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Abstract

Mercury has a near-zero obliquity, i.e. its spin axis is nearly perpendicular to its or-
bital plane. The value of the obliquity must be known precisely in order to constrain
the size of the planet’s core with the framework suggested by Peale (1976). Ram-
baux and Bois (2004) have suggested that Mercury’s obliquity varies on thousand-
year timescales due to planetary perturbations, potentially ruining the feasibility
of Peale’s experiment. We use a Hamiltonian approach (free of energy dissipation)
to study the spin-orbit evolution of Mercury subject to secular planetary perturba-
tions. We can reproduce an obliquity evolution similar to that of Rambaux and Bois
(2004) if we integrate the system with a set of initial conditions that differs from
the Cassini state. However the thousand-year oscillations in the obliquity disappear
if we use initial conditions corresponding to the equilibrium position of the Cassini
state. This result indicates that planetary perturbations do not force short-period,
large amplitude oscillations in the obliquity of Mercury. In the absence of excita-
tion processes on short timescales, Mercury’s obliquity will remain quasi-constant,
suggesting that one of the important conditions for the success of Peale’s experi-
ment is realized. We show that interpretation of data obtained in support of this
experiment will require a precise knowledge of the spin-orbit configuration, and we
provide estimates for two of the critical parameters, the instantaneous Laplace plane
orientation and the orbital precession rate from numerical fits to ephemeris data.
Finally we provide geometrical relationships and a scheme for identifying the cor-
rect initial conditions required in numerical integrations involving a Cassini state
configuration subject to planetary perturbations.
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1 Introduction

Mercury’s orbit is not fixed in space but precesses because of torques exerted
by planets exterior to its orbit. To first order, if we consider perturbations
of the planets on Mercury but neglect mutual interactions between planets,
Mercury’s orbit precesses with a period of about 235 ky and a constant incli-
nation with respect to a plane called the Laplace plane. Mercury’s spin vector
also precesses because the planet is expected to be in a Cassini state: the
spin axis, orbit normal, and normal to the Laplace plane are coplanar while
the obliquity remains constant (Colombo, 1966, Peale, 1969, Peale, 1988). In
order to maintain coplanarity in the Cassini state, the spin axis precesses at
the same rate as the orbital plane (see e.g. Ward, 1975, Gladman et al., 1996).
Radar measurements (Pettengill and Dyce, 1965) revealed Mercury’s unusual
3:2 spin-orbit resonance: the orbital period (∼88 days) is exactly 3/2 of the
spin period (∼59 days).

Provided that the planet is in a Cassini state, Peale (1976, 2002) has shown
that the knowledge of the second degree coefficients of the gravity field, the
88-day libration amplitude, and the obliquity can be used to determine the
state and size of the Hermean core. While the knowledge of the 88-day libration
amplitude and C22 gravitational harmonic are sufficient to distinguish a molten
core from a solid core (Margot et al., in preparation), the combination of all
four quantities above is needed to evaluate the moment of inertia C and the
ratio Cm/C between the moment of inertia of the mantle and the moment
of inertia of the entire planet. This ratio with assumptions on mantle and
core densities can be used to constrain the size of the core. Therefore a good
description of the obliquity behavior is essential to infer the radius of Mercury’s
core, which is itself critical to further our understanding of terrestrial planet
formation and evolution.

One of the goals of both the MESSENGER (Solomon et al., 2001) and Bepi-
Colombo missions (Milani et al., 2001) is to determine these quantities (gravity
field, librations, obliquity) for Mercury. Earth-based radar data can also be
useful to determine the libration amplitude and the instantaneous spin orien-
tation.

The idealized situation in Peale’s experiment can be complicated by the pres-
ence of free modes of rotation. A free mode has an arbitrary phase and ampli-
tude but its frequency is fixed. Possible free modes are a libration in longitude
which produces a variation of the rotation angle about the spin axis with a
period of order 10 years (Peale 1974) and a precession which moves the spin
axis around the Cassini state with a period of order 1000 years (Colombo
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1966, Peale 1974). A free libration in longitude would not affect the obliquity
nor the ability to distinguish a molten from a solid core. But a free precession
would change the orientation of the spin axis in space and therefore the obliq-
uity value, potentially ruining the ability to determine the radius of the core
in Peale’s experiment.

Peale (2005) examined the free rotational motions of Mercury and their damp-
ing by considering tidal friction and dissipation at the core-mantle interface.
He derived damping timescales for these modes of about 105 years, much
shorter than the age of the solar system. If the free modes are detected in the
spin state measurements, it will indicate an active or recent excitation mecha-
nism, as the amplitude of the free modes should decay on ∼105 year timescales.

Rambaux and Bois (2004) have suggested that planetary perturbations cause
obliquity variations on thousand-year timescales, much less than the 105 year
damping timescales. Their numerical integrations show that Mercury’s obliq-
uity is not constant with time. The authors find variations of a few arcminutes
around a mean value of about 1.6 arcmin at a proper frequency of 1066 years,
corresponding to the free precession period for the values of moments of iner-
tia they chose. For a rigid body, the free precession frequency νP is given to
first order by the equation

νP = n
C − (A + B)/2

C
(1)

which follows from Euler’s equations for rigid-body rotation. In this equation,
n is the mean motion, A, B and C the moments of inertia. An expression
for the precession frequency that takes the triaxial shape and the resonant
rotation of Mercury into account is given by Peale (2005). The free libration
period similarly depends on the moments of inertia.

In this paper, we investigate the value of the obliquity and its time evolution.
We use a Hamiltonian formulation which includes secular planetary perturba-
tions but no internal energy dissipation to compute the spin-orbit motion of
Mercury. The formalism is described in section 2. Readers who are not inter-
ested in Hamiltonian mechanics can proceed to section 3 without too much
loss of continuity. Section 3 is devoted to the determination of the Laplace
plane which is central to this problem and to the definition of the Cassini
state. In section 4, we present geometrical relationships between the obliquity
and other variables defining the Cassini state. Results of the numerical in-
tegrations of the system are presented in section 5, including one simulation
that reproduces the oscillations in the obliquity seen by Rambaux and Bois
(2004). We find that integrations started in the Cassini state do not exhibit
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oscillations. In section 6, we present a practical way to numerically find the
position of the Cassini state and the associated obliquity. The equilibrium
obliquity -important for the interpretation of future Mercury geodesy data-
depends on the values of the moments of inertia and other parameters, which
we investigate in section 7.

2 Method

One way to study the spin-orbit motion of Mercury is to numerically integrate
the motions of the planets of the solar system with a relativistic integrator
(e.g. Rambaux and Bois, 2004). Another way is to use a simplified analyti-
cal approach. In a masterful paper, D’Hoedt and Lemaitre (2004) obtain the
equilibrium solutions and the frequencies of the spin-axis motion by using
Hamilton’s equations. In order to maintain a tractable Hamiltonian with two
degrees of freedom, those authors make the following simplifications: principal
axis rotation, a description of the gravity field limited to second degree and
order terms, no planetary perturbations, no tides nor damping, and all the
perturbations with period equal or smaller to the revolution period (88 days)
are neglected.

For the convenience of the reader, we briefly describe the reference frames and
the Andoyer and Delaunay variables that are used in the development of the
Hamiltonian. Additional details can be found in D’Hoedt and Lemaitre (2004).
The reference frame X0, Y0, Z0 is based on the ecliptic plane at epoch J2000.
This choice of reference frame allows us to easily add planetary perturbations.
The frame tied to the orbital plane is denoted by X1, Y1, Z1, the frame tied
to the spin orientation is denoted by X2, Y2, Z2, and the frame tied to the
principal axes of inertia is denoted by X3, Y3, Z3.

The Andoyer variables (l, g, h, L, G, H) (Deprit 1967) describe the rotation
of Mercury. Three lowercase symbols represent angles and three uppercase
symbols represent conjugated momenta: g + l is the angle between X2 and the
axis of minimum inertia X3, h is the angle between X0 and X2 (the longitude
of the ascending node of the spin in the ecliptic frame), G is the norm of
the spin angular momentum of Mercury, H = G cos K is the projection of
the angular momentum vector on the inertial axis Z0 where we define K as
the angle between Z0 and Z2 (the inclination of the spin axis with respect to
the ecliptic plane), and L is the projection of the angular momentum on Z3

and is equal to G because of the assumption of principal axis rotation. The
non-singular Andoyer variables are given by Λ1 = G and Λ3 = G(1− cos K),
λ1 = l + g + h and λ3 = −h.
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The Delaunay variables (l0, g0, h0, L0, G0, H0) express the revolution of Mer-
cury with respect to the inertial frame. They are related to the planetary

orbital elements with the momenta L0 = m
√

G(M + m) a0, G0 = L0

√
1− e2

0,
H0 = G0 cos i0, where M is the mass of the Sun, e0 the eccentricity of the
orbit, m is the mass of Mercury, and G is the gravitational constant when it
appears in front of a mass symbol. The corresponding angles are as follows:
l0 is the mean anomaly, g0 = ω0 is the argument of pericenter, and h0 = Ω0

is the longitude of the ascending node. The semi-major axis, eccentricity and
inclination of the orbit with respect to the J2000 ecliptic plane (X0, Y0, Z0)
are denoted with the usual symbols a0, e0 and i0, respectively.

The obliquity θ can be computed from a combination of Andoyer variables
and orbital elements:

cos θ = cos i0 cos K + sin i0 sin K cos(Ω0 − h). (2)

We have reproduced the development of the Hamiltonian derived by D’Hoedt
and Lemaitre (2004) using a mathematical software for symbolic computation.
After some canonical transformations and development in the eccentricity up
to order 3, the Hamiltonian contains several thousands terms and can be
shortened by averaging in the fast varying angles (the mean anomaly l0 and
λ1). The remaining terms include only the long period angles (h, h0 and g0)
and the spin-orbit resonant angle (λ1 − 3

2
l0). The final Hamiltonian with two

degrees of freedom is included here for convenience:

H2 =
Λ2

1

2 C
− m3 µ2

2 (Λ0 − 3Λ1

2
)2

− GMm7µ3R2

(Λ0 − 3Λ1

2
)6

(
1

2
C20

(
1 +

3 e2
0

2

) (
−1

4
(−1 + 3 cos2 i0) (−1 + 3 cos2 K)

− 3

4
(1− cos2 i0) (1− cos2 K) cos(2 σ3)− 3 cos i0 cos K cos σ3 sin i0 sin K

)
+ 3 C22 (

7 e0

2
− 123 e3

0

16
)
(

1

16
(1 + cos i0)

2 (1 + cos K)2 cos(2σ1)

+
1

16
(1− cos i0)

2 (1− cos K)2 cos(2σ1 + 4σ3)

+
1

4
(1 + cos i0) (1 + cos K) cos(2σ1 + σ3) sin i0 sin K

+
1

4
(1− cos i0) (1− cos K) cos(2σ1 + 3σ3) sin i0 sin K

+
3

8
cos(2σ1 + 2σ3) sin2 i0 sin2 K

) )
, (3)

where µ = G(m + M), σ1 = λ1 − 3
2
l0 − h0 − g0, σ3 = h0 − h, cos K = 1− Λ3

Λ1
,

Λ0 = L0 + 3
2
Λ1, C20 and C22 are the second degree gravitational harmonics,
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C is the polar moment of inertia and R is the radius of Mercury. The angles
σ1 and σ3 are the main angles in this problem. They are canonical variables
that have been chosen in order to reduce the complexity of the Hamiltonian.
Their geometrical significance is not straightforward, since these angles are
not defined in a single plane. Roughly speaking, σ1 is the angle related to the
libration in longitude while σ3 (the difference between the longitude of the
ascending node of the orbit and that of the spin axis) is the angle related to
the spin precession.

At this point the Hamiltonian does not capture the precession of the orbital
plane because planetary perturbations are not included. In order to take these
effects into account, we add the secular parts of the perturbing potential for 7
exterior planets (Murray and Dermott, 1999). We make use of the same vari-
ables, same canonical transformations and same assumptions: 3:2 resonance,
no small period terms, no dissipation. The perturbing potential is given by

Rsec =
7∑

k=1

G mk αk

8 ak

(
b
(1)
3/2 e2

0 − 4 sin2 i0
2

b
(1)
3/2 − 2 e0 ek cos($0 −$k) b

(2)
3/2

+ 8 sin
i0
2

sin
ik
2

cos(Ω0 − Ωk) b
(1)
3/2

)
, (4)

where mk is the mass of planet k, b are the Laplace coefficients, ak, ek, ik,
$k, ωk and Ωk are the semi-major axis, eccentricity, inclination, longitude of
the pericenter, argument of pericenter and longitude of the ascending node of
the planet k, respectively (the subscript 0 represents Mercury’s elements), and
αk = a0/ak. We then replace in the full Hamiltonian the orbital elements of
Mercury with the appropriate Delaunay variables. By subtracting 1 Rsec from
H2, we obtain a Hamiltonian with 4 degrees of freedom. The two additional
degrees of freedom come from the two pairs of orbital elements (ω0, e0) and
(Ω0, i0) which now exhibit secular changes due to the planetary perturbations.
The four angle combinations and their conjugated momenta are (σ1, Λ1), (σ3,
Λ3), (h0, H ′

0 = H0 + Λ1 − Λ3), and (g0, G′
0 = G0 + Λ1).

The three Euler angles defining the orientation of the body axes in the ecliptic
frame can be expressed as a function of the canonical variables:

(h, K, g + l) = (h0 − σ3, arccos(1− Λ3

Λ1

), σ1 + σ3 +
3

2
l0 + g0). (5)

We numerically integrate Hamilton’s equations with respect to the 8 canonical

1 The subtraction is required because the perturbing potential is defined with the
sign opposite to that normally used in a potential (∼ −GM/r) (Brouwer and
Clemence, 1961).
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variables and track the time evolution of both the spin-orbit variables (σ1, Λ1,
σ3, Λ3) and Mercury’s orbital elements (i0, e0, Ω0, ω0). Our initial conditions
for the planetary elements at epoch J2000 were computed by Standish et
al. (1992, Table 5.8.1). We use the C20 and C22 numerical values from the
Anderson et al. (1987) analysis of Mariner 10 radio science data.

The secular potential induces a retrograde precession of the orbital plane.
The argument of pericenter ω0 precesses in the prograde direction twice as
fast as the longitude of the ascending node Ω0, while the eccentricity e0 and
inclination i0 vary quasi-periodically. However, over the few thousand-year
timescale relevant to the problem, the four osculating elements of Mercury
have a roughly linear behavior.

Although our secular potential is clearly a simplification of reality, it is ade-
quate for the purpose at hand. On a timescale of a few ky, the secular potential
captures most of the influences due to exterior planets. Our goal is not to in-
clude all the possible effects but to investigate how the motion of Mercury is
affected by external perturbers. When using the Hamiltonian formalism, we
neglect mutual perturbations between the planets and assume that the orbital
elements of the perturbers remain constant with time. These assumptions are
justified for the timescales at interest in this work. Relevant timescales are de-
scribed in more detail in section 3.2. The short-period terms disappear from
the Hamiltonian because of the averaging process. The influence of these terms
can be safely neglected in our computations because they induce changes in
the rotation variables that have very small amplitude (∼ a few arcsec). Addi-
tional justifications for our assumptions are given at the end of section 5. We
also neglect smaller correction such as general relativistic effects.

3 Position of the Laplace plane

There have been confusions in recent literature about the plane that is relevant
in the Cassini problem. Neither the ecliptic nor the invariable plane (the plane
perpendicular to the angular momentum of the solar system) properly identify
the Cassini state. Here we compute the position of the relevant reference plane
called the Laplace plane.

In an idealized system it would be the plane about which the orbital inclination
remains constant throughout the precessional cycle. In practice it is the plane
about which variations in orbital inclination are minimized. We describe two
determinations of the Laplace plane, one analytical and one numerical.
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3.1 Secular theory

The analytical solution is obtained by computing the secular perturbations
from all the planets on Mercury’s orbit. It is fully consistent with our Hamil-
tonian formulation but not as accurate as the numerical solution. If we let
pk = sin Ωk sin ik and qk = cos Ωk sin ik and assume small planetary inclina-
tions (cos ik/2 ∼ 1), the secular perturbing potential (4) becomes

Rsec =
7∑

k=1

G mk a0

8 a2
k

(
b
(1)
3/2 e2

0 − (p2
0 + q2

0) b
(1)
3/2 − 2 e0 ek cos($0 −$k) b

(2)
3/2

+ 2 pk p0 b
(1)
3/2 + 2 qk q0 b

(1)
3/2

)
. (6)

Following Burns et al. (1979), we define a precession frequency due to each
exterior planet k as

wk =
mk a2

0 n b
(1)
3/2

4 M a2
k

, (7)

where n is the mean motion of Mercury. The sum of these precession rates wk

yield the precession rate of Mercury’s orbit, with a period of about 235 ky.
The Lagrange planetary equations for Mercury’s p and q values are

q̇0 =
7∑

k=1

(pk − p0) wk,

ṗ0 =
7∑

k=1

(qk − q0) wk. (8)

The Laplace plane for Mercury is the plane for which ṗ0 = q̇0 = 0:

p0 =

∑
pk wk∑
wk

,

q0 =

∑
qk wk∑
wk

. (9)

This determination of the position of the Laplace plane is fully consistent
with our formulation for including planetary perturbations in the Hamiltonian
without mutual interactions. The coordinates of the normal to the Laplace
plane in J2000 ecliptic coordinates are

λsec =−8.8◦,

βsec = 87.9◦, (10)
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where λ is the ecliptic longitude and β the ecliptic latitude. With the simple
secular potential, the inclination ι between Mercury’s orbit and the Laplace
plane remains quasi constant. Our solution for the position of the Laplace
plane differs from the invariable plane by about 1◦ (Fig. 1) while the angular
distance between the Laplace pole and the ecliptic pole is about 2.1◦. Errors
in the position of the Laplace plane translate into errors on the position of
the Cassini state that are about 2 orders of magnitude smaller due to the 1
in 200 proportion between the obliquity (∼1.5 arcmin) and the angle between
the Laplace pole and the orbit pole (ι ' 5.33◦). However, if the ecliptic plane
or the invariable plane is erroneously used in the Cassini problem, the error
on the Cassini state position can be of order 0.1 arcminute.

2 4 6 8
x HdegL

-6

-4

-2

2

4

6

y HdegL

Invariable

Sec. LP

Orbital at J2000-1ky
Orbital at J2000+1ky

Inst. LP at J2000

Fig. 1. Positions of poles relevant to the Cassini problem projected on the J2000
ecliptic plane. Our determinations of the secular Laplace pole LP (10) and the
instantaneous Laplace pole based on DE408 data (11) are shown. The position of
the orbital pole (Standish, DE408) and of the invariable pole (Owen, 1990) are also
shown. The narrow cloud of points near the instantaneous Laplace pole at J2000
represents a 68.3% confidence region for that pole.

We have verified numerically that the orbit pole from our integrations precesses
around the Laplace pole in a regular manner in about 235 ky. The inclination
remains within 0.2 arcmin of 5.33◦. Since the secular Laplace plane is inclined
by about 2.1◦ with respect to the ecliptic pole, the instantaneous precession
frequency around the ecliptic pole is not constant and its instantaneous value
varies between 150 to 320 ky. Averaged over one cycle, the precession period
around the ecliptic pole is ∼235 ky, as expected.
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3.2 Numerical fits to ephemerides

A simplified description of the orbital motion that neglects the coupling be-
tween planets is a logical first step in studying the dynamics of the Cassini
state for Mercury. This approach was adopted by Peale (1969, 1974) who con-
sidered a single precession frequency. In reality the motion of Mercury is more
complex. For example, mutual perturbations between planets yield variations
in the orbital elements and it is no longer possible to define a plane about
which the inclination remains constant. If the coupling between the planets is
taken into account, two eigen modes with periods of ∼230 ky and ∼184 ky
dominate influences on the orbital motion of Mercury (e.g. Brouwer and Van
Woerkom, 1950), producing a beat frequency of about (900 ky)−1. The fastest
variations in orbital elements occur on ∼70 ky timescales, as indicated by the
highest frequency modes in the Laskar (1988) series.

The complex motion of the orbital plane can be approximated at any given
time by precession about a specific axis. We use this property to define an
instantaneous Laplace plane that is inclined with respect to the orbit by an
angle ι. The plane is chosen such that over a few ky, variations in orbital
inclination with respect to the Laplace plane are minimized in a least squares
sense. We argue that this plane defines the current location of the Cassini
state. The system is driven by tidal torques and naturally evolves towards a
Cassini state defined by this instantaneous Laplace plane.

We numerically estimate the position of the instantaneous Laplace plane near
the J2000 epoch. We extract the orbital orientation from the 20 ky DE408
ephemerides computed by Myles Standish and evaluate the instantaneous
Laplace plane positions over time intervals of ±1 ky, ±2 ky, ±4 ky, and ±8 ky
around J2000. As expected, the approximation of simple precession about a
fixed axis degrades with increasing duration of the time interval. The best fit
value for the Laplace pole over a ±1 ky interval in the ecliptic frame of J2000
is:

λinst = 66.6◦,

βinst = 86.725◦ (11)

for which the rms inclination deviation is 0.14 arcsec over 2 ky.

The position of the Laplace pole is constrained fairly well in one dimension
(the direction of the orbit pole trajectory projected on the ecliptic plane) but
not in the orthogonal dimension (Fig. 1). This is due to the fact that we
fit a precessional motion with period ∼300 ky with a data set that spans 2
ky. We compute error bars on the Laplace pole position as follows. For each
trial pole (λ, β), we find the inclination ι that minimizes inclination deviations
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in a rms sense. A 68.3% confidence region is given by the locus of poles for
which the sum of squares of residuals is less than 3.3 times that of the best-fit
solution. This criterion was used to compute the confidence region in Fig. 1.
One-sigma uncertainties along the major and minor axes of the ellipse are
1.5◦ and 1 arcmin. Despite seemingly large uncertainties, the prospects for the
interpretation of future geodesy measurements remain good. The uncertainty
on the Laplace pole does not affect the coplanarity condition of the Cassini
state appreciably (section 4) because the J2000 orbit pole orientation is aligned
with the long axis of the Laplace pole uncertainty region (Fig. 1).

We perform similar Laplace plane determinations with 1500 years of SONYR
data provided by Nicolas Rambaux and with the Laskar (1988) orbital el-
ement series. Our best fit value for the instantaneous Laplace plane using
the DE408 values, Laskar series and SONYR integrations are all within 0.4◦

of each other and are valid for a few hundred years around J2000. We note
that the instantaneous Laplace plane (11) is 3.4◦ from the secular solution
(10). The former is required for precise interpretation of future ground-based
and spacecraft data, while the latter is required for consistency when using a
simplified secular potential to describe the spin-orbit motion.

In addition to the position of the Laplace pole, two related quantities can be
evaluated and are needed to compute the equilibrium obliquity in the Cassini
state. The orbital precession rate µ around the Laplace pole corresponds to an
instantaneous period of about 328 ky and the angle ι is about 8.6◦. These two
quantities are highly correlated: when the inclination ι increases, the precession
rate decreases. Both quantities are affected by the uncertainty on the Laplace
pole, yielding error bars of 50 ky and 1.2◦ on the period and angle, respectively.
Peale (1981) has proposed an analytical expression to compute the value of
the equilibrium obliquity in the Cassini state θCS :

θCS = − C µ sin ι

C µ cos ι + 2 n mR2 (7
2
e0 − 123

16
e3
0) C22 − n mR2 (1− e2

0)
− 3

2 C20

(12)

This expression is valid only if θCS is small and is a function of the preces-
sion frequency µ, the inclination ι and the moments of inertia through the
gravity coefficients C20 and C22. Even with the large error bars on µ and ι,
the equilibrium obliquity is determined with a small uncertainty. To under-
stand why this is so, note that to first order, the equilibrium obliquity θCS

(Eq. 12) is proportional to the product µ sin ι. Over a given time interval, the
orbital pole determines an arc in the ecliptic frame that has a fixed length.
The quantity sin ι is roughly proportional to the radius of the circle that best
fits the orbital pole arc. The precession rate is obtained by the ratio between
the angle subtended by the orbital arc as seen from the Laplace pole in the
ecliptic plane and the time interval. Therefore the product µ sin ι is constant
for all the poles in the direction orthogonal to the orbit pole trajectory. Since
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the uncertainty region is mainly aligned with the direction orthogonal to the
orbit pole trajectory, candidates Laplace poles inside the uncertainty region
yield very similar obliquity values, all the equilibrium obliquity values within
less than 1 arcsec of each other. We compute an equilibrium obliquity value
for specific values of the moments of inertia (see section 7) and we assume
that the orbital ephemerides are perfectly known. Our error bars represent
the formal errors. The uncertainty is well below the 10% uncertainty needed
to get of 22% precision on the ratio Cm/C between the moments of inertia of
the mantle and of the planet (Peale et al, 2002).

We can use the 20 ky timespan of the DE408 ephemeris to study the time
evolution of the position of the Laplace pole and other related quantities such
as µ, ι and θCS. We evaluate these quantities using 2 ky intervals centered on
different epochs. The position of the Laplace pole changes by a few degrees
in about 20 ky while the instantaneous precession period increases from ∼200
ky to ∼500 ky during the same interval. The angle ι also increases with time,
from 5◦ to 13◦. The errors bars obtained for each parameter at different epochs
are similar to those at the J2000 epoch. Even if the precession rate µ and the
inclination ι evolve rapidly in 20 ky, the equilibrium obliquity variations are
small, with a value ranging between 1.64 arcmin and 1.72 arcmin (Fig. 2).

-6 -4 -2 0 2 4 6
Time HkyL

1.64

1.66

1.68

1.7

1.72

Θ
Harcmi

nL

Fig. 2. Time evolution of the equilibrium obliquity estimated over successive 2 ky
intervals from the DE408 ephemerides. The time t = 0 corresponds to the J2000
epoch.

3.3 Analytical determination of the Laplace pole

We can compare our numerical results to an analytical determination of the
Laplace pole by using an approach similar to Peale (in press). Let us define the
position of the orbital pole in the ecliptic frame x = {sin i0 sin Ω0,− cos Ω0 sin i0, cos i0}
and v = dx

dt
its velocity. The orbit precesses around an axis defined by the an-

gular velocity of the orbit plane w = {a, b, c} so that w×x = v. By developing
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w as a function of i0, Ω0 and their time derivatives, we obtain a general ex-
pression for w

w = {di0
dt

cos Ω0 + (c− dΩ0

dt
) sin Ω0 tan i0,

di0
dt

sin Ω0 − (c− dΩ0

dt
) cos Ω0 tan i0, c}(13)

The norm of w gives the instantaneous precession rate µ around the w vector
while the angle ι is defined by the angle between w and x. Equation (13)
has one degree of freedom with the free parameter c and define a curve in
space, yielding a family of Laplace poles. One particular value of the param-
eter c = −1.91 10−5 rad/y appropriate for J2000 yields the coordinates (11)
of our Laplace pole determination which minimizes the inclination variations.
Our instantaneous Laplace pole is part of a family of solutions for the w-
based definition of the Laplace pole. The equilibrium obliquity is independent
of the c parameter (the product µ sin ι is only a function of i0,

di0
dt

and dΩ0

dt
).

Moreover, vectors fulfilling Eq.(13) all belong to the same plane as the orbital
vector x. These two conditions ensure a unique Cassini state position for all
w vectors.

4 Cassini state and initial conditions

We will show that initial conditions play a crucial role when integrating the
spin-orbit motion of Mercury. Here we derive geometrical relationships be-
tween the quantities defining the Cassini state and we formulate expressions
for initial conditions used in our integration. If the Cassini equilibrium obliq-
uity θCS is known, we can deduce the position of the spin axis corresponding
to the Cassini state which we represent by the vector C.

The coplanarity condition between the Laplace normal L, the orbit normal O
and the spin axis in the Cassini state imposes that C is a linear combination
of O and L:

C = αO + β L . (14)

Another condition comes from the fact that we define C, O and L as unit
vectors:

1 = C ·C = (αO + β L) · (αO + β L) = α2 + β2 + 2 α β L ·O . (15)

Defining γ = L ·O and solving for β yield:

β = −α γ ±
√

α2 γ2 − α2 + 1 . (16)
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Since the obliquity θCS is the angle between C and O, we have

cos θCS = O ·C = α + β O · L . (17)

For each equilibrium obliquity θCS (4 Cassini states for Mercury, Peale 1969),
we solve for α and β using Eq. (16) and (17), and we evaluate C using Eq. (14).
The vector C can be expressed as a function of the inclination of the spin axis
in the Cassini state KCS and the longitude of the ascending node hCS, both of
which are needed to specify initial conditions for numerical integrations (Table
1). We have

C = { sin hCS sin KCS, − cos hCS sin KCS, cos KCS } , (18)

with angles defined with respect to the J2000 ecliptic frame.

θ θCS K σ1 σ3 Λ1 Λ3

amin amin deg amin amin mR2/y mR2/y

CS w.o. planetary perturbations 0 0 i0 0 0 3
2 Cn Λ1(1− cos i0)

CS w. planetary perturbations θCS θCS KCS 0 σ3 CS
3
2 Cn Λ3 CS

1.5 1.5 7.029 0 2.67 13.306 0.1000

Non-CS equivalent to R&B (2004) 0 1.6 7.005 −3 0 13.305 0.0993
Table 1
Initial conditions for the spin-orbit variables corresponding to the Cassini state
(CS) without planetary perturbations (line 1), to the Cassini state with planetary
perturbations (lines 2 and 3), and to those of Rambaux and Bois (2004) transformed
to our variable set using equation (5) (line 4). The relevant epochs are J2000 (line
3) and 1969-07-01 (line 4). In the Cassini state, the rotation frequency is exactly
three halves of the revolution frequency n, which dictates the value for the spin
angular momentum Λ1. σ1 is the angle related to the libration in longitude. The
spin orbit variable σ3 (the difference in node longitudes) in the Cassini state is
equal to σ3 CS = h0−hCS , and the associated momentum Λ3 CS = Λ1(1−cos KCS).
Without planetary perturbations, the obliquity of Cassini state 1 is equal to 0 so
that the spin axis is aligned with the orbit normal.

In the integrations that follow, we wish to monitor possible departures from
the Cassini state. We define an angle ε that represents the angular deviation
between the spin axis S and the plane formed by the orbit pole O and Laplace
pole L:

sin ε =
O× L

||O× L ||
· S . (19)

The angle ε is a measure of the proximity of the spin axis orientation to the
coplanarity condition of the Cassini state. The spin pole leads the orbit pole
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when ε is positive while ε = 0 corresponds to the coplanarity condition of
the Cassini state. The angle ε should not be confused with the discrepancy
between the obliquity and the equilibrium obliquity θ−θCS. This last quantity
is difficult to evaluate since θCS is a priori unknown. The Cassini state is
reached when both conditions θ = θCS and ε = 0 are fulfilled. The obliquity
θ is the angle between S and O, hence the spin axis cannot be displaced from
the LO plane by more than θ degrees (|ε| ≤ θ).

Without planetary perturbations, the Cassini state is defined by θ = 0, im-
plying ε = 0. When the planetary perturbations are taken into account, the
vectors O and S vary with time. Therefore we numerically check at each
timestep how close the spin, orbit and Laplace poles are to coplanarity by
computing the angle ε.

5 Time evolution of the rotation variables

Having defined the formalism, the location of the Laplace plane, and the initial
conditions relevant to the Cassini state, we now tackle the time evolution of
the spin-orbit variables.

In the simplest case involving no planetary perturbations, Hamilton’s equa-
tions with respect to the conjugated variables yield four equilibrium values
that correspond to the Cassini states as shown by Peale (1974) and D’Hoedt
and Lemaitre (2004). One of the solutions, traditionally referred to as Cassini
state 1, has zero obliquity. D’Hoedt and Lemaitre (2004) have also shown that
motion around the equilibrium can be described to first order by a harmonic
oscillator. They derive two proper frequencies which are in agreement with the
numerical results of Rambaux and Bois (2004). Our development also repro-
duces the values of the two proper frequencies (1066 years and 16 years) for
similar assumptions on the moment of inertia (C = 0.34 mR2, while A and B
are derived from the nominal C20 and C22 from Mariner 10 (Anderson et al.,
1997)).

Our next step is to reproduce the results of Rambaux and Bois (2004) who
use a relativistic integrator for the spin-orbit motion of the 8 planets of the
solar system. In order to do so, we use the averaged Hamiltonian augmented
by terms accounting for planetary perturbations. With initial conditions cor-
responding to those of Rambaux and Bois (2004), we find that the obliquity
exhibits oscillations at the ∼1000-year period of the free spin precession. Our
model reproduces their figure 8 (Fig. 3, top). This set of initial conditions
(Table 1, line 4) does not correspond to a Cassini state. The time evolution of
other rotation variables such as the Euler angles also matches the results of
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Rambaux and Bois (2004). Both free precession and free libration are present
in the solution of the rotation angles. The free libration in longitude changes
the rotation velocity but does not affect the obliquity, which is related only
to the orientation of the spin axis is space. The obliquity oscillations are un-
derstood as a manifestation of the free precession. The obliquity oscillations
maintain a constant amplitude because there is no mechanism for damping
free motions in our formalism.

0. 1. 2. 3.
Time HkyL0.

1.

2.

3.

Θ
HaminL

b
0. 1. 2. 3.

-1.

0.

1.

2.

3.
Θ

HaminL
a

Fig. 3. Variation of Mercury’s obliquity over a period of 3000 years with pertur-
bations from external planets. (Top) Evolution with initial conditions identical to
those of Rambaux and Bois (2004), where the initial obliquity is 1.6 arcmin away
from the equilibrium obliquity. (Bottom) Evolution with an initial obliquity that is
0.1 arcmin away from the equilibrium obliquity. The dashed line is the angle ε that
represents deviations from the coplanarity condition of the Cassini state.

We investigated whether a poor choice of initial conditions for the integration
might be responsible for the obliquity variations and we performed integra-
tions with different sets of initial conditions. Although the amplitude of the
oscillations is indeed sensitive to initial conditions, we find that substantial
obliquity oscillations occur over a wide range of initial conditions. The bottom
panel in Fig. 3 shows a set of initial conditions where the initial obliquity is
closer to the equilibrium obliquity.

Initial conditions corresponding to the Cassini state do not result in obliquity
oscillations. If the system is started at the Cassini state (e.g. Table 1, line
2), the oscillations at the precession frequency do not appear. The libration
in longitude angle σ1, the spin angular momentum Λ1, and the obliquity θ
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remain quasi-constant while the other spin-orbit angle σ3, its conjugated mo-
mentum Λ3, and the ecliptic inclination K vary with time due to the orbital
motion, but without any oscillations. In this situation, the spin axis remains
in the Cassini state, even as the equilibrium location changes due to the or-
bital plane precession. The spin angular momentum Λ1 is constant because
the 88-day forced libration has been averaged out in our formalism.

The interpretation of these results is that planetary perturbations do not excite
free modes of rotation with large amplitudes. Rather, deviations from the
Cassini state result in a free precession of the spin axis whose signature is
apparent in the form of obliquity variations. The only way to avoid the creation
of a free precession and the resulting oscillations in obliquity is to start the
integration in the Cassini state. The obliquity oscillation is always centered on
the equilibrium obliquity and its amplitude is given by the angular deviation
from the Cassini state. This deviation is constant with time and may come
from an obliquity that is slightly different from the equilibrium obliquity θCS−
θ, from a deviation from the Cassini state coplanarity ε, or both.

Has Mercury reached the Cassini state? Peale (2005) has shown that the
timescale for the damping of the free modes due to internal energy dissi-
pation is ∼ 105 years. This is short with respect to the age of the solar system
but longer than the ∼ 104 year timescale of the Laplace plane reorientation.
Therefore the damping may drive the planet towards an equilibrium position
that is in fact a moving target and the Cassini state may never be reached.
Nevertheless, because the damping timescales are only slightly longer than the
orbital variation timescales, and because instantaneous Cassini state positions
never deviate far from each other (two orders of magnitude less than angu-
lar deviations between instantaneous Laplace planes), we anticipate that the
Cassini state has indeed been reached.

What one can say confidently on the basis of our integrations is that if Mercury
ever reached the Cassini state, it is likely to have remained in this state,
barring recent excitation processes. We have shown that the planet remains
in the Cassini state when the Laplace plane orientation changes smoothly on
104 year timescales, or equivalently when planetary perturbations are turned
on smoothly on 104 year timescales (section 6). The state is preserved because
of torques on the asymmetric planet.

We note that our Hamiltonian formalism does not capture short-period terms
due to the averaging process. We argue that the short-period terms cannot
produce large obliquity oscillations. For instance, full numerical integrations by
Rambaux and Bois (2004) show obliquity curves (their figure 11) with short-
period oscillations of less than 1 arcsec. Another assumption of our paper is
that the mutual interactions between planets can be neglected for the timescale
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considered (a few ky). These mutual interactions will affect the equilibrium
value for the obliquity (as shown on Fig. 2) and the position of the Cassini
state on a longer timescale. Over a few thousand years, the obliquity variations
computed using DE408 ephemerides are smooth and small (∼5 arcsec in 12
ky). Our assumptions are also supported by the results of Peale (in press).
Peale (in press) has shown by using planetary orbital ephemerides averaged
over 2000 years and including the mutual perturbations between planets, that
the position of the Cassini state changes with time as expected, that the spin
axis still remains within 1 arcsec of the Cassini state position, and that no
large amplitude oscillations are produced. Additionally he demonstrated that
if short-period terms are taken into account, because of the adiabatic invariant
theory, the spin axis remains within one arcsec of the Cassini state, provided
that the set of initial conditions is chosen in the Cassini state.

To summarize the results of our integrations of the spin-orbit motion in the
presence of planetary perturbations, we find that obliquity variations can ap-
pear in the form of a free precession if initial conditions do not coincide with
a Cassini state. Obliquity variations do not appear when initial conditions are
chosen carefully to represent a Cassini state.

6 Equilibrium obliquity in the Cassini state

The previous section illustrates that using initial conditions coinciding with
the Cassini state avoids the introduction of oscillations in the spin-orbit evo-
lution. How does one find the correct set of initial conditions? We showed in
section 4 that the Cassini state position can be derived from a knowledge of
the equilibrium obliquity θCS and the orientation of the Laplace plane. Here
we describe a numerical technique for obtaining θCS.

We start with a configuration free of planetary perturbations for which the
Cassini state is known and for which the obliquity is zero. We then add plan-
etary perturbations smoothly enough that the system preserves its Cassini
state configuration even though the orbital plane starts to precess. The trick
consists in turning on the planetary perturbations smoothly by gradually in-
creasing the masses of the perturbers while Mercury’s mass remains constant.
This effectively prevents the introduction of step functions in the integration.
Adding the planetary perturbations abruptly would create free modes as be-
fore. Our prescription for the evolution of perturber mass with time is a spline
function, starting at 0 and ending with the mass of each planet (Fig. 4).

If we choose as initial conditions the Cassini state valid in the absence of
planetary perturbations (Table 1, line 1) and gradually increase the perturber
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Fig. 4. Our prescription for a smooth evolution of the masses of the perturbers (top)
and the corresponding obliquity evolution (bottom) over a period of 10 ky. The
obliquity shows no oscillations when the perturber masses are increased gradually
and when the system is started in the perturbation-free Cassini state. The dashed
line shows the angle ε (in arcmin) between the spin axis and the plane defined by the
normal to the Laplace plane and the normal to the orbital plane, i.e. a measure of
the deviation from the coplanarity of the Cassini state. Departures from the Cassini
state remain small throughout the integration.

masses, we find that oscillations in the obliquity do not arise. Note that the
energy of the system is increasing with time in this configuration. The obliq-
uity increases smoothly, with roughly the same functional form as the gradual
increase in the masses of the perturbers (Fig. 4). In addition, the spin axis
remains very close to the Cassini state throughout the evolution: the spin axis,
the normal to the Laplace plane and the normal to the orbital plane remain
nearly coplanar. The maximum value for the angle ε is a few arcsec (Fig. 4,
dashed line). Due to the relatively fast evolution of the system (∼10 ky, only
about 10 spin precession periods), the planet is not able to reorient itself fast
enough and to keep up with the changes in orbital motion. The planet is
driven towards the Cassini state without rotating around it. The quality of
the match to the Cassini state improves for longer time constants in the time
evolution of the perturber masses. In other words, the gentler the introduction
of the perturbations, the closer the system remains to the Cassini state. We
find maximal angular deviations from the Cassini state ε of less than 4 arcsec
if the time constant for mass increase is about ten times the spin precession
period.

We also find that the system follows the Cassini state if we gradually turn
off the planetary perturbations by reducing the perturber masses to zero. The
obliquity returns to zero without oscillations, starting and ending in the exact,
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perturbation-free Cassini state.

Finally, we verify that obliquity oscillations appear if the system is integrated
from a spin position that is different from a Cassini state, even if planetary
perturbations are introduced gently as above. We chose initial conditions with
departures from the Cassini state of an arcmin or less and verified that the
obliquity exhibits oscillations at the proper frequency of ∼1000 yr (Fig. 5).
Here again, these oscillations are indicative of a free precession.
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Fig. 5. Evolution of the masses of the perturbers (top) and the corresponding obliq-
uity evolution (bottom) over a period of 10 ky with initial conditions that do not
coincide with a Cassini state. Note obliquity oscillations indicative of free preces-
sion. The dashed line represents the angle ε which measures the angular deviation
from the strict coplanarity of the Cassini state.

7 Influence of the moments of inertia on the obliquity

The value of the equilibrium obliquity θCS is needed to infer the size of the
core in Peale’s experiment. In this section, we compute how the moments of
inertia A, B and C affect the obliquity value and the Cassini state.

We investigate the dependence by numerically integrating Hamilton’s equa-
tions for different sets of A, B and C with gentle introduction of perturbations
to avoid a free precession. As previously noted by Peale (1988), we notice that
although the numerical values of the 3 moments of inertia are needed in the
Hamiltonian (or equivalently the C, C20 and C22 values), the obliquity value
that we obtain depends only on two combinations of the moments of inertia
(B − A)/C and (C − A)/C. If we restrict the variations of the moments of
inertia to the range of values provided by the Mariner 10 gravity data and
the C/mR2 value to the 0.325−0.38 range encompassing all plausible interior
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models (Harder and Schubert, 2001), the obliquity can take values between
1.2 and 2.9 arcmin (Fig. 6).
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Fig. 6. Obliquity vs the (B−A)/C and (C −A)/C ratios. The black and red boxes
show the allowable range for these ratios based on the Mariner 10 gravity data, with
C = 0.325 mR2 and C = 0.38 mR2, respectively.

Our numerical results for the obliquity in the Cassini state can be compared
with the solution of the analytical equation (12) where C20 = −C−(A+B)/2

mR2 and
C22 = B−A

4mR2 . We note that the solution to Eq. (12) -and therefore the inter-
pretation of future obliquity measurements- is highly dependent on the values
chosen for the parameters µ and ι. For A and B values corresponding to the
Mariner 10 gravity data, the obliquity ranges between 1.0 and 2.3 arcmin for
precession periods between 235 ky (secular value) and 328 ky (instantaneous
value) and orbit inclinations ι between 5.3◦ and 8.6◦ (Table 2). This large
range of values emphasizes the importance of characterizing the Cassini state
precisely. For instance, the values obtained from the secular analysis with-
out mutual interactions (µ = −2π/(235 ky), ι = 5.3◦), C = 0.34 mR2 and
the Mariner gravity values yield θCS = 1.45 arcmin using Eq. (12), in good
agreement with our numerical solution θCS = 1.49 arcmin. But this solution
is ∼0.2 arcmin away from the more accurate numerical solution θCS = 1.68
arcmin. Correct interpretation of future data obtained in support of Peale’s
experiment will require the use of the instantaneous Laplace plane and preces-
sion rate. With our best fit values for those parameters derived in section 3.2
(precession period of 328 ky and inclination ι = 8.6◦) and the Mariner 10 C20

and C22 values, we expect the present obliquity of Mercury to range between
1.60 and 1.87 arcmin depending on the polar moment of inertia.
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Precession period Inclination ι θ (arcmin)

(ky) (◦) C = 0.325 mR2 C = 0.34 mR2 C = 0.38 mR2

235 5.3 1.39 1.45 1.63

235 6.3 1.65 1.73 1.93

235 8.6 2.24 2.34 2.62

328 5.3 0.995 1.04 1.16

328 6.3 1.18 1.24 1.38

328 8.6 1.60 1.68 1.87
Table 2
This table illustrates that the equilibrium obliquity depends strongly on precession
parameters µ and ι. Values computed with Eq. (12) are given for different polar
moment of inertia, precession rates and different inclinations between the orbit
and the Laplace planes (ι = 6.3◦ corresponds to the invariable plane, ι = 5.3◦

to the secular Laplace pole and ι = 8.6◦ to the instantaneous Laplace pole). The
equilibrium obliquity for our best fit values is given in bold and is based on our
determination of the instantaneous Laplace plane (section 3.2). The C20 and C22

values are those of Anderson et al. (1987).

8 Conclusions

We have investigated several problems related to the spin-orbit motion of
Mercury, to the occupancy of the Cassini state, and to the applicability of
Peale (1976)’s experiment to the determination of core properties. We have
reproduced and augmented the Hamiltonian formalism developed by D’Hoedt
and Lemaitre (2004) to account for planetary perturbations on the spin-orbit
evolution of Mercury. This is accomplished by the addition of a secular poten-
tial that captures the long term effects of perturbations of exterior planets on
Mercury’s orbit.

The first application of this formalism is an analytical determination of the
Laplace plane. The coordinates of the Laplace pole from the purely secular
theory are λsec = −8.8◦, βsec = 87.8◦ with a precession period of 235 ky. We
also define an instantaneous Laplace plane and compute it using ephemerides.
This instantaneous Laplace pole is the most useful for data interpretation
and for numerical integrations since it takes into account the mutual pertur-
bations between planets and does not suffer from the approximations of the
secular theory. Our best fit values for the instantaneous Laplace plane are
λinst = 66.6◦, βinst = 86.7◦, with a precession period of 328 ky and an in-
clination ι = 8.6◦. The error bars on these quantities are ∼50 ky and 1.2◦.
However, the equilibrium obliquity (e.g. using Peale (1981)’s equation) is not
largely affected by these error bars (uncertainty less than 1 arcsec). We note
that the equilibrium obliquity depends strongly on the values assumed for the
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precession rate and inclination between the orbit and the Laplace planes. For
instance, equilibrium obliquity values range from 1.0 to 2.3 arcmin for pre-
cession periods from 235 ky to 328 ky and for inclinations between 5.3◦ and
8.6◦. This illustrates the importance of choosing the proper Laplace plane and
precession period for a correct interpretation of Mercury interior properties in
terms of observed spin-orbit parameters. We find an equilibrium obliquity for
nominal parameters of θCS = 1.68 arcmin.

We have developed a set of geometrical constraints and a numerical technique
for identifying the position of the Cassini state. The main idea is to start
from the known, perturbation-free Cassini state and to turn on planetary
perturbations smoothly by gradually increasing the masses of the perturbers.
At the end of the integration, one can identify the position of the Cassini state
which can be used as a starting point for other integrations.

The Hamiltonian formalism with a particular set of initial conditions can re-
produce the numerical results of Rambaux and Bois (2004) that show thousand-
year oscillations in the obliquity of Mercury with an amplitude of 1.6 arcmin.
We have demonstrated that such oscillations result from the choice of initial
conditions rather than from the effect of planetary perturbations. Initial con-
ditions that do not correspond to a Cassini state lead to the introduction of
obliquity variations in the form of a free precession, i.e. if Mercury is displaced
slightly from the Cassini state, the planet oscillates around it and some free
motions appear. The amplitude of the obliquity oscillations is equal to the
initial deviation from the Cassini state. If initial conditions representative of a
Cassini state are chosen, the spin axis remains very close to the Cassini state,
and the obliquity shows no large-amplitude variations.

Our results are obtained without adding any damping or dissipation in the
model. The damping period of the free precession is short compared to the
age of the solar system (Peale, 2005), but long compared to the free precession
period (∼1 ky) and to that of the reorientation of the Laplace plane (∼ 10
ky). The damping has likely lead the spin axis to a spin position very close
to that of an instantaneous Cassini state. Once the planet has reached the
Cassini state, the torques resulting from tidal dissipation and/or dissipation
at a liquid core-solid mantle boundary will restore the spin to the Cassini
state if it is displaced for any reason (Peale, 2005). In the absence of active
or recent excitation processes, Mercury’s obliquity will therefore remain quasi
constant over thousand-year timescales. This configuration satisfies one of the
important requirements for the measurement of the size of the core of Mercury
with the scheme proposed by Peale (1976).
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