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ABSTRACT

The potentially hazardous asteroid (185851) 2000 DP107 was the first binary near-Earth asteroid to be imaged. Radar
observations in 2000 provided images at 75m resolution that revealed the shape, orbit, and spin-up formation
mechanism of the binary. The asteroid made a more favorable flyby of the Earth in 2008, yielding images at 30m
resolution. We used these data to obtain shape models for the two components and to improve the estimates of the
mutual orbit, component masses, and spin periods. The primary has a sidereal spin period of 2.7745 ± 0.0007 hr and is
roughly spheroidal with an equivalent diameter of 863m 5% . It has a mass of 4.656 0.43 1011 ´ kg and a
density of 1381 ± 244 kgm−3. It exhibits an equatorial ridge similar to the (66391) 1999 KW4 primary; however, the
equatorial ridge in this case is not as regular and has a ∼300m diameter concavity on one side. The secondary has a
sidereal spin period of 1.77 ± 0.02 days commensurate with the orbital period. The secondary is slightly elongated and
has overall dimensions of 377 314 268´ ´ m (6% uncertainties). Its mass is 0.178 0.021 1011 ´ kg and its
density is 1047 ± 230 kgm−3. The mutual orbit has a semimajor axis of 2.659 ± 0.08 km, an eccentricity of 0.019 ±
0.01, and a period of 1.7556 ± 0.0015 days. The normalized total angular momentum of this system exceeds the
amount required for the expected spin-up formation mechanism. An increase of angular momentum from non-
gravitational forces after binary formation is a possible explanation. The two components have similar radar reflectivity,
suggesting a similar composition consistent with formation by spin-up. The secondary appears to exhibit a larger
circular polarization ratio than the primary, suggesting a rougher surface or subsurface at radar wavelength scales.

Key words: minor planets, asteroids: individual (2000 DP107) – techniques: radar astronomy

1. INTRODUCTION

Asteroid (185851) 2000 DP107 was discovered on 2000
February 29 by the Lincoln Near-Earth Asteroid Research
program in New Mexico. Radar observations in October of that
year revealed the asteroid to be a binary system (Margot et al.
2002), the first such system to be imaged in the near-Earth
asteroid (NEA) population. The radar data were instrumental in
establishing that NEA satellites form by a spin-up and
rotational fission process (Margot et al. 2002). Additional
radar and photometric studies showed that 15%~ of all NEAs
larger than 200 m are binary in nature (Pravec et al. 1999,
2006; Margot et al. 2002). For a recent review of the properties
of binary asteroids, see Margot et al. (2015).

The presence of a satellite around the primary gives us an
opportunity to secure direct measurements of several quantities
that are not normally measurable. Radar observations enable
calculations of the orbital period and orbital separation, which
reveal the total mass of the binary system through Kepler’s
third law. In addition, radar observations enable measurements
of the masses of individual components by measuring the
distances of the component centers of mass (COMs) from the
system COM. Using this information, along with the shape
models of the two components derived from radar images, we
can estimate their densities. These are important constraints for
testing models of formation and evolution of NEAs.

Radar observations of 2000 DP107 in 2000 October yielded
rough estimates of masses, sizes, and densities of the two

components as well as their mutual orbit (Margot et al. 2002).
In 2008 September, the asteroid made another close approach
to the Earth and was observed at a distance of ∼0.06
astronomical units (au) or about 20 lunar distances. Because
this was about half the distance of the 2000 encounter
(∼0.11 au), it resulted in data sets with a signal-to-noise ratio
(S/N) ∼20 times higher than in 2000. The high S/N enabled us
to derive component shapes with effective resolutions of ∼50 m
on the surface, and estimate the component masses, volumes,
and densities more accurately than was possible in Margot
et al. (2002).
In this paper we present detailed component shape models,

improved estimates of component masses and densities, and
estimates of the mutual orbit parameters using the 2000 and the
2008 radar data. This detailed characterization of 2000 DP107
and its favorable accessibility ( v 5.9D » km s−1) make it a
good candidate for spacecraft rendezvous missions. 2000
DP107 was the target of the PROCYON mission (Funase
et al. 2014), which had a planned flyby of the asteroid in 2016.
However, the mission suffered an engine failure and will be
unable to perform the flyby.

2. METHODS

2.1. Observing and Data Processing

We observed 2000 DP107 using the Arecibo S-band
(2380MHz, 13 cm) radar and the Goldstone X-band
(8560MHz, 3.5 cm) radar on 10 days between 2008 September
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9 and 24, during which the asteroid moved 60~  across the
sky. It came closest to Earth on September 11 at a distance of
0.057 au. Most of the observing time was dedicated to range-
Doppler imaging, with the remainder dedicated to collecting
continuous wave (CW) spectra.7 We obtained 335 range-
Doppler images and 65 CW spectra using Arecibo, and 534
range-Doppler images and 67 CW spectra using Goldstone.

Radar observations were performed according to the
methods described in Naidu et al. (2013). Briefly, radar
imaging was carried out by transmitting a repeating pseudo-
random code modulated over a circularly polarized carrier
wave, using a binary phase shift keying scheme (Proakis &
Salehi 2007). In each run, the waveform was transmitted for
approximately the round-trip light time (RTT) before switching
over to the receiver. The received signal was demodulated and
then decoded by cross-correlating it with a replica of the
transmitted code, yielding a range resolution equivalent to the
baud length of the transmitted code. In each range bin,
consecutive returns were fast Fourier transformed (FFT) to
obtain the received signal power as a function of Doppler
frequency. The end product is a two-dimensional array or
image showing the echo power as a function of relative range
and Doppler frequency. Note that the observable measured at
the telescope is not range, but the round-trip light time to the
target. We obtained the relative range between adjacent bins by
multiplying the baud length of the code by half the speed of
light. We use the term range-Doppler for convenience in this
paper, but the word range should not be construed as absolute
range.

For CW runs, a monochromatic wave was transmitted for the
RTT to the asteroid before switching over to the receiver. The
received signal was demodulated, sampled, and recorded. An
FFT was applied to the echo timeseries to obtain the CW
spectra.

Table 1 summarizes our observations. Because of the smaller
antenna size and transmitter power, the Goldstone data have
much lower S/N ( 1 20~ ) compared to the Arecibo data. Six to
eight consecutive Goldstone runs were summed incoherently in
order to improve the S/N.

2.2. Mutual Orbit

We used a least-squares procedure similar to that used in
both Margot et al. (2002) and Ostro et al. (2006) to fit
Keplerian orbits to the positions of the secondary COM with
respect to the primary COM. We used data from 2000 October
and 2008 September, and initialized the fitting procedure with
thousands of distinct initial conditions spanning the entire
range of plausible values for all orbital parameters. From the
2000 data, we selected 2–4 images on each day from
September 30 to October 7, or 20 measurement epochs
spanning 8 days, yielding 20 range separations and 20 Doppler
separations. For the 2008 data set, we measured the component
COM separations in 10 Arecibo images on each day of Arecibo
observations, and in 6, 3, 6, 2, and 8 Goldstone images on
September 9, 10, 11, 12, and 13, respectively, giving us a total
of 95 measurement epochs spanning 16 days, or 190 measure-
ments (95 range separations and 95 Doppler separations).

We obtained range-Doppler separations between the primary
and secondary COMs using two different techniques. In the

first approach we estimated the COM locations in the images
by measuring the positions of the leading edges (LEs) and
trailing edges (TEs) of the components. In the second approach
we relied on shape models obtained with shape software
(Hudson 1993; Magri et al. 2007) to locate the component
COMs. If the shape models are accurate, the second technique
could yield superior estimates of the COM positions, and
therefore of the mutual orbit parameters. Sections 2.3 and 2.4
describe the shape modeling details.
For the first, edge-based approach, we defined the LEs and

TEs in the images on the basis of a 3σ signal threshold, where σ
is the standard deviation of the background noise. The LE was
defined as the first range bin where the object had a signal
higher than 3σ, whereas the TE was defined as the last range
bin where at least half of the pixels along the Doppler extent
exceeded the 3σ threshold. The location of this threshold
depends on the Doppler resolution (shown in Table 1). The
primary and secondary were assumed to be roughly spherical
and their radii were estimated from radar images to be roughly
450 and 150 m, respectively. With these assumptions the range
coordinates of the component COMs were taken to be 450 m
and 150 m behind their respective LEs. The Doppler
coordinates of the COMs were assumed to be located in the
middle of the Doppler extent on the TE. Conservative
uncertainties of 2–3 times the range and Doppler resolutions
were assigned to the range-Doppler separations.
For the second, shape-based approach, we used shape

modeling software to locate the component COMs under a
uniform density assumption. shape aligns the synthetic radar
images derived from the shape models with the observed radar
images, and outputs the COM positions used for the alignment
with sub-pixel precision. Uncertainties on the order of the
image resolution were assigned to the shape-based range and
Doppler separations. We computed the COM separations at the
same epochs as those used in the edge-based approach.
We fit the mutual orbit and component shapes in an iterative

manner. Each iteration started with mutual orbit fitting
followed by component shape modeling. In the first iteration,
we used the edge-based approach to determine the preliminary
mutual orbit and used the orbit solution (orbit pole and
longitude of pericenter) to inform our component shape
modeling (Sections 2.3 and 2.4). For the second iteration, the
best-fit component shapes from the first iteration were used to
refine the COM separation estimates using the shape-based
approach. These improved primary–secondary separation
estimates were used to refine the mutual orbit fit. The refined
mutual orbit solution was used to obtain the final shape models
of the components.

2.3. Primary Shape

We used the shape software (Hudson 1993; Magri et al.
2007) to invert the sequence of range-Doppler images and CW
spectra from 2008 to obtain a 3D shape model for the primary.
Our data set consisted of 278 Arecibo range-Doppler images
and 95 CW spectra from both Arecibo and Goldstone, covering
a 16 day period between 2008 September 9 and 24. We left out
the low-resolution Arecibo images from September 24 and all
the Goldstone images as they did not improve the quality of the
fit and slowed down the shape modeling process. Because we
modeled the primary and secondary separately, we edited the
images and spectra to exclude the contribution of the other
component to the echoes.

7 The word continuous is used to distinguish this transmission mode from
range modulated operation.
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Shape modeling was generally carried out in three steps.
First we fit a triaxial ellipsoid model to the data to get the
overall extents of the object. We then moved on to an 8th-
degree-and-order spherical harmonics model to fit for the
global-scale topography seen in the images. Finally, in order to
fit for the small-scale features, we used a vertex model with
1000 vertices and 1996 triangular facets. This choice yields a
facet resolution of ∼50 m, which is comparable to the best
range resolution. In each step, weighted penalty functions were
used to favor models with uniform density, principal axis
rotation, and a reasonably smooth surface. We used a cosine

law to model the radar scattering from the surface of the
asteroid:

d

dA
R C( 1)(cos ) . (1)C2s

a= +

Here, σ is the radar cross section, A is the target surface area, R
is the Fresnel reflectivity, C is a parameter related to the near-
surface roughness of the asteroid at the radar wavelength
scales, and α is the incidence angle of the wave. Values of C
close to 1 represent diffuse scattering, whereas larger values
represent more specular scattering (Mitchell et al. 1996).

Table 1
Radar Observations of (185851) 2000 DP107 in 2008

Tel UT Date Eph RTT P tx Baud Prim. Res. Sec. Res. Code Start–stop Runs
(yyyy-mmm-dd) (s) (kW) (μs) (Hz) (Hz) (hhmmss-hhmmss)

G 2008 Sep 09 85 59 445 1.0 L L 127 114323–114719 3
87 1.0 L L 127 121534–152227 96

cw 1.0 L none 153128–154316 7

G 2008 Sep 10 89 58 445 cw 1.0 L none 100115–100907 5
0.5 L L 8191 102915–152812 153
cw 1.0 L none 153412–154908 7

A 2008 Sep 10 89 58 628 cw 0.2 L none 101757–102635 5
611 0.2 0.08 0.04 65535 102829–114008 37
561 cw 0.2 L none 114159–115234 6

A 2008 Sep 11 89 58 630 cw 0.2 L none 094357–095235 5
616 0.2 0.08 0.04 65535 095452–112810 48
580 cw 0.2 L none 113030–114115 6

G 2008 Sep 12 89 58 430 cw 1.0 L none 095102–100843 10
0.5 L L 8191 101952–142936 128
cw 1.0 L none 143725–145705 11

A 2008 Sep 13 89 59 603 cw 0.2 L none 084405–085301 5
0.2 0.08 0.04 65535 085548–105703 57

570 cw 0.2 L none 105927–110823 5

G 2008 Sep 13 89 59 432 cw 1.0 L none 091304–092304 5
1.0 L L 8191 103240–124441 67
cw 1.0 L none 125127–131326 12

G 2008 Sep 14 89 60 432 cw 1.0 L none 092211–094047 10
1.0 L L 8191 095318–112614 47
1.0 L L 8191 114209–130244 40

A 2008 Sep 15 89 63 ∼604 cw 0.2 L none 075347–080310 5
0.2 0.08 0.04 65535 080616–102000 56

585 cw 0.2 L none 102236–102952 4

A 2008 Sep 18 89 70 595 cw 0.2 L none 065646–070944 6
0.5 0.24 L 8191 071531–092200 54
cw 0.2 L none 092751–093340 3

A 2008 Sep 21 89 81 590 cw 0.2 L none 060205–061410 5
624 0.5 0.24 L 8191 062313–082654 45

A 2008 Sep 24 89 93 660 cw 0.2 L none 052205–053607 5
680 1.0 L L 8191 053910–073632 38
605 cw 0.2 L none 073910–075312 5

Note. The first column indicates the telescope: Arecibo (A) or Goldstone (G). Eph is the ephemeris solution number used. RTT is the round-trip light time to the
target. Ptx is the transmitter power. Baud is the delay (i.e., range) resolution (bauds of 0.2, 0.5, and 1 μs correspond to range resolutions of 30, 75, and 150 m,
respectively). Prim. res. and Sec. res. are the frequency (i.e., Doppler) resolutions of the processed data for the primary and secondary shape modeling, respectively.
Note that the Doppler spread of the target scales linearly with the transmitter frequency. Code is the length of the pseudo-random code used. The timespans of the
received data are listed by their UT start and stop times. The last column indicates the number of runs acquired in each configuration.

3

The Astronomical Journal, 150:54 (12pp), 2015 August Naidu et al.



Because nonlinear least-squares methods tend to find local
minima when searching a wide parameter space, we carried
out an extensive grid search for the best-fit spin axis
orientation during the ellipsoid and spherical harmonics shape
modeling stages. We assumed that the light curve period of
2.775 hr (Pravec et al. 2006) provided a good approximation
to the sidereal spin period and we fit shape models to the data
using spin axis orientations in increments of 15 in ecliptic
longitude (λ) and 15 in ecliptic latitude (β). For each case,
we performed an ellipsoid model fit followed by an 8th degree
spherical harmonics model fit. Only the following shape
parameters were allowed to change: the semi-axes in the
ellipsoid fit and spherical harmonic coefficients in the
spherical harmonic fit, the initial rotational phase of the
object, and the radar scattering parameter R. The spin rate, the
spin axis orientation, and the radar scattering parameter C
were kept fixed. The grid search was repeated for C = 0.6, 0.8,
1.0, and 1.2. We defined a somewhat arbitrary threshold
separating acceptable fits from poorer solutions by visually
comparing the synthetic and observed images and using a 2cn
threshold of 0.665.

Our mutual orbit pole estimates lie in the region where spin
axis orientations were considered acceptable on the basis of
the shape model fits. Because we did not obtain a tight
constraint on our spin pole using the shape model search
(Section 3.2), we used the best-fit mutual orbit pole as the
preferred spin pole for shape modeling. For a binary formed
by a spin-up process, one would expect the primary spin pole
to be roughly aligned with the mutual orbit pole, and tidal
processes are expected to damp any residual inclination. With
this spin pole assumption we fit 8th-degree-and-order
spherical harmonics models to the data in the same way as
we did in the grid search. Here we tried values of sidereal spin
rate ranging from 3111° day–1 (P = 2.777 h) to 3117° day–1

(P = 2.772 hr) in steps of 0.2° day–1 and values of C ranging
from 0.5 to 1.5 in steps of 0.1. As explained in Section 2.2,
the shape modeling was done iteratively with the mutual orbit
fits: mutual orbit fits were followed by shape model fits. In the
second/final iteration, we performed the spherical harmonics
shape model fit followed by a vertex model fit. At each step,
we verified the quality of the fit by visually comparing the
synthetic data generated by shape with the corresponding
observed data. For the vertex model fit we used as initial
conditions the best-fit spin state and spherical harmonics
shape model determined at the previous step. Once again,
only the shape parameters (location of the vertices), the initial
rotational phase, and the radar scattering parameter R were
allowed to change, and all the other parameters were
kept fixed.

2.4. Secondary Shape and Spin State

Shape modeling of the secondary component was performed
using a method similar to the one described in Section 2.3. The
data set for modeling the shape and rotation of the secondary
consisted of 180 Arecibo images taken between 2008
September 10 and 15. We left out images with 75 m range
resolution from September 18 and 21 because the secondary
was barely resolved in these images, and because these images
did not improve the quality of the shape model fits. This time it
was the primary that was edited out of the images. The CW
spectra were not used because we were not able to completely
remove the contribution of the primary from the total echo

power. We fit an ovoid shape model,8 followed by a 5th-
degree-and-order spherical harmonic model. We then fit a
vertex model with 150 vertices and 296 facets.
Periodicities detected in photometric data suggest that the

secondary spin period may be close to 1.76 days (Pravec et al.
2006). This can be used as a guide in our shape modeling
process, being mindful that light curve periods are neither
sidereal nor synodic, whereas the shape software uses sidereal
spin periods. This periodicity is close to the 1.7556 day orbital
period (Table 2), confirming the finding that the secondary is
locked in a 1:1 spin–orbit resonance (Margot et al. 2002). We
used the radar-derived sidereal orbital period as the nominal
spin period of the secondary for the purpose of shape modeling.
As with the primary, a grid search did not lead to a

conclusive result about the spin axis orientation. Absent recent
perturbations, one expects the spin pole of a tidally evolved
secondary to be closely aligned with the mutual orbit pole, and
we used the mutual orbit pole as the spin pole of the secondary.
This proximity to the orbit pole can be verified by computing
the obliquity of Cassini state 1 (Peale 1969), which is the state
toward which tides drive the satellite spin pole. The other
Cassini states are either unstable or the spin of the satellite is
unstable at those Cassini states (Gladman et al. 1996). The
obliquity can be computed using the following equation
derived from Gladman et al. (1996) for a synchronous
secondary:

C
A B

C i
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Here A B C< < are the the principal moments of inertia of
the secondary, θ is the obliquity of the secondary spin pole with
respect to the mutual orbit pole, i is the inclination of the
mutual orbit with respect to the invariable plane (in this case it
is approximately the equatorial plane of the primary), Ẇ is the
precession rate of the mutual orbit, and ω is the spin rate of the
secondary. After the mutual orbit and the primary and the
secondary shapes were fit (Sections 3.1, 3.2, and 3.3), we
evaluated Equation (2) with the relevant values and found that

1q < , confirming that the expected obliquity is small.
The initial rotation phase was set to a value such that the

secondary was oriented with its minimum moment of inertia
principal axis pointing toward the primary at pericenter. This is
the expected configuration of a tidally locked satellite. The
same radar scattering law as the one used for the primary was

Table 2
Mutual Orbit Parameters for 2000 DP107

Parameter Value from Value From
Margot et al. (2002) this Work

Semi-major axis (km) 2.62 ± 0.16 2.659 ± 0.08
Period (days) 1.755 ± 0.007 1.7556 ± 0.0015
Eccentricity 0.01 ± 0.01 0.019 ± 0.01
System mass (×1011 kg) 4.6 ± 0.5 4.834 ± 0.45
Orbit pole (λ, β) () (283, 67) ± 10 (294, 78) ± 10
Reduced 2c 0.32 0.23

8 An ovoid is a distorted triaxial ellipsoid such that it has a wide and a
narrow end.
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used. We allowed the shape parameters and the radar scattering
parameter R to change. The spin rate, the spin axis orientation,
and the radar scattering parameter C were kept fixed. During
the ovoid model stage, we attempted shape model fits with
values of spin period ranging from 1.6 to 1.9 days in steps of
0.01 days.

An elongated and synchronous secondary in an eccentric
orbit about the primary exhibits librations, which are oscilla-
tions about uniform rotation (e.g., Murray & Dermott 1999). A
tidally evolved satellite is expected to exhibit a relaxed-mode
libration (Naidu & Margot 2015), which is equivalent to a
forced libration (Murray & Dermott 1999) when the spin–orbit
coupling is negligible. This libration is roughly sinusoidal for
small eccentricities and its amplitude as a function of the
satellite elongation was estimated by Naidu & Margot (2015)
using numerical simulations.

Because the mutual orbit is eccentric (e 0.02 ) and the
secondary is elongated (Sections 3.1 and 3.3), we allowed for
the possibility of relaxed-mode libration in longitude in the
rotational model. For small amplitudes of forced librations and
small orbital eccentricities, the deviation of the secondary
orientation from regular circular motion (df) can be approxi-
mated as

[ ]A t tsin ( ) , (3)lib f 0df w p» - +

where Alib is the amplitude of the forced librations, fw is the
forcing frequency, which is equal to the mean orbital motion
(n P2p= ), and t0 is the time of pericenter passage. The
additional phase of π appears because for a synchronous
secondary whose natural libration frequency is smaller than the
forcing frequency, the librational phase is expected to be 180°
at pericenter (Murray & Dermott 1999). We repeated the ovoid
and spherical harmonics shape model fits with libration
amplitudes ranging from 0 to 10 in steps of 1°. We tried all
possible libration phases in steps of 4° in order to cover the
libration phase uncertainty that arises due to an almost circular
orbit. The libration amplitudes and phases were held at fixed
values in each of these fits.

Results of the secondary shape and spin state modeling are
discussed in Section 3.3.

2.5. Radar Scattering Properties

We transmitted circularly polarized waves and used two
separate channels to receive echoes with the same circular (SC)
and opposite circular (OC) polarization as that of the
transmitted wave (Ostro 1993). We summed consecutive
Arecibo CW runs from 2008 (Table 1) and measured the
power received in the OC and SC channels. The ratio of the
power received in SC to the power received in OC yields the
circular polarization ratio, which is often denoted by Cm . We
also used Equation (1) of Ostro (1993) to compute the radar
cross-section of the target, which has the dimensions of surface
area. We computed the dimensionless specific radar cross-
section (ŝ), also called the radar albedo, with the OC CW
spectra by taking the ratio of the radar cross-section to the
geometric cross-sectional area of the target (primary +
secondary) at the time of the observations. We used shape
to compute the orientations of the target and corresponding
projected areas at the times of CW runs.

The procedure described in the previous paragraph yielded
values of ŝ and Cm that combine the echoes from both the

primary and secondary. We were also interested in estimates of
these quantities for the secondary component alone. We
obtained these by removing the contribution of the primary
from the OC CW spectra. This subtraction was performed by
fitting a 5th degree polynomial to the primary CW spectra and
by masking out the frequency bins that contained a contribution
from the secondary. After subtraction, we estimated ŝ and cm
for the secondary using the same procedure as that described in
the previous paragraph. Results are given in Section 3.4.

2.6. Mass Ratio, Component Masses, and Densities

The COMs of the two components follow roughly Keplerian
orbits around the system COM, while the system COM or
barycenter orbits the Sun. The motion of the primary COM
relative to the system COM is called the reflex motion of the
primary. We estimated the mass ratio of the components and
the reflex motion of the primary by quantifying the goodness of
fit of heliocentric orbit fits using the astrometry of the system
COM under various mass ratio assumptions.
The system COM lies on the line joining the component

COMs at a distance of dp from the primary and a distance of ds
from the secondary. The ratio of these distances (d ds p) is
equal to the primary-to-secondary mass ratio (M Mp s). For a
given mass ratio assumption, we calculated the ratio d ds p and
estimated the barycenter locations along the lines joining the
component COMs in each of the 278 images obtained in 2008
that were used for shape modeling. This provided estimates of
the two-way ranges of the system COM, where we once again
used the shape-based component COMs determined to sub-
pixel accuracy. We explored mass ratio assumptions from
M Mp s = 15 to 30 in steps of 0.1 to determine the
corresponding two-way ranges of the system COM and
assigned uncertainties equal to the range resolution. For each
mass ratio assumption we then performed a fit for the
heliocentric orbit to all available optical astrometry and the
system COM ranges. The best overall fit, as indicated by the

Figure 1. Contour plot of the goodness of fit ( 2cn ) of shape models with
different spin axis orientations on a polar stereographic projection of the
celestial sphere, looking down the ecliptic north pole. Numbers indicate ecliptic
longitudes (λ). Dotted circles (outside to inside) show latitudes 0, 30, and
60. The region enclosed by a solid black contour line ( 0.6652c =n ) shows
acceptable shape model fits. The plus sign shows our mutual orbit pole
estimate.
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lowest sum of squares of the residuals, yielded an estimate of
the actual mass ratio of the system.

We used the mass ratio to apportion the total mass of the
system, estimated from the mutual orbit, to the primary and the
secondary. These mass estimates were divided by the
corresponding component volume estimates, obtained from
shape models, to yield component density estimates.

2.7. Primary Gravitational Environment

We used the primary shape model and density estimate to
compute the gravity field on the surface of the primary, under a
uniform density assumption. The acceleration on the surface is
the vector sum of the gravitational acceleration due to the
primary’s mass and the centrifugal acceleration due to its spin.
An acceleration vector was computed at the center of each facet
using the method described in Werner & Scheeres (1997). The
gravitational slope, which is the angle that the acceleration
vector makes with the local inward-pointing surface-normal
vector, was also computed for each facet.

3. RESULTS

3.1. Mutual Orbit

Our shape modeling results showed that the oblateness J2 of
the primary is about 0.03 (Section 3.2), such that the difference
between observed and osculating orbital elements (Green-
berg 1981) is small. Specifically, the quantity J R a( )3

2 2 p
2 (Rp is

the primary radius and a is the semimajor axis), which
represents the fractional difference between the observed and
osculating values of the semimajor axis (Greenberg 1981),
amounts to 10 3~ - . If the orbital eccentricity exceeds this value,
one can expect an orbital regime where the true and mean
anomalies circulate while the longitude of pericenter precesses.
For smaller values of the eccentricity, another class of orbit is
possible, where the true and mean anomalies librate around

pericenter while the longitude of pericenter circulates. For our
purposes, both orbit types are well accommodated by fitting the
observations to a Keplerian ellipse. However, the orientation of
the ellipse may be different for the 2000 and 2008 observations.
For reasons explained in Section 4.2, it was not possible to
reliably fit for the apsidal precession rate.
The mutual orbit has a semimajor axis a 2.659 0.08=  km

and a sidereal orbital period P 1.7556 0.0015=  days.
Kepler’s third law yields GM 32.24 3.00T =  m3 s−2, where
G is the gravitational constant and MT is the total mass of the
system. Substituting G 6.67 10 11= ´ - m3 kg−1 s−2, we find
M 4.834 0.45 10T

11=  ´ kg. Table 2 lists the best-fit orbital
parameters obtained using the combined 2000 and 2008 data
and compares it to the values published in Margot et al. (2002).
The values from both works are consistent with each other.

3.2. Primary Shape and Spin State

The result of our grid search for the best-fit spin pole is
illustrated in Figure 1, which shows a contour plot of the 2cn
values of the shape model fits for various orientations of the
spin pole. Figure 1 shows the result for C = 0.8, which gave
lower overall 2cn values than the other values of C that we tried.

However, the general 2cn patterns are similar, irrespective of the
value of C.
As explained in Section 2.3, we assumed the spin pole to be

aligned with the mutual orbit pole at 294l =  and β = 78°.
The best-fit sidereal spin period is 2.7745 ± 0.0007 hr. Radar
scattering C = 1.0 yielded the shape model with the lowest 2cn .
Figure 2 shows the vertex shape model produced under these
assumptions for the spin pole and the value of C, Table 3 lists
the associated parameters, and Figure 3 shows examples of the
observed images and the fits using this model. The model
shows a good general agreement with the data.
An equatorial ridge similar to the one found on the 1999

KW4 primary (Ostro et al. 2006) is clearly seen. However, the

Figure 2. Vertex shape model of the primary as seen along the three principal axes x, y, and z. For principal axis rotation, the spin axis is aligned with the z axis.
Yellow regions have radar incidence angles 60>  and hence are not well constrained. The shape model has 1000 vertices and 1996 triangular facets. The effective
surface resolution is ∼57 m.
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ridge is not so regular and has a ∼300 m concavity on one side,
similar to (341843) 2008 EV5 (Busch et al. 2011). An
equatorial ridge is necessary to fit the observed power profile
behind the LE in the radar images. The expected power profiles
from models with and without equatorial ridges are compared
in Busch et al. (2011). The shape model shows another ridge-
like structure forming a ring around the south pole.

3.3. Secondary Shape and Spin State

We found that including longitudinal libration in the
secondary spin model did not improve the shape model fits
significantly, so we adopted the shape model fit with no
libration as the nominal shape model. The non-detection of
libration could either be because the libration amplitude, which
is predicted to be ∼15 m by Naidu & Margot (2015), is less
than the resolution of the images or the temporal and
longitudinal coverage of the secondary is insufficient.

The best-fit sidereal spin period of the secondary is 1.77 ±
0.02 days. This is consistent with the radar-derived mutual orbit
period suggesting that the secondary is spinning synchro-
nously. Figure 5 shows the best-fit secondary vertex shape
model fit using this period, Table 3 lists the shape model
parameters, and Figure 4 shows some examples of the observed
images and the fits using this model. There is good agreement
between the model and the data. The secondary has a triangular
pole-on silhouette with dynamically equivalent equal volume
ellipsoid dimensions of 377 314 268´ ´ m.

3.4. Radar Scattering Properties

Measurements of the OC radar albedo and circular
polarization ratio for the combined primary and secondary
spectra using the Arecibo data obtained in 2008 are listed in
Table 4. Their mean values are 0.179 ± 0.02 and 0.265 ± 0.03,
respectively, where the uncertainties are the standard deviations

Table 3
Primary and Secondary Shape Model Parameters

Parameters Primary Secondary

Extents along x 0.992 ± 5% 0.379 ± 6%
Principal axes (km) y 0.938 ± 5% 0.334 ± 6%

z 0.964 ± 5% 0.270 ± 6%
Surface area (km2) 2.481 ± 10% 0.329 ± 12%
Volume (km3) 0.337 ± 15% 0.017 ± 18%
Moment of inertia ratios A C 0.914 ± 10% 0.708 ± 10%

B C 0.946 ± 10% 0.888 ± 10%
Equivalent diameter (km) 0.863 ± 5% 0.316 ± 6%
DEEVE extents (km) x 0.899 ± 5% 0.377 ± 6%

y 0.871 ± 5% 0.314 ± 6%
z 0.821 ± 5% 0.268 ± 6%

Spin pole ( ,l b) () (294, 78) (294, 78)

Note. The shape model of the primary consists of 1000 vertices and 1996
triangular facets, corresponding to an effective surface resolution of ∼57 m.
The shape model of the secondary consists of 150 vertices and 296 facets; it has
an effective surface resolution of ∼52 m. Surface area is the surface area of the
shape model measured at the model facet scale. The moment of inertia ratios
were calculated assuming homogeneous density. A, B, and C are the principal
moments of inertia, such that A B C< < . Equivalent diameter is the diameter
of a sphere with the same volume as that of the shape model. A dynamically
equivalent equal volume ellipsoid (DEEVE) is an ellipsoid with uniform
density with the same volume and moment of inertia ratios as the shape model.
The spin poles are assumed to be aligned with the mutual orbit pole.

Figure 3. Examples of images and fits for the primary. Each row (from left to
right) shows the observed image (single run), the corresponding synthetic
image generated using the shape model, and the corresponding plane of sky
view of the shape model. The images were obtained on (from top to bottom)
September 10.43641, 10.47739, 11.41307, 11.46787, 13.37204, 15.33765,
15.38140, 18.30239, and 21.26607.
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of the individual measurements. The mean value of the circular
polarization ratio is close to the median value (0.26) for all
NEAs and is most consistent with the S- and C-class asteroids

(Benner et al. 2008). Figure 6 shows Arecibo OC and SC CW
spectra obtained on 2008 September 11.
The last two columns of Table 4 show the OC radar albedos

and circular polarization ratios for the power spectra containing
only the estimated secondary contribution. Their mean values
are 0.174 ± 0.05 and 0.326 ± 0.08, respectively. The radar
albedo of the secondary alone is equivalent to that of the
primary+secondary, suggesting that both components have
identical composition. The polarization ratio of the secondary
appears to be more variable and greater than that of the
primary, suggesting that the secondary may be rougher than the
primary at radar wavelength scales. However, the difference is
within the 1 standard deviation of the measurements, prevent-
ing a more definite conclusion.

3.5. Mass Ratio, Component Masses, and Densities

Direct estimation of the mass ratio using the method
described in Section 2.6 yielded a mass ratio (M Mp s) of
26.2 ± 2. This mass ratio corresponds to a reflex motion of the
primary of 98 ± 8 m, consistent with the estimate of 140 ±
40 m of Margot et al. (2002) and with the apparent motion
observed directly in the images. Figure 7 shows a plot of the 2c
values of the heliocentric orbit fits to the optical and radar
astrometry. The latter uses two-way ranges to the system COM
as determined under various mass ratio assumptions as
discussed in Section 2.6. Using this mass ratio we can
apportion the total mass of the system (MT) to the two
components. We find the mass of the primary and the
secondary to be 4.656 0.43 1011 ´ kg and 0.178 0.021 ´
1011 kg, respectively. Dividing the masses by the volumes of
the corresponding shape models, we find densities for the
primary and secondary to be 1381 ± 244 and 1047 ±
230 kg m−3, respectively, where the largest source of uncer-
tainty comes from the volume determinations. The densities are
similar, pointing toward a similar composition and porosity.

3.6. Primary Gravitational Environment

The acceleration map on the surface of the primary shape
model shows that, for nominal values of mass, spin period,
and shape parameters, the net acceleration on the equatorial
ridge is very close to zero (Figure 8), which implies that the
centrifugal acceleration on the ridge almost cancels out the
acceleration due to the primary’s mass. As we move to higher
latitudes, and hence closer to the spin axis, the magnitude of
the centrifugal acceleration decreases, causing the magnitude
of the net acceleration to increase and reach values up to 159

m s 2m - at the poles. This value is about 1.6 × 10−5 times that
on Earth.
The gravitational slopes near the poles are close to zero

(Figure 9). Around the mid-latitudes, the slopes are higher and
most regions here have values between 40° and 65°. Regions
on the equatorial ridge have slopes close to 180°, implying that
the magnitude of centrifugal acceleration is greater than the
magnitude of acceleration due to mass. Inside the concavity on
the equatorial ridge the slopes are close to 0°. These slopes
provide clues to the mechanical properties of the asteroid
material. The implications are discussed in Section 4.

Figure 4. Examples of images and fits for the secondary. Each row (from left
to right) shows the observed image (single run), the corresponding synthetic
image generated using the shape model, and the corresponding plane of sky
view of the shape model. The images were obtained on (from top to bottom)
September 10.47192, 10.48012, 11.41307, 11.44529, 13.43063, 13.43896,
15.33765, 15.36390, and 15.39306.
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4. DISCUSSION

4.1. Primary Shape and Gravitational Environment

The primary shape is similar to shapes of some other radar-
characterized asteroids such as (66391) 1999 KW4, (136617)
1994 CC, (341843) 2008 EV5, (101955) Bennu, etc. (Ostro
et al. 2006; Brozović et al. 2011; Busch et al. 2011; Nolan
et al. 2013, respectively). This commonly observed top-shaped
structure is an indication that the asteroid has undergone

reshaping, most likely due to the spin-up of the primary (e.g.,
Harris et al. 2009). The shape and the gravitational field
provide clues about the mechanical properties of the material of
the primary. Figure 9 shows that the gravitational slopes around
the mid-latitudes are mostly between 40° and 65°. Some of
these values are greater than the angle of repose of sand on
Earth, which has values between 30° and 50°. A possible

Figure 5. Secondary shape model as seen along the three principal axes. The top right view is along the positive spin axis. The positive x axis points toward the
primary. Yellow regions have radar incidence angles 60>  and hence are not well constrained. The shape model has 150 vertices and 296 triangular facets. The
effective surface resolution is ∼52 m.

Table 4
Radar Scattering Properties

UT Date Set Prim.+Sec. Secondary
yyyy-mmm-dd ˆOCs Cm ˆOCs Cm

2008 Sep 10 1 0.158 0.334 0.245 0.334
2008 Sep 10 2 0.239 0.248 0.154 0.238
2008 Sep 11 1 0.186 0.261 0.098 0.413
2008 Sep 11 2 0.186 0.258 0.136 0.316
2008 Sep 13 1 0.197 0.275 0.159 0.458
2008 Sep 13 2 0.187 0.236 0.226 0.265
2008 Sep 15 1 0.184 0.241 0.205 0.218
2008 Sep 15 2 0.159 0.294 0.149 0.373
2008 Sep 18 1 0.158 0.247 0.125 0.443
2008 Sep 18 2 0.160 0.242 0.149 0.283
2008 Sep 21 1 0.180 0.234 0.229 0.254
2008 Sep 24 1 0.163 0.292 0.176 0.338
2008 Sep 24 2 0.157 0.276 0.211 0.299

Average 0.179 0.265 0.174 0.326
St. dev. 0.02 0.03 0.05 0.08

Note. Radar albedos ˆOCs and circular polarization ratios Cm of the primary and
secondary combined (columns 3 and 4) and of the secondary alone (columns 5
and 6) measured on the basis of Arecibo data (Table 1). Except for September
21, two measurements were available per day (distinguished by the index in the
second column).

Figure 6. Representative OC and SC CW spectra obtained at Arecibo on UT
2008 September 11.483. The broad component is due to the primary with a
2.77 hr spin period. The narrow spike is due to the secondary with a 1.77 day
spin period.
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explanation for such high angles is that cohesive van der Waals
forces between the particles play an important role on the
surfaces of the asteroids, as proposed by Scheeres et al. (2010).
These cohesive forces could be comparable in magnitude to the
ambient gravitational force (Scheeres et al. 2010), resulting in
much higher effective angles of repose ( 50> ) than the
material can sustain (e.g., Rognon et al. 2008). Figure 9 shows
that slopes at the equator of the primary are 90> , implying that
centrifugal force is greater than the gravitational pull at the
equator. In the absence of other forces, this imbalance will
cause material to escape from the primary at the equator.
Cohesion between particles could balance the excess centrifu-
gal force and prevent such an escape. Nevertheless, the regions
in the mid-latitudes with high slopes might be devoid of fine
grained material, as the material would slide off to lower
potential areas. Some of the regions on the equatorial ridge
with slopes close to 180° might also be paths through which
material is shed off from the primary. The slope values are
sensitive to the size, the density, and the spin period of the
asteroid. Scaling down the asteroid by 5%~ and keeping the
mass unchanged (effectively increasing its density by 16%~ ,
which is within the density uncertainty) yields slopes close to
zero on most regions at the equator and slopes lower than 45°
on most of the surface of the asteroid. If tides and/or YORP
spin down the asteroid, there will be a global decrease in the

Figure 7. Points show 2c values of heliocentric orbit fits to optical and radar
astrometric observations. Radar astrometry includes two-way ranges of the
system COM under various mass ratio assumptions. Solid curve shows the
best-fit parabola to the 2c ʼs. The horizontal lines show the minimum 2c on the
parabola and the 2c corresponding to the 1s uncertainty, respectively. The
minimum 2c corresponds to a primary-to-secondary mass ratio of 26.2 ± 2.

Figure 8. Magnitudes of the vector sum of acceleration due to gravity and centrifugal acceleration computed at the centers of the facets of the primary shape model.
We assumed a uniform density of 1381 kg m 3- , which was obtained in Section 3.5, and a spin period of 2.7745 hr. At the equator the values are close to zero,
indicating that the magnitude of centrifugal acceleration is almost equal to the magnitude of acceleration due to the asteroid’s mass.
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slopes. A similar spin down might have led to the overall low
slopes seen on 2008 EV5 (Busch et al. 2011).

Assuming a grain density of 3000 kg m−3, which would be
appropriate for an S-type asteroid, the observed densities of the
primary and secondary can be explained by 55%~ and 65%~
porosity, respectively. Dilation of cohesive materials during
avalanching flows seen in numerical simulations and laboratory
experiments (e.g., Alexander et al. 2006; Rognon et al. 2008)
could also explain the high porosity needed to match the low
densities of the primary and the secondary.

The equatorial ridge has an approximately 300 m concavity
on it. The concavity could just be a void left over after the
asteroid attained its current shape or it could be an impact
crater. Jacobson & Scheeres (2011a) hypothesized that a
secondary fission event could take place during the post-fission
dynamics following the binary formation process, and that one
of the fragments may impact the primary. Secondary fission
refers to the rotational fission of the secondary as it is torqued
by spin–orbit coupling while in a chaotic rotation state
(Jacobson & Scheeres 2011a; Naidu & Margot 2015).
Gravitational pull dominates the centrifugal force in the interior
of the concavity, so ponding of fine grained material
transported from higher latitudes can be expected inside the
crater.

4.2. Mutual Orbit

The eccentricity of the mutual orbit, e 0.019» , translates to
a variation of the primary–secondary distance of ae2 100» m
during each orbit. While this variation is detectable in the radar
data from 2008, which has a range resolution of 30 m, it is
barely detectable in the radar data obtained in 2000, which has
a range resolution of 75 m. Our determination of the longitude
of pericenter therefore relies on the 2008 data only. Although
we were not able to fit an orbital precession rate, our method
does not rule out substantial pericenter precession during
2000–2008. We performed numerical simulations using the
method developed by Naidu & Margot (2015) to estimate
pericenter precession rates under various gravitational pertur-
bations: the non-spherical mass distribution of the primary
causes pericenter precession of about 90° year−1, whereas the
non-spherical mass distribution of the secondary contributes
about 15 year 1-  - . The combined effect causes the pericenter
to precess by about 75° year−1 in a prograde direction with
respect to the mutual orbit. Additionally, the gravitational
perturbations from the Sun cause the pericenter to precess by
about 10° year−1. The combined effect of these three gravita-
tional perturbations is a secular apsidal precession rate of about
85° year−1, but there are significant short-term variations in the

Figure 9. Gravitational slopes computed at the centers of the facets of the primary shape model. We assumed a uniform density of 1381 kg m 3- , obtained in
Section 3.5, and a spin period of 2.7745 hr. Slopes vary from 0~  at the poles and some regions at the equator to close to 180° at most regions at the equator. Most
regions at mid-latitudes have slopes between 40° and 65°.
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precession rate, making detection of apsidal precession
difficult. Gravitational perturbations from planets and radiative
forces from the Sun complicate the dynamics further.

The mutual orbit normal (and the assumed primary and
secondary spin poles) is separated by about 5 from the
heliocentric orbit normal, which is common among binary
NEAs and possibly indicative of YORP obliquity evolution
(Rubincam 2000).

4.3. Binary YORP

Binary YORP is a radiative torque that is hypothesized to alter
the mutual orbit of synchronous binary systems (Ćuk &
Burns 2005). A synchronous satellite has a fixed leading and
trailing side with respect to the direction of its orbital motion, so
an asymmetric re-radiation from the surface of the satellite will
lead to a net torque on the mutual orbit. A potentially observable
signature of such a torqued orbit is a quadratic change in the
mean anomaly of the satellite (McMahon & Scheeres 2010).
Detecting a quadratic change in mean anomaly requires
measurements of the mean anomaly on a minimum of three
widely separated epochs. Additional measurements will be
required to model the complicated dynamics described in the
previous section. 2000 DP107 is a prime candidate for the
detection of binary YORP since it presents repeated opportu-
nities for observations and has already been observed in 2000
and 2008 by radar and in 2000, 2008, 2011, and 2013 by optical
telescopes. McMahon & Scheeres (2010) made a mean anomaly
drift rate prediction for 2000 DP107 by scaling the results
obtained from the radar-derived shape model of the satellite of
1999 KW4. Those predictions can now be updated using the
secondary shape model. Depending on the direction of the
binary YORP torque, the mutual orbit could either expand,
contract, or remain unchanged. The outcomes of these scenarios
were studied in detail by Jacobson & Scheeres (2011a). An
expanding mutual orbit could lead to the formation of asteroid
pairs or an asynchronous satellite, whereas a contracting mutual
orbit could create a contact binary asteroid (e.g., Taylor &
Margot 2011). A contracting binary YORP torque could also be
balanced by an equal and opposite tidal torque, implying a
binary asteroid in a stable equilibrium as hypothesized by
Jacobson & Scheeres (2011b). Future observations of this
system may provide a detection of binary YORP evolution.

4.4. Formation and Evolution

The normalized total angular momentum of a binary asteroid
system (J J ¢) provides clues to the formation mechanism of the
system. In this expression, J is the total angular momentum and
J GM Rsys eff¢ = , where Msys and Reff are the total mass and
equivalent radius of the binary system. Ratios greater than 0.4
in NEAs are consistent with formation of the binary by mass
shedding due to spin-up of the parent body (Margot et al. 2002;
Pravec & Harris 2007; Taylor & Margot 2011). 2000 DP107
has a separation a R 6.2p  that is larger than most known
binary NEAs and a low eccentricity of 0.019, resulting in
J J 0.49¢ ~ . This is much larger than is necessary for spin
fission. In a tides-only model, this large separation implies a
rather weak primary, an old age compared to the dynamical
lifetime of NEAs, or the influence of another mechanism such
as binary YORP and/or YORP for increasing the total angular
momentum (Taylor & Margot 2011).

5. CONCLUSION

The radar observations of 2000 DP107 allowed us to
produce shape models of the primary and secondary, estimate
their masses and densities, compute the gravitational environ-
ment of the primary, and estimate the mutual orbit parameters.
The shape model and gravitational environment of the primary
provide important clues about the material properties of the
asteroid. The shape model of the secondary can be used to
estimate the evolution of the mutual orbit under the binary
YORP torque. Future radar and photometric observations of the
system may provide measurements of the evolution of the
mutual orbit. The next radar and photometric observation
opportunity is in 2016.
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