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An analytical methodology for prediction of the platoon arrival profiles
and queue length along signalized arterials is proposed. Traffic between
successive traffic signals is modeled as a two-step Markov decision process
(MDP). Traffic dynamics are modeled with the use of the kinematic wave
theory. The MDP formulation allows prediction of the arrival profiles sev-
eral signals downstream from a known starting flow. This modeling
approach can be used to estimate queue lengths and predict travel times,
even in cases in which data from loop detectors are unknown, inaccurate,
or aggregated. The proposed model was applied to two real-world test
sites. The queues estimated with the model are in close agreement with the
results from microscopic simulation.

A significant proportion of travel takes place on urban arterials con-
trolled by traffic signals. Monitoring of system performance on arteri-
als and evaluation of alternative traffic management strategies require
analysis tools for accurate estimation of the queue lengths at the inter-
section approaches, the travel times on the arterial links, and other
measures. A number of techniques have been developed to estimate
arterial performance measures from surveillance data. Most of the pro-
posed models, however, are quite site specific and cannot be readily
applied to other locations.

There is a need for models that can be used to estimate travel times
on arterial streets on the basis of conventional loop detector data (flow,
speed, and occupancy). Such models should be based on realistic
modeling of traffic dynamics to predict accurately the interaction of
vehicles as they travel along the arterials and the queues formed at the
signalized intersections. At the same time, such models should be
robust and should be able to provide performance measures even with
faulty or limited detector data.

The objective of the study described here is to develop an analytical
model that can be used to estimate platoon dispersion on arterial links
and queues at traffic signals. This is an important part of on ongoing
study to develop a system for the online estimation of arterial travel
times from surveillance data.

The paper first briefly reviews existing platoon dispersion mod-
els. Next, the model formulation for estimation of the platoon dis-
persion and queue lengths at signalized intersections is described.
The last section presents the application of the proposed model on
two test sites and outlines ongoing and future model enhancements.

BACKGROUND

The traffic departing a traffic signal initially moves as a tight pla-
toon with short vehicle headways. This platoon tends to disperse the
farther downstream that it travels because of differences in vehicle
speeds, vehicle interactions (lane changing and merging), and other
interferences (parking, pedestrians, and other frictional effects) (1).
Prediction of platoon size and dispersion is important for determi-
nation of the traffic arrivals at downstream intersections to assess
the need for signal coordination and to optimize the signal timing
plans in coordinated signal systems.

Pacey modeled platoon dispersion by assuming that the speed of
any single vehicle traveling on an arterial link is constant and unre-
stricted overtaking (2). He derived the travel time distribution, g(τ),
along the arterial segment by also assuming that the vehicle speeds
are normally distributed:

where

D = distance from the upstream signal to a downstream
location where the vehicle arrivals are observed;

τ = individual vehicle travel time along distance D; and
u– and σ = mean and standard deviation of vehicle speeds, respec-

tively.

The number of vehicles passing the downstream observation point
(Location 2) in the time interval (t, t + dt) [q2(t2)dt2] is

where q1(t1)dt1 is the number of vehicles passing the upstream signal
(Location 1) in the interval (t, t + dt), and g(t2 − t1) is the probability
density function of travel time (t2 − t1) according to Equation 1.

Robertson’s formula (3), implemented in the TRANSYT simulation
and optimization model, is the most well-known model of platoon
dispersion. It is similar to the discrete version of Pacey’s model, but
it has been derived by assuming a geometric distribution of vehicle
travel times:
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where

L = signal spacing,
uf = free-flow speed, and
f = platoon dispersion function

Thus, by alternating the platoon dispersion process with the sig-
nal filter one, the arrival profiles at several intersections downstream
can be predicted from a known starting flow. A schematic repre-
sentation of the algorithm is shown in Figure 1. This formulation can
be used to predict travel times and estimate queue lengths, even in
cases in which traffic flow data from loop detectors are unknown,
inaccurate, or aggregated.

In the case of incomplete information regarding the signal settings
(e.g., actuated signals with variable green times), the formulation has
stochastic characteristics and is an MDP. This process has the Markov
property, as given the present arrivals An from signal n, the distribu-
tion of An +1 is determined. This can be restated as the probability that
An +1, which is conditional on the whole past history of the sequence
(Am = im)n

m = 1 (where m is an index and m = 1 to n indicates the arrivals
for all signals upstream of n + 1), reduces to a probability of An +1 con-
ditional on the latest value alone, An. Given that the signal settings
are fixed, MDP is equivalent to a one-step recursion, as shown above.

where P is probability, and in is the state (arrival’s profile) at signal n.

Estimation of Platoon Dispersion

Platoon dispersion was modeled by using the kinematic wave theory
proposed by Lighthill and Whitham (6 ) and Richards (7 ) (the LWR
theory). The main postulate of the LWR theory is that a functional rela-
tionship exists between the traffic flow (q) and the traffic density (k)
and that this relationship could be used to describe the speed at which
a change in traffic flow propagates either downstream or upstream
from an origin point. Shock waves are generated by the traffic sig-
nal, which causes congested conditions to develop near the stop line
during the red time and capacity conditions to occur when the queue
is discharging at the saturation flow rate. The first vehicle departs from
the stop line at the free-flow speed, but because of interfaces between
different points of the q–k diagram, the following vehicles depart
from the stop line at slower speeds. The level of dispersion in speeds
and, as a result, in the platoon depends on the curvature of the
increasing part of the q–k diagram.

The proposed methodology estimates the average platoon disper-
sion ratio and the nonuniform platoon profile for any concave q–k
relationship. In this paper, it is assumed that the q–k diagram has the
quadratic form, as shown in Figure 2, so numerical results can be
obtained. The form of this curve is based on data in the 2000 Highway
Capacity Manual (8) for undersaturated traffic conditions.

Single Platoon

The analysis is based on the conservation law of flow. The flow
decreases with the distance from the intersection stop line, but the
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where

t = average travel time and is equal to 0.8,
α = platoon dispersion factor, and
i = time step.

Robertson’s model has shown satisfactory agreement with field
data under undersaturated flow conditions. Its main advantage over
Pacey’s model is the much lower computational requirements, which
is a critical issue in signal timing optimization for large networks (4).
In the TRANSYT model, a flow histogram of traffic leaving the stop
line of the upstream signal is first constructed (departure profile), and
it is transformed by using Equation 3 to obtain the arrival profile at
the downstream signal. The rate of platoon dispersion depends on the
platoon dispersion factor, α; the default value is 0.35 in the TRANSYT
model. Typical values of α range from 0.25 (tight platoons typical of
suburban high-speed arterials) to 0.5 (dispersed platoons typical of
downtown areas). However, the arrival profiles are constructed under
the assumption that traffic arrivals are not obstructed by the queue
presence at the traffic signal. Thus, the model cannot accurately
estimate the spatial extent of the queues. Also, Rumsey and Hartley
reported that Robertson’s model predicts a greater dispersion of the
platoon for any given mean travel time because of the longer tail of the
geometric distribution than the corresponding transformed normal
distribution (5).

MODEL FORMULATION

Traffic behavior between successive traffic signals is modeled by a
one-step recursive formulation with some special characteristics.
This one-step recursive formulation is defined as follows: consider
a system in state i at time t with the property that, given the present
state, the future is conditionally independent of the past. The state
of the system at time t + 1 is then predicted from the state of the sys-
tem at time t. This approach is very similar to the approach that uses
the memoryless property of a Markov decision process (MDP).

Initially, the arrivals of vehicles at the downstream traffic signal
(i + 1) are a function f of the departures of vehicles from upstream
intersection i. Sequentially, the departures of the vehicles from the
downstream signal are a function h of the arrivals at this intersec-
tion. The procedure’s diagram for predicting the platoon size and
shape between two adjacent signals is as follows:

Mathematically, this process is expressed by the formulas

where

q in
i+1,j(t) = arriving flow at signal i + 1 at time t departing from

signal i during cycle j,
q i,j

out(t) = departing flow from signal i at time t during cycle j,
t′ = arrival time of a vehicle at the downstream signal

traveling at free-flow speed, and
h = signal filter function
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number of vehicles does not change. When the flow is moving from
Traffic State A (decreasing part of q–k diagram) to Traffic State E
(increasing part of diagram), this cannot be accomplished with a lin-
ear interface AE but should follow intermediate States B, C, and D
and the route A→B→C→D→E (Figure 3a). The time–space dia-
gram in Figure 3b illustrates the behavior of vehicles departing from
the stop line, where

Li = distance between the stop line and the section of the trajectory
of the last vehicle with the ith interface,

t′i = maximum horizontal distance between the (i + 1)th and the
ith interfaces,

ti = platoon width at distance Li from the intersection stop line
(s), and

qi = flow between the (i + 1)th and the ith interfaces.

The number of vehicles (Ntot) departing from the intersection stop
line is

N q ttot = 0 0 8� ( )
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where q0 is the initial platoon flow and t0 is the width at the intersec-
tion stop line. From the geometry of Figure 3, it is easy to compute
Li and ti

where

uf = free-flow speed;
ui = speed of the group of vehicles between the ith and the 

(i + 1)th interface; for i equal to 0 this is the speed at
capacity (where flow is equal to capacity); and

= speed of the interface B→C in Figure 3a.∂
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of the red phase. This methodology is expressed as a first-order approx-
imation because the pattern of the dispersion is not estimated; just the
average value of the arrival flow is estimated. To estimate the shape
of the platoon arrivals (flow in a time–space region), the following
should be added to Equations 11 to 14:

where n is the number of steps in the finite differences procedure.
The time τij in Equation 15 shows the amount of time in the pla-

toon pattern at distance Li downstream of the signal that the flow is
equal to qj. Therefore, Figure 3b shows that

Figure 5 shows the results of the finite differences approach for a
starting platoon of 20 s in width departing at capacity [1,800 vehicles
per hour (veh/h)] from the stop line and under the assumption of a qua-
dratic form for the increasing part of the q–k diagram with a free-flow
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For simplicity, the speed of the ith interface is indicated as q ′i. The
platoon dispersion ratio (ri) at distance Li downstream from the signal
is equal to

A numerical approach with finite differences was developed to esti-
mate ti and ri at a distance Li from the intersection stop line (Figure 4).
The finite differences equations are

The approach described above allows the average flow rate to be
estimated as a function of distance L from the beginning of the pla-
toon. It should be mentioned that distance L is not the distance from
the first upstream signal. It shows the average arrival flow of vehicles
at distance Li downstream of a signal where vehicles stopped because
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speed (uf ) of 30 mph and a saturation speed (speed at capacity; us) of
18 mph.

Interaction of Platoons

When two distinct vehicle platoons, e.g., the arterial through pla-
toon and the turning platoon from the side streets on the arterial,

depart from the upstream intersection at different times (because
of different signal phases), the second platoon gets closer to the
first platoon as traffic travels downstream. This is because the last
vehicles of the first platoon travel at slower speeds than the first vehi-
cles of the second platoon. As the distance L from the upstream inter-
section increases, more vehicles from the second platoon join the first
platoon and a single merged platoon forms. The rate at which the sec-
ond platoon joins the first one (dt/dL) expresses how much time (in



seconds) that the first platoon spreads out as L increases and is
given by the formula

where

v0,2, k0,2, q0,2 = speed, density, and flow of the first group of the
second platoon, respectively;

kn,1, qn,1 = density and flow of the last group of the first platoon,
respectively; and

= interface between the flow of the last group of
the first platoon and the first group of the second
platoon.

This formula has been derived by considering the fact that headway
(dt) and spacing (dL) are the reciprocal of flow and density, respec-
tively. The numerator of this fraction expresses the time between two
consequent arrivals of vehicles of the second platoon; i.e., it is the
reciprocal of the rate at which fast vehicles pass a slow vehicle (9).

Heterogeneous Drivers

The model formulation described above by using the LWR theory for
a nonlinear (concave) q–k relationship predicts the dispersion in front
of an isolated platoon, as well as the interactions and the dispersion
of multiple platoons. However, as shown in Figure 5, the dispersion
in the back (tail) of the platoon cannot be estimated.

The proposed platoon dispersion model is extended to estimate the
dispersion of the back of the platoon by considering the heterogene-
ity in the drivers’ behaviors. It is assumed that a portion of the drivers
in the tail of the platoon follow larger discharge headways (i.e., their
behavior is modeled with a q–k diagram with a lower capacity). The
back of the platoon can also be estimated in undersaturated condi-
tions in which the leading vehicles of the platoon discharge at the sat-
uration flow and the rest of the vehicles arrive and depart at the flow
rate during the green time.

Figure 6 shows the results of the finite differences approach devel-
oped in the previous section by taking into consideration the hetero-
geneity of the drivers. The starting platoon of 35 s leaves the stop
line; the leading platoon of 20 s in width follows the q–k diagram in
Figure 1 (capacity = 1,800 veh/h, uf = 30 mph, and us = 20 mph), the
following platoon of 10 s departs at a rate of 1,500 veh/h (the same
q–k diagram), and the end of the platoon consists of slow vehicles that
follow a different q–k diagram (capacity at 1,200 veh/h and us = 15
mph). Figure 6 shows that the tail of the platoon is more dispersed
compared with the dispersal results from the application of the orig-
inal model shown in Figure 5.

Prediction of Queue Lengths at Traffic Signal

By using the recursive formulation, the LWR theory was applied to
estimate the queue length and the flow profile departing from the inter-
section stop line. The effect of the signal is called the “signal filter.”
The process is illustrated in Figure 7.

Figure 7a shows the vehicle platoon arriving at the intersection stop
line in the form of a step function. Each step of the platoon is a group
of vehicles whose traffic state (flow qi and speed ui) and time width 
Δt are estimated from the platoon dispersion model described above.
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If a group of vehicles approaches the traffic signal during the
green time and no queue is present, it continues to move without
any interaction. This movement follows the platoon dispersion
approach described above and is not affected by the presence of
the signal.

If the signal is red as the vehicles approach the intersection stop
line, then these vehicles stop and the resulting shock wave between
the existing traffic state and the state of the jam density is estimated
by using the assumed q–k curve. The process repeats for the next
group of vehicles that stops at the signal (Figures 7c and 7d). When
the signal turns green, the queued vehicles discharge at the saturation
flow. The recovery shock wave has speed w, the congested wave
speed, which is the line in the q–k diagram connecting the points of
jam density and capacity flow (Figure 7d). When the queue has dissi-
pated, the rest of the platoon that arrives during the green time clears
the intersection without any interference from the traffic signal.

The proposed method predicts the time that the traffic signal starts
serving the groups of uninterrupted vehicles; i.e., it predicts the effec-
tive extension of the red time because of the discharge of the queued
vehicles. This is the time interval (t5 to t3) in Figure 7b.

Each group of the platoon that stops because of the red phase
effectively extends the red time (text.red ) by the following amount:
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where

w = congested wave speed;
us = saturation speed, which is approximately the interface

between the free-flow speed state and the saturation state,
at which the queue discharges;

g = green time;
t = time that the first vehicle of the platoon group would reach the

stop line if there were no vehicles ahead; it is measured from
the start of the green time, and it can be expressed as modulo
(t, gi).

Ls = effective length of a stopped vehicle; this is the reciprocal
of jam density kj;

Δti = time width of platoon group i, as estimated from the platoon
dispersion model; and

N i
r = number of vehicles from platoon group i that stop because

of the signal.

The first term in the parentheses of Equation 19 is the sum of two
time intervals: (a) the extension of the red time because of the shock
wave and (b) the time that it takes a vehicle discharging from the
queue to reach the intersection stop line. The second term in paren-
theses expresses the fact that the estimated extended red time cannot
be larger than the remaining green time. A stopped group of vehicles
will pass the stop line at a time equal to the sum for all the previous
groups of the same cycle. An uninterrupted group that reaches a red
or extended red phase stops, while a group that reaches the green
phase travels without interference. This approach is equivalent to that
in the continuous LWR theory.
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Platoon groups for which the total extended red time is equal to
the green time cannot be served during the cycle during which they
arrived. In this case, a residual queue remains at the end of the green.
The red time of the next cycle is extended by

where n(q) is the number of queued vehicles at the end of the previ-
ous green cycle. If n(q) becomes sufficiently large, then the extended
red time is equal to the green time and the number of queued vehi-
cles is the sum of the arriving vehicles in the next cycle plus the
unserved vehicles of the previous cycle. The unserved vehicles of the
previous cycle are the queued vehicles of the previous cycle minus
the number of vehicles for which the first term in parentheses in
Equation 20 equals g. The queue length of the queue in the beginning
of the green at cycle k, n ′k(q) is

where N1k and N2k are the number of arrived vehicles and the number
of served vehicles during the green time in cycle k, respectively.

Oversaturation

When the queue length exceeds the available link length, then it
blocks the outflow from the upstream signal and sometimes reduces
its capacity to zero. In this case, the number of served vehicles can be
approximated by the number of vehicles served at the downstream
signal. Therefore, this oversaturated system is equivalent (regarding
the service rate and queue lengths) to a system with the following
characteristics: (a) infinite capacity of the downstream link (i.e., no
blocking of traffic) and (b) green time equal to

where

gi = measured green time of signal at link i,
N i

sat = maximum number of vehicles served by signal i at one
cycle,

Nt+1
i = real number of vehicles served by signal i at cycle t + 1,

g effi
t+1 = real effective green time at signal i at cycle t + 1, and
si = saturation flow at signal i (vehicles per hour of green time).

MODEL APPLICATION

The proposed model was applied to two real-life arterials to estimate
the queue length on each intersection approach. (a) M Street is a
closely spaced arterial with eight signalized intersections located in
Washington, D.C. The average signal spacing is 450 ft. All signals
operate as two-phase fixed-time signals with a common cycle length
of 60 s. (b) The Lincoln Avenue study section is part of a major arte-
rial in Los Angeles. There are seven signalized intersections. Signal
spacing ranges from 450 to 1,200 ft. There are three through lanes
with exclusive left-turn lanes. All the signals are multiphase actuated
with a common cycle length of 120 s. During the morning peak peri-
ods, the queues at Intersection 7 fill Link 6–7 and block the outflow
from upstream Intersection 6.

The basic data on intersection geometrics, signal settings, and
free-flow speeds were assembled from related studies. Traffic data
on flow, speed, and occupancy were obtained from system loop
detectors positioned approximately 250 ft from the intersection stop
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The results for three intersection approaches shown in Figure 8
indicate that the proposed model produces accurate estimates of queue
lengths. In most of the cases, the difference between the model-
predicted and the simulated queue lengths is less than four vehicles.
The model also captures the observed blocking of traffic at upstream
Signal 6 on the Lincoln Avenue network because of oversaturation at
Intersection (Node) 7 (Figure 8b).

(a)

(b)

(c)

FIGURE 8 Measured and estimated queue lengths: (a) Lincoln Street, Node 3;
(b) Lincoln Street, Node 7; (c) M Street, Node 2.

line. The data were coded into the CORSIM microscopic simulation
model (10), and the performance was simulated for a total of 80 sig-
nal cycles. The simulation output was first compared with field data
(delays and travel times) to verify that the model reasonably repli-
cates field conditions at the test sites. Next, the simulated queue
lengths predicted by the proposed model and the simulation were
compared.



The proposed model formulation based on the LWR theory real-
istically models the dispersion for both single and multiple platoons
along arterials and explicitly considers the effect of residual queues
at oversaturated intersections on the estimation of traffic arrivals.

The proposed recursive formulation permits the prediction of the
arrival profiles many signals downstream from a known starting flow.
This output is an important tool for the estimation of queue lengths
and the prediction of link travel times even when the data from loop
detectors are unknown, inaccurate, or aggregated. Work is in progress
to extend the model to optimize the offsets between intersections in
signalized networks and to estimate the travel times in real time along
signalized arterials (11).
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