resulting loss in image quality. (Akenine-Möller et al. [2008] and Lauritzen [2010]

provide excellent overviews of modern deferred shading implementations in games.)

The addition of multi-sample frame-buffer access in Direct3D 10.1 makes it possi-

ble to augment software deferred shading implementations with a limited form of

multi-sample anti-aliasing, however these approaches must compute and store shad-

ing inputs at all multi-sample points, then analyze G-buffer contents to determine if

one or multiple shading computations are required at each pixel. Heuristics for de-

tecting scene discontinuities or object silhouettes based only on G-buffer contents are

prone to error [Lauritzen 2010]. Similar challenges arise if shading computations re-

quire finite-difference derivatives. Quad-fragment merging overcomes these problems

by propagating mesh connectivity through the pipeline and using this information to

robustly make merging decisions (it does not have to reconstruct surface connectivity

from a point-sampled representation of geometry).

Despite its drawbacks, use of deferred shading is becoming increasingly popular
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in games because it scales well to scenes with large numbers of lights. When the

rendering pipeline shades quad fragments immediately after rasterization (sometimes

referred to as “forward rendering”), illuminating surfaces with many lights has signif-

icant storage cost because shadow maps for all lights must be available and bound to

the pipeline during rendering. Complex lighting also introduces conditional control-

flow in shader programs because most surfaces receive illumination from only a small

subset of scene lights. A common solution to these problems is to partition shading

work into multiple rendering passes (e.g., one for each light source). Unfortunately,

multi-pass rendering is cost prohibitive in a system intended for micropolygon ren-

dering because the overhead of processing scene geometry each pass is large.

In contrast, deferred shading caches the results of geometry processing in the G-

buffer, so multi-pass rendering only incurs the bandwidth overhead of loading G-buffer

data from memory in each rendering pass. However, compared to single-pass forward

rendering, the bandwidth requirements of deferred shading, especially when combined

with multi-sample anti-aliasing techniques described above, are large. Given that

memory bandwidth is a scarce resource on modern compute-rich GPUs, ongoing work

seeks to reduce the bandwidth costs of deferred shading [Andersson 2009].

Moving forward, it will be interesting to see whether the G-buffer storage and

bandwidth costs of deferred shading, or the shadow map storage and conditional

control-flow costs of shading in a forward rendering pipeline with quad-fragment merg-

ing, limit performance scaling on future GPUs. Given the wide variation in lighting

and shading requirements across games, it is likely that developers will continue to

find use for both techniques.

6.4.2 Reyes Shading

The Reyes pipeline samples surface shading once per micropolygon grid vertex, rather

than once per fragment (readers may wish to review the summary of the Reyes pipeline

architecture in Section 2.2). This approach has many advantages. For example:

• Sampling shading at points on the surface, rather than pre-determined screen-

space locations, avoids shading errors caused by sampling outside triangles.
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Further, no heuristics (e.g., merging rules) are needed to determine surface

continuity between two adjacent shading sample points. However, the accuracy

of heuristics used to set tessellation factors become very important in Reyes, as

undertessellation and overtessellation directly impact the quality and amount

of shading.

• Shading density can be adjusted on a per-object basis by modifying tessellation

amounts. Per-vertex shading achieves a shading density of approximately one

sample per pixel when surface tessellations contain about one vertex per pixel.

• The idea of shading prior to rasterization, then interpolating shading results

to determine surface color at covered multi-sample points, elegantly extends to

motion and defocus-blurred rasterization. Implementing 5D rasterization tech-

niques is more challenging in a pipeline that shades quad fragments; it remains

an active research problem and has not been implemented in commercial GPUs.

However, when compared to a pipeline that implements quad-fragment merging,

Reyes-style shading presents a number of unique challenges. Two notable examples

include:

• Reyes requires surfaces to be tessellated into micropolygons for high-quality

shading, even if micropolygons are not necessary to adequately capture sur-

face detail. As a result, adopting Reyes-style shading for real-time rendering

requires an immediate transition to micropolygon-resolution geometry. In con-

trast, quad-fragment merging is a viable shading solution for both micropoly-

gons and larger triangles. Quad-fragment merging permits application devel-

opers to adjust geometric complexity of a scene based on performance-quality

needs while Reyes does not.

• Since Reyes performs shading computations prior to rasterization, it is prone

to shading surface regions that are not visible to the camera (e.g., off-screen or

occluded surfaces).



CHAPTER 6. QUAD-FRAGMENT MERGING 135

Number of shaded vertices by vertex  
(relative to shaded fragments by merge)

Plane
SineWave
BumpyFrog
BigGuy
Army
Zinkia
PointCloud
Furball

0.5

Shaded Point Count Comparison: merge-vertex 
16x msaa, 32-quad-fragment merge bu4er

1.0 1.5 2.0

merge culls grids
merge culls quad fragments 

0.0

Figure 6.19: merge shades approximately as many fragments as Reyes (vertex)
shades vertices. When fine-scale occlusion is present (PointCloud, Furball),
merge shades over two times less than Reyes because it culls individual quad frag-
ments prior to shading.

We have not studied the image-quality implications of sampling surface shading

at mesh vertices rather than uniformly on screen at pixel centers. However, we have

compared the amount of shading performed by a Reyes pipeline with that of a pipeline

implementing quad-fragment merging.

To conduct this study, we modified the nomerge pipeline from Section 6.3 to per-

form all shading computations at each grid vertex prior to rasterization (this pipeline

is hereafter referred to as vertex). Like popular Reyes implementations [Cook et al.

1987; Apodaca and Gritz 2000], vertex shades at a granularity of entire grids. Shad-

ing grid vertices en masse enables data-parallel execution and allows derivatives to

be computed by differencing shading quantities from adjacent vertices (grid topology

is maintained in the pipeline to locate adjacent vertices). Grids also serve as the

granularity of occlusion culling in vertex: either an entire grid is discarded prior to

shading, or all vertices in the grid are shaded. Thus there is tension between the need

to make grid sizes large (to increase the data-parallel efficiency of shading compu-

tations and to reduce redundant shading at grid boundaries) and the desire to keep

grids small for culling (to eliminate unnecessary shading of occluded surfaces).
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Figure 6.20: Comparison of the number of shading computations performed by the
merge and vertex pipelines:

Top: Due to the 2×2-pixel granularity of quad-fragment shading, the overhead of ex-
tra shading at grid boundaries (light-blue and green regions) is greater in the merge
pipeline than in vertex. Unlike merge, vertex only performs redundant shading
in pixels containing grid boundary vertices.

Middle and bottom: merge occlusion culls individual quad fragments prior to shad-
ing, while vertex culls at the granularity of grids. As a result, vertex shades
more surface regions that are not visible to the camera. This is particularly severe in
the Furball example, where complicated occlusions prevent many grids from being
culled (merge shades more than two times less than vertex in this case).
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Figure 6.19 compares the number of fragments shaded by merge with the num-

ber of vertices shaded by vertex when both pipelines are configured to generate

grids containing approximately 0.5-pixel-area triangle micropolygons (recall from Sec-

tion 6.3.1 that actual average micropolygon area varies in the test scenes from 0.37

to 0.50 pixels). In accordance with the requirements of merge, maximum grid size

produced by tessellation is limited to 512 micropolygons. The graph plots the ratio

of the two pipeline’s shaded point counts, so values greater than one indicate that

merge shades fewer fragments than vertex shades vertices. On average, when both

pipelines only occlusion cull entire grids (that is, when per-quad-fragment occlusion

culling is disabled in merge), merge shades 12% more than vertex (orange bars).

Figure 6.20-top explains this difference using shaded-point-count visualizations

for a zoomed view of the Plane scene. The visualization for vertex is produced

by tracking the number of shaded vertices falling within each pixel. Both vertex

and merge perform extra shading at pixels near grid boundaries, which appear light

blue in the images. In vertex, extra shading occurs because adjacent grids both

contain a vertex at these pixels. merge also generates multiple quad fragments near

grid boundaries because quad fragments from different grids are not merged. Since

merge performs extra shading in entire 2×2-pixel regions, instead of only in pixels

containing boundary vertices, extra shading near boundaries is more pronounced.

However, when merge occlusion culls individual quad fragments prior to shading

(a common optimization in modern GPUs) on average it shades 17% less than vertex

(red bars). The benefit of fine-granularity culling is particularly large in scenes such

as Furball and PointCloud that exhibit fine-scale, overlapping geometry. For

example, vertex performs more than two times as many shading computations as

merge when rendering Furball (see Figure 6.20-bottom). Culling shading work

at grid granularity can be inefficient even if fine-scale geometry is not present. The

center-right image in Figure 6.20 shows that vertex shades vertices belonging to

back-facing micropolygons when grids wrap around object silhouette edges.
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6.5 Discussion

This chapter showed that when surfaces are tessellated into micropolygons, the GPU

pipeline performs a substantial amount of redundant shading. Because future high-

quality rendering will require both high-resolution meshes and expensive shaders, this

inefficiency is alarming. Adding quad-fragment merging to the GPU pipeline elimi-

nates most of this redundant shading. Quad-fragment merging reduces the number

of shaded quad fragments by over a factor of eight, preserves high image quality, and

requires only modest extensions to the GPU pipeline’s current shading mechanisms.

The design of quad-fragment merging places heavy emphasis on enabling highly

optimized implementations. Merging operations are cheap (both checking merging

conditions and performing merges require only bitwise operations) and the buffer-

ing requirements of merging are low. These properties should map well to efficient,

fixed-function hardware implementation. The GPU pipeline architecture extensions

proposed here encapsulate quad-fragment merging logic in a separate Merge stage

(preserving the data-parallel programming model of Fragment Processing). This de-

sign provides future optimized GPU implementations the opportunity to encapsulate

Merge-stage functionality in fixed-function components (preserving the data-parallel

optimized design of a GPU’s programmable cores).

A key idea of quad-fragment merging is the use of micropolygon connectivity when

making merging decisions. Connectivity information allows quad-fragment merging to

robustly piece back together the surface from independent rasterized quad fragments.

As a result, quad-fragment merging need not infer surface connectivity like point-

based rendering approaches. Although edge-adjacency and the other three merging

rules presented in this chapter provide a good balance between reducing shading cost

and avoiding shading artifacts, these rules are by no means definitive. For example,

considering surface normal during merging may reduce the shading artifacts discussed

in Section 6.3.2. Exploring the performance-quality trade-offs associated with differ-

ent merging conditions is clearly a useful future study.

Immediate future work should investigate the interaction of quad-fragment merg-

ing with motion- and defocus-blurred rasterization. Recently, Ragan-Kelley et al.
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[2010] proposed an extension of the GPU pipeline that allows quad-fragments to be

generated and shaded based on the results of 5D rasterization. Supporting both 5D

rasterization and multi-sample anti-aliasing is challenging in a pipeline that shades

quad fragments because the relationship between shading samples and the corre-

sponding covered multi-sample points cannot be represented efficiently by a dense

coverage mask. (When an object undergoes blur, multi-sample points distributed

widely across the frame buffer receive contributions from the same shading sample.)

Ragan-Kelley et al. overcome this problem by caching shading results, then retrieving

them from the cache on-demand for each covered multi-sample point.

Although motivated by different reasons, both Ragan-Kelley’s et al.’s shading

cache and the quad-fragment merging merge buffer serve to identify complex relation-

ships between multi-sample points and shading samples. Motivated by this observa-

tion, Hegarty [2010] implemented motion blur in a quad-fragment merging pipeline

by leveraging the merge buffer to simultaneously identify merges and maintain the

irregular mapping between shading samples and multi-sample points. (In doing so he

implemented a feed-forward, rather than demand-driven, version of Ragan-Kelley’s

technique.) However, to efficiently perform merges in this system, Hegarty disabled

the non-overlapping multi-coverage merging condition (rule four). The implications

of this decision on image quality and quad-fragment merging’s depth and stencil

buffer invariants have not yet been rigorously analyzed. Nonetheless, the prospect

of successfully performing quad-fragment merging in a pipeline that also features 5D

rasterization is promising. Perhaps most importantly, the potential of using a single

mechanism to implement both techniques increases the likelihood of their adoption

in future GPUs.

Last, quad-fragment merging makes shading quad fragments a viable alterna-

tive to Reyes-style shading for micropolygon workloads. While current GPU imple-

mentations of quad-fragment shading have significant performance advantages over

Reyes-style shading systems, it is not obvious whether, in terms of image quality, it

is preferable to sample shading uniformly along the surface (object-space shading)

or uniformly on screen. There is value in developing a better understanding of the

image-quality implications of these two popular shading approaches.



Chapter 7

The Real-Time Micropolygon

Pipeline

Improving the efficiency of micropolygon rendering requires extending existing GPU

pipeline abstractions and modifying core rendering algorithms. Although for sim-

plicity, the previous chapters addressed tessellation, rasterization, and quad-fragment

shading largely in isolation, many of the GPU pipeline and rendering algorithm mod-

ifications suggested in this dissertation are highly interrelated. Figure 7.1 brings all of

these changes together and illustrates the resulting real-time micropolygon rendering

architecture. It also enumerates key differences between the real-time micropolygon

pipeline and the GPU pipeline (red and blue lines differentiate changes to the pipeline

architecture from changes that impact only its implementation). These differences, as

well as the relationships between important components of the micropolygon pipeline,

are summarized below.

7.1 Summary of Modifications

DiagSplit Tessellation

First, the micropolygon pipeline features a new stage that enables adaptive surface

tessellation using the DiagSplit algorithm (Figure 7.1, pipeline differences 1 and 3).

140
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!e Real-Time Micropolygon Pipeline
(with summary of principal changes to GPU pipeline)

Programmable
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Processing Pixel Ops

1. Add DiagSplit stage to generate
    (potentially non-isoparametric) subpatches

2. Cull subpatches prior
    to uniform tessellation
   (using bounding box)

4. Propogate mesh connectivity
    with micropolygons and
    rasterized quad fragments

5. Use micropolygon-parallel rasterization
    and a small multi-sample stamp

6. Emit quad fragments with
    empty coverage masks 

7. Add quad-fragment merging stage
    (requires mesh connectivity)

8. Support quad fragments 
    containing shading inputs from 
    four unique micropolygons

3. Propogate coordinates of subpatch
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change to pipeline implementation 
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Figure 7.1: A micropolygon rendering pipeline designed for real-time rendering. The
micropolygon pipeline is an evolution of the current GPU pipeline. Notable differences
between the micropolygon pipeline and the current GPU pipeline are listed above.
For clarity, differences in pipeline architecture are highlighted in red. Changes to
pipeline implementation (that do not require significant architectural modification)
are shown in blue.
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Tessellation becomes the primary source of work generation in the micropolygon

pipeline. As a result, DiagSplit’s behavior has significant impact on nearly all subse-

quent processing in the system. Most notably:

• Through the use of non-isoparametric cuts, DiagSplit is able to adapt to surface

complexity or view and also produce subpatches that can be processed indepen-

dently and in parallel (without cracks) by the remainder of the pipeline.

• Adaptive splits are inexpensive to compute and yield accurate tessellations using

fewer micropolygons than current GPU tessellation schemes. Lower micropoly-

gon counts reduce the amount of culling, rasterization, fragment merging, and

(potentially) shading work the pipeline must perform.

While DiagSplit was initially designed to achieve the two benefits listed above, it has

become clear that split-dice adaptive tessellation has numerous additional benefits.

For example:

• Performing splits defines an implicit hierarchy over the micropolygons gener-

ated from large base patches. Given shader programs that bound subpatches,

pipeline implementations can utilize this hierarchy to efficiently cull subpatches

at varying scales (the implementation in this dissertation culls occluded sub-

patches after each split) and avoid dicing many micropolygons that are not

visible in the final image (Figure 7.1, difference 2). In addition to culling, the

hierarchical structure of micropolygons generated by DiagSplit should facilitate

many additional pipeline optimizations. For example, RenderMan bounds sub-

patches produced by split (prior to dicing) to efficiently implement sort-first

(bucket-parallel) rendering [Apodaca and Gritz 2000].

• DiagSplit generates micropolygons that are approximately uniform in area, ori-

entation, and aspect ratio. This makes simple algorithms for micropolygon

rasterization more efficient by reducing variance in per-micropolygon rasteriza-

tion cost. Chapter 4 showed low variance in micropolygon size results in high

utilization during micropolygon-parallel rasterization.
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• Tessellation (specifically, the Uniform Tessellation stage) generates micropolygon-

connectivity information required by quad-fragment merging to robustly deter-

mine when two quad fragments can be merged. Diced subpatches define a

reasonable window over which to search for merges, and micropolygon grids

provide a convenient namespace to uniquely identify micropolygons.

• Just as the rasterizer in a current GPU controls the order fragments are gen-

erated from a triangle spanning many pixels, the DiagSplit stage controls the

order subpatches are split and the size of diced grids. (Also, the Uniform Tes-

sellation stage controls the order of micropolygons in a grid.) By adjusting

parameters such as these, DiagSplit implementations can tailor their microp-

olygon output stream to match specific hardware performance characteristics

(e.g., parallelism/scheduling needs, cache sizes) and meet invariants assumed

by subsequent processing stages. For example, in Chapter 6, the efficacy of

quad-fragment merging was increased by limiting the number of micropolygons

in diced grids to match the size of the pipeline’s merge buffer.

Reoptimized Rasterization

The second focus of this work was reoptimizing the implementation of the pipeline’s

rasterization stage for micropolygon workloads (Figure 7.1, difference 5). The small

and uniform size of micropolygons allows for a simple bounding-box-based rasteri-

zation scheme (mprast) that is efficiently parallelized by processing many microp-

olygons at once. Experiments showed that in comparison to a rasterizer employ-

ing a 64-multi-sample stamp, this approach reduced the number of point-in-polygon

tests performed during rasterization between five and eighteen times (Figure 4.4, 0.5-

pixel-area micropolygons). Despite this improvement, the sheer number of operations

needed to rasterize micropolygon geometry is high. The high cost and algorithmic

simplicity of micropolygon rasterization make acceleration via custom hardware an

attractive implementation choice. Although summarized only briefly in this disserta-

tion, subsequent work indicates that significant power and area savings result from

the use of custom hardware for micropolygon rasterization [Brunhaver et al. 2010].
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In addition to the modifications made to improve performance, the micropoly-

gon pipeline rasterizer also underwent two minor modifications to support quad-

fragment merging (differences 4 and 6). First, the rasterizer propagates micropolygon-

adjacency information with quad fragments emitted to the Merge stage. Second, to

provide the Merge stage with additional information about grid topology, the raster-

izer generates a quad fragment with empty multi-sample coverage when a micropoly-

gon overlaps a 2×2-pixel region of the screen but does not cover any multi-sample

points.

Quad-Fragment Merging

Third, the micropolygon pipeline includes a new fixed-function stage that implements

quad-fragment merging (Figure 7.1, differences 4, 7, and 8). The key idea of quad-

fragment merging is to propagate micropolygon-connectivity information (generated

by Uniform Tessellation) through the pipeline and use it to identify when quad frag-

ments from adjacent mesh micropolygons can be safely merged into a single quad

fragment prior to shading. The benefit of this optimization is substantial; it reduces

the number of quad fragments shaded by the pipeline by more than eight times. As a

result of quad-fragment merging, when rendering equivalent scenes, the micropolygon

rendering pipeline performs approximately as many shading computations as Reyes.

The adjacency condition is a unique and critical feature of quad-fragment merg-

ing; it prevents many merges that would otherwise result in objectionable shading

artifacts. Compact encoding of mesh adjacency allows the adjacency condition to

be verified inexpensively. Intelligent ordering of grid micropolygons by dicing allows

the Merge stage to identify nearly all possible merges using only a small amount of

buffering.

Unmodified Stages

Although Figure 7.1 highlights changes made to the GPU pipeline in this dissertation,

it is important to recognize that a significant fraction of the GPU pipeline architec-

ture undergoes only minor modification or remains the same. Minimizing changes
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to the GPU pipeline was not an initial design goal for this work, but it became an

increasingly valuable feature as development of the micropolygon pipeline architec-

ture progressed. It provides continuity for application developers (programming the

micropolygon pipeline is essentially the same as the GPU pipeline: only a few extra

shader programs are needed for DiagSplit) as well as for GPU implementers (many

highly optimized components in current GPUs can be reused). Moreover, as an ex-

tension of the existing GPU pipeline, the micropolygon pipeline remains capable of

rendering surfaces represented by lower resolution polygon meshes.

Even with increasing GPU compute capability, the ability to efficiently render a

mixture of micropolygon and non-micropolygon meshes will continue to be impor-

tant for real-time graphics applications. For example, tessellation to micropolygon-

resolution meshes is not necessary to adequately represent surfaces with low geometric

detail. Conveniently, the micropolygon pipeline affords future application develop-

ers the ability to tune polygon size to optimize user experience. In situations where

only small-polygon meshes (but not micropolygon meshes) are necessary for high-

quality rendering, the DiagSplit, rasterization, and quad-fragment merging algorithms

from this dissertation still improve rendering performance over the algorithms used

in GPUs today.

7.2 Key Ideas and Design Principles

Three key principles clearly exerted heavy influence on the design of the micropolygon

pipeline architecture. I suspect variants of these ideas will also prove valuable to future

researchers seeking to advance the capabilities of real-time graphics systems.

Reason about surfaces, not individual micropolygons. When rendering mi-

cropolygons, it is advantageous to think about performing key pipeline operations

on surfaces, not individual micropolygons. For example, the micropolygon pipeline

partitions surface patches into surface subpatches. It accepts bounding boxes that

allow subpatches to be culled before micropolygons are even created. It samples

shading for an entire grid approximately once per pixel. The motivation for this shift
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in thinking is performance. In a micropolygon rendering pipeline, a subpatch (or its

corresponding grid), not an individual micropolygon, is the key unit of locality and

coherence. (This is logical, since subpatches, like the polygons used by most real-time

applications today, generally cover tens to hundreds of pixels.) Many opportunities to

optimize execution by sharing computation and data across rendering operations do

exist in a micropolygon pipeline. However, the small size of micropolygons requires

pipeline implementations to be able to identify these opportunities over regions of a

surface that extend beyond a single micropolygon’s boundaries.

Rasterization is one of the few places in the micropolygon pipeline where mi-

cropolygons are treated independently. The triangle-pairs optimization discussed in

Chapter 4 does leverage surface semantics to reduce rasterization work, but in general

it is not obvious how to extend the idea of directly processing surfaces to multi-sample

coverage testing. The micropolygon pipeline deconstructs grids into individual trian-

gles for rasterization, but it includes connectivity information with rasterized quad

fragments to allow grid topology to be “reconstructed” as needed by the Merge stage.

Extend, rather than replace. Rather than replace or significantly modify the

GPU pipeline’s existing components, I often elected to add new components to the

micropolygon pipeline. These additions manage micropolygon-specific complexity

and convert processing into operations that existing GPU pipeline components han-

dle well (again, rasterization stands as the one exception to this strategy). For ex-

ample, DiagSplit partitions input base patches into subpatches that are tessellated

and evaluated using the GPU pipeline’s existing Uniform tessellation and Vertex

Processing stages. Similarly, quad-fragment merging produces quad fragments that

are much like quad fragments generated when rasterizing large triangles: they have

dense multi-sample coverage, support computation of derivatives using finite differ-

ences, and are shaded independently by Fragment Processing (without requiring the

graphics-application programmer to modify shader programs).

Fortunately, for the case of rendering micropolygons, new pipeline functionality,

such as performing splits and merging quad fragments, has low cost in comparison to
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existing compute-heavy stages like Vertex and Fragment Processing. From an archi-

tectural perspective, DiagSplit and quad-fragment merging are attractive algorithms

because the extra work needed to transform adaptive tessellation and micropolygon

shading tasks into a workload that runs efficiently on GPUs is small.

Be cognizant of opportunities for fixed-function acceleration. When incorpo-

rating new functionality into the micropolygon pipeline, I identified irregular, data-

dependent computations that were important to efficient rendering (“regularizing”

these computations was either inefficient or impractical due to data dependencies).

Then I isolated this logic from regular, data-parallel processing in the pipeline ab-

straction. In both DiagSplit and quad-fragment merging, there is little benefit to

exposing irregular parts of these algorithms to the application programmer. How-

ever, there are significant opportunities for the graphics system to provide highly

optimized implementations of the irregular parts of these algorithms. For example, a

wide SIMD processor is not an ideal platform for merging quad fragments, but it is

likely these operations can be carried out using a small amount of custom hardware

(the algorithm was designed with this implementation in mind).

Although modern graphics research often calls for expanding the capabilities of

programmable GPU cores in new ways, the transition to micropolygon rendering

required me to focus on the fixed-function components of GPU pipeline architecture.

In this work, I believe considering the implications of heterogeneous processing led to

simpler solutions and more elegant abstractions than what would have been possible

considering only “massively data-parallel” algorithms.

7.3 Next Steps

In previous chapters, I have listed many aspects of tessellation, rasterization, and

shading that invite further study. However, the results of this dissertation point

clearly to two sizable areas of future work that require thinking about the pipeline

as a whole. The first is best attempted by product teams in the graphics industry:

developing an optimized end-to-end implementation of the micropolygon pipeline
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architecture that achieves real-time rendering performance on complex scenes. The

second demands attention from all graphics researchers: understanding how best to

integrate motion blur (and potentially defocus blur) into a real-time graphics system.

GPU Integration

I hope see optimized implementations of the algorithms proposed in this disser-

tation integrated into future GPUs. Although the evolutionary design of the mi-

cropolygon pipeline architecture should simplify this process, it remains a substantial

task.

One important integration challenge not addressed in this dissertation is microp-

olygon pipeline scheduling. GPU scheduling polices are highly proprietary and finely

tuned to the properties of specific GPU implementations (thus it would be hard to

evaluate scheduling and workload distribution policies without an optimized end-

to-end system). Although current GPUs adapt well to variation in pipeline load,

micropolygon rendering does present unique challenges. Micropolygons shift the bal-

ance of work in the GPU pipeline (vertex processing work increases substantially)

and adaptive tessellation performs unbounded data amplification early in the pipeline

(maintaining pipeline ordering semantics is challenging). For reasons such as these, I

predict pipeline scheduling, rather than engineering optimized software/hardware im-

plementations of DiagSplit, micropolygon rasterization, and quad-fragment merging,

will be the most difficult aspect of integrating these algorithms into future GPUs.

Adding Motion Blur

Efficiently integrating motion blur effects into the real-time micropolygon pipeline

remains an open problem. Rendering blurred micropolygons affects many parts of the

graphics pipeline and, as was the case to improve support for micropolygon geometry,

requires innovation in both algorithms and pipeline architecture. As stated previously,

the best algorithms for rasterizing blurred micropolygons have low efficiency (despite

the contributions of Chapter 5) and the interaction of quad-fragment merging with

proposals to add motion blur to the GPU pipeline [Ragan-Kelley et al. 2010] has not
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been fully explored. Knowledge of surface motion provides opportunities to optimize

how the pipeline implements culling [Boulos et al. 2010], tessellates surfaces, and

samples shading (blur is an excellent context in which to compare vertex and quad-

fragment shading). While advances in all of these areas may not be required to make

accurate motion blur practical for real-time rendering, the possibilities for innovation

are large.



Chapter 8

Conclusion

For the foreseeable future, advanced real-time graphics applications will find use for

as much compute capability as graphics systems can deliver. The demand for high

performance, combined with practical constraints on chip area, cost, and (most im-

portantly going forward) power, requires graphics systems to be very efficient. In this

dissertation I studied the efficiency of the modern real-time graphics pipeline when

executing an advanced graphics workload: rendering scenes with surfaces represented

accurately using micropolygon meshes. I identified that the fundamental pipeline op-

erations of tessellation, rasterization, and shading execute inefficiently when rendering

micropolygons. In response, I proposed an evolution of the GPU pipeline architecture

that overcomes key problems in each of these three areas.

Of course, synthesizing beautiful images involves more than accurately rendering

complex surfaces. Simulating high-quality materials and lighting are also essential,

and reducing the cost of these computations is the focus of much rendering research

today. Moreover, the richness of an interactive experience depends on more than just

the color of image pixels. Animation, sound, game play, and storytelling are just as

critical to a user’s experience as the imagery placed before his or her eyes. Still, I

challenge you to watch your favorite scene from a Pixar film. Take a look at the wild

contortions of Woody’s face, at a sad Boo’s eyes, and at the detail in Sulley’s blue

fur or Carl’s old sweater. Even with the masterful animation, beautiful lighting, and

powerful musical score that drives these scenes, I assert they would not be nearly as
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iconic or nearly as emotive if we could see clear evidence that the characters were

merely computer models formed by polygons.

This belief was staunchly held by early researchers exploring the use of computer

graphics in film, and it should be central to the design of interactive graphics systems

going forward. Not long ago demanding this level of quality from an interactive

application was a fantastic goal. However, near-future GPUs will boast many teraflops

of compute capability. I assert that only modest algorithmic and architectural changes

to the current real-time graphics pipeline are required to make micropolygon rendering

on these future systems efficient. Given these two facts, I am confident that soon

you will be hard pressed to find visual artifacts caused by coarse polygon meshes in

interactive rendering.



Appendix A

Interleaved Sampling Tile

Permutations

In the following pseudocode, the function compute multisample position computes

the XY screen position of the multi-sample point in frame-buffer tile (tile x, tile y)

that is associated with UVT tuple indentified by uvt index. The resulting interleaved

sampling pattern features 2×2-pixel tiles (Kx = Ky = 2), but unlike the patterns

described by Keller et al. [2001], the tile-relative position of the multi-sample point

associated with UVT tuple uvti is tile dependent. As a result, multi-sample points

sharing the same UVT value do not form a regular grid over the image plane (see

interleaved sampling with permutations in Section 5.3.2). Figure A.1 illustrates the

UVT tuple indexing scheme assumed by compute multisample position.

The XYUVT multi-sample points produced by compute multisample position

are stratified over individual pixels as well as over each tile. Using a small, precom-

puted table of jitter magnitudes, different subpixel xy-jitter values are generated for

multi-sample points in each pixel following the patented technique described by Cook

et al. [1990]. The use of Cook’s spatial jittering technique is unrelated to the imple-

mentation of interleaved sampling with permutations. Its inclusion in the pseudocode

below is provided for completeness and consistency with the rasterizer implementa-

tions evaluated in Chapter 5.
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uvt0 uvt1 uvt2 uvtK-1
... uvtK uvtK+1 uvtK+2 uvt2K-1... uvtN-P uvtN-P+1 uvtN-P+2 uvtN-1......

UVT tuples assigned to
xy strata 0 of di!erent pixels

in the same tile

uvt_index:

UVT tuples assigned to
xy strata 1 of di!erent pixels

in the same tile

UVT tuples assigned to
xy strata P-1 of di!erent pixels

in the same tile

Kx x Ky = K pixels per tile
P multi-sample points per pixel

P x K = N total UVT tuples

Each tile is strate"ed in UVT-space (there are N strate"ed samples)
Each pixel is also strate"ed in UVT-space

(it receives one UVT-tuple from each of the P groups of K)

strata_index:

substrata_index: 0 1 2 K-1 0 1 2 K-1... ... 0 1 2 K-1...
0 0 0 0 1 1 1 1... ... P-1 P-1 P-1 P-1...

Figure A.1: UVT tuple indexing scheme and corresponding values of strata index

(the current subpixel strata associated with the tuple) and substrata index

(tile-relative pixel index prior to permutation) computed by the function
compute multisample location.

.

int K_X = 2;

int K_Y = 2;

int PIXEL_PER_TILE = 4; // given as K in figure A.1

int SAMPLES_PER_PIXEL = 16; // given as P in figure A.1

int NUM_PERMUTATIONS = impl dependent (Ch. 5 impl uses 64)

int NUM_JITTERS = impl dependent (Ch. 5 impl uses 512)

float X_JITTERS[NUM_JITTERS]; // x offset from xy strata center

float Y_JITTERS[NUM_JITTERS]; // y offset from xy strata center

float STRATA_BASE_X[SAMPLES_PER_PIXEL]; // stores xy strata X centers

float STRATA_BASE_Y[SAMPLES_PER_PIXEL]; // stores xy strata Y centers

// each permutation is a permutation of PIXELS_PER_TILE integers mapping a

// substrata_index to a tile-relative pixel_index: (0-4) -> (0-4) in this case

int PERMUTATION_TABLE[NUM_PERMUTATIONS][PIXELS_PER_TILE];
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// Compute XY screen position of multi-sample point in screen

// tile (tile_x, tile_y) that has UVT values given by uvt_index

void compute_multisample_position(

int uvt_index,

int tile_x,

int tile_y,

float& multisample_x,

float& multisample_y)

{

int strata_index = uvt_index / PIXELS_PER_TILE;

int substrata_index = uvt_index % PIXELS_PER_TILE;

// select a permutation

int permutation_index = compute_permutation_index(tile_x, tile_y, strata_index);

// compute pixel xy

int pixel_index = PERMUTATION_TABLE[permutation_index][substrata_index];

int pixel_x = K_X * tile_x + pixel_index % K_X;

int pixel_y = K_Y * tile_y + pixel_index / K_X;

// compute subpixel offset

int jitter_index = compute_jitter_index(pixel_x, pixel_y, strata_index);

multisample_x = pixel_x + STRATA_BASE_X[strata_index] + X_JITTERS[jitter_index];

multisample_y = pixel_y + STRATA_BASE_Y[strata_index] + Y_JITTERS[jitter_index];

}
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The helper functions compute permutation index and compute jitter index

hash their inputs to compute indices into precomputed permutation and xy-jitter

tables. Implementations used to evaluate the rasterizers in Chapter 5 are given below.

The constants C0-C4 are relatively-prime integers.

int compute_permutation_index(

int tile_x,

int tile_y,

int strata_index)

{

return (C0 * tile_x + C1 * tile_y + C2 * strata_index) % NUM_PERMUTATIONS;

}

int compute_jitter_index(

int pixel_x,

int pixel_y,

int strata_index)

{

return (C3 * pixel_y + pixel_x + C4 * strata_index)) % NUM_JITTERS;

}



Appendix B

5D Point-in-Micropolygon Tests

The interval and interleave rasterization algorithms described in Chapter 5 must

determine a moving, defocus-blurred micropolygon’s coverage of frame buffer multi-

sample points. While Chapter 5 focused on strategies for reducing the number of

point-in-micropolygon tests performed, it is equally important that these tests are ex-

ecuted efficiently. This appendix describes the 5D (XY,UV,T) point-in-micropolygon

test used in the implementation of interval and interleave.

A simple way to compute 5D micropolygon-multi-sample point coverage is to po-

sition the micropolygon in world space at the time t associated with the multi-sample

point, then perform a ray-micropolygon test with the appropriate ray originating from

the lens of the virtual camera [Cook et al. 1984]. (Kolb et al. [1995] describe how to

compute such a ray from parameters (x,y,u,v) using Gaussian approximations to real

lens systems.) In the language of rasterization, this test positions the micropolygon

at time t, projects its vertices into screen space (using the virtual lens position u,v

as the point of projection), then performs a conventional 2D point-in-polygon test

given the micropolygon’s screen-space projection. These solutions provide accurate,

perspective-correct point-in-micropolygon tests, but have high computational cost.

To reduce computational cost, the 5D point-in-polygon test employed by the in-

terval and interleave implementations in Chapter 5 operates almost entirely on

post-projection vertex positions. Pseudocode for the algorithm is given at the end of

this appendix (see function 5d point in triangle test).
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In this code, the helper function compute screen circle of confusion rad (im-

plementation not shown) uses the thin lens approximation to compute the circle-of-

confusion radius, in screen-space units, for a point a given distance from the virtual

camera [Kolb et al. 1995]. The helper function defocus shift direction returns a

unit vector defining the direction to shift the projected vertex position to account for

finite lens aperture. These directions can be precomputed for a frame given virtual

camera parameters, reducing this function call to a table lookup.

Although inexpensive to compute, interpolating vertex positions in screen space

does not produce perspective-correct motion blur. My experiences indicate that errors

due to this approximation are difficult to observe when viewing animated sequences

played back at full speed. Similarly, the implementation of defocus does not account

for small perspective changes when viewing the scene from different parts of the lens

(e.g., given the code above, a triangle cannot flip from being front facing to back

facing when viewing it from different lens positions).

When only 3D (XY,T) or 4D (XY,UV) sampling is required, additional optimiza-

tions are possible. For example, when motion blur is not required, each vertex’s

circle of confusion is computed only once per triangle instead of once per sample

test. One benefit of the pseudocode below is that it leverages the same 2D point-

in-triangle kernel required by mprast. Since only one sample is tested against the

triangle each time it is positioned, 2D point in triangle test does not perform

edge-equation setup (see Section 4.2). However, when only 3D or 4D sampling is

required, other point-in-triangle approaches exist. Möller et al. [2007] describe how

to compute time-dependent edge equations to more efficiently perform (XY,T) point-

in-polygon tests. Similarly, Ragan-Kelley et al. [2010] construct edge functions for

the case of (XY,UV) sampling. Although these methods offer elegant solutions for

performing point-in-triangle tests, interleave must already position and project

the triangle to determine potentially overlapped tiles. Given this constraint, the 2D

point-in-polygon test is cheaper than point-in-polygon tests in either Möller et al.’s

or Ragan-Kelley et al.’s approaches.
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// Determine if the moving, defocus-blurred triangle covers

// the given 5D multi-sample point

void 5d_point_in_triangle_test(

Vertex2D open_shutter_pos[3],

Vertex2D close_shutter_pos[3],

float open_shutter_camz[3],

float close_shutter_camz[3],

float sample_x,

float sample_y,

float sample_t,

float sample_u,

float sample_v,

bool& is_covered)

{

Vertex2D cur_time_pos[3];

float cur_time_camz[3];

// compute screen position and camera-space depth of all

// triangle vertices at the time given by sample_t

for (int i=0; i<3; i++) {

cur_time_pos[i] = lerp(sample_t, open_shutter_pos[i], close_shutter_pos[i]);

cur_time_camz[i] = lerp(sample_t, open_shutter_camz[i], close_shutter_camz[i]);

}

// shift the screen position of the vertex due to defocus. The lens

// position of the sample point determines the direction of the shift.

// The camera-space depth of the vertex determines the magnitude.

for (int i=0; i<3; i++) {

float radius = compute_screen_circle_of_confusion_rad(cur_time_camz[i]);

cur_time_pos[i] += radius * defocus_shift_direction(sample_u, sample_v);

}

// screen position of triangle vertices is now set for the

// multi-sample point. Now perform a conventional 2D

// point-in-triangle test

is_covered = 2D_point_in_triangle_test(cur_time_pos, sample_x, sample_y);

}
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