
OS X Mountain Lion

Core Technologies Overview
June 2012

2

Core Technologies Overview
OS X Mountain Lion

Contents

Page 3	 Introduction

Page 4	 System Startup
BootROM	
EFI
Kernel
Drivers
Initialization
Address Space Layout Randomization (ASLR)

Page 7	 Disk Layout
Partition scheme
Core Storage
File systems

Page 9	 Process Control
Launchd
Loginwindow
Grand Central Dispatch
Sandboxing
GateKeeper
XPC

Page 16	 Network Access
Ethernet
Wi-Fi
Multihoming
IPv6
Remote Access
Bonjour

Page 21	 Document Lifecycle
Auto Save
Automatic Versions
Version Management
iCloud Storage

Page 24	 Data Management
Spotlight
Time Machine

Page 26	 Developer Tools
LLVM
Xcode
Instruments
Accelerate
Automation
WebKit

Page 33	 For More Information

3

Core Technologies Overview
OS X Mountain Lion

Introduction

With more than 65 million users—consumers, scientists, animators, developers, system
administrators, and more—OS X is the most widely used UNIX® desktop operating
system. In addition, OS X is the only UNIX environment that natively runs Microsoft
Office, Adobe Photoshop, and thousands of other consumer applications—all side
by side with traditional command-line UNIX applications. Tight integration with
hardware—from the sleek MacBook Air to the powerful Mac Pro—makes OS X the
platform of choice for an emerging generation of power users.

This document explores the powerful industry standards and breakthrough innova-
tions in the core technologies that power Apple’s industry-leading user experiences.
We walk you through the entire software stack, from firmware and kernel to iCloud
and developer tools, to help you understand the many things OS X does for you every
time you use your Mac.

4

Core Technologies Overview
OS X Mountain Lion

BootROM
When you turn on the power to a Mac, it activates the BootROM firmware. BootROM,
which is part of the computer’s hardware, has two primary responsibilities: it initializes
system hardware and it selects an operating system to run. Two BootROM components
carry out these functions:

•	 Power-On Self Test (POST) initializes some hardware interfaces and verifies that
sufficient memory is available and in a good state.

•	 Extensible Firmware Interface (EFI) does basic hardware initialization and selects
which operating system to use.

If multiple OS installations are available, BootROM chooses the one that was last
selected by the Startup Disk System Preference. The user can override this choice
by holding down the Option key while the computer starts up, which causes EFI
to display a screen for choosing the startup volume.

EFI boot picker screen.

System Startup

5

Core Technologies Overview
OS X Mountain Lion

EFI
EFI—a standard created by Intel—defines the interface between an operating system
and platform firmware. It supersedes the legacy Basic Input Output System (BIOS) and
OpenFirmware architectures.

Once BootROM is finished and an OS X partition has been selected, control passes to
the boot.efi boot loader, which runs inside EFI. The principal job of this boot loader is
to load the kernel environment. As it does this, the boot loader draws the “booting”
image on the screen.

If full-disk encryption is enabled, the boot loader draws the login UI and prompts for
the user’s password, which the system needs so it can access the encrypted disk and
boot from it. Otherwise, loginwindow draws the login UI.

Kernel
The OS X kernel is based on FreeBSD and Mach 3.0 and features an extensible
architecture based on well-defined kernel programming interfaces (KPIs).

OS X was the first operating system to ship as a single install that could boot into
either a 32-bit or 64-bit kernel, either of which could run 32-bit and 64-bit applications
at full native performance. Starting with Mountain Lion, OS X exclusively uses a 64-bit
kernel, but it continues to run both 32-bit and 64-bit applications.

Drivers
Drivers in OS X are provided by I/O Kit, a collection of system frameworks, libraries,
tools, and other resources for creating device drivers. I/O Kit is based on an object-
oriented programming model implemented in a restricted form of C++ that omits
features unsuitable for use within a multithreaded kernel.

By modeling the hardware connected to an OS X system and abstracting common
functionality for devices in particular categories, the I/O Kit streamlines the process
of device-driver development. I/O Kit helps device manufacturers rapidly create drivers
that run safely in a multiprocessing, preemptive, hot-pluggable, power-managed
environment.

To do this, I/O Kit provides the following:

•	 An object-oriented framework implementing common behavior shared among all
drivers and types (families) of drivers

•	 Many families of drivers for developers to build upon

•	 Threading, communication, and data-management primitives for dealing with issues
related to multiprocessing, task control, and I/O-transfers

•	 A robust, efficient match-and-load mechanism that scales well to all bus types

•	 The I/O Registry, a database that tracks instantiated objects (such as driver instances)
and provides information about them

•	 The I/O Catalog, a database of all I/O Kit classes available on a system

•	 A set of device interfaces—plug-in mechanism that allows applications and other
software outside the kernel to communicate with drivers

•	 Excellent overall performance

•	 Support for arbitrarily complex layering of client and provider objects

6

Core Technologies Overview
OS X Mountain Lion

Initialization
There are two phases to system initialization:

•	 boot refers to loading the bootstrap loader and kernel

•	 root means mounting a partition as the root, or top-level, file system.

Once the kernel and all drivers necessary for booting are loaded, the boot loader
starts the kernel’s initialization procedure. At this point, enough drivers are loaded
for the kernel to find the root device—the disk or network service where the rest
of the operating system resides.

The kernel initializes the Mach and BSD data structures and then initializes the I/O Kit.
The I/O Kit links the loaded drivers into the kernel, using the device tree to determine
which drivers to link. Once the kernel finds the root device, it roots BSD off of it.

Address Space Layout Randomization (ASLR)
Many malware exploits rely on fixed locations for well-known system functions.
To mitigate that risk, Mountain Lion randomly relocates the kernel, kexts, and
system frameworks at system boot. This protection is available to both 32-bit and
64-bit processes.

7

Core Technologies Overview
OS X Mountain Lion

Partition scheme
Disk drives are divided into logical partitions, which Apple traditionally calls
volumes. Modern Mac systems use the GUID partition table (GPT) partitioning scheme
introduced by Intel as part of EFI. The partitioning scheme is formally
defined by:

•	 Section 11.2.2 of “Extensible Firmware Interface Specification,” version 1.1, available
from Intel

•	 Chapter 5, “GUID Partition Table (GPT) Format,” of the “Unified Extensible Firmware
Interface Specification,” version 2.0, available from the Unified EFI Forum

Any Mac running OS X 10.4 or later can mount GPT-partitioned disks. Intel-based
Mac systems can boot from GPT. By default, the internal hard disk is formatted as GPT.

You can explore and modify GPT disks using the gpt command-line tool derived from
FreeBSD. You can also use Apple’s GPT-aware diskutil utility which provides more
human-readable output.

Helper partitions
Typically a single partition is “blessed” as the active boot volume via the bless
command-line tool, though you can also bless specific folders or files. This partition
is usually also the root volume.

However, sometimes the boot partition is not the root, such as when the root partition
is encrypted using full-disk encryption or located on a device that requires additional
drivers (such as a RAID array). In that case, a hidden helper partition stores the files
needed to boot, such as the kernel cache. The last three known good helper partitions
are maintained in case one becomes corrupted.

Recovery partitions
OS X Lion introduced a new Recovery HD partition that includes the tools you need
to do the following:

•	 Reinstall OS X

•	 Repair a hard drive

•	 Restore from a Time Machine backup

•	 Launch Safari to view documentation and search the Internet

•	 Create Recovery HD partitions on external drives.

To boot from the Recovery HD partition, restart your Mac while holding down the
Command key and the R key (Command-R). Keep holding them until the Apple icon
appears, indicating that your Mac is starting up. After the Recovery HD finishes
starting up, you should see a desktop with an OS X menu bar and an OS X Utilities
application window.

Disk Layout

http://www.intel.com/technology/efi/
http://www.uefi.org/

8

Core Technologies Overview
OS X Mountain Lion

If your Recovery HD is corrupt or unavailable and you have a network connection,
your Mac will automatically use OS X Internet Recovery to download and boot directly
from Apple’s servers, using a pristine Recovery HD image that provides all the same
functionality.

Core Storage
Layered between the whole-disk partition scheme and the file system used for a
specific partition is a new logical volume format known as Core Storage, introduced
in OS X Lion. Core Storage makes it easy to dynamically allocate partitions while
providing full compatibility with existing filesystems. In particular, Core Storage
allows in-place transformations such as backgrounding the full-disk encryption used
by File Vault 2.

File systems
Partitions are typically formatted using some variant of the HFS Plus file system,
which provides fast Btree-based lookups, robust aliases, and rich metadata—including
fine-grained access controls and extended attributes. Since OS X 10.3 Panther, every
Mac has used a journaled version of HFS Plus (HFSJ) to improve data reliability. Since
OS X 10.6 Snow Leopard, HFS Plus has automatically compressed files.

You can also choose to format partitions with HFSX, a case-sensitive variant of HFS Plus
intended for compatibility with UNIX software. For interoperability with Windows,
systems disks may be formatted with FAT32 or exFAT.

9

Core Technologies Overview
OS X Mountain Lion

Launchd
The kernel invokes launchd as the first process to run and then bootstraps the
rest of the system. It replaces the complex web of init, cron, xinetd, and
/etc/rc used to launch and manage processes on traditional UNIX systems.
launchd first appeared in OS X 10.4 Tiger. It is available as open source under the
Apache license.

File-based configuration
Each job managed by launchd has its own configuration file in a standard
launchd.plist(5) file format, which specifies the working directory, environment
variables, timeout, Bonjour registration, etc. These plists can be installed independently
in the standard OS X library domains (for example, /Network/Library, /System/Library, /
Library, or ~/Library), avoiding the need to edit system-wide configuration scripts. Jobs
and plists can also be manually managed by the launctl(1) command-line tool.

Launch on demand
launchd prefers for processes to run only when needed instead of blocking or
polling continuously in the background. These launch-on-demand semantics avoid
wasting CPU and memory resources, and thus prolong battery life.

For example, jobs can be started based on the following:

•	 If the network goes up or down

•	 When a file path exists (e.g., for a printer queue)

•	 When a device or file system is mounted

Smart scheduling
Like traditional UNIX cron jobs, launchd jobs can be scheduled for specific calendar
dates with the StartCalendarInterval key, as well as at generic intervals via
the StartInterval key. Unlike cron—which skips job invocations when the
computer is asleep—launchd starts the job the next time the computer wakes up.
If the computer sleeps through multiple intervals, those events will be coalesced into
a single trigger.

User agents
launchd defines a daemon as a system-wide service where one instance serves
multiple clients. Conversely, an agent runs once for each user. Daemons should not
attempt to display UI or interact directly with a user’s login session; any and all work
that involves interacting with a user should be done through agents.

Process Control

10

Core Technologies Overview
OS X Mountain Lion

Every launchd agent is associated with a Session Type, which determines where it
runs and what it can do, as shown in the following table:

Name Session type Notes

GUI Aqua Has access to all GUI services; much like a login item

Non-GUI StandardIO Runs only in non-GUI login sessions (for example, SSH
login sessions)

Per-user Background Runs in a context that’s the parent of all contexts for a
given user

Pre-login LoginWindow Runs in the loginwindow context

Install on demand
To reduce download sizes and the surface area available to attackers, OS X provides
an install-on-demand mechanism for certain subsystems. This provides easy access for
those users who need them without burdening those who don’t. When you launch an
application that relies on X11 or Java, OS X asks whether you want to download the
latest version as shown in the next image.

OS X prompts users if they attempt to run applications that require X11.

Loginwindow
As the final part of system initialization, launchd launches loginwindow. The
loginwindow program controls several aspects of user sessions and coordinates
the display of the login window and the authentication of users.

If a password is set, OS X requires users to authenticate before they can access the
system. The loginwindow program manages both the visual portion of the login
process (as manifested by the window where users enter name and password
information) and the security portion (which handles user authentication).

Once a user has been authenticated, loginwindow begins setting up the user
environment. As part of this process, it performs the following tasks:

•	 Secures the login session from unauthorized remote access

•	 Records the login in the system’s utmp and utmpx databases

•	 Sets the owner and permissions for the console terminal

•	 Resets the user’s preferences to include global system defaults

•	 Configures the mouse, keyboard, and system sound according to user preferences

•	 Sets the user’s group permissions (gid)

11

Core Technologies Overview
OS X Mountain Lion

•	 Retrieves the user record from Directory Services and applies that information to
the session

•	 Loads the user’s computing environment (including preferences, environment
variables, device and file permissions, keychain access, and so on)

•	 Launches the Dock, Finder, and SystemUIServer

•	 Launches the login items for the user

Once the user session is up and running, loginwindow monitors the session and
user applications in the following ways:

•	 Manages the logout, restart, and shutdown procedures

•	 Manages Force Quit by monitoring the currently active applications and responding
to user requests to force quit applications and relaunch the Finder. (Users open this
window from the Apple menu or by pressing Command-Option-Escape.)

•	 Arranges for any output written to the standard error console to be logged using
the Apple System Loger (ASL) API. (See “Log Messages Using the ASL API” in the
OS X Developer Library.)

Grand Central Dispatch
Grand Central Dispatch (GCD) supports concurrent computing via an easy-to-use
programming model built on highly efficient system services. This radically simplifies
the code needed for parallel and asynchronous processing across multiple cores.

GCD is built around three core pieces of functionality:

•	 Blocks, a concise syntax for describing work to be done

•	 Queues, an efficient mechanism for collecting work to be done

•	 Thread pools, an optimal service for distributing work to be done

These help your Mac make better use of all available CPU cores while improving
responsiveness by preventing the main thread from blocking.

System-wide optimization
The central insight of GCD is shifting the responsibility for managing threads and their
execution from applications to the operating system. As a result, programmers can
write less code to deal with concurrent operations in their applications, and the system
can perform more efficiently on both single-processor and multiprocessor machines.
Without a pervasive approach such as GCD, even the best-written application cannot
deliver optimal performance across diverse environments because it lacks insight into
everything else happening on the system.

Blocks
Block objects are extensions to C, Objective-C, and C++ that make it easy for
programmers to encapsulate inline code and data for later use. Here’s what a block
object looks like:

int scale = 4;

int (^Multiply)(int) = ^(int num) {

 return scale * num;

};

int result = Multiply(7); // result is 28

http://developer.apple.com/library/mac/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/LoggingErrorsAndWarnings.html#//apple_ref/doc/uid/10000172i-SW8-SW6

12

Core Technologies Overview
OS X Mountain Lion

These types of “closures”—effectively a function pointer plus its invocation context—
are common in dynamically-typed interpreted languages, but they were never before
widely available to C programmers. Apple has published both the Blocks Language
Specification and its implementation as open source under the MIT license and added
blocks support to both GCC and Clang/LLVM.

Queues
GCD dispatch queues are a powerful tool for performing tasks safely and efficiently on
multiple CPUs. Dispatch queues atomically add blocks of code that can execute either
asynchronously or synchronously. Serial queues enable mutually exclusive access to
shared data or other resources without the overhead or fragility of locks. Concurrent
queues can execute tasks across multiple distinct threads, based on the number of
currently available CPUs.

Thread pools
The root level of GCD is a set of global concurrent queues for every UNIX process,
each of which is associated with a pool of threads. GCD dequeues blocks and private
queues from the global queues on a first-in/first-out (FIFO) basis as long as there are
available threads in the thread pool, providing an easy way to achieve concurrency.

If there is more work than available threads, GCD asks the kernel for more threads,
which are given if there are idle logical processors. Conversely, GCD eventually retires
threads from the pool if they are unused or the system is under excessive load. This
all happens as a side effect of queuing and completing work so that GCD itself doesn’t
require a separate thread. This approach provides optimal thread allocation and CPU
utilization across a wide range of loads.

Event sources
In addition to scheduling blocks directly, GCD makes it easy to run a block in response
to various system events, such as a timer, signal, I/O, or process state change. When
the source fires, GCD will schedule the handler block on the specific queue if it is not
currently running, or—more importantly—coalesce pending events if it is running.
This provides excellent responsiveness without the expense of either polling or bind-
ing a thread to the event source. Plus, since the handler is never run more than once
at a time, the block doesn’t even need to be reentrant; only one thread will attempt
to read or write any local variables.

OpenCL integration
Developers traditionally needed to write custom vector code—in addition to their
usual scalar code—in order to take full advantage of modern processors. OpenCL
is an open standard, language, runtime, and framework introduced in OS X 10.6
Snow Leopard. The OpenCL standard makes it straightforward take advantage of the
immense processing power available in GPUs, vector extensions, and multi-core CPUs.

You can use OpenCL to move the most time-consuming routines into computational
“kernels” written in a simple, C-like language. The OpenCL runtime dynamically com-
piles these kernels to take advantage of the type and number of processors available
on a computer. As of OS X 10.7 Lion, the system takes care of autovectorizing kernels
to run efficiently on GPUs or CPUs. OpenCL kernels can also be written as separate
files that run as blocks on the GPU or CPU using a special GCD queue.

13

Core Technologies Overview
OS X Mountain Lion

Sandboxing
Sandboxes ensure that processes are only allowed to perform a specific set of
expected operations. For example, a web browser regularly needs to read from the
network, but shouldn’t write to the user’s home folder without explicit permission.
Conversely, a disk usage monitor may be allowed to read directories and delete files,
but not talk to the network.

These restrictions limit the damage a program could potentially cause if it became
exploited by an attacker. By using attack mitigation, sandboxes complement the usual
security focus on attack prevention. For this reason, we recommend that sandboxes
be used with all applications, and we require their use for apps distributed via the
Mac App Store.

Mandatory access controls
Sandboxes are built on low-level access control mechanisms enforced in the kernel
by the kauth subsystem. This was introduced in OS X 10.4 Tiger based on work
originating in TrustedBSD. kauth identifies a valid actor (typically a process) by its
credentials. It then asks one or more listeners to indicate whether that actor can
perform a given action within a specified scope (authorization domain). Only the
initial (default) listener can allow a request; subsequent listeners can only deny or
defer. If all listeners defer, kauth denies the request.

Entitlements
Sandboxes collect these low-level actions into specific entitlements that an application
must explicitly request by adding the appropriate key to a property list file in its
application bundle. Entitlements can control access to:

•	 The entire file system

•	 Specific folders

•	 Networking

•	 iCloud

•	 Hardware (for example, the built-in camera or microphone)

•	 Personal information (for example, contacts)

In addition, entitlements control whether processes inherit their parents’ permissions
and can grant temporary exceptions for sending and receiving events or reading and
writing files.

User intent
While it may seem that virtually all applications would need to request broad entitle-
ments to read and write files, that isn’t the case. OS X tracks user-initiated actions,
such as dragging a file onto an application icon, and automatically opens a temporary
hole in the sandbox allowing the application to read just that one file. In particular,
open and save panels run in a special-purpose PowerBox process that handles all user
interaction. This allows applications to only request entitlements for actions they need
to perform autonomously.

Code signing
Entitlements use code signing to ensure the privileges they specify only cover the
code originally intended. Code signing uses public key cryptography to verify that the
entity that created the entitlements (that is, the developer) is the same as the author
of the executable in question, and that neither has been modified.

14

Core Technologies Overview
OS X Mountain Lion

GateKeeper
Gatekeeper is a new feature in OS X Mountain Lion that helps protect you from
downloading and installing malicious software. Developers can sign their applications,
plug-ins, and installer packages with a Developer ID certificate to let Gatekeeper verify
that they come from identified developers.

Developer ID certificates
As part of the Mac Developer Program, Apple gives each developer a unique
Developer ID for signing their apps. A developer’s digital signature lets Gatekeeper
verify that they have not distributed malware and that the app hasn’t been
tampered with.

User control
Choose the kinds of apps that are allowed to run on OS X Mountain Lion from
the following:

•	 Only apps from the Mac App Store, for maximum security

•	 Apps from the Mac App Store as well as apps that have a Developer ID

•	 Apps from anywhere

You can even temporarily override higher-protection settings by clicking on the app
while holding down the Control key and then choosing Open from the contextual
menu. This lets you install and run any app at any time. Gatekeeper ensures that you
stay completely in control of your system.

You control which kinds of apps you want your system to trust.

15

Core Technologies Overview
OS X Mountain Lion

XPC
XPC leverages launchd, GCD, and sandboxing to provide a lightweight mechanism
for factoring an application into a family of coordinating processes. This factoring
improves launch times, crash resistance, and security by allowing each process to
focus on one specific task.

No configuration needed
XPC executables and xpcservice.plist(5) configuration files are all part of
a single app bundle, so there is no need for an installer.

Launch-on-demand
XPC uses launchd to register and launch helper processes as they are needed.

Asynchronous communication
XPC uses GCD to send and receive messages asynchronously using blocks.

Privilege separation
XPC processes each have their own sandbox, allowing clean separation of responsibilities.
For example, an application that organizes and edits photographs does not usually
need network access. However, it can create an XPC helper with different entitlements
whose sole purpose is to upload photos to a photo sharing website.

Out of band data
In addition to primitive data types such as booleans, strings, arrays, and dictionaries,
XPC can send messages containing out-of-band data such as file descriptors and
IOSurface media objects.

16

Core Technologies Overview
OS X Mountain Lion

Ethernet
Mac systems were the first mass-market computers to ship with built-in Ethernet.
OS X today supports everything from 10BASE-T to 10 gigabit Ethernet. The Ethernet
capabilities in OS X include the following

Automatic link detection.
Automatic link detection brings up the network stack whenever a cable is plugged in,
and safely tears it down when the cable is removed.

Auto-MDIX
This feature reconfigures the connection depending on whether you are connecting
to a router or another computer, so you no longer need special crossover cables.

Autonegotiation
Autonegotiaton discovers and uses the appropriate transmission parameters for a
given connection, such as speed and duplex matching.

Channel bonding
Channel bonding supports the IEEE 802.3ad/802.1ax Link Aggregation Control
Protocol for using multiple low-speed physical interfaces as a single high-speed
logical interface.

Jumbo frames
This capability uses Ethernet frames of up to 9000 bytes with Gigabit Ethernet switches
that allow them.

TCP segmentation offload
To reduce the work required of the CPU, TCP segmentation offload lets the Network
Interface Card (NIC) handle splitting a large outgoing buffer into individual packets.

Wi-Fi
Apple brought Wi-Fi to the mass market with the original Airport card and continues
to provide cutting edge wireless networking across our product lines.

Built in to every Mac
Every Mac we ship—from the 11-inch Macbook Air to the top-of-the-line Mac Pro—has
802.11n networking built right in, along with 802.11a/b/g compatibility.

Network Access

17

Core Technologies Overview
OS X Mountain Lion

AirDrop
AirDrop, introduced in OS X 10.7 Lion, makes it easy to safely share files wirelessly with
nearby users, even if you aren’t on the same network. AirDrop leverages the wireless
hardware on newer Mac systems to find and connect to other computers on an ad hoc
basis, even if they are already associated with different Wi-Fi networks.

Share files wirelessly with anyone around you using AirDrop.

AirPlay
AirPlay lets you stream music throughout your entire house—wirelessly. Starting with
OS X 10.8 Mountain Lion, you can share audio or mirror your screen from your Mac to
an Apple TV or any other AirPlay-enabled device.

OS X treats AirPlay as just another audio output device.

18

Core Technologies Overview
OS X Mountain Lion

Multihoming
OS X can have multiple network interfaces active at the same time and dynamically
determines the optimal one to use for a given connection. Here are some examples
of where this is useful:

•	 Connecting to the Internet via Ethernet when you plug a Mac in to the network,
but seamlessly switching over to Wi-Fi when the network cable is unplugged.

•	 Routing all corporate traffic through a VPN server for security, while accessing the
public Internet directly to reduce latency.

•	 Internet Sharing, where one interface, such as Ethernet, is connected to the
public Internet while the other, such as Wi-Fi, acts as a router for connecting your
other devices.

IPv6
OS X provides best-of-breed support for IPv6, the next-generation 128-bit Internet
protocol.

Key features of IPv6 in OS X include:

•	 Full support for both stateful and stateless DHCPv6

•	 Happy Eyeballs algorithm (RFC 6555) for intelligently selecting between IPv6 and
IPv4 addresses when both are available

•	 High-level APIs that resolve names directly so applications don’t need to know
whether they are using IPv4 or IPv6

•	 IPv6-enabled user applications (for example, Safari)

Remote Access
Captive networks
Like iOS, OS X now automatically detects the presence of a captive network and
prompts for the authentication necessary to reach the public Internet.

VPN client
OS X includes a virtual private network (VPN) client that supports the Internet standard
Layer 2 Tunneling Protocol (L2TP) over IPSec (the secure version of IPv4), as well as the
older Point-to-Point Tunneling Protocol (PPTP). OS X also includes a VPN framework
developers can use to build additional VPN clients.

Firewalls
In addition to the ipfw2-based system-wide firewall, OS X includes an application
firewall that can be configured to allow only incoming access to preapproved
applications and services.

Self-tuning TCP
OS X sets the initial maximum TCP window size according to the local resources
and connection type, enabling TCP to optimize performance when connecting to
high-bandwidth/high-latency networks.

http://tools.ietf.org/html/rfc6555

19

Core Technologies Overview
OS X Mountain Lion

Port mapping
NAT-PMP enables you to export Internet services from behind a NAT gateway, while
Wide Area Bonjour lets you register the resulting port number with Back to My Mac.
This enables you to easily and securely access your home printer and disk drives
remotely, even from the public Internet.

Bonjour
Bonjour is Apple’s implementation of the Zero Configuration Networking standard.
It helps applications discover shared services such as printers on the local network.
It also enables services to coordinate within and across machines without requiring
well-known port numbers. Bonjour’s ability to painlessly find other computers over
a network is critical to many Apple technologies, such as AirPlay and AirDrop.

Link-local addressing
Any user or service on a computer that needs an IP address benefits from this feature
automatically. When your host computer encounters a local network that lacks DHCP
address management, it finds an unused local address and adopts it without you
having to take any action.

Multicast DNS
Multicast DNS (mDNS) uses DNS-format queries over IP multicast to resolve local
names not handled by a central DNS server. Bonjour goes further by handling mDNS
queries for any network service on the host computer. This relieves your application of
the need to interpret and respond to mDNS messages. By registering your service with
the Bonjour mDNSResponder daemon, OS X automatically directs any queries for your
name to your network address.

Service discovery
Service discovery allows applications to find all available instances of a particular
type of service and to maintain a list of named services. The application can then
dynamically resolve a named instance of a service to an IP address and port number.
Concentrating on services rather than devices makes the user’s browsing experience
more useful and trouble-free.

Wide Area Bonjour
Starting in OS X 10.4, Bonjour now uses Dynamic DNS Update (RFC 2316) and unicast
DNS queries to enable discovery and publishing of services to a central DNS server.
These can be viewed in the Bonjour tab of Safari in addition to other locations. This
feature can be used by companies to publicize their Intranet or by retailers to advertise
promotional web sites.

High-level APIs
OS X provides multiple APIs for publication, discovery, and resolution of network
services, as follows:

•	 NSNetService and NSNetServiceBrowser classes, part of the Cocoa Foundation frame-
work, provide object-oriented abstractions for service discovery and publication.

•	 The CFNetServices API declared in the Core Services framework provide Core
Foundation-style types and functions for managing services and service discovery.

•	 The DNS Service Discovery API, declared in </usr/include/dns_sd.h>,
provides low-level BSD socket communication for Bonjour services.

http://www.ietf.org/rfc/rfc2136.txt

20

Core Technologies Overview
OS X Mountain Lion

Wake On Demand
Wake on Demand allows your Mac to sleep yet still advertise available services via
a Bonjour Sleep Proxy (typically an AirPort Extreme Base Station) located on your
network. The proxy automatically wakes your machine when clients attempt to access
it. Your Mac can even periodically do a maintenance wake to renew its DHCP address
and other leases.

Open source
The complete Bonjour source code is available under the Apache License, Version
2.0 on Apple’s open source website, where it’s called the mDNSResponder project.
You can easily compile it for a wide range of platforms, including UNIX, Linux, and
Windows. We encourage hardware device manufacturers to embed the open source
mDNSResponder code directly into their products and, optionally, to pass the Bonjour
Conformance Test so they can participate in the Bonjour Logo Licensing Program.

http://www.apache.org/licenses/LICENSE-2.0.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://www.opensource.apple.com/tarballs/mDNSResponder/
http://developer.apple.com/opensource/
http://developer.apple.com/opensource/
http://developer.apple.com/opensource/

21

Core Technologies Overview
OS X Mountain Lion

Auto Save
You no longer need to manually save important documents every few minutes, thanks
to the new Auto Save facility introduced in OS X 10.7 Lion. Applications that support
Auto Save automatically save your data in the background whenever you pause or
every five minutes, whichever comes first. If the current state of your document has
been saved, OS X won’t even prompt you before quitting the application, making
logouts and reboots virtually painless.

Automatic Versions
Versions, also introduced in OS X 10.7 Lion, automatically records the history of a
document as you create and make changes to it. OS X automatically creates a new
version of a document each time you open it and every hour while you’re working
on it. You can also manually create snapshots of a document whenever you like.

OS X uses a sophisticated chunking algorithm to save only the information that has
changed, making efficient use of space on your hard drive (or iCloud). Versions under-
stands many common document formats, so it can chunk documents between logical
sections, not just at a fixed number of bytes. This allows a new version to store—for
example, just the one chapter you rewrote instead of a copy of the entire novel.

OS X automatically manages the version history of a document for you, keeping
hourly versions for a day, daily versions for a month, and weekly versions for all
previous months.

To further safeguard important milestones, OS X automatically locks documents that
were edited more than two weeks ago. You can change the interval by clicking the
Options… button in the Time Machine System Preferences pane, then choosing the
interval you want from the Lock documents pop-up menu.

When you share a document—for example through email, iChat, or AirDrop—only the
latest, final version is sent. All other versions and changes remain safely on your Mac.

Document Lifecycle

22

Core Technologies Overview
OS X Mountain Lion

Version Management
You can also manually lock, unlock, rename, move, or duplicate documents using the
pop-up menu next to the document title, which also shows you the current state
of the document.

Manage your versions directly from the pop-up menu next to the document title.

You can also use the same pop-up menu to browse previous versions using an
interface similar to Time Machine. It shows the current document next to a cascade
of previous versions, letting you make side-by-side comparisons. You can restore entire
past versions or bring elements from past versions such as pictures or text into your
working document.

Recovering work from previous versions is just a click away.

iCloud Storage
iCloud Storage APIs enable apps to store documents and key value data in iCloud.
iCloud wirelessly pushes documents to your devices and updates them whenever
any of your devices change them—all automatically.

Ubiquitous storage
The iCloud storage APIs let applications write your documents and data to a central
location and access those items from all your computers and iOS devices. Making a
document ubiquitous using iCloud means you can view or edit those documents from
any device without having to sync or transfer files explicitly. Storing documents in your
iCloud account also provides an extra layer of protection. Even if you lose a device,
those documents are still available from iCloud storage.

23

Core Technologies Overview
OS X Mountain Lion

File coordination
Because the file system is shared by all running processes, conflicts can occur when
two processes (or two threads in the same process) try to change the same file at
the same time. To avoid this type of contention, OS X 10.7 and later include support
for file coordinators, which enable developers to safely coordinate file access between
different processes or different threads.

File coordinators mediate changes between applications and the daemon that
facilitates the transfer of the document to and from iCloud. In this way, the file
coordinator acts as a locking mechanism for the document, preventing applications
and the daemon from modifying the document simultaneously.

Safe versions
Versions automatically stores iCloud documents. This means iCloud never asks you to
resolve conflicts or decide which version to keep. It automatically chooses the most
recent version. You can always use the Browse Saved Versions option if you want to
revert to a different one. Versions’ chunking mechanism also minimizes the information
that needs to be sent across the network.

Ubiquitous metadata, lazy content
iCloud immediately updates the metadata (that is, the file name and other attributes)
for every document stored or modified in the cloud. However, iCloud may not push
the actual content to devices until later, perhaps only when actively requested. Devices
always know what’s available but defer loading the data in order to conserve storage
and network bandwidth..

Peer-to-peer networking
iCloud detects when you have multiple devices on the same local network, and
it copies the content directly between them rather than going through the cloud.
It eventually copies the content to the cloud, as well, to enable remote access
and backup.

Web access
iCloud provides a range of powerful web applications to let you work directly with
your data from a web browser. These include the usual personal information tools
(Mail, Calendar and AddressBook) as well as a complete suite of iWork viewers (Pages,
Keynote, and Numbers).

24

Core Technologies Overview
OS X Mountain Lion

Spotlight
Spotlight is a fast desktop search technology that helps you organize and search for
files based on either contents or metadata. It’s available to users via the Spotlight
window in the upper-right of the screen. Developers can embed Spotlight in their
own applications using an API available from Apple.

Standard metadata
Spotlight defines standard metadata attributes that provide a wide range of options
for consistently storing document metadata, making it easier to form consistent
queries. These include POSIX-style file attributes, authoring information, and specialized
metadata for audio, video, and image file formats.

Extensible importers
Using OS X Launch Services, Spotlight determines the uniform type identifier of a
new or modified file and attempts to find an appropriate importer plug-in. If an
importer exists and is authorized, OS X loads it and passes it the path to the file.

Third parties can create custom importers that extract both standard and custom
metadata for a given file type and return a dictionary which is used to update the
Spotlight datastore.

Dynamic datastore
Every time you create, modify, or delete a file, the kernel notifies the Spotlight
engine that it needs to update the system store. OS X accomplishes this with the
high-performance fsevents API.

Live update
Whenever OS X updates the datastore, it also notifies the system results window
and any third-party client applications if the update causes different files to match or
not match the query. This ensures that the Mac always presents the latest real-time
information to the user.

Data Management

25

Core Technologies Overview
OS X Mountain Lion

Time Machine
Time Machine, introduced in OS X 10.5 Leopard, makes it easy to back up and restore
either your entire system or individual files.

Easy setup
To set up Time Machine, all you need to do is select a local disk or Time Capsule to
store the backups. In OS X Mountain Lion, you can select multiple backup destinations
for Time Machine. OS X immediately starts backing up all your files in the background.
After the initial backup, it automatically creates new incremental backups every hour.

Coalescing changes
Time Machine leverages the fsevents technology developed for Spotlight to
continuously identify and track any folders (what UNIX calls directories) that contain
modified files. During the hourly backup, it creates a new folder that appears to
represent the entire contents of your hard drive. In reality, it uses a variant of UNIX hard
links that mostly point to trees of unmodified folders already on the disk. Those trees
are effectively copy-on-write, so that future changes never affect the backup version.

TIme Machine creates new trees inside a backup for any path that contains modified
folders. Time Machine creates new versions of those folders that contain links to the
current files, thus automatically capturing any changes that occurred in the past hour.
This avoids the overhead of either scanning every file on disk or capturing each and
every change to a file.

This technique allows each backup to provide the appearance and functionality of a
full backup while only taking up the space of an incremental backup (plus some slight
overhead for the metadata of modified trees). This makes it easy to boot or clone a
system from the most recent Time Machine backup.

Mobile Time Machine
OS X 10.7 Lion introduced Mobile Time Machine, which keeps track of modified
files even while you are disconnected from your backup drive. When you reconnect,
it will automatically record the hourly snapshots to ensure you don’t lose your
version history.

Preserving backups
Time Machine keeps hourly backups for the past 24 hours, daily backups for the past
month, and weekly backups until your backup drive is full. At that point OS X warns
you that it is starting to delete older backups. To be notified whenever OS X deletes an
older backup, open Time Machine preferences, click the Options... button, and check
the box next to Notify after old backups are deleted.

26

Core Technologies Overview
OS X Mountain Lion

LLVM
The next-generation LLVM compiler suite is based on the open source LLVM.org
project. The LLVM.org project employs a unique approach of building compiler
technologies as a set of libraries. Capable of working together or independently,
these libraries enable rapid innovation and provide the ability to attack problems
never before solved by compilers.

Apple’s compiler, runtime, and graphics teams are extensive contributors to the
LLVM.org community. They use LLVM technology to make Apple platforms faster
and more secure.

Clang front-end
Clang is a high-performance front-end for parsing C, Objective-C, and C++ code as
part of the LLVM compiler suite. It supports the latest C++ standards, including a
brand-new implementation of the C++ standard libraries. Clang is also implemented
as a series of libraries, allowing its technology to be reused for static code analysis in
Xcode and the LLDB debugger.

Comprehensive optimization
LLVM’s flexible architecture makes it easy to add sophisticated optimizations at any
point during the compilation process. For example, LLVM performs whole-program
analysis and link-time optimizations to eliminate unused code paths.

Automatic Reference Counting
Automatic Reference Counting (ARC) for Objective-C lets the compiler take care of
memory management. By enabling ARC with the new Apple LLVM compiler, you never
need to manually track object lifecycles using retain and release, dramatically
simplifying the development process while reducing crashes and memory leaks. The
compiler has a complete understanding of your objects and releases each object
the instant it is no longer used. Apps run as fast as ever, with predictable, smooth
performance.

Developer Tools

http://clang-analyzer.llvm.org/
http://lldb.llvm.org/

27

Core Technologies Overview
OS X Mountain Lion

Xcode
Xcode 4 is the latest version of Apple’s integrated development environment (IDE),
a complete toolset for building OS X and iOS applications. The Xcode IDE includes
a powerful source editor, a sophisticated graphical UI editor, and many other
features from highly customizable builds to support for source code repository
management. Xcode can help you identify mistakes in both syntax and logic and
will even suggest fixes.

The Xcode 4 integrated development environment

Static analysis
You can think of static analysis as providing you advanced warnings by identifying
bugs in your code before it is run—hence the term static. The Xcode static analyzer
gives you a much deeper understanding of your code than do traditional compiler
warnings. The static analyzer leverages the Clang libraries to travel down each possible
code path, identifying logical errors such as unreleased memory—well beyond the
simple syntax errors normally found at compile time.

Fix-it
Fix-it brings autocorrection from the word processor to your source code. The Xcode
Fix-it feature checks your symbol names and code syntax as you type, highlights any
errors it detects, and even fixes them for you. Fix-it marks syntax errors with a red
underbar or a caret at the position of the error and a symbol in the gutter. Clicking
the symbol displays a message describing the possible syntax error and, in many cases,
offers to repair it automatically.

28

Core Technologies Overview
OS X Mountain Lion

Interface Builder
Interface Builder is a graphical tool for designing user interfaces for OS X and iOS
applications. Like other Xcode editors, Interface Builder is fully integrated into the
application, so you can write and edit source code and tie it directly to your user
interface without leaving the Xcode workspace window.

Interface Builder, the easiest way to design your application’s user interface.

Version control
Xcode provides several ways to save versions of your project:

•	 A snapshot saves the current state of your project or workspace on disk for possible
restoration later.

•	 Source control repositories keep track of individual changes to files and enable
you to merge different versions of a file.

•	 An archive packages your products for distribution, either through your own
distribution mechanism or for submission to the App Store.

Editor area Utility area

Interface
Builder
objects

Dock

Canvas

Inspector selector bar

Library selector bar

Library pane

Inspector pane

29

Core Technologies Overview
OS X Mountain Lion

Xcode also provides direct support for Git and Subversion repositories, including an
option to create a local Git repository when you create a new project. Because it’s so
easy to set up a repository to use with your Xcode project, Xcode provides a special
editor, called the version editor, that also makes it easy to compare different versions
of files saved in repositories.

The Xcode version editor.

Instruments
Instruments is an application for dynamically tracing and profiling OS X and iOS code.
It is a flexible and powerful tool that lets you track one or more processes, examine
the collected data, and track correlations over time. In this way, Instruments helps you
understand the behavior of both user programs and the operating system.

30

Core Technologies Overview
OS X Mountain Lion

With the Instruments application, you use special tools (known as instruments) to trace
different aspects of a process’s behavior. You can also use the application to record a
sequence of user interface actions and replay them, using one or more instruments to
gather data.

Instruments includes Instruments, Track, and Extended Detail panes.

Synchronized tracks
The Instruments Track pane displays a graphical summary of the data returned by
the current instruments. Each instrument has its own track, which provides a chart
of the data collected by that instrument. The information in this pane is read-only.
You use this pane to select specific data points you want to examine more closely.

Multiple traces
Each time you click the Record button in a trace document, Instruments starts
gathering data for the target processes. Rather than appending the new data to any
existing data, Instruments creates a new trace run to store that data. This makes it
easy to compare behavior between different configurations.

A trace run consists of all of the data gathered between the time you click the Record
button and the Stop button. By default, Instruments displays only the most recent
trace run in the Track pane, but you can view data from previous trace runs in one
of two ways:

•	 Use the Time/Run control in the toolbar to select which trace run you want to view.

•	 Click the disclosure triangle next to an instrument to display the data for all trace
runs for that instrument.

Extended Detail pane

Toolbar

Detail pane

Navigation bar

Intruments pane

Track pane

31

Core Technologies Overview
OS X Mountain Lion

User interface recording
A user interface track records a series of events or operations in a running program.
After the track records events, you can replay that track multiple times to reproduce
the same sequence of events over and over. Each time you replay a user interface
track, you can collect data using other instruments in your trace document. The benefit
of doing this is that you can then compare the data you gather on each successful run
and use it to measure the changes in your application’s performance or behavior.

DTrace
DTrace is a dynamic tracing facility available for Mac systems since OS X 10.5 Leopard.
Because DTrace taps into the operating system kernel, you have access to low-level
information about the kernel itself and about the user processes running on your
computer. DTrace is used to power many of the built-in instruments.

DTrace probes make it easy to use Instruments to create custom instruments. A probe
is a sensor you place in your code that corresponds to a location or event (such as a
function entry point) to which DTrace can bind. When the function executes or the
event is generated, the associated probe fires and DTrace runs whatever actions are
associated with the probe.

Most DTrace actions simply collect data about the operating system and user program
behavior at that moment. It is possible, however, to run custom scripts as part of an
action. Scripts let you use the features of DTrace to fine tune the data you gather.
That data is then available as an Instruments track to compare with data from other
instruments or other trace runs.

Accelerate
Accelerate is a unique framework of hardware-optimized math libraries that provides
the following:

•	 Vector digital signal processing (vDSP). Optimized Fast Fourier Transforms (FFTs),
convolutions, vector arithmetic, and other common video and audio processing tasks
for both single- and double-precision data.

•	 Vector image processing (vImage). Optimized routines for convolutions, compositing,
color correction, and other image-processing tasks, even for gigapixel images.

•	 vForce. Designed to wring optimal efficiency from modern hardware by specifying
multiple operands at once, allowing only default IEEE-754 exception handling.

•	 Linear Algebra Package (LAPACK). Industry-standard APIs written on top of BLAS for
solving common linear algebra problems.

•	 Basic Linear Algebra Subprograms (BLAS) Levels I, II, and III. High-quality “building
block” routines that perform basic vector and matrix operations using standard APIs.

•	 vMathLib. A vectorized version of libm that provides transcendental operations,
enabling you to perform standard math functions on many operands at once.

32

Core Technologies Overview
OS X Mountain Lion

Automation
AppleScript
AppleScript is Apple’s native language for application automation, as used by the
AppleScript Editor. Its English-like syntax generates Apple events, which use a scripting
dictionary (provided by most Mac applications) to programmatically create, edit, or
transform their documents. AppleScript and other Open Scripting Architecture (OSA)
scripts can be activated by contextual menus, user interface elements, iCal events, and
even folder actions, such as drag and drop.

Automator
Automator provides a graphical environment for assembling actions (typically built
from AppleScript or shell scripts) into sophisticated workflows, which can be saved
as either standalone applications or as custom services, print plugins, folder actions,
iCal alarms, and Image Capture plugins.

Apple events
The Apple Event Bridge framework provides an elegant way for Cocoa applications
(including bridged scripting languages) to generate Apple events based on an
application’s dictionary, even generating appropriate header files if necessary.

Services
The Services menu lets you focus on only those actions relevant to your current
selection, whether in the menu bar, the Finder action menu, or a contextual menu.
Individual services can also be disabled and assigned shortcuts from the Keyboard
pane in System Preferences.

WebKit
WebKit is an open source web browser engine developed by Apple. WebKit’s HTML
and JavaScript code began as a branch of the KHTML and KJS libraries from KDE.

WebKit is also the name of the OS X system framework version of the engine that’s
used by Safari, Dashboard, Mail, and many other OS X applications

Key features include:

•	 Lightweight footprint

•	 Great mobile support

•	 Rich HTML5 functionality

•	 Easy to embed in Cocoa and Cocoa touch applications

•	 Available as open source at webkit.org

http://konqueror.kde.org/features/browser.php
http://kde.org/
http://www.apple.com/safari/
http://webkit.org

33

Core Technologies Overview
OS X Mountain Lion

© 2012 Apple Inc. All rights reserved. Apple, the Apple logo, AirPlay, Airport, AirPort Extreme, Apple TV, AppleScript, Back to My Mac,
Bonjour, Cocoa, iCloud, MacBook, MacBook Air, Mac Pro, OS X, Safari, Spotlight, Time Machine, and Xcode are trademarks of Apple
Inc., registered in the U.S. and other countries. AirDrop and Open CL are trademarks of Apple Inc. App Store and iTunes Store are
service marks of Apple Inc., registered in the U.S. and other countries. Intel, Intel Core, and Xeon are trademarks of Intel Corp. in
the U.S. and other countries. UNIX® is a registered trademark of The Open Group. Other product and company names mentioned
herein may be trademarks of their respective companies. June 2012 L516500A

For More Information
For more information about OS X Mountain
Lion, visit www.apple.com/macosx.

•	 Extensible Firmware Interface (EFI): See www.uefi.org

•	 I/OKit: See Kernel Programming Guide: I/O Kit Overview

•	 Partition Schemes: See Technical Note TN2166: Secrets of the GPT

•	 Recovery Partitions: See OS X Lion: About Lion Recovery.

•	 Full-Disk Encryption: See OA X Lion: About FileVault 2.

•	 Backup: See Mac 101: Time Machine.

•	 File System Events: See Spotlight Overview

•	 Launchd: See the Daemons and Services Programming Guide

•	 Grand Central Dispatch (GCD): See the Concurrency Programming Guide

•	 Sandboxes: See Code Signing Guide

•	 Gatekeeper: See Distributing Outside the Mac App Store

•	 Bonjour: See Bonjour Overview.

•	 XPC: See Daemons and Services Programming Guide: Creating XPC Services.

•	 iCloud: See What’s New In OS X: iCloud Storage APIs

•	 LLVM: See The LLVM Compiler Infrastructure Project

•	 Xcode: See Xcode 4 User Guide

•	 Instruments: See Instruments User Guide

•	 WebKit: See WebKit Objective-C Programming Guide.

For More Information

http://www.uefi.org
https://developer.apple.com/library/mac/#documentation/Darwin/Conceptual/KernelProgramming/IOKit/IOKit.html
http://developer.apple.com/library/mac/#technotes/tn2166/_index.html
http://support.apple.com/kb/HT4718
http://support.apple.com/kb/HT4790
http://support.apple.com/kb/ht1427
http://developer.apple.com/library/mac/#documentation/Carbon/Conceptual/MetadataIntro/MetadataIntro.html#//apple_ref/doc/uid/TP40001268
http://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/Introduction.html
http://developer.apple.com/library/mac/#documentation/General/Conceptual/ConcurrencyProgrammingGuide/Introduction/Introduction.html
http://developer.apple.com/library/mac/#documentation/Security/Conceptual/CodeSigningGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40005929-CH1-SW1
http://developer.apple.com/library/mac/#documentation/ToolsLanguages/Conceptual/OSXWorkflowGuide/DistributingApplicationsOutside/DistributingApplicationsOutside.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/NetServices/Introduction.html
http://developer.apple.com/library/mac/#documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingXPCServices.html
http://developer.apple.com/library/mac/#releasenotes/MacOSX/WhatsNewInOSX/Articles/MacOSX10_7.html
http://llvm.org/
http://developer.apple.com/library/mac/#documentation/ToolsLanguages/Conceptual/Xcode4UserGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40010215
http://developer.apple.com/library/mac/#documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/Introduction/Introduction.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/DisplayWebContent/DisplayWebContent.html

