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Abstract
Estimates of global primary bioenergy potentials in the literature span almost three orders
of magnitude. We narrow that range by discussing biophysical constraints on bioenergy
potentials resulting from plant growth (NPP) and its current human use. In the last
30 years, terrestrial NPP was almost constant near 54 PgC yr−1, despite massive efforts to
increase yields in agriculture and forestry. The global human appropriation of terrestrial
plant production has doubled in the last century. We estimate the maximum physical
potential of the world’s total land area outside croplands, infrastructure, wilderness and
denser forests to deliver bioenergy at approximately 190 EJ yr−1. These pasture lands,
sparser woodlands, savannas and tundras are already used heavily for grazing and store
abundant carbon; they would have to be entirely converted to bioenergy and intensive
forage production to provide that amount of energy. Such a high level of bioenergy supply
would roughly double the global human biomass harvest, with far-reaching effects on
biodiversity, ecosystems and food supply. Identifying sustainable levels of bioenergy and
finding ways to integrate bioenergy with food supply and ecological conservation goals
remains a huge and pressing scientific challenge.

Record-high prices for fossil fuels, concerns over imminent peaks of conventional
oil and natural gas production and the necessity to reduce global GHG emissions
to a level consistent with limiting global warming to 2 ◦C motivate an intensified
search for renewable low-carbon energy. Biomass is an attractive option, due to
its relatively low costs, its storability, and also because it can be rather easily
substituted for fossil fuels in many important applications such as heat, power and
mobility [1].

But how much bioenergy can we—or should we—expect the terrestrial
ecosystems of the earth to deliver in the next decades? At present, some
55 EJ yr−1 (1 EJ = 1018 J) of bioenergy are produced globally which is 12% of
fossil fuel use and almost 80% of all renewable sources [1]. However,
diametrically opposed views on bioenergy’s future prospects to deliver
sustainable, low GHG energy abound in the scientific community. Some analysts
expect biomass to provide large amounts of clean energy at acceptable
environmental costs with little negative and large positive socioeconomic effects
in the next decades. But others project low potentials and large adverse effects
such as increased hunger, biodiversity loss and substantial GHG emissions.
Estimates of global primary bioenergy potentials available around 2050 published
in the last five years span a range of almost three orders of magnitude, ranging
from ≈30 to ≈1.300 EJ yr−1 [2]. Recently, the IPCC Special Report on
Renewable Energy [1] reported a huge range, as did the Global Energy
Assessment [3].

One crucial piece of information that can help to tackle that conundrum has
played a remarkably small role in that discussion: the current global annual
biomass growth of green plants on the earth’s lands (net primary production,
abbreviated as NPP) and its use by humanity [4]. According to a recent
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metaanalysis, global terrestrial NPP is estimated to be approximately
56 GtC yr−1 with an uncertainty of ±15% (gigaton carbon per year is abbreviated
as GtC yr−1; 1 Gt = 109 tons) [5]. The best available consistent time-series data
on global terrestrial NPP are being derived from remote sensing as part of the
MODIS data product. According to that source, global terrestrial NPP stayed near
to 53.6 GtC yr−1 without showing any discernible trend over the last 30 years.
Year-to-year variation was stunningly low at <2% [6]. In other words,
considerable global efforts to increase annual yields in agriculture and forestry
through irrigation, fertilization or forest management have not increased total
plant growth. According to standard conversion factors from the literature [7] the
aboveground part of NPP is approximately 30 GtC yr−1 of biomass growth with a
gross energy value of ≈1.100 EJ yr−1, which thus represents the biospheric
maximum capacity.

At present, humans harvest ≈230 EJ yr−1 worth of biomass for food,
livestock feed (including grazing), fibre and bioenergy (a substantial fraction of
which is derived from residues and waste flows). In order to produce that
biomass, humans affect or even destroy roughly another 70 EJ yr−1 of biomass in
the form of plant parts not harvested and left on the field and biomass burned in
anthropogenic vegetation fires [8, 9]. Hence, some 800 EJ yr−1 worth of biomass
currently remain in the aboveground compartment of global terrestrial
ecosystems. Of this 800 EJ yr−1, 48% grows in forest ecosystems, and much of
the remainder in ecosystems which either cannot easily be exploited, such as
tundra and drylands (28%), in national parks, conservation areas and wilderness
or in cultivated ecosystems which are already heavily harvested (grazing lands,
cropland). In order to meet their biomass demand, humans affect approximately
three quarters of the earth’s ice-free land surface [10] with huge implications for
ecosystems and biodiversity.

Growth of human population to perhaps 9 billion around 2050, continuing
economic growth and transitions towards richer diets with a higher share of
animal products in emerging economies will probably result in a growth of global
food production by 60–100% [11, 12]. These trajectories are not likely to result in
the same growth rates in global demand for primary biomass and farmland area as
the efficiency of human use of biomass as well as commercial agricultural yields
have grown substantially in the last century [13] and are generally expected to
continue to rise in the next decades [11, 12]. In the past 40 years, the cropland
area required to meet humanity’s rising food demand grew by approximately
30%, despite substantial agricultural intensification [14]. A continuation of
current yield trends until 2050 will not suffice to meet the rising global food
demand without further growth of cropland areas [15]. Hence, it seems unrealistic
to expect that yield growth of food crops would free up large areas currently used
as croplands for planting energy crops.

In the last century, yield growth and efficiency gains in biomass conversion
and use kept growth rates of the human appropriation of NPP lower than those of
population and economic development. If current trends of agricultural
intensification and livestock feeding efficiency growth are projected into the
future, meeting global food demand might be achieved without reducing the
amount of annual plant production remaining in ecosystems, but only in the
absence of large-scale additional bioenergy production [13].

The big contested issue is how much humans might derive from
purpose-grown energy plants in the future. Large estimates of bioenergy
potentials are contingent on assuming large amounts of purpose-grown bioenergy
because residue potentials are limited. Large energy crop potentials can only be
justified by assuming (1) the use of a large fraction of the earth’s surface,
(2) yields far exceeding current NPP, or both.
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Figure 1. Map of the biophysical maximum biomass production (≈190 EJ yr−1) that might be
generated from the 4.7 billion hectares of the world’s vegetated land outside denser forests, croplands,
urban areas and wilderness, outlining selected potential trade-offs and risks. Aboveground NPP of
these areas was taken from [8, 10] from which biomass grazed by livestock [8, 9] was deducted.
Numbers were adjusted to reflect the fact that on average less than three quarters of the annual
productivity is accessible for harvest due to constraints resulting, among others, from seasonality, limits
to harvesting efficiency or pre-harvest losses to wild-living heterotrophs.

The first option is both impractical and unsustainable due to the economic
challenges associated with low energy returns per unit area, as well as the
considerable additional pressures on biodiversity and substantial releases of CO2
to the atmosphere from conversion of natural lands, above all forests [16].

The second option is questionable, given that current management inputs
(e.g., fertilization and irrigation) have had a limited—if any—impact on global
terrestrial NPP [4, 6], yet are quickly approaching sustainability limits [17]. High
energy crop yields are often extrapolated from small-scale measurements to large
areas, but this method is not suitable to estimate energy crop yields that can be
achieved under field conditions in large regions [2, 4, 18]. Most notably, increases
in irrigation have resulted in a doubling of global groundwater depletion rates
from 1960 to 2000. Water extractions now far exceed natural recharge rates for
numerous aquifers around the world [19]. Freshwater availability will likely
become more limiting in the future due to climate change, perhaps even resulting
in yield declines [20].
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Figure 1 shows that optimistic assumptions regarding the fraction of the NPP
currently remaining in land ecosystems that could be used for bioenergy suggests
an upper biophysical limit for primary bioenergy of ≈190 EJ yr−1. Forests are
excluded (except for residues, see below) due to the high GHG costs of strongly
increasing wood harvest [16, 21]. This would entail cultivating all vegetated lands
outside denser forests, urban areas, cropland and the world’s remaining
wilderness areas at the highest conceivable exploitation rate, considering current
livestock grazing. This hypothetical calculation implicitly assumes that these
lands will be intensified to meet expected increases in feed demand for livestock.
It also assumes that all other biomass production of the world’s sparse woodlands,
savannas and pastures can be diverted to bioenergy use, even as these lands
simultaneously meet growing needs for grazing forage [10]. This is not an
estimate of the upper limit of the sustainable bioenergy potential because the
trade-offs in terms of social, economic and ecological (carbon, biodiversity, etc)
impacts of such a massive intervention would be large although the full
dimensions are at present unknown. Due to the risk of increased land
competition, large-scale expansion of bioenergy crop production may result in
substantial trade-offs with food production as well as with other important
ecosystem functions and services such as carbon storage or nature conservation if
not managed well [1, 3, 22–24]. Some of these trade-offs are depicted in figure 1.

Assessments of available residues, with only some exceptions [8, 9], do not
account for the large volume of residues already harvested. In most of the world,
residues are badly needed to maintain soil fertility [25], and even in the US maize
belt, there is reason to doubt whether residues can be removed without
productivity impacts or soil carbon loss [26]. Forestry residues might come to
20–40 EJ yr−1 in 2050, but only if all the world’s forest slash were harvested and
used [1–3]. Municipal wastes and biogas from animal manures could each
provide some 10 EJ yr−1 [2, 3]. The upper biophysical limit for the bioenergy
potential of residues is hence ≈60 EJ yr−1, but would involve substantial
trade-offs as well.

The challenges associated with bioenergy ultimately result from the fact that
plant growth is an inefficient way of converting sunlight into useable energy. The
energy efficiency of photosynthesis is usually <1% under field
conditions [27]—far below the efficiency of commercial solar photovoltaic cells
of 12–20% [1]. For food, and many fibre and wood products, people have no
alternative to using plants, but for energy the detour via photosynthesis may in
many cases result in exceedingly high land demand. Developing more efficient
methods of storing solar energy than relying on plants (e.g., hydrogen produced
from photovoltaic electricity) may hence be a more promising route.

Given the biospheric constraints outlined above, it seems impossible that
bioenergy could physically provide more than ≈250 EJ yr−1 in 2050 [2, 4, 13],
substantially below many published bioenergy projections. We consider that
figure to be the upper biophysical limit and there are good reasons why even
partially realizing this potential would entail substantial trade-offs and risks
(figure 1). 250 EJ yr−1 equals 20–30% of global primary energy demand,
assuming the range of energy demand scenarios in the Global Energy
Assessment [3]. Reaching such a level of supply would require roughly a
doubling of global biomass harvest in less than four decades and would result in
massive increases in humanity’s pressures on land ecosystems [13]. Large-scale
promotion of bioenergy could result in economic incentives to divert land from
food production to bioenergy which puts the world’s poor at risk, driving up
hunger and inequality. What international policies can prevent such adverse
effects and instead foster sustainable production and consumption of bioenergy at
sustainable levels?
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