REMOTE DATA ACQUISITION OF
EMBEDDED SYSTEMS USING
INTERNET TECHNOLOGIES:

A ROLE-BASED GENERIC SYSTEM

SPECIFICATION

THESE N° 2388 (2001)

PRESENTEE AU DEPARTEMENT D’INFORMATIQUE

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L’OBTENTION DU GRADE DE DOCTEUR ES SCIENCES TECHNIQUES

PAR

Txomin NIEVA

Ingénieur de systemes €lectroniques de 1’Université de Mondragdn
de nationalité espagnole

acceptée sur proposition du jury:

Prof. Alain Wegmann, directeur de these
Prof. Karl Aberer, co-rapporteur
Dr Andreas Fabri, co-rapporteur
Prof. Hubert Kirrmann, co-rapporteur
Alfred Mortlseder, co-rapporteur

Lausanne, EPFL

2001

i

A Nathalie

il

v

Acknowledgments

First, 1 express my deepest thanks to my thesis supervisor Prof. Alain
Wegmann for his support during this work. He offered me the unique opportunity to
learn and experiment and he guided me from the deep black hole up to the light. I
extend my deepest thanks to the rest of the members of the jury Prof. Karl Aberer
(EPFL-LSIR), Dr Andreas Fabri (INRIA, Sophia Antipolis, France), Prof. Hubert
Kirrmann (ABB Corporate Research, Baden, Switzerland), and Alfred Mortlseder
(BBV Software Services, Lucern, Switzerland) for accepting the evaluation of my
thesis and their invaluable contributions to this work. I also thank Prof. Roger D.
Hersch (EPFL-LSP) for his assistance as president of the jury.

During more than three years I had the rare chance of working in both a
prestigious university and in a research center of one of the largest industrial
companies in the world. I am thankful for the EPFL-ICA and for ABB Corporate
Research for this great experience. I am also sincerely thankful for the University of
Mondragon to give me the opportunity to come to the EPFL under the frame of the
GOIER program. I am grateful toward the people at EPFL-ICA and at ABB
Corporate Research, particularly toward Andrey Naumenko, Gil Regev, Pavel
Balabko, Guy Genilloud, and Pierre Castori, from EPFL-ICA, and toward Andreas
Fabri, Hubert Kirrmann, and Otto Preiss, from ABB Corporate Research. I express
my eternal gratitude also toward Holly Cogliati for spending such a long time
improving my writing English and making my technical articles more readable. I
thank also Danielle Alvarez, Angela Devenoge and Jean-Pierre Dupertuis for their
administrative and technical support.

As part of my work at ABB Corporate Research I was involved in two major
projects. I am deeply grateful to all the members of the WP4 of the ROSIN European
project; they brought a real framework to the discussions and the implementation of
our hypotheses. I am thankful for the members of the DaVinci project of the railway
manufacturer Adtranz, particularly for the members of the System Architecture sub-
project.

The work of this thesis could not haven done without the invaluable
contributions of my diploma students Monica Perez (the railway equipment modeling
expert), Jan Ellerbrock (the XML/XSL expert), Abdendi Benammour (the Jini
expert), Jose Carpio (the “roles” expert), Ramzi Bouzerda (the SOAP expert),
Alessandro Specchia (the DAS expert) and my semester students Fabrice Wohnrau
(the LDAP and WAP expert) and Felix Jaeger (another WAP expert). We made a
great team together! I extend my most sincere and deepest thanks to all of them.

Besides the technical and administrative support and the friendship and the
collaboration framework of my colleagues at EPFL-ICA and ABB Corporate
Research, I had the chance of having many good friends in Lausanne and in Renteria
(my original village in Spain). They supported me psychologically during the work of
my thesis, giving to me their friendship and company. It is sure that I could have not
achieved the work of this thesis without this invaluable support. I will be eternally
grateful toward all of them.

A special thanks goes to my family, to my father, mother, brother and sister. I
have missed them a lot of times but I always had the warm feeling that they were
there all the time, ready to listen to me, to help me and looking forward seeing me
again. I feel really lucky to have such a wonderful family.

Finally, my greatest and eternal gratitude goes to my beloved Nathalie. She
was my inspiration, my motivation, my expectation, my patience, my desire, ...my
everything! Actually, the work of this thesis is not my own work but the work of the
great team that we form together and that, I firmly believe, we will form forever.

Vi

Abstract

Data Acquisition Systems (DAS) are the basis for building monitoring tools
that enable the supervision of local and remote systems. DASs are complex systems.
It 1s difficult for developers to compare proprietary generic DAS products and/or
standards, and the design of a specific DAS is costly. In this thesis we propose an
implementation independent specification, based on conceptual and role-based use
case modeling, of a generic architecture for DASs. This generic DAS specification
gives DAS developers an abstraction of DASs; it enables them to compare existing
DAS products and standards; and it provides the DAS developers that aim to develop
a specific DAS with a starting point for the design of a specific DAS. A generic
system specification has many advantages. We propose patterns and techniques that
are useful for the development of specifications of generic systems. Additionally, the
generic DAS specification provides a case study on the development, based on
conceptual and role-based use case modeling, of implementation independent
specifications of generic systems that demonstrates, by means of an industrial
example, the advantages of these techniques for the development of specifications of
generic systems.

The work of this thesis has been sponsored by the FNRS (Swiss National
Science Foundation)'!, ABB Corporate Research Ltd. (Switzerland), EPFL, and the
University of Mondragon.

Keywords: Information System Engineering; Conceptual Modeling; Role-
based Use Case Modeling; Data Acquisition Systems; Remote Monitoring Systems;
Embedded Systems

' In the frame of the NePESM (New Paradigms for Embedded Systems Management) project of the
SPP-ICS (Swiss Priority Programme for Information and Communications Structures, 1996-1999)
programme.

Vil

viii

Version Abrégée

Les systemes d’acquisition de données (DAS) sont a la base des outils
informatiques qui permettent la surveillance locale et a distance des systémes. Les
DASs sont des systeémes complexes. Il est difficile, pour les constructeurs de DASs,
de comparer les différents produits propriétaires et génériques et/ou les différentes
normes de DASs. En plus, le design d’'un DAS spécifique est coliteux. Dans cette
theése nous proposons une spécification d’une architecture générique pour des DASs.
Cette spécification générique est indépendante des choix d’implémentation et elle est
basée sur la modélisation conceptuelle et la modélisation des cas d’utilisation basée
sur des roles. Cette spécification générique donne aux constructeurs de DAS une
abstraction de DASs; elle leur permet de comparer les produits et normes existants; et
elle donne aux constructeurs qui veulent concevoir des DAS spécifiques un point de
départ pour leur design. Une spécification d’un systeme générique a plusieurs
avantages. Nous proposons quelques patrons et techniques utiles pour la conception
des spécifications de systémes génériques. En outre, notre spécification d’'un DAS
générique fournit un cas d’étude sur la conception, basée sur la modélisation
conceptuelle et la modélisation des cas d’utilisation basée sur des roles, des
spécifications de systemes génériques. Ce cas d’¢tude démontre, en utilisant un
exemple industriel, les avantages de ces techniques pour la conception des
spécifications de systémes génériques.

Le travail de cette thése a été financé par le FNRS (Fonds National Suisse de
la Recherche Scientifique)’, ABB Corporate Research Ltd. (Suisse), 'EPFL, et
I’Université de Mondragon.

Mots-clé: Conception de Systémes d’Information; Modélisation Conceptuelle;
Mod¢élisation des Cas d’Utilisation basée sur des Roles; Systémes d’Acquisition des
Données; Systémes de Surveillance a Distance; Systémes Embarqués.

? Dans le cadre du projet NePESM (Nouveaux Paradigmes pour la Gestion des Systémes Embarques)
financé par le programme SPP-ICS (Programme Prioritaire de Recherche pour les Structures
d'Information et de Communication, 1996-1999)

X

Contents

ACKNOWICAZMENTS c..cccoeeiuerriiiiinniicsssnnncssssssnesssssssnssass v
ADSEITACE coveriennnriiinriiinncnsnncsssncsssncssssssssssssssssessssesssssesssssess vii
Version ADIEZEe.....uuuicnveriiireninssarisssnncsssnnssssnssssssssssasssssasssssassssssssssssssssssssssssssssssssssassss ix
COMNTEIMLS c.uueeriernricsnninsrrcssnnesssnncsssnscsssresssssesssssessssssssssssssssssssssssssssessssssssssssssssssssssssses xi
LiSt Of FiUIES «euveievueiiiinrininninsnncissnncssnissssnissasssssasssssases XV
LiSt Of TaDIES c.cuuerienriiinriiiiininniininiissnicnsnnicsssnecsssnessssnessssnesssssesssssesssssssssssssssssssnns Xvii
GLOSSATY cccuverirserisssnicsseressnissssnssssssssssanssssassssssssssssssssssssssasssssasssssassssssssssssssssnsssssnssss Xix
1. INroduCtioneeccceicissnicisnnsssnnisssanesssanssssnsessssnsssssssssssssssssssssssssssssssssasssssasssssas 1
1.1 ReSEArCh CONEXT...c.uiiiiiiiiieiiiieiieiie ettt ettt ettt s 1

1.2 Problem Statement, Goals, and Major Contributions.............cccceevevveennenn. 1

1.3 Organization of this ThesiS........cccecuiiiiiiiiiiiieieeieee e 3

8 1) 11 - N 5
2.1 INOAUCTION. ...ttt ettt ettt ettt saaeens 5

2.2 Embedded SyStemS.......cccceeeiiieiiiieeiiieeiieeeie et 5

2.3 Maintenance, Asset Management, and Condition Monitoring................... 6

2.4 Monitoring and Data Acquisition SyStemS........cccceecveeerveeerveeerieeeireennnenn 7

2.5 MEASUICIMENL....ccutiiiriiiiiriiieeiiie et ee et ettt et e et e et esbteesabeeesbeeesabeeas 8

2.0 SUIMIMATY ...oeiiiiieeiieeeiieeeieeeeteeeseteeestaeeeseaeeessaeeessaeessseeessseeassesensseesssseessees 8

R L 1< 1 1111 TR 9
TR B 5315 ¢ e L (o7 5 [) s OSSP 9

3.2 Conceptual Modeling.........cocveviieriiiniieiieeit et 9

3.3 Role-based Use Case MOdeIINgG..........ccevveeeriieeniieeiieeieeeieeciee e 9

3.4 Patterns, Frameworks and Architecturesccoeeveeeeeiveeeeecineeececneee. 10

R I 30 N o7 111<) o 0 USSR 10

3.4.2 Frameworkscccocieviiiiiiiiieeiieeee et 11

3.4.3 ATChITECIUIES....uvviieiiieeiieeciee ettt e e 11

3.4.4 Patterns vs. Frameworks vs. Architectures...........ccceceveveeneennnen. 12

3.5 External SpecifiCation..........ccceeeciiieriieeriieeciie et 13

3.6 UML ..ottt sttt 14

xi

TR O 1 -1 3 TSRS 15

3.8 Method OVEIVIEWcouiiiiiiiiiiieiiiriieieetese ettt 16
3.9 SUIMIMATY ..eiiiiiieeiiie et cite e eiee ettt e et e et e e e e e e esreeensaeesssaeesnseeennseeennnes 17
State of the art of Data AcquiSition SyStemscceeveereecseensnnssaenseecssnecsannes 19
4.1 INtrOAUCTION. ..c..eiiiiiiiiiiee et 19
4.2 Software Patterns for Data Acquisition SysStems...........ccceeeerveerrienneenen. 19
4.3 OMG’S DAIS RFEP....oiiiiiiieeeeeeee et 20
4.4 Data Acquisition Standardsccceeevierieriiinienie e 21
A4.1 OPC e 22
4.2 TV 23
443 ODAS e 24
4.5 SUMIMATY ...eiiiiiiiiiieeeiie ettt ettt e st e st e et eessabee e bt e e sabeeesabeeenans 26
Case Study — The RoMain System: A Remote Data Acquisition System
Applied to Railway EQUIPMENTtcueeieeeieeiieninensenssnensenssnenssecssnecsaessnessne 27
5.1 INErOAUCHION. ¢ttt 27
5.2 The GLASS SYStemM......ccciiiiiiiiiiieiieiieeie ettt 27
5.3 The ROMaAIN SYSTEIM ...eecviieiiiieiiieeeiie ettt ere e e 28
5.4 RoMain Java: Monitoring of all Devices on a Single Train..................... 30
5.5 RoMain XML: Monitoring of all Devices on a Fleet of Trains 31
5.6 PIUG&PLAY...coouiiiiiiie e 33
5.6.1 System PIug&Play.......ccccoovveiiiieiiiieieeeecee e 33
5.6.2 Network PIug&Play..........cccoviieiiiiiiiieeieeeeeeee e 36
5.7 SUIMIMATY ..eieiiiieeiiieeieeeeieeesieeeeieeesteeesteeessbeeesreessseessseessseessnseeessseesnnses 38
External Specification of a Generic Architecture for Data Acquisition
N] =) 111 39
6.1 INtrOAUCHION.eeiiiiiiiiiiiieieee ettt 39
6.2 Data Acquisition Conceptual Modelccoeeviieeiiieiiiieeieeeeceeeee 39
6.2.1 Device MOdEIScoouiriiiiiiiinienieiieneceeeeeeee e 40
6.2.2 DeviCe ItemSeovuiiiiiiiiiiiiiiec e 41
6.2.3 Device Model Monitoring Criteria........coceeveereeenieeneeenieeneeennen. 41
6.2.4 Device Item Monitoring Criteriaccceevveeerveeerveesireesieeenneenn 42
6.2.5 Observations & Monitoring Reportsccccceevveerierciienienieennen. 43
6.2.6 Detailed CONCEPLS.....ccevvieeiiiieriieeciieecteeerieeerree e ereeeaee e 44
6.2.7 Complete DAS Conceptual Model...........cccooceeriiiiiiniiiieeen. 47
6.3 Data Acquisition Role-based Use Case Model...........ccccveeveveencieennnennne. 49
0.3.1 DISCOVET ...iiiiiiiiiiieettee ettt 52
6.3.2 Define Data ACCESS.....c.cevuieiirieniiiiinienieeieetesieee et 55
6.3.3 ACCESS Data ..ot 59
6.3.4 Notify Data Availabilityccooeeeriiiiniiniiiieeeeeeee e, 60
6.3.5 Upload Data........cccciiieiiieeiieecieeciee ettt 61
6.4 SUITIMIATY ...eiiuiiieiiiieiiie ettt ettt e et e et e et e e st eesbteesabteesabeeesabeeenane 62
DISCUSSION .uueeenniiiniitiiiticsteenneineesticsnicsiessessssnsssssssessssssssessssssssessssssssssssasssns 63
7.1 INEOAUCHION. ..c..eiiiiiiiiiiiieieee ettt st 63
7.2 Conceptual Model........cccviiiiiiiiieeiiece e 63
7.2.1 Device Models vs. Device Itemscccecverieneinieniineenienicnenn 63
7.2.2 Naming Management.............cccveeeiueeerieeerieeenieeenreeeseeesneeenneens 64
7.2.3 Composition Management.............cccueereereeerieenieenieeneeenieeseeeeens 64

Xii

T T 5 O 66

7.2.5 Physical Values vs. Sampled Values.........ccccccoevieiieniiienieninenen. 66

7.3 Role-based Use Case Model...........coouiiiiiiiiniiiniiiiiiiieicececeeeee 67

7.3.1 Elementary Roles vS. ACtOTS.......c.ceeouieriieriieniieniieiieeieece e 67

7.3.2 Representation of the Systemcccccveeviiiieniiieinieeiieeeieeee, 68

7.3.3 System Behavior Modelingcccccoevieviiienieniienienieeeeeeeeee. 69

7.3.4 Broker Pattern.........coccoiiiiiiiniiiiiiiceeeeee e 71

7.3.5 Administrator-Manager Pattern.............coocceeveeniiiiiieniiienieeeeee, 72

7.3.6 Specification of Role-based use cases.........ccecveeevveeecieerneeennnnn. 73

7.3.7 Specification 0f ROIES........cccevcuieviiiiiiiiiiieieeee e, 73

7.4 Development PrOCESS.cciiiiiriieeiiieeeiee ettt ere e 74

7.5 SUITIMATY ..eeiiuiiiiiiiieiiteeeie ettt ettt ettt e ettt e st e s bt e e st e e sabeeesabeeenans 75

8. Application and Validation..........ceeiereeicncsercssnrcssescssescsssnscssanssssssssssasssssanes 77
8.1 INtrOdUCHION.eiiiiiiiiieiiiitee ettt 77

8.2 Issuing/Replying a RFPcc.cooiiiiiiiiiice e 77

8.3 Evaluation of Existing Systems or Proposals............ccccevcvieviieniieneennene 78

8.3.1 OMG’s DAIS RFP vs. DAS Standards vs. RoMain..................... 78

8.4 Design of @ NeW SYSeIM....cceiiiiiiiiieiiiiieeiiesie ettt 87

8.4.1 Development of a DAS for Railway Equipment.......................... 87

8.5 SUIMIMATY ..ottt ettt esbee e sabee s 91

L ©01) 1 T4 11) (1) 1 R 93
0.1 INtrOQUCHION. ..c..eeiiiiiiiiiiiieieee ettt 93

0.2 Major CONIIDULIONS.ccuvvieriieeeiiieeriieeriee et e ereeeereeeareeeareeenseeesaeeeeenes 93

0.3 MaJor FINAINGScovuiieiiiiiieiiee et 93

9.3.1 Conceptual Model........cc.ooovuiiiriiieiieeiieeee e 93

9.3.2 Role-based use case Model...........ccoceeviiriieninniiiieiieeeeeee, 94

9.3.3 Development ProCess........cccvereiiieriiieeniieeiiieeiee e eeeeeee e 94

9.4 FUuture WOrK......cocuiiiiiiiiiiiicicce et 95
Appendix A RoMain Java vs. RoMain XMLueievveicvvneicssnnccssnnccsnnecnns 97
Appendix B DAS Role-based Use CaSES ...ccccererruercssrnrcssanscssanesssasssssasssssassses 105
Appendix C DAS Elementary Roles......coieieerseecsuenssnensaenssnenseeessnecsaensneenne 143
BiblIOZrapRhy ...cccueiciviicireninssencsssnnssssnnessnisssanssssssssssasssssasssssssssssssssnsssssssssssnsssssassssses 169
Curriculum Vita@....ueieciveiicisnriniseninsneninsssnissssncsssncsssncssssncssssscssssscssssssssssssssssssssss 175

Xiii

Xiv

List of Figures

Figure 1 The DAS Nightmare..........cooooiiiiiiiiiiiieeeeee e 1
Figure 2 And there was Light ... in the DAS World.........ccccooiiiiiiiininiiicee, 2
Figure 3 Specific DAS Developmentcocueeiiiiiiiiiiiiieieiieeeeceeeeeee s 2
Figure 4 Maintenance and Asset Management..........coccceveverveereenieeieneenenseeneenneennes 7
Figure 5 Monitoring and Data Acquisition SYStemccceeveerieinieniieenienieeeeneeene 8
Figure 6 Pattern vs. Framework vs. Architecturecccccovvevervenicneenicnienecicneens 12
Figure 7 External SpecifiCationccooiiiiiiiiiiiiiiieeeeeceeee e 14
Figure 8 The Catalysis APProachccccceceriiiiiiiiiiniiiiniceceeeeeeee e 15
Figure 9 Method OVErVIEWccc.coiiiiiiiiiiiiiiieeeeeee e 16
Figure 10 OPC Data Access Model.........cocuovieiiiiiniininieiieiceeecceeeeeseeie e 22
Figure 11 IVI-MSS MOdEl.......ooouiiiiiiiiiieeeee e 24
Figure 12 ODAS MoOdel........ccoooiiiiiiiiiiiiiiiiceeeese e 26
Figure 13 The GLASS SyStemcoooiiiiiiiiiiiiieteee e 28
Figure 14 The ROMain SYSteIMcc.uoviiriiiiiriiiiiiierieeieeienie ettt 29
Figure 15 Monitoring of all Devices on a Single Train............ccoceeiiiniiiniiniinneenn 30
Figure 16 Monitoring of all Devices on a Fleet of Trainsccccceceveevenviencnncnnene 32
Figure 17 Maintenance Information Metadata Structure.............ccocceevviernienienneenne. 34
Figure 18 System InitialiZation............cccceeiiriiiiiiiiniinieicneeceeeeee e 35
Figure 19 Jini-enabled System Architecture...........ccoceevieniiniiiniiiniiinieieeeeeee 36
Figure 20 Jini-enabled SyStem..........coceeviiriiriiiiriiiiieeereeeeeeee e 37
Figure 21 Data Acquisition Main Packagesccoceeieiiiniiiniiiiiniceeeeccee 39
Figure 22 Device MOdEIS.......coeiiiiiiriiiiiieiicieeeeeee et 41
Figure 23 Device Items.......coouiiiiiiiiiiiie e 41
Figure 24 Device Model Monitoring Criteria.........coeeveeierienernienieneeienieneeneennens 42
Figure 25 Device Item Monitoring Criteria...........eevuerueenienrieenieeiienieeiee e 43
Figure 26 Observations & Monitoring RepOortsccceeveieiiieniienienieeieeieeee 44
Figure 27 Measurement TYPEccccuviiriiieriieeiiee ettt ettt eree e 44
Figure 28 Mapping POLICYccoovuiiiiiiiiiiieicieecec e 45
Figure 29 Time Trigger Condition............cccvieeriieeriieeriee et evee e 45
Figure 30 Device Model Event Trigger Condition...........ccceeevieeriieniieniieeniienieeeene 46
Figure 31 Device Item Event Trigger Condition..........c.cceecveeevieeiiieeniieeeiieesieeeene 47
Figure 32 Data QUAlIfIerscccooiriiriiiiiiinicieecee e 47
Figure 33 Complete DAS Conceptual Model..........c.coooiiiiiiiiniiiiiiiceee 48
Figure 34 Device Lifecycle.......ooooiiiiiiiiiiiieeeee e 49
Figure 35 Data AcquiSition USE Casescoceevuerieriiinierieniienienienieenieeteseesieeeesieens 50
Figure 36 Data Acquisition Activity Diagram........ccccceeoeenieniiiniieniieniciieeneeeeee 51
Figure 37 DiSCOVEr USE CaSE.....c.ceuiriiiiiriiniieieiienitesieete sttt 53
Figure 38 Discover Activity DIagramccccceeevieeeriieeiiieeieecieeeiee e 54

XV

Figure 39 Define Data Access USE Casecoouuiruiiiieiiienieiiieniceiteee e 56

Figure 40 Define Data Access Activity Diagramcoocevveeniienienieeniieeieeee, 58
Figure 41 Access Data USe Casecccueeviiriiiiiiiiiiiiniieeieeste ettt 59
Figure 42 Access Data Activity Diagramccccooevieveeiienienenenieeeiceeeneeieeiene 60
Figure 43 Notify Data Availability Use Case.........ccocuerviieniiiiiiniiniieniceieeneeeeee 61
Figure 44 Upload Data Use Case.........cccceruirierieriiniinienienieeieeesieesie et 61
Figure 45 Device Models vs. Device Items........c.cccovieriiiniiiiiiniiiiiiiceeeceee 63
Figure 46 Example of Model Composition without Functional Model 65
Figure 47 Model Composite Pattern..........coccooviiiiiiiiiiiiinieieceeeeeeeee 65
Figure 48 Example of Model Composition with Functional Model.......................... 66
Figure 49 Physical Values vs. Sampled Values...........ccccoviiiiiniiiiiniiiicceee 67
Figure 50 Elementary Roles VS. ACLOTScoeevieriiriinienienienieeiesteieeteeeesie e 68
Figure 51 Representation of the System in the Use Case.........ccoceeveeniiinieniceneenne. 69
Figure 52 Example of Modeling of the Interactions across Use Casescc......... 70
Figure 53 Example of Modeling of the Scenarios of Use Casesc..cceceereeeneenne. 71
Figure 54 Example of Representation of the System Broker in the Use Cases......... 71
Figure 55 Example of (Un)Registration of Services in the System Broker............... 71
Figure 56 Example of Comm. between Roles using the System Broker................... 72
Figure 57 Example of Simplified Comm. between Roles using the System Broker.72
Figure 58 Administrator-Manager Pattern...........ccooeeveriiiniininienienecieeeereeene 73
Figure 59 Traditional Development Processcocoevueeniiiniiniicniiiniiiieniceeee 74
Figure 60 Followed Development Processcocuevieveriiniininienicneeienieneeieeiens 75
Figure 61 Issuing/Replying a RFP........ccccoooiiiiiiiiiiieeeeeeeeeee e 77
Figure 62 RFP vs. Standard vs. Application...........ceccueeuienireriieniieieeieeiee e 78
Figure 63 OPC Conceptual Model............coociiiiiiiiiiiiiiiceeeeeeeee 81
Figure 64 IVI Conceptual Model.........ccccooiiriiiiiiiniiiiiicniceeeeceeeeeeseee s 82
Figure 65 ODAS Conceptual Modelc.cccoiiiiiiiniiiicceeceee &3
Figure 66 RoMain Conceptual Modelc..coceriiniiiiniiniiniieieeceeeeeeene 84
Figure 67 Railway Equipment DAS Conceptual Modelccccccoviiniiiiinninnennn 88
Figure 68 Railway Equipment DAS System Use Case Model.........c..ccccceveerininnnne. 90
Figure 69 Communication Performance CompariSoncocceevveerieeniennieeneeenneene 99
Figure 70 One Update vs. Ten Updates CompariSOncccceeeveeereeerieeneeenieennenns 100

xvi

List of Tables

Table 1 Software Patterns for Data Acquisition SyStems..........ccccveeevveeeiieercreeennnnen. 20
Table 2 Generic DAS Concept COMPATISONccuieruierireriieeiieiieseeeiee e eieesee e 86
Table 3 Generic DAS Functionality COmMpPariSOnceeveeerveeerieeerreeeiieenieeenneen 87

xvii

XViii

Glossary

AMS
API
COTS
COM
CORBA
DAIS
DAS
DCOM
DSC
DTD
EPFL
FNRS
GLASS
GSM
GUID
HTML
HTTP
HVAC
ICA
IEC
ISO
ITU
IVI
JLS
JVM
LAN
MTTF
NePESM
ODAS
OoDP
OLE
OMG
OPC
PC
PLC
PnP
PPM

QoS

Asset Management System

Application Programming Interface
Commercial Off-The-Self

Component Object Model

Common Object Request Broker Architecture
Data Acquisition from Industrial Systems

Data Acquisition System

Distributed Component Object Model
Communication Systems Department
Document Type Definition

Swiss Federal Institute of Technology Lausanne
Swiss National Science Foundation

Global Access for Service and Support

Global System for Mobile communications
Global Unique IDentifier

HyperText Markup Language

HyperText Transfer Protocol

Heating, Ventilation and Air-Conditioning system
Institute for computer Communications and Applications
International Electrotechnical Commission
International Standards Organization
International Telecommunications Union
Interchangeable Virtual Instrument

Jini Lookup Service

Java Virtual Machine

Local Area Network

Mean Time To Failure

New Paradigms for Embedded Systems Management)
Open Data Acquisition Standard

Open Distributed Processing

Object Linking and Embedding

Object Management Group

OLE for Process and Control

Personal Computer

Programmable Logic Controller

Microsoft’s Plug&Play

Preventive/Predictive Maintenance

Quality of Service

Xix

RFP Request For Proposal

RMI Remote Method Invocation

RM-ODP Reference Model for Open Distributed Processing

RoMain Railway Open Maintenance tool

ROSIN Railway Open System Interconnection Network European project

RPC Remote Procedure Call

SGML Standard Generalized Markup Language

SI International System of Units

SPP-ICS Swiss Priority Programme for Information and Communications
Structures, 1996-1999

SSL Secure Socket Layer

TCN Train Communication Network

TCP/IP Transmission Control Protocol/Internet Protocol
TNM Train Network Management

UIC Union Internationale des Chemins de fer
UML Unified Modeling Language

UPnP Universal Plug&Play

UTC Universal Coordinated Time

W3C World Wide Web Consortium

WLAN Wireless Local Area Network

XML eXtensible Markup Language

XSL eXtensible Style Language

XX

1. Introduction

1.1 Research Context

In the last few years, companies from many business areas have become
increasingly interested in maintenance and asset management. A management
technique that can be applied for improving maintenance and asset management is
condition monitoring. The access to utility data source is essential. Remote
monitoring systems have been developed in many business areas such as building [1],
power engineering [2] and transportation systems [3] to provide condition-monitoring
systems with information about the state of equipment. The kernel of any remote
monitoring system is a data acquisition system (DAS), which enables the collection
of relevant data. There are many standards for DASs such as OLE for Process and
Control (OPC) [4], Interchangeable Virtual Instrument (IVI) [5] and Open Data
Acquisition Standard (ODAS) [6], among others. Additionally, the Object
Management Group (OMG) has recently issued a Data Acquisition from Industrial
Systems (DAIS) Request For Proposal (RFP) [7]. Based on DAS standards, there are
many commercial generic DAS products that DAS developers can buy and customize
for their specific DAS application. DAS developers have to choose between buying a
commercial DAS product and customizing it for their specific requirements or
designing from scratch a specific DAS.

1.2 Problem Statement, Goals, and Major Contributions

However, DASs are complex systems. It is difficult for DAS developers to
understand DAS standards and/or generic DAS products. As each standard or product
uses a different idiom it is also difficult for DAS developers to compare them.
Additionally, the development of a specific DAS from scratch is a difficult task that
requires high development costs.

o]
DAS ‘
Standards

Generic
DAS
Products

Figure 1 The DAS Nightmare
The main problems are:

(1) Understanding DAS standards and/or generic DAS products is difficult.

(11)) Comparing DAS standards and/or generic DAS products is difficult.
(ii1)) Designing a specific DAS requires high development costs

We found that a high-level generic abstraction of DASs may help DAS
developers to understand and compare the different standards and/or generic
products. Therefore, we propose a conceptual model and a role-based use case model
of a generic DAS. These models give DAS developers a high level abstraction of
DASs. They also provide DAS developers with an implementation independent
specification of a generic architecture for DASs. This generic DAS specification
enables the comparison of existing standards and products.

Generic DAS Specification

DAS \Q
Standards t
Generic

DAS
Products

Figure 2 And there was Light ... in the DAS World

Additionally, this generic DAS specification provides the DAS developers
that aim to develop a specific DAS with a starting point for the design of a specific
DAS. The specification of a generic architecture for DASs reduces the development
costs of a specific DAS.

Generic DAS Specification

Specific DAS

Requirements > —> Specific DAS

Figure 3 Specific DAS Development
Therefore, the main benefits of this generic DAS specification are:

(i) Reduction of the time and the costs needed to understand a DAS standard
and/or generic DAS product.
(1) Enabling of the comparison of the different products and standards
(111) Reduction of the time and the costs needed to implement a specific DAS.

We have found that an implementation independent specification of a generic
system has many advantages. We propose patterns and techniques to facilitate the
development of specifications of generic systems. Additionally, our generic DAS
specification provides a case study on the development, based on conceptual and role-
based use case modeling, of the specifications of generic systems that demonstrates,
by means of an industrial example, the advantages of these techniques for the
development of specifications of generic systems.

To summarize, the major contributions of this thesis are:

(i) We provide an implementation independent specification of a generic
architecture for DASs.

(i1)) We propose patterns and techniques to develop, based on conceptual and
role-based use case modeling, implementation independent specifications
of generic systems.

(111) We provide a case study on the development, based on conceptual and
role-based use case modeling, of specifications of generic systems.

1.3 Organization of this Thesis
This thesis is organized as follows:
Chapter 2. Context

In this chapter we define relevant concepts related to the problem domain of
DASs. We define embedded systems. We define maintenance, condition monitoring
and asset management, which are techniques that managers have found give
substantial benefits to companies. We define remote monitoring and data acquisition
systems, which are the core pieces to enable the application of such techniques.
Finally, we define measurement, which is one of the principal processes performed by
a DAS.

Chapter 3. Method

In this chapter we explain concepts and techniques regarding the methodology
that we followed to obtain an implementation independent specification of a generic
architecture for DASs. We describe conceptual and role-based use case modeling as
useful techniques for the development of specifications of generic systems. We define
the concepts of pattern, framework, and architecture in the software domain,
establishing a clear distinction between these terms to avoid any confusion. We
introduce the concept of external specification, which is the term used from now on
to refer to an implementation independent specification. We present the Unified
Modeling Language (UML) as the modeling language used in our research work. We
give an overview of the Catalysis development process, which is an object-oriented
methodology based on UML. Finally, we give an overview of the methodology that
we followed to obtain an external specification of a generic architecture for DASs.

Chapter 4. State of the art of Data Acquisition Systems

In this chapter we review the state of the art of DASs. First, we give a list of
analysis and design patterns related to the domain of DASs. Second, we give an
overview of the OMG’s Data Acquisition from Industrial Systems (DAIS) Request
for Proposal (RFP), which solicited proposals for standard interfaces to access data
within industrial systems by other applications. Third, we describe the most important
data acquisition standards: OLE for Process and Control (OPC), Interchangeable
Virtual Instrument (IVI) and Open Data Acquisition Standard (ODAS).

Chapter 5. Case Study — The RoMain System: A Remote Data Acquisition
System Applied to Railway Equipment

In this chapter we describe the RoMain system, which is a web-based
monitoring tool for trains to support maintenance work that we developed. This
system is based on the GLASS system, which is a generic system to provide remote
monitoring capabilities to a large range of industrial facilities based on Internet
technologies. We used the development of the RoMain system as a case study to
acquire the required knowledge about DASs. In one sense, the external specification
of a generic architecture for DASs is a generalization of the model build for the
RoMain system with some extensions and improvements. Part of the work described
in this chapter appeared in [3, 8, 9].

Chapter 6. External Specification of a Generic Architecture for Data Acquisition
System

In this chapter we describe an external specification of a generic architecture
for DASs. This generic DAS specification enables the comparison of existing DAS
products and standards. Additionally, it provides the DAS developers that aim to
develop a specific DAS with a starting point for the design of a specific DAS. The
generic DAS specification is composed of a conceptual model and a role-based use
case model of a generic DAS. These models give DAS developers a high-level
abstraction of DASs. Parts of the work described in this chapter appeared in [10].

Chapter 7. Discussion

In this chapter we discuss key issues about the conceptual and role-based use
case models. We also discuss the development process that we followed in this thesis
and we explain the benefits of this development process versus traditional
development processes. Parts of the work described in this chapter appeared in [10].

Chapter 8. Application and Validation

In this chapter we explain the applications of an external specification of a
generic system. The most direct application of a generic system specification is for
the writing of a RFP for a new standard. Another potential application of a generic
system specification is for the evaluation of existing systems, standards or RFP
responses. We illustrate this by using our generic DAS specification to compare the
OMG’s DAIS RFP, the different DAS standards and the RoMain system. Finally, a
generic system specification can be applied in the development of a particular system.
This will significantly reduce the development costs of a specific system. We
illustrate this by means of an example of development of a DAS for railway
equipment based on our generic DAS specification.

Chapter 9. Conclusion

In this chapter we summarize the major findings and contributions from the
actual work. We also point out some future work in this field.

2. Context

2.1 Introduction

In this chapter we define relevant concepts related to the domain of DASs. We
define embedded systems. We define maintenance, condition monitoring and asset
management, which are techniques that managers have found give substantial
benefits to companies. We define remote monitoring and data acquisition systems,
which are the core pieces to enable the application of such techniques. Finally, we
define measurement, which is one of the principal processes performed by a DAS.

2.2 Embedded Systems

The U.K. Institute of Electrical Engineers defined embedded systems as:

“A general-purpose definition of embedded systems is that they are devices
used to control, monitor or assist the operation of equipment, machinery or plant.
Embedded reflects the fact that they are an integral part of the system. In many cases
their embeddedness may be such that their presence is far from obvious to the casual
observer and even the more technically skilled might need to examine the operation
of a piece of equipment for some time before being able to conclude that an
embedded control system was involved in its functioning.” [11]

In fact, an embedded system is nothing but a specialized computer system.
Embedded systems differ from desktop PCs in the following aspects:

(1) Embedded systems often do not have user displays or keyboards.
(i1)) Embedded systems are usually embedded within larger systems or
machines.
(ii1)) Embedded systems may not include any operating system.
(iv) Embedded systems usually have hard constraints (small memory, slow
CPU, real-time response and so on).

There are many more — to the order of several magnitudes - embedded
systems than desktop PCs. We can find embedded systems almost anywhere: home
(microwaves, TVs, etc.), power substations (switches, control systems, etc.),
buildings (HVAC, alarm systems, etc.), transportation systems (HVAC, door
controllers, brakes, etc.), etc. just to mention a few examples.

This thesis is about remote data acquisition from embedded systems.
However, there are no constraints that impede the application of the results of this

thesis to non-embedded systems. This is possible because embedded systems have
tighter constraints than non-embedded systems. Additionally, non-embedded systems
may provide advanced features that could be used to optimize the acquisition and
transmission of data from these systems to consumers of this data such as
maintenance management systems, condition monitoring systems and asset
management systems.

2.3 Maintenance, Asset Management, and Condition
Monitoring

Maintenance improves the reliability and availability of equipment and
therefore the quality of service (QoS), which managers have found provides
substantial benefits. Maintenance management however makes up anywhere from 15
to 40% of total product cost [12]. Consequently, improving maintenance management
can also represent a substantial benefit to companies. Traditionally, there are two
major maintenance approaches: Corrective Maintenance and Preventive/Predictive
Maintenance (PPM). Corrective Maintenance focuses on efficiently repairing or
replacing equipment after the occurrence of a failure. Corrective Maintenance aims to
increase the maintainability of equipment by improving the speed of repair, or return
to service, after a failure. PPM focuses on keeping equipment in good condition in
order to minimize failures; repairing components before they fail. PPM aims to
increase the reliability of equipment by reducing the frequency of failures.

Substantial benefits can also be obtained by the intensive use of Asset
Management Systems (AMS). Asset Management is defined in [14] as:

“The process of guiding the acquisition, use and disposal of assets to make the
most of their service delivery potential (i.e., future economic benefit) and manage the
related risks and costs over their entire life.”

Asset management is a task complementary to maintenance. It provides
support for the planning and operation phases. Similar to maintenance tasks, in AMSs
access to utility data source is essential.

A management technique that can be applied for improving maintenance and
asset management is the on-line supervision of the health of the equipment, which is
usually known as condition monitoring. Condition Monitoring is defined in [13] as:

“Condition monitoring is a management technique that uses the regular
evaluation of the actual operating condition of plant equipment, production systems
and plant management functions, to optimize total plant operation.”

Condition monitoring, applied to maintenance tasks, provides necessary data
in order to schedule preventive maintenance and to predict failures before they
happen. Condition monitoring is based on direct monitoring of the state of equipment
to estimate its Mean Time To Failure (MTTF). AMSs will propose or update PPM
plans based on the information provided by the condition monitoring systems.

DASs and remote monitoring systems build the infrastructure, shown in
Figure 4, to provide condition-monitoring systems with information about the state of
equipment.

Improve Equipment Reliability/Availability
Reduge Costs

Maintenance and
Asset Management

Remote Architecture

Monitoring .
Architecture Preventive &

Predictive
Maintenance

Asset
Management

Condition Monitoring

System Monitoring

Data Acquisition

Figure 4 Maintenance and Asset Management

2.4 Monitoring and Data Acquisition Systems
Data Acquisition System (DAS) is defined in [15] as:

“A DAS is a set of hardware and software resources designed to compute the
internal representation and then, to deliver to the user the external representation.”

Although this definition is appropriate, it does not reflect certain important
aspects of a DAS. We postulate that a DAS is a system that provides:

Means to discover knowledge-level data and access operational-level
system data

Means to interpret and process operational-level system data, in order to
generate system information

Means to publish system information

In order to clarify this definition we adopted the following definitions
according to [16]:

Discovering: “to obtain sight or knowledge of for the first time”

Access: “to get at”

Interpret: “to explain or tell the meaning of”

Data processing: “the converting of raw data to machine-readable form
and its subsequent processing”

Publish: “to produce or release for distribution”

Therefore, our definition of a DAS is:

“A DAS is a set of hardware and software resources that provides the means
to obtain knowledge-level data of a system, provides the means to access operational-
level system data, converts operational-level system data to more useful system
information and distributes this information to the user.”

Additionally, we define a monitoring system as a system that gives a (client
specific) view of the data obtained from a DAS.

l MONITORING SYSTEM

l DATA ACQUISITION SYSTEM

Gathering Enrichment Publication Presentation
Industrial Manufacturer / Business Logic Presentation
System Designer / Operator Application Application
System Business Presentation

Sysfem Dafa Metadata Meaning Format

Access
System Data

=

Data

Process
System Data
) System

Inforéation

Publish
System
Information

Business
Information

Render
Information

Figure 5 Monitoring and Data Acquisition System

2.5 Measurement

One of the most important processes performed by a DAS is the process of
measurement. Measurement is a fundamental method in science that enables one to
obtain knowledge of a system. Measurement is informally defined in [17] as:

“Measurement is the process of empirical, objective assignment of numbers to
the properties of objects and events of the real world in such a way as to describe
them.”

A property is a quality, aspect, or attribute common to all members of a class
of objects that may be subject to measurement. From the previous definition it is
convenient to highlight that measurement is an empirical process and that this process
must be objective.

2.6 Summary

In this chapter we defined relevant concepts related to the domain of DASs.
We defined embedded systems. We defined maintenance, condition monitoring and
asset management, which are techniques that managers have found give substantial
benefits to companies. We defined remote monitoring and data acquisition systems,
which are the core pieces to enable the application of such techniques. Finally, we
defined the concept of measurement, which is one of the principal processes
performed by a DAS.

3. Method

3.1 Introduction

In this chapter we explain concepts and techniques regarding the methodology
that we followed to obtain an implementation independent specification of a generic
architecture for DASs. We describe conceptual and role-based use case modeling as
useful techniques for the development of specifications of generic systems. We define
the concepts of pattern, framework, and architecture in the software domain,
establishing a clear distinction between these terms to avoid any confusion. We
introduce the concept of external specification, which is the term used from now on
to refer to an implementation independent specification. We present the Unified
Modeling Language (UML) as the modeling language used in our research work. We
give an overview of the Catalysis development process, which is an object-oriented
methodology based on UML. Finally, we give an overview of the methodology that
we followed to obtain an external specification of a generic architecture for DASs.

3.2 Conceptual Modeling

A conceptual model is a formal description of a system, from the object
perspective, that shows the relevant concepts and relationships that make up this
system. Using a conceptual model of a system makes it easier to understand the
system, because the model only focuses on the main aspects of the system by hiding
low-level details that render it difficult to understand. Boman et al. noted in [28] that:

“An effective approach to analyzing and understanding a complex
phenomenon is to create a model of it. By a model is meant a simple and familiar
structure or mechanism that can be used to interpret some part of reality. A model is
always easier to study than the phenomenon it models, because it captures just a few
of the aspects of the phenomenon.”

3.3 Role-based Use Case Modeling

But a conceptual model only specifies the static concepts of a system. We
used use case modeling to specify the expected behavior of a system. The artifacts of
use case modeling are actors and use cases. The terms actor and use case are defined
in [29]:

“An actor is an idealization of an external person, process, or thing interacting
with a system, subsystem, or class. An actor characterizes the interactions that outside
users may have with the system.”

“A use case is a coherent unit of externally visible functionality provided by a
system unit and expressed by sequences of messages exchanged by the system unit
and one or more actors of the system unit. The purpose of a use case is to define a
piece of coherent behavior without revealing the internal structure of the system.”

Fowler gives a simpler definition of these terms in [30]:
“An actor is a role that a user plays with respect to the system.”
“A use case is a typical interaction between a user and a computer system.”

Thus, a use case represents an interaction between actors, typically external
users or parts of the system, to carry out a functionality of the system as seen from the
external point of view.

We used elementary roles rather than actors in the use cases, because this
allows us to specify the system independently of architectural choices, requirements,
QoS, and/or available technologies specific for a particular system.

3.4 Patterns, Frameworks and Architectures

In this thesis we propose an external specification of a generic architecture for
DASs. This generic DAS specification is inspired by several software patterns.
Additionally, we extend some of the existing patterns to the domain of DASs and we
propose new domain-specific patterns for DASs. We found that the terms framework
and architecture are very often used interchangeably in the industry. In this section
we define the concepts of pattern, framework, and architecture in the software
domain. We also establish a clear distinction between these terms to avoid any
confusion.

3.4.1 Patterns

Patterns, in this context, have their origin in the architectural domain. The first
person that used the term of pattern was the architect Christopher Alexander [18, 19]
who defined a pattern as:

“A recurring solution to a common problem in a given context and system of
forces.”

Software architects and designers found patterns in the software domain very
useful, creating the concept of software pattern. In the patterns definition section of
the Patterns Home Page [20], Richard Gabriel provides a clear and concise definition
of software pattern:

“Each pattern is a three-part rule, which expresses a relation between a certain
context, a certain system of forces which occurs repeatedly in that context, and a
certain software configuration which allows these forces to resolve themselves.”

Software patterns can be classified according to many criteria. Brad Appleton
gives a non-exhaustive major classification of patterns, and a good overview of the
essential concepts and terminology of software patterns, in [21]. According to this

10

classification, software patterns can be classified as:

Software Design Patterns. Software design patterns describe, usually
object-oriented, patterns in software designs. Buschmann et al. [22]
classified software design patterns, according to the level of abstraction
they are intended for, into: Architectural Patterns, which are high-level
patterns that express fundamental structural organizations or schemas for
software systems; Design Patterns, which are middle-level patterns that
provide schemas for refining the subsystems or components of a software
system, or the relationships between them, describing commonly recurring
structures of communicating components that solve a general design
problem within a particular context; and Idioms, also called coding or
programming patterns, which are low-level patterns, specific to a
programming language, that describe how to implement particular aspects
of components or the relationships between them using the features of a
given language.

Software Analysis Patterns. Software analysis patterns describe a common
construction in business modeling.

Organization Patterns. Organization patterns describe patterns for the
structuring of organization or projects.

Process Patterns. Process patterns describe patterns in the process of
software design.

Domain-Specific Patterns. Domain-specific patterns describe patterns in a
specific domain.

In this thesis we are concerned with software analysis patterns, software
design patterns and DAS domain specific patterns that are independent from a
specific programming language.

3.4.2 Frameworks

A framework defines a basic generic structure of things and their relationships
within a particular domain that can be instantiated to the creation of many similar
systems. The concept of frameworks in software is closely related to patterns and
object-oriented technology. Ralph Johnson [23] defined software framework as:

“A framework is a reusable design expressed as a set of abstract classes and
the way their instances collaborate. It is a reusable design for all or part of a software
system.”

A software framework provides a reusable mini-architecture, within an
application domain, of a generic system that may be applied to the development of
many specific systems.

3.4.3 Architectures

Architecture is a concept that originally comes from the creation of building
structures. Today, this term is also employed to refer to the creation of the structure of
any kind of system, including software systems being then called software
architecture.

11

Shawn and Garland [24] defined software architecture as:

“The architecture of a software system defines that system in terms of
computational components and interactions among those components.”

In this context a component is anything that can be used as a part of software
systems such as databases, communication middlewares, client-servers, application
servers and so on. In some communities, people use interchangeably the terms of
framework and architecture. However, in the object-oriented community these
concepts have different meanings, as pointed out by Jean-Philippe Martin-Flatin in
[25]. Software architecture refers to the collection of models devised at the analysis
and high-level design phases of an application. A software architecture is abstract and
independent of a specific programming language. A software framework can be seen
as an implementation of a software architecture that provides a set of programming
language specific template classes. Software developers can use a software
framework by instantiating its template classes into specific classes as part of the
development of a specific system.

3.4.4 Patterns vs. Frameworks vs. Architectures

From now on we will refer to the terms software patterns, sofiware
frameworks and software architectures as simply patterns, frameworks and
architectures respectively. The major differences between patterns, frameworks and
architectures are:

Architecture

ern
/\

Pattern

Architecture

Genericness

Framework

»
>

Architectural-size

Figure 6 Pattern vs. Framework vs. Architecture

Patterns are more abstract than Architectures and Frameworks. A design
pattern describes a solution that may be applied in many application
domains, whereas architectures and frameworks are domain specific.
Architectures are more abstract than Frameworks. Frameworks can be
seen as an implementation of architectures. Frameworks are programming
language specific whereas architectures are independent of a specific
programming language.

12

Architectures and Frameworks are bigger structures than Patterns.
Patterns describe solutions to small parts of a system. Architectures and
frameworks describe solutions to entire (or significant parts of) systems.
Actually, architectures and frameworks may be composed of many
software patterns.

3.5 External Specification

In this thesis we propose an implementation independent specification of a
generic architecture for DASs. In this section we introduce the concept of external
specification, which is the term that we will use from now on to refer to an
implementation independent specification.

The term specification is defined in [26] as:

“An essential technical requirement for items, materials, or services, including
the procedures to be used to determine whether the requirement has been met.”

A more software-oriented definition of this term is given by Alain Wegmann
in [27]:

“The set of constraints satisfied or to be satisfied by the system of interest.
The system of interest can be a whole business, an IT application, a software
component, etc... A specification is a set of models used for a detailed and precise
presentation of a specific context.”

An external specification is the specification of a system from the external
point of view. It specifies in detail what the system will do, but not how the system
will implement such a functionality. An external specification is therefore
independent of a certain technology of a specific implementation. Our external
specification of a generic architecture for DASs includes (see Figure 7):

A conceptual model of the system. This model specifies the high-level
concepts the system deals with. It specifies a business/domain context for
the system.

A role-based use case model of the system. This model specifies the
functions the system will perform. It specifies the expected behavior of the
system. It specifies a contract between the system and outside users.

A collaboration model. This model includes activity diagrams that
describe the interactions across use cases, and sequence diagrams that
illustrate example scenarios of use cases.

A specification of the roles of the system. This specification presents the
interfaces of the roles of the system and the set of concepts and
relationships of the system that the role has to now to carry out its
expected behavior.

13

Conceptual Model | Use Case Model
X
A

=
,,,,,,,,,,,,,, |

41—‘ | I

Collaboration Model Interfaces

A B

msg1

| msg3
|

‘ 2 “ : “ < ‘
T
m
mz

1

msg2

Figure 7 External Specification

An external specification neither specifies the low-level structure of the
system, nor how the system internally performs the functions described in the use
cases. An external specification of a system remains invariant and independent of
specific implementations issues.

An external specification of a system is similar to the information viewpoint
of the Reference Model for Open Distributed Processing (RM-ODP). RM-ODP [35]
is an ISO/IEC standard and an ITU-T recommendation for the modeling of large
distributed systems. RM-ODP provides a rich set of modeling concepts, and five
viewpoint languages (enterprise, information, computational, engineering, and
technology). To avoid misunderstanding, RM-ODP provides a rigorous definition of
the concepts (object, class, interface, template, type, action, behavior, role and so on)
commonly encountered in object-oriented models. The Information Viewpoint of
RM-ODP focuses on the semantics of the information of a system and the processing
of this information. RM-ODP defines information as any kind of knowledge (things,
facts, concepts and so on) that is exchangeable among users in a universe of
discourse. The result of the information viewpoint is a specification of the system
from the point of view of “what the system does”, rather than “how the system
implements it”. Therefore, this specification is independent of how a system is built
[36].

3.6 UML

In the last few years, many efforts have been made toward developing a
single, unified language for the modeling of concepts in software engineering and
business domains. The Unified Modeling Language (UML) [29] is mainly the result
of the fusion of the concepts from the Booch [31], OMT [32] and OOSE [33]
methods.

“The Unified Modeling Language (UML) is a language for specifying,
visualizing, constructing, and documenting the artifacts of software systems, as well
as for business modeling and other non-software systems. The UML represents a
collection of best engineering practices that have proven successful in the modeling

14

of large and complex systems.” [34]

A preliminary version of UML appeared in middle 1996. After that,
continuous improvements have been made with feedback from the general
community and many industrial partners. In the late 1997, the OMG adopted UML
1.1 as standard modeling language for object-oriented analysis and design.

3.7 Catalysis

Catalysis [38] is a standards-based methodology for the systematic
development of object and component-based systems. Catalysis unifies the concepts
of objects, frameworks and components. It provides methods and techniques for
component-based development, high-integrity design, object-oriented design and
reengineering. Catalysis uses the UML as notation.

The basic concepts in Catalysis are the object, which represents a cluster of
information, and the action, which represents anything that happens. Catalysis places
both concepts on an equal footing.

The Catalysis approach supports three levels of description, as shown in
Figure 8:

Level of Description Process Goal
Domain / Model * Understand the context
] Design ¢ Identify the problem
Business . I
Implement * Analize requirements
Model N
Test * Propose a solution
Model
External Design . . .
Specification @ Implement Specify the solution
Test
Model ¢ Define the internal
. Design architecture of the
Internal Design Implement solution
Test

Figure 8 The Catalysis Approach

Domain/Business Model. The main goals are to understand the context
(domain terminology, business processes, roles and collaborations),
identify the problem, analyze the business requirements, and propose a
solution. A business model is a model that describes the business through
real-world objects and their interactions. An “as-is” business model
describes the context of the business as it is currently (this model makes
sense only if the business currently exists). A “fo-be” business model
describes the context of the business as it has to be in the future.

External Specification. The main goal is to specify the solution, specify
the scope of the different components, define their responsibilities, define
the component/system interfaces and specify the desired component
operations.

15

Internal design. The main goal is to define the internal architecture of the
solution, define internal components and collaborations and design the
insides of the system.

For each level of description Catalysis proposes a recursive, non-linear,
iterative and parallel process consisting of the modeling, designing, implementation
and testing. Depending on the sequence of deliverables best suited for a specific
project, different routes though the method can be taken.

3.8 Method Overview

To obtain the external specification of a generic architecture for DASs we
carried out the following steps, shown in Figure 9:

Monitoring Systems
(GLASS, RoMain, ...)

Remote I

DAS Standards OMG’s
(OPC, IVI, ODAS) DAIS RFP

(Gamma, Fowler, Hay, ...

TR — =

Software Patterns
)

{Generic} DAS
External a Conceptual Model
Specification
K DAS
Use Case Model
Figure 9 Method Overview

(1) We analyzed some remote monitoring systems. We analyzed several
remote monitoring systems from different business domains such as
building, power engineering, and transportation systems. We also
analyzed a DAS for railway equipment that we developed. During the
development of such a system we used our own variation, which puts
emphasis on role-based use case modeling, of the Catalysis development
process.

(1) We analyzed some DAS standards. We analyzed different DAS standards
such as such as OLE for Process and Control (OPC), Interchangeable
Virtual Instrument (IVI) and Open Data Acquisition Standard (ODAS).

(111)) We analyzed the OMG's Data Acquisition from Industrial System (DAILS)
RFP. This RFP solicited proposals for standard interfaces to access data
within industrial systems by other applications.

(iv) We enhanced this specification with several software patterns. We found
that some existing software patterns (e.g. Composite and Broker) give an
effective proven solution to some problems that appeared in the
specification of DASs. Additionally, we proposed new patterns (e.g.
Model Composite and Administer-Manager) for DASs.

16

(v) We generalized this specification to allow its use in different domains.
Any domain specific concept was generalized to generic concepts in order
to allow its use in different domains. Domain specific details have been
removed from the specification.

3.9 Summary

In this thesis we propose an external specification of a generic architecture for
DASs. In this chapter we explained concepts and techniques regarding the
methodology that we followed to obtain an external specification of a generic
architecture for DASs. We described conceptual and role-based use case modeling as
useful techniques for the development of specifications of generic systems. We
defined the concepts of pattern, framework, and architecture in the software domain,
establishing a clear distinction between these terms to avoid any confusion. We
introduced the concept of external specification. We presented the Unified Modeling
Language (UML) as the modeling language used in our research work. We gave an
overview of the Catalysis development process, which is an object-oriented
methodology based on UML. Finally, we gave an overview of the methodology that
we followed to obtain an external specification of a generic architecture for DASs.

17

18

4. State of the art of Data Acquisition
Systems

4.1 Introduction

In this chapter we review the state of the art of DASs. First, we give a list of
analysis and design patterns related to the domain of DASs. Second, we give an
overview of the OMG’s Data Acquisition from Industrial Systems (DAIS) Request
for Proposal (RFP), which solicited proposals for standard interfaces to access data
within industrial systems by other applications. Third, we describe the most important
data acquisition standards: OLE for Process and Control (OPC), Interchangeable
Virtual Instrument (IVI) and Open Data Acquisition Standard (ODAS).

4.2 Software Patterns for Data Acquisition Systems

In this thesis we propose an external specification of a generic architecture for
DAS:s that gives developers analysis and design patterns for the development of such
systems. Analysis patterns are high-level patterns that describe a common
construction in business modeling. Design patterns are intermediate level patterns that
describe design solutions to build a specific system. In this section we compile some
analysis and design patterns related to the domain of DASs. We classified these
patterns according to the following classification:

Architectural Patterns. Architectural patterns describe high-level
partitions of a system into subsystems and their dependencies.

Behavioral Patterns. Behavioral patterns describe how objects interact and
distribute responsibility.

Diagnostic Patterns. Diagnostic patterns describe how diagnostic
messages are represented and processed.

Input and Output Patterns. Input and Output patterns describe issues
related to the gathering of data and its processing.

Knowledge Management Patterns. Knowledge patterns describe how
knowledge can be represented in a system.

Naming Patterns. Naming patterns define how to identify objects.
Observations and Measurements Patterns. Observations and measurement
patterns describe how to represent observations and measurements of a
system.

Structural Patterns. Structural patterns define how to compose objects.

19

Temporal Patterns. Temporal patterns define how to deal with objects that
change over time.

We include the original source of the patterns; additionally, a brief description
of them and their applicability can be found in [39].

Table 1 Software Patterns for Data Acquisition Systems

Category Related Patterns

Architectural Two-Tier Architecture, Three-Tier Architecture, Presentation
and Application Logic [40]

Behavioral Observer, Mediator, Iterator, Chain of Responsibility [41];

Broker, Client-Dispatcher-Server, Forwarder-Receiver,
Publisher-Subscriber [22]; Reactor [42]

Diagnostic Diagnostic Logger, Diagnostic Context, Typed Diagnostic [43];
Whole Value, Exceptional Value, Diagnostic Query [42]

Input and MML, 10 Gatekeeper, Mind Your Own Business, 10 Triage,

Output Timestamp, Who Asked?, George Washington Is Still Dead,

Bottom Line, Five Minutes of No Escalation Messages, Shut Up
and Listen, Pseudo-I10O, Beltline Terminal, Audible Alarm,
Alarm Grid, Office Alarms, Don’t Let Them Forget, String a
Wire, Raw 10 [44]

Knowledge Knowledge Level [45]
Management
Naming Name, Identification Scheme [40]

Observations & | Quantity, Conversion Ratio, Compound Units, Measurement,
Measurements | Observation, Subtyping Observation Concepts, Protocol, Dual
Time Record, Rejected Observation, Active Observation /
Hypothesis / Projection, Associated Observation, Measurement
Protocol, Range, Phenomenon with Range [40]

Structural Facade, Proxy, Bridge, Composite [41]; Whole-Part [22]
Temporal Temporal Property, Temporal Association, Snapshot [44]

In our generic DAS specification we used some of these patterns (such as
Composite and Broker). Most of the patterns listed in Table 1 may be used in the
design phase of a specific system.

4.3 OMG’s DAIS RFP

In this section we give an overview of the Data Acquisition from Industrial
Systems (DAIS) Request For Proposal (RFP) [7], issued by the OMG in January
1999. This RFP solicited proposals for standard interfaces to access data within
industrial systems by other applications. The goal of this RFP is to provide
operational-level and knowledge-level data in a common format to applications
running in a heterogeneous, distributed computing environment. This RFP solicited
proposals of standard interfaces covering the following functionalities:

20

Discovery of Remote System and Device Schema. ‘“Mechanisms for
discovering accessible remote devices, measurements,
discrete/incremental information, permissible ranges and/or sets of values,
alarms and industrial system sourced events. The requests for discovery
could be triggered on-demand, or based on time, exception and/or event. A
client system could register to receive notifications of changes of the
composition from the device...A means shall be provided for a client
system to determine the data types and quantities (i.e. cardinality) of data
elements available from a particular entity within an industrial system, as
well as the identifiers and some of the semantics associated with those
data elements.”

Defining Data Access Request. “Mechanisms for defining (and deleting) a
set of data and how the set of data should be retrieved. Data sets are
collections of data, defined by the client, by a third party, or pre-existing
data on the device, that are transferred in response to an event or single
read request. The request for data retrieval can be triggered on-demand, or
based on time, exception and/or event. A client could register to receive
event notifications for the availability of the data requested.”

Data Access/Retrieval. “Mechanisms to define immediate data access
retrieval upon request. The data elements transferred may be simple or
structured types. A client could define a set of data to be retrieved at a
time.”

Event Notification for Availability of Data. “Mechanisms to allow the
industrial system broadcasting events outside itself to which clients can
subscribe in order to receive a notification that new data is available to be
accessed.”

Event Driven Data Upload. “Mechanisms to define event driven data
retrieval sequence, by which data delivery can be done automatically upon
the occurrence of a notification for availability of data.”

This RFP also requested proposals for standard data types to record
information such as:

Measurements. “A measurement is a specific value or set of values
measured at a specific time and/or associated with a specific context
within an activity.”

Discrete and incremental information. “Discrete information can take one
value of an enumerated set of values. Incremental information is used to
indicate a variation from a reference value.”

Alarms. “Alarms are indications of a certain state of the system.”
Timestamps. “Timestamps record the time when, e.g., a measurement has
been taken.”

Identifiers. “Unique identifiers unequally identify entities on the system.”

4.4 Data Acquisition Standards

In this section we describe the most important standards related to data
acquisition systems.

21

4.4.1 OPC

The OLE for Process Control (OPC) standard provides clients with a common
way to access heterogeneous data sources from the plant floor, and/or from databases
in a control room, enabling the integration of data, in a transparent way, into their
information systems.

The first draft version of the OPC specification was released in December
1995. Since 1996, the development of the OPC standard has been led by the OPC
Foundation [4], a non-profit industry consortium of major players in the process
control industry (Siemens, Fisher-Rosemount, Rockwell, and others) working in
cooperation with Microsoft that currently has over 220 members around the world.

OPC draws a line between hardware providers and software developers. It
provides a mechanism to provide data from a data source and communicate the data
to any client application in a standard way. A vendor can develop a highly optimized
proprietary server to communicate to the data source, and provide the server with an
OPC interface to allow OPC clients to access their devices.

The OPC specification is based on Microsoft COM/DCOM [46, 47]
technology. OPC defines a set of standard COM interfaces to provide the following
functionalities:

Access to Online Data. Mechanisms that allow OPC clients to efficiently
read/write data from/to an OPC server.

Handling of Alarms and Events. Mechanisms that allow OPC clients to
subscribe to be notified of the occurrence of specified events and alarm
conditions.

Access to Historical Data. Mechanisms that allow OPC clients to read,
process and edit historical data.

OPC DataAccess Server

OPC Client | * communicate with * OPC Server

Device

name: String name: String manages

1 [1 1 1
" ‘ _ |manages manages 0.1
Complex

access * | OPC Private OPC Group — Device Group

define composed of

Group Device
name: String Group
OPC Public active: Boolean 1 Simple
Group refreshRate: Long Device Group
1
manages

*

access

manages

*

OPC Item

* 1| Device Data
ItemID: String represents Source
active: Boolean

1

*

has

OPC Item State

value: Variant
time: TimeStamp
quality: QualityMark

Figure 10 OPC Data Access Model

22

Other functionalities such as security, batch and historical alarm and event
data access will be addressed in future releases of the OPC standard.

The OPC standard gives the following benefits:

Reduction of manufacturing costs. Hardware manufacturers only have to
develop a set of software components (the OPC server) to allow
heterogeneous clients to access data in a common way. They do not have
to provide customers with different drivers to access their devices from
many platforms.

Simplification of the development of client applications. Client
applications developers may write applications easily regardless of
proprietary drivers.

Interchangeability of devices. We may exchange a device for another
device if the OPC interface remains the same.

The OPC Data Access model is described in Figure 10. An OPC Server object
manages a set of OPC Groups. Each OPC Group is a logical container that manages a
set of OPC Items, each of one represents a single Device Data Source with a value, a
timestamp and a quality mark. A Device Data Source belongs to a Device and is
physically grouped with related data sources within a Device Group. An OPC Server
can manage several Devices. An OPC Client communicates with one or several OPC
Servers. The client is responsible for defining in the server side the OPC Groups and
the refreshing rate. A client can define a Public Group that can be shared by several
clients. If the group is only defined by and for a client, then it is called Private Group.

4.4.2 IVI

The Interchangeable Virtual Instrument (IVI) standard provides clients with
standard drivers to access instruments such as oscilloscopes or digital multimeters,
enabling the interchangeability of instruments from different vendors.

The