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An analytical methodology for prediction of the platoon arrival profiles
and queue length along signalized arterialsis proposed. Traffic between
successivetrafficsignalsismodeled asatwo-step M ar kov decision process
(MDP). Traffic dynamicsaremodeled with the use of thekinematic wave
theory. TheMDP formulation allowsprediction of thearrival profilessev-
eral signals downstream from a known starting flow. This modeling
approach can be used to estimate queuelengthsand predict travel times,
even in casesin which data from loop detector sar e unknown, inaccur ate,
or aggregated. The proposed model wasapplied to two real-world test
sites. Thequeuesestimated with themodel arein closeagreement with the
results from microscopic simulation.

A significant proportion of travel takes place on urban arterials con-
trolled by traffic Signals. Monitoring of system performance on arteri-
alsand evaluation of aternativetraffic management strategiesrequire
analysistoolsfor accurate estimation of the queuelengthsat theinter-
section approaches, the travel times on the arteria links, and other
measures. A number of techniques have been developed to estimate
arteria performance measuresfrom surveillance data. Most of the pro-
posed models, however, are quite site specific and cannot be readily
applied to other locations.

Thereisaneed for modelsthat can be used to estimate travel times
on arterial streetson the basis of conventional |oop detector data (flow,
speed, and occupancy). Such models should be based on realistic
modeling of traffic dynamics to predict accurately the interaction of
vehiclesasthey travel along the arterialsand the queuesformed at the
signalized intersections. At the same time, such models should be
robust and should be ableto provide performance measureseven with
faulty or limited detector data.

The objective of the study described hereisto develop anandytical
model that can be used to estimate platoon dispersion on arterial links
and queues at traffic Signals. Thisis an important part of on ongoing
study to develop a system for the online estimation of arterial travel
times from surveillance data.

The paper first briefly reviews existing platoon dispersion mod-
els. Next, the model formulation for estimation of the platoon dis-
persion and queue lengths at signalized intersections is described.
The last section presents the application of the proposed model on
two test sites and outlines ongoing and future model enhancements.
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BACKGROUND

The traffic departing a traffic signal initially moves as a tight pla-
toon with short vehicle headways. This platoon tendsto dispersethe
farther downstream that it travels because of differencesin vehicle
speeds, vehicleinteractions (lane changing and merging), and other
interferences (parking, pedestrians, and other frictional effects) (1).
Prediction of platoon size and dispersion is important for determi-
nation of the traffic arrivals at downstream intersections to assess
the need for signal coordination and to optimize the signal timing
plansin coordinated signal systems.

Pacey modeled platoon dispersion by assuming that the speed of
any single vehicle traveling on an arterial link is constant and unre-
stricted overtaking (2). He derived the travel timedistribution, g(t),
along the arterial segment by also assuming that the vehicle speeds
are normally distributed:

S

(1) =
9 TovV2n

@

where

D = distance from the upstream signal to a downstream
location where the vehicle arrivals are observed;
T = individual vehicle travel time along distance D; and
U and ¢ = mean and standard deviation of vehicle speeds, respec-
tively.

The number of vehicles passing the downstream observation point
(Location 2) inthetimeinterval (t, t + dt) [qu(ty)dt] is

qz(tz)dtz = Jll ql(tl)g(tZ - tl)dtldtz (2)
where g,(t;)dt; isthe number of vehicles passing the upstream signal
(Location 1) intheinterval (t, t + dt), and g(t, — t;) isthe probability
density function of travel time (t, — t;) according to Equation 1.

Robertson’ sformula(3), implementedinthe TRANSY T simulation
and optimization model, is the most well-known model of platoon
dispersion. Itissimilar to the discrete version of Pacey’smodel, but
it has been derived by assuming a geometric distribution of vehicle
travel times:
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where

t = averagetravel timeand isequal t0 0.8,
o, = platoon dispersion factor, and
i = time step.

Robertson’smodel has shown satisfactory agreement with field
data under undersaturated flow conditions. Its main advantage over
Pacey’ smodel isthe much lower computational requirements, which
isacritical issuein signal timing optimization for large networks (4).
Inthe TRANSY T model, aflow histogram of traffic leaving the stop
line of the upstream signal isfirst constructed (departure profile), and
it istransformed by using Equation 3 to obtain the arrival profile at
thedownstream signal. Therate of platoon dispersion dependsonthe
platoon dispersion factor, o; thedefault valueis0.35inthe TRANSY T
model. Typical valuesof o range from 0.25 (tight platoonstypical of
suburban high-speed arterials) to 0.5 (dispersed platoons typical of
downtown areas). However, thearrival profilesare constructed under
the assumption that traffic arrivals are not obstructed by the queue
presence at the traffic signal. Thus, the model cannot accurately
estimate the spatial extent of the queues. Also, Rumsey and Hartley
reported that Robertson’s model predicts a greater dispersion of the
platoon for any given mean travel time because of thelonger tail of the
geometric distribution than the corresponding transformed normal
distribution (5).

MODEL FORMULATION

Traffic behavior between successive traffic signalsis modeled by a
one-step recursive formulation with some special characteristics.
This one-step recursive formulation is defined as follows: consider
asystemin statei at timet with the property that, given the present
state, the future is conditionally independent of the past. The state
of the system at timet + 1 isthen predicted from the state of the sys-
tem at timet. Thisapproachisvery similar to the approach that uses
the memoryless property of aMarkov decision process (MDP).

Initialy, the arrivals of vehicles at the downstream traffic signal
(i + 1) are afunction f of the departures of vehicles from upstream
intersection i. Sequentially, the departures of the vehicles from the
downstream signal are a function h of the arrivals at this intersec-
tion. The procedure’s diagram for predicting the platoon size and
shape between two adjacent signalsis asfollows:

Departures from f »| Arrivalsat h - Departures from
signal i signal i +1 signal i +1

Mathematically, this processis expressed by the formulas
qni:m (t’) = f[q|0ljlt<t)] (4)
qioﬂ,j t) = h[qiiil,; (t/)] )

where

qgity;(t) = arriving flow at signal i + 1 at time t departing from
signal i during cyclej,
gf'(t) = departing flow from signal i at timet during cyclej,
t" = arrival time of a vehicle at the downstream signal
traveling at free-flow speed, and
h = signal filter function

L (6)
Ug

where

L = signa spacing,
u = free-flow speed, and
f = platoon dispersion function

Thus, by alternating the platoon dispersion process with the sig-
nal filter one, thearrival profilesat several intersectionsdownstream
can be predicted from a known starting flow. A schematic repre-
sentation of thea gorithmisshown in Figure 1. Thisformulation can
be used to predict travel times and estimate queue lengths, evenin
cases in which traffic flow data from loop detectors are unknown,
inaccurate, or aggregated.

In the case of incompl eteinformation regarding the signal settings
(e.g., actuated signal swith variable green times), the formul ation has
stochastic characteristicsand isan MDP. Thisprocess hasthe Markov
property, as given the present arrivals A, from signal n, the distribu-
tion of A, isdetermined. Thiscan berestated asthe probability that
A1, whichisconditional onthe whole past history of the sequence
(An=Iim)h-1 (Wheremisanindex and m=1tonindicatesthearrivals
for all signalsupstream of n+ 1), reducesto aprobability of A, con-
ditiona on the latest value alone, A,,. Given that the signal settings
arefixed, MDPisequivaent to aone-step recursion, as shown above.

P[Aw+1 = in+1‘(An = im):1=1] = P(A1+1 = in+1‘A1 = in) (7

where P isprobability, and i, isthe state (arrival’ s profile) at signa n.

Estimation of Platoon Dispersion

Platoon dispersion was modeled by using the kinematic wave theory
proposed by Lighthill and Whitham (6) and Richards (7) (the LWR
theory). Themain postul ate of the LWR theory isthat afunctional rela-
tionship exists between the traffic flow (g) and the traffic density (k)
and that thisrelationship could be used to describe the speed at which
achange in traffic flow propagates either downstream or upstream
from an origin point. Shock waves are generated by the traffic sig-
nal, which causes congested conditions to develop near the stop line
during the red time and capacity conditions to occur when the queue
isdischarging at the saturation flow rate. Thefirst vehicle departsfrom
thestop line at the free-flow speed, but because of interfaces between
different points of the g—k diagram, the following vehicles depart
fromthe stop line at slower speeds. Thelevel of dispersion in speeds
and, as a result, in the platoon depends on the curvature of the
increasing part of the g—k diagram.

The proposed methodol ogy estimatesthe average platoon disper-
sion ratio and the nonuniform platoon profile for any concave gk
relationship. Inthispaper, it isassumed that the g—k diagram hasthe
quadratic form, as shown in Figure 2, so numerical results can be
obtained. Theform of this curveisbased on datain the 2000 Highway
Capacity Manual (8) for undersaturated traffic conditions.

Single Platoon

The analysis is based on the conservation law of flow. The flow
decreases with the distance from the intersection stop line, but the
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number of vehicles does not change. When the flow is moving from
Traffic State A (decreasing part of g—k diagram) to Traffic State E
(increasing part of diagram), this cannot be accomplished with alin-
ear interface AE but should follow intermediate States B, C, and D
and the route A—>B—C—D—E (Figure 3a). The time-space dia-
gramin Figure 3billustrates the behavior of vehicles departing from
the stop line, where

L; = distance between the stop line and the section of thetrgjectory
of thelast vehicle with theith interface,

t’ = maximum horizontal distance between the (i + 1)th and the
ith interfaces,

t, = platoon width at distance L; from the intersection stop line
(s),and

g = flow between the (i + 1)th and the ith interfaces.

The number of vehicles (N.) departing from the intersection stop
lineis

Nt = oo (8)

\// quadratic
Uy ;

cycle j+1 ——

Schematic representation of recursion process.

where q, istheinitial platoon flow and t, isthe width at the intersec-
tion stop line. From the geometry of Figure 3, it is easy to compute
Liandt

=t too ©
U U
d
28
L=t —5-5 (10)
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ak BC
where

U = free-flow speed;
u; = speed of the group of vehicles between the ith and the
(i + Dth interface; for i equal to O thisis the speed at
capacity (where flow is equal to capacity); and
9 = speed of the interface B—C in Figure 3a.
ak BC
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ki k

FIGURE 2 Assumed form of g—k diagram (¢ = maximum flow; w = congested

wave speed).
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FIGURE 3 Estimation of platoon dispersion: (a) speed and interfaces in the g—k
diagram and (b) x—t diagram for estimation of platoon dispersion.

For simplicity, the speed of theith interfaceisindicated asq” The
platoon dispersionratio (r;) at distance L; downstream from the signal
isequal to

=i_®_to (11)

A numerical approach with finite differenceswas devel oped to esti-
matet; and r; at adistanceL; from theintersection stop line (Figure 4).
Thefinite differences equations are

t| — tl—l + I—i - Li—l _ I—i - Li—l (12)
Uiy Ut
L-L,=t," qlil—uk,l 13
U1 — G
t=1L- w (14)
ql : ql—l

The approach described above alows the average flow rate to be
estimated as a function of distance L from the beginning of the pla-
toon. It should be mentioned that distance L is not the distance from
thefirst upstream signd. It showsthe average arrival flow of vehicles
at distance L; downstream of asigna where vehicles stopped because

of thered phase. Thismethodology isexpressed as afirst-order approx-
imation because the pattern of the dispersion isnot estimated; just the
average value of the arrival flow is estimated. To estimate the shape
of the platoon arrivals (flow in a time-space region), the following
should be added to Equations 11 to 14:

L L - .

(9, L) = —-—= Vi) =i (15)
-1 i
L L

Tin(c]nv LI) e (16)
Oh1 Us

where nisthe number of stepsin the finite differences procedure.

The time t;; in Equation 15 shows the amount of time in the pla-
toon pattern at distance L; downstream of the signal that the flow is
equal to ¢. Therefore, Figure 3b shows that

j=n
ZTij(CIj: L)y=t
j=i

and
T =t a7

Figure 5 shows the results of the finite differences approach for a
starting platoon of 20 sin width departing at capacity [1,800 vehicles
per hour (veh/h)] from the stop lineand under the assumption of aqua-
dratic formfor theincreasing part of the gk diagram with afree-flow
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FIGURE 4 Mean platoon ratio versus distance L from intersection stop line.

speed (u;) of 30 mph and a saturation speed (speed at capacity; ug) of depart from the upstream intersection at different times (because

18 mph.

Interaction of Platoons

of different signal phases), the second platoon gets closer to the
first platoon astraffic travels downstream. Thisis because the last
vehiclesof thefirst platoon travel at slower speedsthan thefirst vehi-
clesof the second platoon. Asthedistance L from the upstream inter-
section increases, more vehiclesfrom the second platoon join thefirst

When two distinct vehicle platoons, e.g., the arterial through pla- platoon and asingle merged platoon forms. Therate at which the sec-
toon and the turning platoon from the side streets on the arterial, ond platoon joinsthefirst one (dt/dL) expresses how much time (in
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FIGURE 5 Platoon pattern as function of distance L.
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seconds) that the first platoon spreads out as L increases and is
given by the formula

(Qn,l _ kn j
dt] 1 1 ke Ku—ke _ \Ven a8)
COha — G2

dlli-y Voo V. Ohz  Ohi = oy

where

Vo2, Koz, Qo2 = Speed, density, and flow of the first group of the
second platoon, respectively;
ka1, 01 = density and flow of thelast group of thefirst platoon,
respectively; and
Sa = %2 _ jnterface between the flow of the last group of
ki = ko2 thefirst platoon and thefirst group of the second

platoon.

Thisformulahasbeen derived by considering thefact that headway
(dt) and spacing (dL) are the reciprocal of flow and density, respec-
tively. The numerator of thisfraction expresses the time between two
consequent arrivals of vehicles of the second platoon; i.e., itisthe
reciprocal of the rate at which fast vehicles passasow vehicle (9).

Heterogeneous Drivers

Themodel formulation described above by using the LWR theory for
anonlinear (concave) gk relationship predictsthe dispersion in front
of an isolated platoon, as well as the interactions and the dispersion
of multiple platoons. However, as shown in Figure 5, the dispersion
in the back (tail) of the platoon cannot be estimated.

The proposed platoon dispersion model is extended to estimatethe
dispersion of the back of the platoon by considering the heterogene-
ity inthedrivers behaviors. It isassumed that aportion of thedrivers
inthetail of the platoon follow larger discharge headways (i.e., their
behavior is modeled with a gk diagram with alower capacity). The
back of the platoon can aso be estimated in undersaturated condi-
tionsin which theleading vehicles of the platoon discharge at the sat-
uration flow and the rest of the vehicles arrive and depart at the flow
rate during the green time.

Figure 6 showstheresults of thefinite differences approach devel-
oped in the previous section by taking into consideration the hetero-
geneity of the drivers. The starting platoon of 35 s leaves the stop
line; the leading platoon of 20 sin width followsthe gk diagramin
Figure 1 (capacity = 1,800 veh/h, us = 30 mph, and us= 20 mph), the
following platoon of 10 s departs at arate of 1,500 vehvh (the same
gk diagram), and the end of the platoon consists of slow vehiclesthat
follow a different gk diagram (capacity at 1,200 veh/h and us= 15
mph). Figure 6 shows that the tail of the platoon is more dispersed
compared with the dispersal results from the application of the orig-
inal model shown in Figure5.

Prediction of Queue Lengths at Traffic Signal

By using the recursive formulation, the LWR theory was applied to
estimate the queuelength and the flow profile departing from theinter-
section stop line. The effect of the signal is called the “signal filter.”
The processisillustrated in Figure 7.

Figure 7a showsthe vehicle platoon arriving at theintersection stop
linein the form of astep function. Each step of the platoon isagroup
of vehicles whose traffic state (flow g and speed u;) and time width
At are estimated from the platoon dispersion model described above.
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FIGURE 6 Platoon pattern versus distance L
considering heterogeneity in driver behavior.

If agroup of vehicles approaches the traffic signal during the
green time and no queue is present, it continues to move without
any interaction. This movement follows the platoon dispersion
approach described above and is not affected by the presence of
the signal.

If the signdl is red as the vehicles approach the intersection stop
line, then these vehicles stop and the resulting shock wave between
the existing traffic state and the state of the jam density is estimated
by using the assumed gk curve. The process repeats for the next
group of vehicles that stops at the signal (Figures 7c and 7d). When
the signal turns green, the queued vehicles discharge at the saturation
flow. The recovery shock wave has speed w, the congested wave
speed, which isthe line in the gk diagram connecting the points of
jam density and capacity flow (Figure 7d). When the queue has dissi-
pated, the rest of the platoon that arrives during the green time clears
the intersection without any interference from the traffic signal.

The proposed method predictsthetimethat the traffic signal starts
serving thegroups of uninterrupted vehicles; i.e., it predictsthe effec-
tive extension of the red time because of the discharge of the queued
vehicles. Thisisthetimeinterval (ts to ts) in Figure 7b.

Each group of the platoon that stops because of the red phase
effectively extends the red time (terea) by the following amount:

t(iexl.red(tvt + At) = min[w
w
N N;(t,t + At)- L - t]

Us

19)
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FIGURE 7 Platoon arrivals and departures
at a traffic signal: (a) platoon arriving at
intersection stop line; (b) platoon departing
from intersection stop line; (¢) time—space
diagram, queue formation, and queue
dissipation; and (d) interfaces of traffic
states in the g—k diagram.

where

w = congested wave speed;

Us = saturation speed, which is approximately the interface
between the free-flow speed state and the saturation state,
at which the queue discharges;

g = greentime;

t = timethat thefirst vehicle of the platoon group would reach the
stop lineif there were no vehicles ahead; it is measured from
the start of the green time, and it can be expressed as modulo
(tv gl)

L = effective length of a stopped vehicle; thisis the reciprocal
of jam density k;;

At; = timewidth of platoon groupi, as estimated from the platoon
dispersion model; and

N! = number of vehicles from platoon group i that stop because
of thesignal.

Thefirst term in the parentheses of Equation 19 is the sum of two
timeintervals: (a) the extension of the red time because of the shock
wave and (b) the time that it takes a vehicle discharging from the
queue to reach the intersection stop line. The second term in paren-
theses expresses the fact that the estimated extended red time cannot
be larger than theremaining green time. A stopped group of vehicles
will pass the stop line at atime equal to the sum for all the previous
groups of the same cycle. An uninterrupted group that reaches ared
or extended red phase stops, while a group that reaches the green
phasetravelswithout interference. Thisapproachisequivalent to that
in the continuous LWR theory.
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Platoon groups for which the total extended red time is equal to
the green time cannot be served during the cycle during which they
arrived. Inthiscase, aresidual queueremainsat the end of the green.
The red time of the next cycleis extended by

no-L . n@-L
b=, I .g} (20)

todre = min[

where n(q) isthe number of queued vehicles at the end of the previ-
ousgreen cycle. If n(g) becomes sufficiently large, then the extended
red time is equal to the green time and the number of queued vehi-
cles is the sum of the arriving vehicles in the next cycle plus the
unserved vehicles of the previous cycle. The unserved vehicles of the
previous cycle are the queued vehicles of the previous cycle minus
the number of vehicles for which the first term in parentheses in
Equation 20 equalsg. The queuelength of the queuein the beginning
of thegreen at cyclek, ni(q) is

(@) = () — Ny + Ny (21

where Ny and Ny, are the number of arrived vehicles and the number
of served vehicles during the green timein cyclek, respectively.

Oversaturation

When the queue length exceeds the available link length, then it
blocks the outflow from the upstream signal and sometimes reduces
its capacity to zero. In this case, the number of served vehiclescan be
approximated by the number of vehicles served at the downstream
signd. Therefore, this oversaturated system is equivalent (regarding
the service rate and queue lengths) to a system with the following
characterigtics: (a) infinite capacity of the downstream link (i.e., no
blocking of traffic) and (b) green time equal to

" NIH»l Nlt+1 N|t+1
Ot = ——'G =——°Q = (22)
Na S°G S
where

0 = measured green time of signal at link i,
NL; = maximum number of vehicles served by signal i at one
cycle,
N = real number of vehicles served by signal i at cyclet + 1,
g‘;ﬁl = real effectivegreentimeat signa i at cyclet + 1, and
s = saturation flow at signal i (vehicles per hour of greentime).

MODEL APPLICATION

The proposed model was applied to two real-life arterialsto estimate
the queue length on each intersection approach. (a) M Street is a
closely spaced arterial with eight signalized intersections located in
Washington, D.C. The average signal spacing is 450 ft. All signals
operate as two-phase fixed-time signals with acommon cycle length
of 60 s. (b) The Lincoln Avenue study section is part of amajor arte-
rid in Los Angeles. There are seven signaized intersections. Signal
spacing ranges from 450 to 1,200 ft. There are three through lanes
with exclusiveleft-turn lanes. All the signals are multiphase actuated
with acommon cyclelength of 120 s. During the morning peak peri-
ods, the queues at Intersection 7 fill Link 6—7 and block the outflow
from upstream Intersection 6.

The basic data on intersection geometrics, signal settings, and
free-flow speeds were assembled from related studies. Traffic data
on flow, speed, and occupancy were obtained from system loop
detectors positioned approximately 250 ft from theintersection stop
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line. The datawere coded into the CORSIM microscopic simulation
model (10), and the performance was simulated for atotal of 80 sig-
nal cycles. The simulation output wasfirst compared with field data
(delays and travel times) to verify that the model reasonably repli-
cates field conditions at the test sites. Next, the simulated queue
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The results for three intersection approaches shown in Figure 8
indicatethat the proposed model produces accurate estimates of queue
lengths. In most of the cases, the difference between the model-
predicted and the simul ated queue lengthsislessthan four vehicles.
Themodel aso captures the observed blocking of traffic at upstream

lengths predicted by the proposed model and the simulation were
compared.

Signa 6 onthe Lincoln Avenue network because of oversaturation at
Intersection (Node) 7 (Figure 8b).
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FIGURE 8 Measured and estimated queue lengths: (a) Lincoln Street, Node 3;
(b) Lincoln Street, Node 7; (c) M Street, Node 2.
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The proposed model formulation based on the LWR theory real-
istically modelsthe dispersion for both single and multiple platoons
along arterials and explicitly considers the effect of residual queues
at oversaturated intersections on the estimation of traffic arrivals.

The proposed recursive formulation permits the prediction of the
arrival profilesmany signalsdownstream from aknown starting flow.
This output is an important tool for the estimation of queue lengths
and the prediction of link travel times even when the data from loop
detectorsare unknown, inaccurate, or aggregated. Work isin progress
to extend the model to optimize the offsets between intersectionsin
signdized networks and to estimatethe travel timesin real timealong
signdized arterials (11).
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