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Abstract

The shaking of Mercury’s orbit by the planets forces librations in longitude in addition to those at harmonics of
the orbital period that have been used to detect Mercury’s molten core. We extend the analytical formulation of
Peale et al. (2009) in order to provide a convenient means of determining the amplitudes and phases of the forced
librations without resorting to numerical calculations. We derive an explicit relation between the amplitude
of each forced libration and the moment of inertia parameter (B − A)/Cm. Far from resonance with the free
libration period, the libration amplitudes are directly proportional to (B−A)/Cm. Librations with periods close
to the free libration period of ∼12 years may have measurable (∼arcsec) amplitudes. If the free libration period
is sufficiently close to Jupiter’s orbital period of 11.86 years, the amplitude of the forced libration at Jupiter’s
period could exceed the 35 arcsec amplitude of the 88-day forced libration. We also show that the planetary
perturbations of the mean anomaly and the longitude of pericenter of Mercury’s orbit completely determine the
libration amplitudes.

While these signatures do not affect spin rate at a detectable level (as currently measured by Earth-based
radar), they have a much larger impact on rotational phase (affecting imaging, altimetry, and gravity sensors).
Therefore, it may be important to consider planetary perturbations when interpreting future spacecraft observa-
tions of the librations.

1 Introduction

Mercury is in a resonant state in which two revolution periods are equal to three rotation periods. This resonant
state leads to librations in longitude whose periods are harmonics of the orbital period (88 days, 44d, 29d, etc.).
These librations are due to the gravitational torque of the Sun on the permanent flattening of the planet. The
amplitude of the 88-day libration is proportional to the moment of inertia ratio (B −A)/Cm where A < B are
the moments of inertia of the planet and Cm is the moment of inertia of the silicate shell about the spin axis.

Additionally to these main librations, Mercury also experiences planetary forced librations, due to the per-
turbations on the orbital motion of Mercury induced by the other planets. Therefore the associated periods are
related to the orbital motion of the biggest planet (Jupiter) or to planets close to Mercury (Venus or the Earth).
Peale et al (2007, 2009) give the amplitudes of these long-period forced librations using a numerical integration
of the differential equations of motion while Dufey et al (2008, 2009) got the same amplitudes with an analytical
study based on a Hamiltonian approach and Lie transforms. However for both of the above methods, a new
calculation is necessary to determine the amplitudes for each specific value of (B −A)/Cm.

In this study, we give an analytical formulation for all the long-period forced librations of Mercury. This
model is a generalization of the harmonic oscillator model given in Peale et al (2009) for the 11.86 year libration.
The harmonic oscillator is damped by the core-mantle interactions and tidal dissipation and is periodically forced
by the planetary perturbations of the orbit.



Small planetary perturbations affecting the orbit of Mercury may produce non-negligible forced librations if
their frequency is not too far from the free libration frequency. The planetary perturbations whose frequency
is far away from the free libration frequency will force negligible librations. The main orbital elements leading
to forced librations are the longitude of the pericenter of Mercury ̟ and its mean anomaly M , whereas the
perturbations of the semi-major axis and eccentricity yield negligible contributions.

Since Jupiter’s orbital period of 11.86 years is within the 1σ uncertainty of the free libration period of ∼ 12
years consistent with the radar determination of (B − A)/Cm, a near resonance occurs with the free libration
period for the 11.86 year orbit perturbation. So the amplitude of the forced libration at Jupiter’s period could
exceed the 35 arcsec amplitude of the 88-day forced libration (Peale et al. 2009, Dufey et al., 2008 and 2009).
This happens whether the free libration is excited or not. The analytically determined amplitude of the 11.86
year forced libration as a function of proximity to resonance with the free libration period determined by the
value of (B − A)/Cm produces the numerically determined amplitude precisely on both sides of the resonance.
Peale et al (2009) did not produce such a good fit because of a slight mismatch in the numerical and analytical
libration angle definitions.

Since the free libration frequency is proportional to the square root of the moment of inertia ratio, our model
provides a convenient means of determining the amplitudes and phases of the forced librations as a function of
the moment of inertia parameter (B −A)/Cm without resorting to numerical calculations. We derive an explicit
relation between the amplitude of each forced libration and (B−A)/Cm, which amplitude is directly proportional
to this parameter far from resonance with the free libration period.

The amplitude of the librations in longitude caused by the planetary perturbations of the orbit affect the
spin rate at a level that may be too small to be detectable in the radar data. However, the angular orientation
of Mercury about its spin axis may be monitored sufficiently precisely by ongoing and future spacecraft in orbit
about Mercury to discern the amplitudes of at least the larger forced librations. Measurement of these ampli-
tudes, especially that of the near resonant 11.86 year period, provide independent constraints on (B − A)/Cm,
and will thereby reduce the uncertainty in this parameter.

We developed the model of a damped harmonic oscillator forced at the planetary frequencies and defined the
libration angles more precisely in section 2. The forcing due to the planets and the orbit perturbations is given in
section 3. Then we discuss the libration amplitude (section 4) and phase (section 5). The link with the moments
of inertia ratio is investigated in section 6. Our model is synthesized in section 7 then fitted on the radar data in
section 8.

2 Mercury’s mantle as a damped harmonic oscillator forced at the

planetary frequencies

We consider Mercury as a two layer planet. At the considered timescale, it is commonly assumed that only the
solid, upper part participates in the librations.

The motion of the mantle of Mercury due to the Sun, without any dissipation, is given by (e.g. Murray and
Dermott, 1999):

ψ′′

m(t) =
3(B −A)GMS

2Cm

sin(2f(t) + 2̟(t)− 2ψm(t))

r(t)3
(1)

where the angle ψm(t) is the rotation angle of the mantle, it gives the orientation of the axis of minimum moment
of inertia of the mantle relative to an inertial line joining the Sun to the intersection between the ecliptic and the
orbital plane at J2000. f(t) is the true anomaly, M(t) is the mean anomaly, a(t), e(t) and ̟(t) are the classical
orbital elements, r(t) is the distance between Mercury and the Sun, A < B < C are the principal moments of
inertia, Cm the mantle moment of inertia. MS is the mass of the Sun, G the gravitational constant. The angles
are plotted in Fig. 1. The obliquity of Mercury is assumed to be 0 so that the equator and Mercury’s orbit are
equal.

Let’s define the angle γm(t) as:

ψm(t) = γm(t) + 1.5M(t) +̟(t) . (2)

The main component of the rotation angle ψm(t) is the sidereal rotation of Mercury while the angle γm(t) is
convenient to use in the following equations because it oscillates around 0 with a small amplitude and does not
have any secular motion. The angle ψm(t) references the rotation of Mercury with respect to an inertial line
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Figure 1: The angles used in our model. M is Mercury, SX is an inertial line between the Sun and the intersection
between the ecliptic and the orbital plane at J2000. ψm is the angle between SX and the axis of minimum moment
of inertia. The right graph shows Mercury at pericenter (M = f = 0). At pericenter, the angle ψm −̟ is equal
to γm.

while the angle γm(t) combines both the rotation and the revolution. Because the definition of γm(t) includes the
mean anomaly (see Eq. 2), this angle does not have any simple geometrical interpretation, except at pericenter
where ψm = γm +̟ (see the right part in Fig. 1). We can think of γm(t) as a libration of the axis of minimum
moment of inertia of Mercury about the Mercury-Sun line when Mercury is at perihelion (Fig. 1).
Then Eq. 1 becomes

γ′′m(t) + 1.5M ′′(t) +̟′′(t) =
3(B −A)GMS

2Cm

sin(2f(t)− 3M(t)− 2γm(t))

r(t)3
. (3)

Replacing the distance between the Sun and Mercury r(t) and also the cos f and sin f with series of eccentricity
functions G20q of Kaula (1966), we have

γ′′m(t) + 1.5M ′′(t) +̟′′(t) = −
∑

q

3(B −A)GMSG20q(e)

2Cm a(t)3
sin(2γm(t) + (1− q)M(t)) . (4)

The free libration frequency w0 can be easily obtained for q = 1 if the variations in the orbital elements are
neglected:

w0 = n
√

3(B −A)G201(e)/Cm (5)

where n is the mean motion n =
√

GMS/a3 and G201(e) = 7 e/2− 123 e3/16 + O(e5). The other q values give
the forced librations with periods equal to the harmonics of the orbital period.

Since we are looking at the long-period librations, the classical technique of averaging over one orbit period
(88 days) is used and the short-period librations are neglected.

γ′′m(t) + 1.5M ′′(t) +̟′′(t) ≈ −
3(B −A)GMSG201(e)

Cm a(t)3
γm(t) (6)

The main perturbation of the time evolution of the angle γm(t) after integration of the differential equation
(6) is due to the 1.5M ′′(t)+̟′′(t) term in the left hand side. In the right hand side, the variations in the orbital
elements change the value of G201 through e(t) in the numerator and also a(t)3 in the denominator. Since these
two quantities are multiplied by the small quantity γm(t) (usually a few tens of arcseconds), their variations do
not affect largely the evolution of the angle γm(t) (second order perturbations).

We define the orbital variable λ(t) as

λ(t) = 1.5M(t) +̟(t). (7)

If wi are the frequencies of the changing orbital motion of Mercury, the periodic part of M(t) can be expressed
as

∑

iMi cos(wit+ φMi
) and the periodic part of ̟(t) as

∑

i̟i cos(wit+ φ̟i
). The new combination of orbital



elements can be expressed as a sum of planetary frequencies

λ(t) = λ0 + λt t+
∑

i

λi cos(wit+ φλi
) . (8)

λ0 and λt are the initial value and secular increase respectively of the angle λ(t) and are not used in the
following development. The coefficients of the frequency development λi and φλi

are related to the corresponding
development for M(t) and ̟(t) by the following relations:

λi =

√

9

4
M2
i +̟2

i + 3̟iMi cos(φMi
− φ̟i

) (9)

and

tanφλi
=

1.5Mi sinφMi
+̟i sinφ̟i

1.5Mi cosφMi
+̟i cosφ̟i

(10)

All the amplitudes in this paper are chosen positive, the sign being included in the phase. The second derivative
of the orbital variable λ(t) is

λ′′(t) = 1.5M ′′(t) +̟′′(t) = −
∑

i

w2
i λi cos(wit+ φλi

) , (11)

λ′′(t) is the forcing of the system due to the planets. If we add the tidal and core-mantle dissipation (Peale et al,
2009), Eq. 6 becomes

γ′′m(t)−
∑

i

w2
i λi cos(wit+ φλi

) = −
3(B −A)GMSG201(e)

Cm a3
γm(t) −

(
F

Cm n
+

k

Cm

)

γ′m(t)−
F D

Cm
+

k

Cm
γ′c(t)

︸ ︷︷ ︸

dissipation

(12)
where γc(t) is the libration of the core, k is a constant coupling the core and the mantle, F is a constant depending
on the mantle properties and shape and D a function of the eccentricity.
The dissipation parameter is defined as b = F/(Cmn) + k/Cm.

If γ′c(t) can be neglected, Eq. 12 is the equation of a damped harmonic oscillator forced at the frequencies wi.
The constant term −F D/Cm from the tidal dissipation leads to a small shift in the center of libration (Peale et
al 2007), which will be neglected.
The well-known solution of the damped harmonic oscillator forced sinusoidally at the wi frequency is

γm(t) = exp(−b t/2)D′

fl cos(w
′

0t+ φfl) +
∑

i

γi cos(wit+ φi) (13)

where w′

0 =
√

w2
0 − b2/4, φfl and D

′

fl are determined by the initial conditions. The first part of the solution of
γm(t) is the free libration while the second part is the response to the orbital forcing.
The phase of the planetary libration φi = φλi

+ φRi is the sum of the planetary phase and the phase of the
oscillation relative to the driving force where the phase φRi is given by

sinφRi = −wi b/
√

(w2
0 − w2

i )
2 + w2

i b
2

cosφRi = (w2
0 − w2

i )/
√

(w2
0 − w2

i )
2 + w2

i b
2 (14)

If the dissipation is neglected, the phase φRi is 0 for the frequencies smaller than the free libration frequency and
is 180◦ for the frequencies above w0.
The amplitude γi due to the planetary perturbation of the orbit is

γi = λi w
2
i /
√

(w2
0 − w2

i )
2 + w2

i b
2 . (15)

When w0 < wi and the frequency wi is far from the resonance frequency w0, since b is small with respect of
wi, the coefficient γi (Eq. 15) is reduced to

γi ≈ λi

(

1 +
w2

0

w2
i

)

≈ λi

(

1 +
(B −A)

Cm

3n2G201(e)

w2
i

)

. (16)



When w0 > wi and if the frequency wi is far from the resonance frequency w0, the coefficient γi is γi ≈
λi

w4

0

(w4
i + w2

0w
2
i ).

However the γm angle is difficult to interpret. The rotation variation angle ψm(t) is more relevant in most
cases. For example, the amplitudes of Table 1 in Peale et al (2009) are given for the angle ψm(t). The link
between the amplitude of these two angles ψi and γi is

ψi =
√

γ2i + λ2i + 2γiλi cosφRi . (17)

For w0 ≪ wi and no dissipation, the amplitude ψi becomes:

ψi ≈ γi − λi ≈
λi
w2
i

(B −A)

Cm
3n2G201(e) . (18)

For w0 ≫ wi, the amplitude ψi is ψi = γi + λi.
The phase of ψm(t) is given by:

tanφψi
=
γi sin (φλi

+ φRi ) + λi sinφλi

γi cos (φλi
+ φRi ) + λi cosφλi

. (19)

Again, without dissipation, this angle is reduced to φψi
≈ φλi

+ φRi .

3 The forcing due to the planets

The amplitudes (̟i and Mi) and the phases (φ̟i
and φMi

) of the orbital elements can be found for each wi
frequency on an interval close to the J2000 epoch. The dominant variations in the λ variable are plotted in
Fig. 2 and the numerical values are given in Table 1. The ephemeris used is the DE408 and the method used is
a Fourier analysis. Using another ephemeris or another method will slightly change the forcing amplitudes but
the corresponding changes for the libration amplitudes will also be very small (smaller than 0.1 as).

period Forcing ̟i φ̟i
Mi φMi

λi φλi

2π/wi (y) argument (10−5 rad) (deg) (10−5 rad) (deg) (as) (deg)
5.663 Venus (2λM − 5λV ) 1.64 271 5.19 88 12.7 87
5.932 Jupiter (2λJ) 3.51 183 3.73 4 4.31 4
6.575 Earth (λM − 4λE) 0.29 159 0.64 334 1.40 332
11.864 Jupiter (λJ ) 0.75 21 0.92 187 1.40 170
14.727 Saturn (2λS) 0.42 215 0.45 35 0.52 35
1.110 (λM − 2λV ) 2.16 56 3.90 235 7.59 235
1.380 (λM − 3λV ) 1.20 52 0.93 230 0.40 222
0.251 0.41 351 0.53 171 0.79 172
0.555 (2 λM − 4λV ) 0.40 199 0.59 18 1.01 17
0.465 0.37 218 0.53 38 0.88 38
3.954 (3λJ ) 0.37 214 0.39 34 0.72 160
0.615 0.35 196 0.45 16 0.65 16
0.292 0.32 127 0.53 305 0.97 305
0.241 0.32 266 0.41 86 0.62 86

Table 1: Planetary perturbations of Mercury’s orbit and amplitudes of the λ(t) = 1.5M(t) +̟(t) angle. The
five waves that give the largest forced librations are given above the line, others perturbations are given below

the line.

The annual perturbation due to Jupiter is λ11.86y = 1.4 as (see Table 1). This is smaller than the semi-annual
perturbation due to Jupiter whose period is 5.93 years. The phase of ̟i is approximately opposite to the phase
of Mi for each frequency.
In Table 1, the correspondence between the frequencies and the forcing arguments (a combination of the longitudes
of the planets) is only tentative and is not exact because the frequencies come from a numerical Fourier analysis
and not from an analytical theory. Numerically, close frequencies in the orbital theory may be combined into a
single perturbation.
Using the same ephemeris, the variations in the semi-major axis and in the eccentricity for the wi frequencies are
smaller than 10 meters and 1.5 × 10−6 respectively. This strengthens our simplifying hypotheses of neglecting
the small variations in a(t) and e(t) in the harmonic oscillator model for the motion of the mantle.
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Figure 2: The 25 largest amplitudes of the orbital variable λi and their frequencies wi around the J2000 epoch.
The perturbations that mostly affect the libration in longitude are labeled with a letter corresponding to the
perturbating planet (E for the Earth, S for Saturn, J for Jupiter and V for Venus).

4 The libration amplitude

In order to have a significant long-period forced libration at some orbital frequency wi, two conditions must be
fulfilled at the same time: the amplitude of orbital variable λi at the orbital frequency wi must be large (see
previous section and the amplitudes in Table 1), and the forcing frequency has to be close to the free libration
frequency. In this section, we present the response to the driving perturbation and the corresponding libration
amplitude.

The amplitude γi is given by Eq. 15 and is proportional to the amplitude of the orbital variable λi. The factor
is w2

i /
√

(w2
0 − w2

i )
2 + w2

i b
2. This factor is large if the forcing period is close to the free libration period.

If the (B − A)/Cm ratio has the nominal value of 2.03 × 10−4 as determined by Margot et al (2007), the free
libration frequency w0 value is 0.52 rad/y and its period is 12.07 years. For frequencies within 0.2 rad/y of this
nominal resonant frequency, the orbit perturbation is multiplied by a factor larger than 1.
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Figure 3: Rotation angle amplitude normalized by the amplitude of the planetary perturbation of the orbit λi as
a function of the frequency w. The quantity plotted is the ratio of ψi/λi which is

√

1 + γ2i /λ
2
i + 2γi/λi cosφRi .

The planetary frequencies wi are indicated with dots and are labeled. The nominal free libration period w0 for
the nominal value of (B −A)/Cm from radar data and its uncertainty is also shown. The damping parameter b
is large (5× 10−4/y).

Figure 3 shows the rotation angle amplitude normalized by the amplitude of the planetary perturbation of
the orbit for a range of frequencies, including the planetary frequencies wi in Table 1. The figure also shows the
resonance with the free libration for periods close to 12 years. On the left part of the resonance corresponding



to high periods, this ratio tends to 1 while on right hand side of the resonance, far from w0, this ratio tends to
0, meaning that any short-period perturbation of the orbital variable produces negligible libration for the angle
ψm. These limits are independent of the damping. Far away from the resonance, the dissipation parameter b can
be neglected.
However between these two limits, there are a few orbital frequencies that leads to libration amplitude above 0.5
arcsecond (see the numerical values in Table 2). These five waves are Saturn (14.73y), Jupiter (11.86y and 5.93y),
the Earth (6.57y) and Venus (5.66y). Their amplitudes are 1.6, 40, 1.4, 0.6 and 3.6as respectively. Depending on
Mercury’s moments of inertia, the amplitude of the w11.86y libration due to Jupiter can be larger or smaller. The
four other modes do not have very large amplitude because their period is not very close to the resonance, but
their response is still non-negligible, and they need to be taken into account into future data analysis. Saturn
(w14.7y) perturbation is the only large wave on the left hand side of the resonance.

period w2
i λi ψi γi ψi wi

2π/wi (y) (as/y2) (as) (as) (as/d)
Venus 5.66 15.6 3.59 16.28 0.011
Jupiter 5.93 4.8 1.37 5.68 0.004
Jupiter 11.86 0.4 40.25 41.65 0.058
Earth 6.57 1.2 0.58 1.94 0.002
Saturn 14.72 0.1 1.6 1.07 0.002

1.11 243.3 0.06 7.66 0.0015
0.55 129.3 0 1.01 0.0001
0.29 457.3 0 0.99 0
0.46 161.3 0 0.88 0
0.25 497.7 0 0.79 0
0.4 181.2 0 0.72 0
0.62 68.1 0 0.65 0
0.2 648.7 0 0.64 0
0.24 420.2 0 0.62 0
3.95 1.1 0.05 0.5 0.0002

Table 2: The amplitudes of the largest long-period forced librations for the nominal value of the moments of
inertia ratio. The five librations above 0.5 as are given above the horizontal line. The amplitudes are given for
the rotation angle ψi and the angle γi (see the text for definition). The last column gives the amplitude of the

libration rate.

Even if Fig. 3 shows a continuous curve, the librations cannot happen for any value of the frequency w, only
the frequencies forcing the system (the planetary frequencies wi) can be seen. These five periods are usually the
only ones to be considered because their amplitude in the orbital theory is non negligible (see Table 1 and Fig. 2)
and their period is sufficiently close enough to the free libration period. The orbital elements of Mercury have
a lot of perturbations whose periods are shorter than two years. But they are far away from the resonance and
the libration amplitude is much smaller than 1 as. For example, Venus induces a large variation in the λ orbital
variable with an amplitude of 7.6 as at the 1.11y period. Since this frequency is far away from w0, this forcing
frequency induces a libration with a negligible amplitude. However if the rotation measurements become more
precise, the other frequencies should be taken into account by the same model.

The amplitude at the resonance will not be infinite because there is always some damping (see Eq. 15). The
maximal amplitude for γ(t) is λi w0/b. The coefficient of λi can be large as 1100 for w0 = wi = 2π/11.86y and
for a very high damping with a damping parameter b of 5× 10−4/y. For more reasonable damping, the damping
parameter b is about 10−5/y (the free libration is damped with a time scale of about 2×105 years, Peale 2005) and
the maximal value of the amplitude is even larger. Therefore a small perturbation due to Jupiter of the orbital
variable of Mercury with λ11.86y = 1.4 as may induce a large effect in the libration angle. The parameters related
to the dissipation have a large theoretical uncertainty, but this uncertainty affects very slightly the libration
amplitudes. For example, if the dissipation parameter value is multiplied by a factor 10, the only amplitude that
will decrease by more than 0.2 as is the 11.86 year libration if the free libration frequency is between 0.528 and
0.531rad/y (corresponding to a period interval of 0.06 year).
All the plots in this paper have been computed with a large dissipation parameter b of 5× 10−4/y.
Because of the damping, the free libration period changes from 2π/w0 to 2π/w′

0. The difference is very small: 50



seconds for a high damping, even less if the damping value is reasonable. The shift of the libration phase due to
the dissipation F D/Cm (see eq. 12 or Peale et al 2007) for a reasonable value k2/Q of 0.004 is about 1.5 as.

5 The libration phase

Figure 4 shows the phase shift relative to the driving force φRi as a function of the frequencies w (Eq. 14). This
quantity has to be added to the orbital perturbation phase in order to get the libration phase.
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Figure 4: Phase shift relative to the driving force φRi as a function of the frequency w.

Far from the resonance period, the phase shift is equal to 0 for frequencies wi smaller than w0 or 180◦ for
frequencies larger than w0. Close to the resonance with the w0 frequency, the phase shift decreases rapidly from
0 to −180 degrees when frequency w increases. The speed of decrease is a function of the dissipation parameter
b. If the damping decreases from our large b value and is closer to the expected damping, the transition from 0◦

to -180◦ becomes even more abrupt. Very close to the resonance, a change in the dissipation will affect more the
phase than the amplitude of the 11.86 year libration. For example, if w0 is in the [0.528, 0.531] rad/y interval,
the phase change will be larger than 2◦ if the dissipation is multiplied by a factor 10.
This opposite phase lag is important for the definition of ψi (see Eq. 17) because it changes the sign of the λi
contribution. If the frequency wi is smaller than the free libration frequency w0 (left side of the resonance) then
ψi ≈ γi + λi; while if the frequency is larger than w0 (right side of the resonance) then ψi ≈ γi − λi. On the left
side of the resonance, when frequencies are decreasing, the γi libration amplitude tends to the 0 value while on
the right part of the resonance when frequencies are increasing, γi tends to λi. Because of this 180◦ phase shift,
the behavior of the ψm amplitude is the opposite: for small frequencies, it tends to λi while for large frequencies,
it tends to 0.

6 Link with the moment of inertia ratio

The free libration frequency w0 is proportional to the square root of the moment of inertia ratio (see Eq. 5).
Therefore we can investigate the link between the forced libration amplitudes and the moment of inertia. It is
worth to study this resonance in detail since the orbital period of Jupiter is in the 1σ uncertainty interval for the
free libration period based on (B −A)/Cm ratio determined with the radar data.

If the (B − A)/Cm ratio increases from the nominal value, the resonant frequency w0 moves to the right in
Fig. 3 and the 11.86y libration amplitude is larger since it is closer to the resonant frequency. Then after the
passage through the resonance, its amplitude decreases.

The libration amplitude given by Eq. 15 is plotted in Fig. 5 as a function of the (B − A)/Cm ratio for the
different planetary frequencies wi. The amplitude of the 11.86y libration is large because of the resonance effect
with the free libration when the (B −A)/Cm ratio is close to 2.1× 10−4.
Equation (18) shows that the amplitudes of the long-period forced libration for frequencies larger than w0 are,
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Figure 5: Amplitude (in arcsecond) of the forced librations ψm(t) due to the planets as a function of the (B −
A)/Cm ratio for Mercury. The nominal value for this ratio of 2.03 × 10−4 is shown and the interval is the 1σ
uncertainty around this value from Margot et al (2007). This plot has been computed for an eccentricity value
at J2000 epoch (e = 0.2056). The 88-day and 44-day physical libration amplitudes has also been plotted using
thin lines. A logarithmic scale is used. The small dots are the results of the numerical integration.

with a good approximation, proportional to the moment of inertia ratio. These linear trends can be seen on
Fig. 5 for most of the frequencies. For Venus, the amplitude goes from 3.31 as to 3.86 as in the 1σ uncertainty
interval around the (B −A)/Cm ratio.
The small dots in Fig. 5 are obtained from a numerical integration of the equations of motion similar to the one
performed in Peale et al (2009). They are very close to the values of our theoretical model. The fit is better
here than in figure 6 of Peale et al (2009), because in this latter paper, the numerical amplitudes of ψ11.86y were
compared to the analytical solution γ11.86y.

The resonant effect with the 11.86y planetary period is maximal if (B −A)/Cm is equal to 2.1× 10−4. Since
this ratio is between 1.91× 10−4 and 2.15× 10−4 (1σ interval of Margot et al, 2007), the free libration period is
likely between 11.7 and 12.5 years (1σ) and a large resonant effect with another planetary frequency (like Venus,
the Earth, etc) is not possible. In order to have another planetary period equal to the free libration period, the
(B−A)/Cm ratio should be well outside the 3σ interval, it should be at least three times larger than the present
value. It has to be equal to 9.2× 10−4, 8.4× 10−4 and 6.8× 10−4 respectively in order to be resonant with the
5.66y (Venus), 5.93y (Jupiter) and 6.57y (Earth) planetary periods. For Saturn (14.73 y), this ratio should be
much smaller (1.36 × 10−4) than the measured value. Additionally, the (B − A)/Cm ratio should be 20 time
larger (again very far from the prediction) so that the libration amplitudes due to the other short-period terms
(like the 1.1 year libration) are above the level of one arcsec.

The 88-day libration is also a function of the (B−A)/Cm ratio, is plotted as a thin line in Fig. 5. Its amplitude
is related to the moment of inertia by the following well-known equation (e.g. Peale 1972)

A88d libration =
3 (B −A)

2Cm
(1− 11 e2 + 959 e4/48 + . . .) . (20)

We see from Fig. 6 that the only libration phase affected by a change of moment of inertia value is the 11.86y
libration. The phases for the other periods are almost constant, the variation is less than 0.1◦.
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Figure 6: Phase (in degree) of the forced librations due to the planets as a function of the (B −A)/Cm ratio.

7 The model for the libration angle

Over an interval of a few tens of years around J2000, the angle ψm(t) can be modeled by the following formulation:

ψm(t) = ψ0 + (1.5n0 +̟t) t+
∞∑

i=1

Ai sin (i n0 t) +
∞∑

i=1

ψi cos (wi t+ φψi
) , (21)

where ̟t is the mean angular velocity of the longitude of the pericenter ̟(t). The first sum includes the forced
libration with frequencies multiples of 2π/88 days. This sum is infinite but practically, four waves are sufficient
to explain 99.5 % of the signal. A similar truncated sum has been proposed to improve the orientation model of
Mercury (Margot, 2009). The amplitudes Ai are given by a combination of two Kaula’s eccentricity functions.

Ai =
1

i2
3 (B −A)

2Cm
(G2 0 1−i(e)−G2 0 1+i(e)) . (22)

Eq. 22 follows from the expansion of Eq. 4 in terms of the mean anomaly.
The second sum includes the forced librations due to the planetary perturbations of the orbit, given in the pre-
vious sections. Again a very large number of terms is included in the summation, but practically using the five
main terms instead of the full series gives an error smaller than 0.2 as for the rotation angle ψm(t), and an error
up to 0.6 as/y for the angular velocity ψ′

m(t).
Since the damping period of the free libration is short with respect of the age of the Solar System (Peale, 2005)
and since no efficient excitation mechanism has been proposed up to now, the free libration is assumed to be
damped in this study. Otherwise another term with frequency w′

0 and with an undetermined amplitude and
phase should be added to Eq. 21.

The libration rate ψ′

m(t) is obtained by taking the derivative of Eq. 21 with respect to time. Because of the
time derivative and because each libration amplitude has to be multiplied by the frequency wi, the short-period
perturbations have a larger effect on the libration rate than on the libration angle. Therefore additional planetary
perturbations of the orbit like the 1.11y perturbation have to be taken into account for highly precise rotation
rate modeling. The libration rate values are given in Table 2 in the last column. The sum of all the short-period
terms below the horizontal line in Table 2 goes up to 0.002 as/d for ψ′

m(t).

The residuals between the numerical integration and the sum of trigonometric function for the rotation angle
ψm(t) is less than 0.2 as. Since the original signal is of the order of 1 rad or 2× 105 as, this means that at least
6 digits are correct. For the temporal evolution of ψ′

m(t), the difference is less than 0.014 as/d. ψ′

m(t) is close
to 39 rad/y = 2.2 × 104 as/d. Again, at least 6 digits are correct. The radar measurement uncertainty on the
instantaneous spin rate is of order one part per 105 (uncertainty on ψ′

m(t) of about 0.14 as/d for the X-band data
to 1.3 as/d for the S-band data).

Figure 7 shows the time evolution of the planetary part of the libration angle ψm(t) for different moment of
inertia ratios. The lower panel shows the time evolution of the libration angular velocity.

A small variation in the moment of inertia ratio produces a large difference in the temporal evolution of the
libration angle because of the resonance with the 11.86y libration. The difference between the 11.86y libration
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Figure 7: Temporal evolution of the planetary librations in the libration angle ψm(t) (top) and of the libration
angular velocity ψ′

m(t) (bottom) for different moment of inertia ratios (r = 104 (B−A)/Cm). The librations with
shorter period are more visible in the angular velocity than in the libration angle.

and the sum of the 5 main librations is small (a few arcseconds). The difference increases if the angular velocity
is considered.
The 88-day forced libration and the librations due to the planetary perturbations of the orbit are comparable
in amplitude (about 40 as) for a reasonable moment of inertia value. However the amplitudes of the angular
velocity are completely different: about 3 as/d for the 88d amplitude of the angular velocity and only 0.07 as/d
for the planetary amplitude. This is due to the large difference in the libration periods. If an orbiter measures
angular displacements over a few Mercury orbits, the measurement will be very much affected by the long-period
librations. If a radar antenna measures the spin rate, the measurement is largely insensitive to the (much smaller)
effect of the long-period libration on spin rate.

8 Fit of the moment of inertia ratio on the radar data

Margot et al (2007) fitted their radar data with two models, both of which are consistent with the data. In their
one-parameter model, they fit for the amplitude of the librations using a rotation model containing the 88-day
libration and its harmonics. They find a best fit (B − A)/Cm value of 2.04 ± 0.06× 10−4 (1σ uncertainty). In
their second model, they considered long-period librations but chose to be agnostic about their origin, allowing for
the possibility of a free libration. This second model is fully dynamical and requires three parameters, but does
not include the planetary perturbations of the orbit investigated here. Their second model yields a (B −A)/Cm
value of 2.03 ± 0.04× 10−4. Here we use the full model with the librations due to the planetary perturbations
of the orbit (see previous section) in order to find the best fit moment of inertia ratio and its uncertainty. This
model has only one free parameter. The moment of inertia ratio control the amplitudes of the 88d libration and
its multiples, the amplitudes of the long-period forced librations and their phases. We do not consider any free
libration in our model. The radar data cover a time span of about 4.5 years after the calendar year 2002.

We use the numerical solution of the differential equation for the motion of the mantle. Figure 8 shows the
radar data and their uncertainties superposed with the solution of the numerical integration of ψ′

m(t) for different
moment of inertia ratios.
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This is the solution of the numerical integration. The radar data and their uncertainties are also plotted.

The uncertainties on the measurements are at the same level as the difference between the solution for differ-
ent moment of inertia values, indicating that it is currently difficult to use long-period librations to discriminate
between (B −A)/Cm values.

The goodness of the fit is estimated by computing the reduced χ2, which is the sum of the squared difference
between the model and the data, weighted by the data uncertainty, and divided by the number of degrees of
freedom.
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Figure 9: χ2 for different moment of inertia ratios.

Figure 9 shows the reduced χ2 for different moment of inertia ratios. The best fit value is (B − A)/Cm =
2.06±0.09×10−4 where the limits are given for a 95% confidence interval (2σ). Close to the minimum, the curve
is flat, meaning that the ratio is not very well constrained.

The analytical model can also be used to compare the temporal variations of the angular velocity to the
radar data. But since the numerical solution is very close to the analytical model, results are statistically con-
sistent. The advantage is that partial derivatives of the angular velocity can be easily computed with respect
to the moment of inertia ratio. The best fit value for (B − A)/Cm is 2.05 ± 0.10 × 10−4. This moment of
inertia value corresponds to an amplitude for the 11.86y libration of 57 as and a 11.86y libration rate of 0.08
as/d. The best fit value of (B−A)/Cm = 2.03×10−4 of Margot et al (2007) corresponds to ψ11.86y of about 40 as.

Our best fit value for (B − A)/Cm with the full libration model is not statistically different from the best
fit value with only the 88-day librations and its multiples. The 1σ uncertainty is also similar. Both models
accommodate the data. The fit of the radar data is not affected much by the planetary librations because the
long-period forced libration amplitude in the spin rate (around 0.05 as/d) is smaller than the present radar data



uncertainty (about 0.15 as/d). Should the moment of inertia ratio be such that a long-period forced libration is
detectable in the radar data, our model could explain both the long- and short-period forced librations with only
one unknown parameter.

The question of the presence of an additional long-period libration (the free libration) with an arbitrary
amplitude and phase is still open. In the presence of a free libration, a complete model would still require three
free parameters.

9 Discussion

The amplitudes of ψi given by the theoretical equation (Eq. 17) match very well the values given by the numerical
integration of the system, the difference is less than 1% (see the dots in Fig. 5). This validates the harmonic oscil-
lator model and confirms the validity of our simplifications. Additionally, the mantle motion has been integrated
numerically without any variations in a(t) and e(t) and the change for the libration is less than 0.2 as. It confirms
our hypothesis that the time variations in a(t) and e(t) may be neglected for computing the long-period librations.

All the amplitudes are given around the J2000 epoch. Since the orbital elements are changing with time, the
amplitudes will be different for another epoch. The free libration period is not constant with time since e(t) and
n(t) are changing quantities.

The theoretical amplitudes are also very close to the results of Peale et al (2009) and Dufey et al (2009).
The phases φi obtained with a numerical integration of equation (Eq. 1) are also very close to the theoretical
value. A limitation is when the wi frequency is too close to the resonant frequency, i.e. |w0 −wi| is smaller than
0.01 rad/y. The amplitude γ11.86y is larger than 50 as and the two solutions differ. In that case, the numerical
determination of the w0 and wi amplitudes is not perfect because their periods are too close and because the free
libration cannot be fully damped numerically. Additionally, the harmonic oscillator model may not be accurate
so close to the resonance.
Another limitating factor of the model is the frequency range: if the frequency is large (i.e. larger than 20 rad/y),
the model may not be exact since the equation of motion of the mantle is averaged over one orbital period.

The amplitudes of the librations are very sensitive to the choice of the exact value for the perturbating fre-
quency. A small change in the wi value (for example using another algorithm for frequency determination on the
orbital element) may lead to differences in the libration amplitude.

The rotation angle ψm(t) and angle γm(t) are not equal and their periodic amplitudes also differ. The
difference is approximatively the λ(t) factor. Even their phase may be different (up to 180◦). The quantity
commonly measured or extracted from numerical integration of the equations of motion is the rotation angle
ψm(t) while γm(t) is more convenient for computing the torque.

10 Summary

The solar torque on Mercury leads to rotation variations with a main signal at the orbital period of 88 days. The
planetary perturbations induce variations in the orbital elements of Mercury. This changes the averaged solar
torque on Mercury’s axial asymmetry and leads to long-period forced librations in longitude. Usually, only five
waves need to be considered: Jupiter (11.86y and 5.93y), Venus (5.66y), the Earth (6.57y) and Saturn (14.73y).
For more precise studies or when rotation data precision will be below the arcsecond level, more waves will be
needed.

Mercury’s libration in longitude due to planetary perturbations of Mercury’s orbit can be predicted with
a simple analytical model based on the damped harmonic oscillator. If the planetary perturbations on the
1.5M(t) + ̟(t) variable are known from an orbital theory for each frequency, Eq. 17 and Eq. 19 give the
amplitude and phase of the induced librations. The proximity of the five planetary periods to the free libration
period of about 12 years, explains why these perturbations induce libration amplitude above 0.5 arcsecond. In
particular, the free libration period can be very close to the Jupiter forcing period with a period of 11.86 year
and can result in a very large libration amplitude at that period. Far from the resonant frequency, the libration
amplitudes will be well below the arcsecond level even if the orbit perturbation is large.
These long-period forced librations are independent of the excitation state of the free libration. If, for any



unknown reason, Mercury experiences some free libration, its amplitude and phase will be arbitrary while the
amplitude and phases of the forced librations are given by the theoretical equation.
Since the free libration frequency is proportional to the square root of (B−A)/Cm, the link between the libration
amplitude and the moment of inertia ratio is direct (see Eq. 18). The 11.86y libration amplitude shows a resonant
effect with the (B − A)/Cm value while the other four planetary libration amplitudes show a small linear trend
with respect to the (B −A)/Cm ratio.
The fit of the model on the radar data gives a (B−A)/Cm value of 2.05 ± 0.10×10−4. This value does not differ
statistically from the value of Margot et al (2007) because the current uncertainties on the radar measurements of
the angular velocity ψ′

m(t) are about 3 time larger than the contribution to the spin rate signature from the 11.86
y libration due to the planetary perturbation for (B −A)/Cm around 2× 10−4. Therefore without any dramatic
improvement in the radar precision in the coming years and without data covering a longer time interval (longer
than 12 years), the separation between the different librations may not be possible in the near future if one
fits the libration amplitudes on the radar data. Nevertheless, we have demonstrated the relation between those
amplitudes and the only unknown parameter influencing all the amplitudes, the same moment of inertia ratio
(B−A)/Cm. Since the phase of the planetary librations are given by the theory based on celestial mechanics and
Mercury’s orbit, a global fit of this ratio on the libration data is still possible, even if the different waves may not
be separable. The determination of this ratio coupled with a better determination of the second order coefficients
of the gravity field will dramatically improve our knowledge of the interior structure of Mercury. Additionally, a
complementary view of the rotation of Mercury will be given by spacecraft measurement with the MESSENGER
and BepiColombo mission since they will measure the rotation angle and not the angular velocity, the rotation
angle being much more sensitive to the long-period librations.
Because the periods of the librations are different, the long-period forced librations do not change the amplitude
of the 88-day forced libration. Anyway even if these five main long-period librations cannot be separated presently
into the data, their amplitudes and phases need to be included in the rotation model.
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