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Discussion of “Learning Scale Free Networks by Reweighted !1 regularization”

recent methods that aim to capture long-range depen-
dence in covariance selection but using different tech-
niques. The first method is based on deep belief net-
works (DBN) described in [3]. Assuming detrended
data, the concentration matrix is modeled as linear
combination of outer-products of rank one matrices.
Mathematically, concentration matrix of Xk given a
latent vector hk is

∑F
l=1 hk,lClC

′

l + I, where Cl are
p dimensional vectors. The latent vectors associated
with each observation are assumed to be binary. This
induces a mixture distribution that is shown to capture
long-range dependencies remarkably well in applica-
tions. Computation is however more intensive than the
method described in this paper. Nevertheless, compar-
ison on datasets used to fit DBN would be interesting.
Another work that is more closely related is to assume
a decomposition of Ω as a sum of low-rank and sparse
matrices [2]. The low-rank component captures short-
range dependencies and the long-range dependencies
missed out are captured by the second component that
is assumed to be sparse. The resulting optimization
problem is convex, the authors provide an efficient al-
gorithm to perform the optimization. A careful com-
parison to these methods both qualitatively and quan-
titatively looks exciting.
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