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Abstract

We describe a search strategy that may be use-
ful for a class of design problems by develop-
ing an example from cancer radiation treat-
ment planning. This application problem in-
volves typical features of design problems such
as constraints, optimality, a large search space
with continuously varying parameters as well
as discrete (non-numeric) parameters. There
iIs no known method of comparing elements of
the solution space based on a static evaluation
function. We have therefore developed a dy-
namic  evaluation function, which attempts to
heuristically compare all solutions with one an-
other, as a way of interpreting the evaluation
results. This allows us to use an analog of
hill-climbing with a simple SELECT-GENERATE-
TEST loop where expert rules are used as "move
generators” and a similarity metric is used to
control or direct the application of the rules for
plan modification. Preliminary tests of these
Ideas indicate that a practical working system
can be built.

1 Problem definition

Design problems have received a lot of attention recently
iIn Al research [Mostow, 1985]. Typically, design tasks
present difficult problems with big search spaces and so-
lutions defined in terms of continuously varying param-
eters. They usually involve constraints and optimality
criteria. Analytic solutions generally do not exist and
experiential "rules of thumb" are not sufficient. This is
because it is often necessary to reason about complex
properties of objects, such as their geometry, and incre-
mentally approach the best solution by drawing conclu-
sions from the explored variants. The few existing sys-
tems such as: AIR/CYL [Brown and Chandrasekaran,
1986], PRIDE [Mittal and Araya, 1986], VT [Marcus et
al., 1988], or BTExpert [Adeli and Balasubramanyam,
1988], present ad hoe or partial solutions to problems
rather than a systematic methodology.
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The problem domain we are addressing is radiation
therapy planning. Treatment of cancer with radiation
usually involves setting up several radiation sources to
fit the patient's geometrical shape and medical status.
The objective is to achieve a high, relatively uniform
dose to the disease area (tumor), while keeping normal
tissue dose within tolerance constraints [Bleehen et al.,
1983]. An expert radiation therapy planner (called a
dosimetrist) uses graphic simulation programs (called
treatment planning programs, see [Kalet and Jacky,
1982]) to obt ain feedback on tentative designs that may
need considerable refinement. The output of the simu-
lation is a set of radiation dose contour plots that are
difficult to interpret except by the trained eye of the

dosimetrist.

We have previously reported on an expert system that
makes the high-level decisions of radiation therapy plan-
ning using production rules and prototypes as plan build-
ing blocks [Kalet and Paluszynski, 1985], [PaluszyrisKi
and Kalet, 1987]. The next step was to use the knowl-
edge of the physical properties of radiation and the bio-
logical knowledge of the tissue response to radiation to
make sure that the constructed treatment plan is ac-
ceptable and optimal in some sense [Paluszyriski, 1989].
This is done by identifying defects in the plan and trying
to fix them by modifying some of the beams. Because
of the specific problem with comparative evaluation of
candidate designs (see section 2 below) this step can
only be effective to a limited extent. At some point the
knowledge-based "plan optimizer" creates a lot of pos-
sible plan improvement suggestions and cannot suggest
which one offers the best chance of success. In sections 3
and 4 below we demonstrate a technique of augmenting
such a knowledge-based reasoning system to make the
optimization cycle more effective and easier to control.
We believe this technique will solve this problem and
perhaps other similarly ill-conditioned ones.

It is difficult to create simplified or abstract prob-
lem cases that will exercise the ideas we have developed.
There is no way to verify anything with a stripped-down
system which generates trivial plans. Also, there is no
possibility of building a small scale prototype — the sys-
tem has to provide answers at least for some class of tu-
mors. This requires the full capabilities of the simulation
and all the details of sophisticated radiation treatment.
For example, we have had to incorporate the handling of



the geometry of shielding lead blocks, wedge filters and
so on. Without this, the knowledge of plan improvement
will rarely apply. We have not implemented the complete
system yet but have tested the ideas presented on some
real patient cases. The preliminary results show that the
method is promising enough to warrant implementing a
full prototype system [Paluszynski, 1989].

2 Evaluating candidate solutions

In most problems where artificial intelligence techniques
have been applied to search for a solution there is a way
of evaluating a candidate solution as soon as, or even
before, it is fully constructed. In other words, just by
looking at a candidate one can determine how good it is.
Such an evaluation mechanism is called a static evalua-
tion function. Further, one can compare the value results
of two candidates to determine which one is "better." An
evaluation function which provides such capability will
be called scalar. As we will demonstrate here, construct-
ing an evaluation function for radiation therapy design
which would be both static and scalar appears to be im-
possible. This unfortunate fact is the main motivation
for the approach presented here.

2.1 Static evaluation

A measure of "goodness" of a radiation treatment plan
has to include the distribution of radiation doses in the
cancerous target volume as well as within the normal tis-
sue and especially critical organs which are particularly
sensitive to radiation. The evaluation principle can be
stated as follows:

A plan which delivers doses within 5% of
the prescribed tumor dose to all defined tumor
area, and keeps the doses within all critical or-
gans below their respective tolerance doses has
the maximum chance of curing the patient.

This principle defines the constraints on the treatment
plans but in a difficult realistie case it may be next to
impossible to find a plan satisfying them. If an ideal
situation cannot be achieved the physician may accept
a slight underdose of the tumor (up to 10%), a narrower
safety margin around it, or even overdosing a critical or-
gan up to the point of sacrificing the organ. The mech-
anism of making those subtle concessions seems to be
impossible to model using any mathematical function
combining solution features.

A great deal of research has been done on trying to
construct such an evaluation function [Wolbarst et a/.,
1982]. It is desirable for two main purposes: (i) for
objective evaluation of treatment plans, for example in
order to decide whether to accept one or not, and (ii)
for subjective evaluation, for example to decide which of
two candidate plans is a better material for further op-
timization. It is interesting to note that these purposes
are partially contradictory, at least as far as the radia-
tion therapy design is concerned. Objective evaluation
requires more elaborate results to be useful. For exam-
ple, it is hard to tell what needs improvement in a plan

with the evaluation result of 0.6. But this type of simple
and concise evaluation results are ideal for the subjective

(comparative) evaluation.

2.2 Dynamic evaluation

This led us to abandon the search for an evaluation
scheme which would be both static and scalar. Instead,
we developed two evaluation mechanisms and the system
uses the results which it currently needs. The first phase
Is static evaluation which, after analyzing the simulated
dose distribution within the patient's body, produces a
list of trouble spots. These are locations of doses being
in violation with the evaluation principle stated above.
They appear as either cold spots or hots pots, depending
of the direction of this violation. These results are used
directly by a knowledge-based system which attempts to
"fix" any defects in a treatment plan.

The second evaluation phase, called dynamic evalu-
ation, uses the results of the first phase. For any two
given plans, it tries to determine which one is better.
Such a question can only occasionally be answered in
a categorical way (otherwise evaluation of plans would
not be so hard). Therefore we introduce some heuristics
to guess which plan is likely better and we also allow
this question to remain unanswered. In other words, the
evaluation function described here will be partial. This
IS unavoidable but, since this function determines the di-
rections of search, having too little information we may
end up exploring many unnecessary candidates. How-
ever, the search technique presented below (section 4)
also works with incomplete evaluation results. When
the information is not available for a given point in the
solution space it looks in the immediate neighborhood.
The more information is available the more efficiently

can it be used.

The actual form of the evaluation results is a collec-
tion of vectors in the solution space. Plans are compared
pairwise with respect to several heuristic measures of
"plan goodness" and the results of these comparisons
are stored in each plan as unit length vectors which
point toward the "better" plan. Any treatment plan
can have a number of such evaluation vectors associated
with it. Plans having a lot ofinward pointing vectors are
those which compare favorably with a lot of other plans,
and vice versa. Aside from such clearly "successful" or
"failed" plans the vectors carry much more information
In them. For example, a plan which has a few of both in-
ward and outward vectors can be identified as being on a
successful optimization path if a lot of incoming vectors
come from one general direction and a lot of outgoing
vectors point to another general direction. It can also
exhibit no clear directionality. In section 4 we describe
how these evaluation results are interpreted and used to
identify most promising areas of the solution space.

Figure 1 shows schematically a situation where plan B
compared favorably to plan A and unfavorably to plans
C and D. Plan E did not give a clear answer to compar-
Isons with any other plan. This example uses two de-
sign parameters (plans represented in two dimensions)
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and just one heuristic comparison criterion (at most one
evaluation vector is present for each pair of plans).

A B
o ——-O-.<:

Figure 1: Dynamic evaluation results

Il brief, in this section we described some ways of eval-
uating the inherently hard to evaluate radiation treat-
ment plans. We showed that by giving up the scalar
property of the evaluation results we can have very
meaningful and intuitive results which are directly use-
ful in the treatment plan optimization cycle (to generate
plan "fixes"). We also introduced the notion of a dy-
namic evaluation function and showed how treatment
plans could be compared in a meaningful way. This
function gives only an indication ofwhich candidate solu-
tions are better but does not provide the absolute scores.
While we know that it can in many cases be computed we
have not yet shown how its outcome can be interpreted
to control the search (see section 4 below).

3 Search space and the similarity
metric

Our approach to the problem described here requires an
explicit representation of the solution space. We need to
see the potential therapy plans as points in this space
and to have a "similarity metric" for deciding whether

two plans are "similar" or not.

In principle it is not hard to define such a metric when
dealing with continuously-varying parameters. However,
our search space is somewhat complicated by the pres-
ence of some discrete parameters like the radiation type
or wedge filters and blocks inserted in the beam path to
modify the dose profile in some desired way. Also, deal-
ing with plans with different number of radiation beams
causes the solution space to have a varying number of
dimensions. (Each beam has a number of characteristics
like a particular direction, cross section size and shape,
radiation type, energy, treatment time, etc.).

- -y def
d(X,Y) = max max |Xpg, - Yp,| x sc_factp
over all over all
beams B parameters P
of beam B

The similarity metric, computed according to the
above formula, is the maximum of the scaled parame-
ter difference over all the parameters. This way, if two
different plans have a number of parameters slightly dif-
ferent then they can be considered similar whereas if
even one parameter is significantly different then they
are not. While all parameters are scaled some also re-
quire additional special treatment. For example, beam
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angles must be adjusted modulo 360°. When one plan
has more beams than another then existing beams are
compared to non-existing beams. In such case all param-
eters in the non-existing beam are taken to be the same
as in the existing beam, except beam intensity (monitor
units) which is taken to be 0.0. This way, ifone plan only
differs from another one by a beam of small intensity it
can still be found to be close to the other one.

One difficulty in this scheme is in deciding which are
the "corresponding”" beams in two plans being compared.
Of course, comparing different beam pairs in two plans
will give different results. We decided the proper way to
treat this case is to compute the distance for all possible
beam combinations and taking the minimum distance.

In summary, we needed an explicit representation of
the solution space to be able to see groups of similar
treatment plans. There is a measure of "distance" (a
metric) between points in this space. This metric con-
veys the same notion of "similarity" as the candidate
generator and does not have to correspond in any way
to the similarity of the results obtained from each can-
didate. Although each problem class like this one needs
to have specific definition of a search space and a metric,
the approach we describe should apply in general.

4 The similarity analysis of the
solution space

The elements of our radiation treatment planning sys-
tem, described above and elsewhere [Paluszyriski, 1989]

are.

* alibrary of PROTOTYPES for rapidly approach-
Ing a reasonably-looking solution in many com-
mon cases of cancer,

* a SIMULATION SYSTEM computing the raw dose
distribution results,

* a STATIC EVALUATION FUNCTION which pin-
points trouble spots (constraint violations) in
a plan,

* EXPERT IMPROVEMENT RULES (triggered by
the constraint violation results) for selecting
the next modification to achieve some desired
effect in the existing plan,

* a DYNAMIC EVALUATION FUNCTION program
for heuristically comparing two different treat-

ment plans.

What is still needed is the method of interpreting the
dynamic evaluation results. The outcome of this analy-
sis is needed to select the next most promising treat-
ment plan candidate to be optimized, or decide that
no such promising candidate exists. We can then op-
erate a SELECT-GENERATE-TEST cycle to efficiently con-
struct better and better plans. While we have already
described highly specialized components to perform the
GENERATE and TEST steps the SELECT question needs

elaboration here.



A simple scheme to answer this question is described
below. We first interpret the dynamic evaluation re-
sults to classify all explored treatment plans as either
successful or wunsuccessful by simply counting the incom-
ing and outgoing dynamic evaluation vectors (see sec-
tion 2.2 above). The proposed modifications are repre-
sented as unexplored points in the solution space, along-
side the explored and evaluated points. We then define
two distances which we call: similar-plans range (A) and
essentially-same-plans range (6). Then, for a given point
X we only analyze the surrounding areas (actually n-
cubes because of the similarity formula) of size A and
6 considering the previously explored points existing in
those areas. The following 5 cases are recognized:

Case 1 Explored points exist within 9.
> Priority: MEDIUM

Plan X probably does not represent much improvement
but is worth pursuing in the final fine tuning phase. On
rare occasions a small change in a parameter value can
result in a big improvement in dose.

Case 2 No explored points within 8 Some successful ex-
plored points within A.

> Priority: HIGH
This is a promising unexplored area.

Case 3 No explored points within 8. No successful explored
points within A. Some unsuccessful explored points
within A.

Priority: LOW
This is an unpromising area.
other possibilities failed.

Explore it only after all

Case 4 No explored points within 8. No successful or unsuc-
cessful explored points within A (there can exist some
explored points but they could not be clearly evaluated

as successful or not successful).
t> Priority: MEDIUM-LOW

No useful information seems possible to extract from the
existing plans. Do not waste time unless all other places
are just the same.

Case 5 No explored points within 6 or A.
1> Priority: MEDIUM-HIGH

This is a new area which will be worth exploring as soon
as we are done with the hot places.

The above procedure is actually only a simplified ver-
sion of a more elaborate heuristic we are currently in-
vestigating. On the one hand, one can use a pattern
classification procedure (such as clustering, see fDuda
and Hart, 1973]) to guide the exploration of the solu-
tion space by the clouds, or clusters, instead of fixed-
size ranges. Priorities would then be assigned to clusters
and any new proposed plans within high-priority clusters
would be explored first. On the other hand, even more
importantly, we are trying to extend the above scheme
to take more advantage of dynamic evaluation vectors.
While currently we are interpreting them only as indi-
cators of success or failure of plans we would also like
to use the directionality of the vectors (see section 2.2
above) to further improve the efficiency of the search.

The process described here is a little like a numerical
search procedure where new points are in turn gener-
ated in the solution space, evaluated, and some point

selected for further generation. Unlike the numerical
methods, however, the new points are generated by a
specialized rule based expert system which recommends
qualitatively the "right" fix for any problem. So the na-
ture of the traversal in the solution space is different.
Nevertheless the whole process represents a combination
of a rule based approach, which gives a good representa-
tion of the planner's expertise, with numerical methods
that reduce the amount of search in a way that is com-
plementary to the symbolic knowledge.

5 Results and conclusions

We are in the process of implementing the whole system
with a rule base for head and neck cancers and treat-
ments by the radiation therapy machines available at
the University of Washington Cancer Center. The ra-
diation treatment simulation programs we utilize [Kalet
and Jacky, 1982] are used routinely by human expert
dosimetrists as an aid in the process of designing treat-
ments for University Cancer Center patients. These pro-
grams and the numerical procedures for the plan evalu-
ation are written in Pascal while the symbolic reasoning
system is written in Common Lisp. The whole system
[Paluszyriski, 1989] is meant to be eventually used Iin
aiding the physicians in obtaining therapy plans in daily
practice. Physicians would still be able to use the plans
as they wish, but the program would save them from
doing the most time-consuming task, namely, exploring
all the available options.

While the final results will not be available until the
full-scale system is coded and tested on the most diffi-
cult cases, we have tested all its elements as separate pro-
grams on a small sample of treatment plans for 5 patient
cases. As expected, the production system, even un-
der the most favorable conditions, generated some num-
ber of dead-end plan improvement candidates. These
dead-ends were at first easily prevented from further
exploration, as long as all clearly better options were
open. When they were finally explored they blocked
further search around them because either they were
un-evaluable or evaluated to failures. More importantly
however, there were many cases where the plan similar-
ity played a major role. Whenever there was a promis-
ing plan A and an unsuccessful modification of it B, the
process of exploring the close neighborhood of A would
invariably lead to exploring a corresponding neighbor-
hood of B because the same rule that generated B in
most cases also applied to all plans around A. However,
whenever the first plan in B's neighborhood was evalu-
ated and determined to be a failure all the others were
also automatically prevented from being evaluated. This
behavior is very desirable and resulted in the greatest
saving in search time.

Several questions have come up that warrant further
exploration. The scheme we describe works best if a
dynamic score can be generated that is complete and
reliable; its performance gradually degrades when the
results become more and more sparse. It would be in-
teresting to obtain some quantitative measure of this
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degradation (eg. how many more unsuccessful plans are
explored if the evaluation results are only available in
10% vs. 50% of cases).

The dynamic evaluation technique is an open ground
for experimentation. As mentioned above, interpreting
the directionality of success/failure vectors leads to more
priority levels and thus better control of the search. But
since the current evaluation function is based on simple
heuristics there is a great potential for further refining it.
Such a function would be invaluable in radiation oncol-
ogy not only to speed up the treatment planning process
but even to develop and study new approaches to radi-
ation treatment. Developing new treatment approaches,
such as 3-D treatments is mostly constrained by difficul-
ties in evaluating such treatments by humans.

The practical implications of creating a therapy de-
sign system that performs well are clear, in that a much
greater range of plans can be considered for each pa-
tient, in searching for an acceptable or optimal plan.
Furthermore, this approach can easily be generalized to
apply to other multi-dimensional, heterogeneous and ill-
conditioned design problems and we can also expect to
achieve good results.
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