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Abstract

This paper studies optimal price learning
for one or more items. We introduce the
Schrodinger price experiment (SPE) which
superimposes classical price experiments us-
ing lotteries, and thereby extracts more in-
formation from each customer interaction. If
buyers are perfectly rational we show that
there exist SPEs that in the limit of infinite
superposition learn optimally and exploit op-
timally. We refer to the new resulting mech-
anism as the hopeful mechanism (HM) since
although it is incentive compatible, buyers
can deviate with extreme consequences for
the seller at very little cost to themselves.
For real-world settings we propose a robust
version of the approach which takes the form
of a Markov decision process where the ac-
tions are functions. We provide approximate
policies motivated by the best of sampled set
(BOSS) algorithm coupled with approximate
Bayesian inference. Numerical studies show
that the proposed method significantly in-
creases seller revenue compared to classical
price experimentation, even for the single-
item case.

1 INTRODUCTION

We consider the problem of learning while selling. A
seller does not know the distribution of valuations of
his customer base, and strategically experiments with
his prices to learn this distribution and maximize his
profit.

This problem is conventionally addressed as a Markov
decision problem (MDP) where the actions are real
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numbers, called prices. We argue that it is interesting
to consider it as a functional MDP where the actions
are functions corresponding to offering different prob-
abilities of obtaining an item for different prices. Such
functional MDPs allow us to adopt a new approach to
exploration-exploitation tradeoffs which conducts sev-
eral explorations in parallel.

The conventional approach to learning while selling
a single item is a censored price experiment (CPE).
This is an instance of Bayesian reinforcement learn-
ing [1] where the seller obtains censored observations
that a buyer’s valuation is larger or smaller than a
price. There is much previous work on learning from
a CPE, notably [2, 3].

We consider exploration-exploitation tradeoffs for sell-
ing multiple items. In a two-item setting, it is nec-
essary to learn from region-censored observations that
a buyer’s valuation falls in some two-dimensional set.
Inference from such observations has been studied
rarely [4]. In the absence of learning, it was recently
discovered that optimal methods for selling multiple
items involve lotteries where a buyer is allocated items
with probability other than 0 or 1 [5, 6]. Lotteries form
an important part of these methods: for two items,
price-only methods can lose up to a factor of three in
revenue relative to optimal lottery methods; for more
than three items, price-only methods can lose an arbi-
trary factor [7].

Contributions

In Section 2 we introduce the Schrodinger price ex-
periment (SPE) which exploits lotteries to provably
learn faster than traditional censored price experi-
ments. Our main contribution, in Section 3 is to
demonstrate that a suitable SPE with infinite options
can learn optimally and exploit optimally at the same
time. In other words the censored observations in tra-
ditional price learning can be replaced by a mechanism
that makes crisp observations by making use of lotter-
ies. This extends the growing body of literature on
incentive compatible learning [8, 9] and MDPs in dy-
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Figure 1: Example Mechanisms. Each plot has buyer valuation v on the z-axis and shows the price (black, solid),
probability (blue, dotted), surplus (red, dot-dashed). From left to right, CPE for first n; days, CPE for next nq
days, CPE for next ng days, SPE, variable lottery in Lemma 3.

namic mechanism design [10, 11, 12].

We demonstrate in Section 3.1 that a clever use of
insurance can make the method applicable to settings
where buyers are risk averse.

We say a mechanism is incentive compatible (IC) when
it is in a participant’s best interest to act in the way
prescribed by the mechanism in all rounds (see [13]
p. 218).

We refer to our optimal learning method as the hopeful
mechanism (HM) since it is not robust: while it is IC,
it is also possible for buyers to deviate far from truth-
ful behaviour at little or no cost to themselves. Such
deviations (errors, lies, or other unmodelled friction)
can greatly harm the learning process.

The second part of the paper is therefore dedicated to
formulating a robust mechanism learning problem that
could be used in a practical setting where it is not safe
to rely on perfect rationality. The general idea is to
exploit lotteries to learn faster, but not take this to the
theoretical limit to avoid the risk implied by possible
imperfections in the agent choices. Only in the hopeful
mechanism are exploration and exploitation maximal
at the same time. A robust mechanism with a finite
number of options requires a balance between explo-
ration and exploitation. In Section 4 we introduce a
robust learning algorithm that finds optimal lottery
menus that bracket customer groups to balance explo-
ration and exploitation while being sufficiently robust
against buyers that pick suboptimal options.

We use exploration methods that sample from pos-
terior distributions [14] to approximately solve the
(PO)MDP and use assumed density filtering [15] to
approximate the censored updates.

Finally we evaluate the optimal learning method and
our algorithm on one- and two-item settings with a
simple buyer deviation model.
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2 SCHRODINGER PRICE
EXPERIMENT (SPE)

In a classical censored price experiment (CPE), the
seller sets prices (py)i_; for (ng)n_, days respectively,
with pg,n, € RY for k = 1,2,...,N — 1. Without
loss of generality for the current argument we assume
that pr < pr+1. An alternative approach, that we
call a SPE, is illustrated in Figure 1. A SPE sets
a single menu of N lotteries for the whole period of
T := Zgil ng days. Each lottery (zx,px) is given
by the probability z; that the buyer obtains the item
given that they pay price pr. We set

k k
zp=T7" Znt, pr=T"" Zptnt-
t=1 t=1

One could view the set of lotteries as a supply curve:
that is, a mapping from quantity zj to price p. Buy-
ers who value the item highly, will purchase in higher
quantities and for higher prices.

LEMMA 1 For iid valuations v € R, expected buyer
surplus and revenue from CPE and SPE are the same.

Proof. For the SPE a buyer selects the lottery
k maximizing their surplus Si(v) = zpv — Pi
T-! Zle ny(v — py) and if Sk(v) < 0,Vk they do
not buy. It is readily verified that for v € [pg,pr+1)
we have Si(v) > Sj(v) for all j. Indeed the defini-
tion of lottery (zx, pr) is exactly the probability that
a randomly-arriving buyer confronted by CPE with
v € [pk, pr+1) would buy, and the average amount that
such a buyer would pay. Therefore surplus and revenue
for CPE and SPE are the same. O

Interestingly SPE learns faster than CPE. That is, if a
new price must be selected on the basis of observations
made by SPE, or observations made by CPE, then
the expected revenue from a new buyer with the same
valuation distribution as previous buyers is larger for
the price based on SPE than for the price based on
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CPE. This is because observations by SPE carve up
the space of valuations more finely than observations
by CPE. To formalize this intuition, we say a partition
A:={Ay, As, ...} is a refinement of a partition B :=
{Bi1, Ba, ...} if they are partitions of the same set and
for all A € A there is a B € B such that A C B. Let
M be a mechanism selected from some set Q4. Let
W (M, v) be a real function (a reward to the seller)
of M and a valuation v € R™ for some n € Z*. We
denote an optimal mechanism for valuation vs given
an observation that v; is in some set C of a partition
C by

Mejy, € argmax e, Eo, [W(M,v2)|vr € CJ.

LEMMA 2 Let vi,v2 be waluation vectors with joint
density P(v1,v2). If A, B are partitions of the space
of valuations and A is a refinement of B, then optimal
mechanisms for observations from these partitions sat-

isfy

Evlﬂm [W<MA\U1 ) 1)2)] > Ev1yv2 [W(MB\M ) 02)]'

Proof. The definition of My, gives
Eu, [W(Majp,, v2)|v1 € A] = By, [W( Mgy, v2)[v1 €
A] for any A € A. Note that M 4),, is independent of
vy given v; € A and expand the joint density:

P(’Ul,’l)g) = Z H’D(Ul S A)P(1}1|U2,U1 S A)H‘D(U2|’Ul S A)
AeA

to get

Ev17v2 [W(MA|'U1 ) UQ)]

Z P(Ul S A)Em [W(M_A‘U“’Ug)‘vl c A]
AcA

> P(vy € A)Ey, [W( Mgy, ,v2)|v1 € A
AcA

EUI;UZ [W(MBlm ) U2)]' O

>

It is possible to refine the partition employed by a SPE
until it becomes a continuum. The following Lemma
shows that this can have interesting consequences (see
Figure 1, Plot 5).

LEMMA 3 There exist mechanisms that are arbitrar-
ily close to price-only mechanisms yet for which it is
strictly IC for a buyer to identify their valuation.

Proof. Consider a mechanism for a valuation v €
[0,1] that gives probability z(v) := k{v > q} + kv of
obtaining an item for price p(v) := Rq{v > ¢} +Kv?/2,
where x and ¢ are in the range (0,1], & := 1 — k and
{-} is the indicator function. If a buyer with valuation
v acts as if their valuation were v + x, for 22 > 0, then
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their surplus is

w(v,v + x) z(v+ x)v —plv+x)

Flv—q)({v+a>q}—{v>q})
— k% /2 + w(v,v)

< w(v,v).

Therefore the mechanism is strictly IC. Furthermore,
the difference from the price-only mechanism for price
qis |z(v) = {v = g}| < K [p(v) —q{v = ¢}] <
k/2, Yv,q € (0,1]. O

Intuitively, Lemma 3 converts a price-only mechanism
into a strictly IC mechanism by mixing the price-only
mechanism with a strictly IC mechanism. The buyer’s
surplus under the price-only mechanism is a piecewise
constant function of the amount by which they devi-
ate. In contrast, the surplus under proposed mixture
mechanism has a unique maximum. While the proof of
Lemma 3 depends on the valuation distribution hav-
ing bounded support, Lemma 5 (in the supplementary
material) shows how to produce strictly IC mixtures
even for distributions with unbounded support.

3 OPTIMAL IC LEARNING

Model Definition. At each time ¢t € {1,2,...,T},
one buyer from a set of buyers B interacts with a seller.
Each buyer can interact multiple times. We refer to
the buyer at time ¢t as b,. Buyer b € B arrives at the
set of times 7,. The buyer at time ¢ has a valuation
v; € R™ with one component for each of n € Z1 items.
All valuations v, are iid with distribution f(v|f) where
0 are parameters over which the seller has prior belief
g(0). After the statement of Theorem 1, we discuss
how this model may be generalized to situations where
valuations are not iid.

Generally a mechanism M := (A, P) is defined by an
allocation rule A and a payment rule P. The alloca-
tion and payment are each functions of the valuation
v, that a buyer b; with true valuation v; reports to
the mechanism. At time ¢, the seller offers a mecha-
nism M; = (z,p:) given by an n-vector of multino-
mial probabilities z;(v¢) that the buyer gets each item
(the allocation rule), and a purchase price p;(v;). The
seller observes the chosen lottery and identity by of
each buyer. We wish to choose a policy m which is
a mapping from the observation history F; up to and
not including time ¢, and the current buyer’s identity b;
to a mechanism M; = w(F, by). Full notation would
therefore have all offered probabilities z;(F¢, by, v;) and
prices pi(Fy, by, vy) explicitly dependent on history F;
and identity b;. For brevity we write these as z;(v:),
and p;(vy) and denote a full history of observations by
F = .FT+1.
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The space of feasible policies €2 is given by the fol-
lowing constraints

For all buyers b € B, for all times t € 1,
for all possible true valuations v; and deviations v;:

IR Buyers must find it individually rational to par-
ticipate: . (2¢(ve) - ve — pi(ve)) > 0.

IC Incentive compatibility: >, (z¢(v)
Pe(v)) 2 X ien, (2e(01) - vt = pe(v1))-

B1 The buyer only wishes to buy at most one item
at a time (unit buyer): 1, - z;(v¢) < 1, 2¢(v) > 0
where 1,, is the n-vector with components all one.

- Ut

Note that via the dependence of z; and p; on histories
F and buyer identities by the forall quantifiers imply
that the above three constraints need to hold across
multiple time steps. For example the IC constraint re-
quires that manipulating in earlier rounds cannot be
beneficial for agents in later rounds. Lemma 4 char-
acterizes the implications for mechanisms for this IC
through time notion.

We consider a general notion of welfare parameterized
by weights o, 8 with @ > 8 > 0. If ¢; is the vector of
seller costs, then the welfare at time t is

Wt(Mt,’l}t) =
a(pe(ve) — e - ze(ve)) + B(ve - 2e(ve) — pe(vr)).

Setting a = 1,8 = 0 corresponds to seller profit, and
a = 1,8 = 1 corresponds to social welfare. The IC
learning problem is then to maximize the expected to-
tal welfare

] SNCY)

Hopeful Mechanism (HM). The hopeful mecha-
nism is a specific policy for the IC learning problem.
Given a bound on the range of valuations v; < V for
each component i = 1,2,...,n, the seller selects a
small parameter x > 0. The seller then repeats the
following steps:

T
ZWt(w(]-},bt),vt)

max Koy, v, wrle
TEQ, —

1. The seller computes the posterior belief about pa-
rameters # on the basis of F;*, which is defined
as the observed history F; ezcluding information
from buyer b; (see Lemma 4).

The seller computes the IR, IC mechanism M;
that maximizes expected welfare in the current
step given this posterior belief. This is the myopic
mechanism. It is the solution to

mAE}tha,m [Wt(M’vtN‘F;bt}
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where M = (z,p), subject to
1

n

I

Ut

)

I

Ut

)

z(vr)
z(vr)

3. The seller posts the mechanism M; with
2 = kz(v) + kv /V,ps(v) = Ep(v) + K|v]?/(2V).

B

Ut ’

(vt)
(vt)
(vt)
(vt)

(AR AVAR AVAR VAN

1
V¢ ) - Ut
vt) - vy — pvg z(vy) - v —p(vy), YV vy, v .

4. The buyer makes a purchase decision for this
mechanism.

LEMMA 4 Policies for the IC learning problem are IC
and IR over time (in the sense of Q) if and only if
they are IC and IR at each time (in the sense of the
constraints of Step 2 of the definition of HM), and ob-
servations from any buyer b at one time do not affect
mechanisms offered to b at other times, up to a redis-
tribution of the payments of buyer b over time.

In this Lemma we define two policies (z;,p;)i, and
(21, p))E, as equivalent up to a redistribution of pay-
ments over time if for all histories F, 2z (F)
zi(F) and for all b € B the total revenue satisfies
Yten Pt(F) = 2cp, Pi(F). A detailed proof of this
Lemma is given in the Appendix (supplementary ma-
terial).

THEOREM 1 As k — 0, HM becomes an optimal IC
learning policy.

Optimal here means in the sense of Eq. 1 where the
restriction to the set {2, implies IR, IC and B1.

Proof. HM is clearly IC at any one time, because
the myopic mechanism is IC by definition and the
argument of Lemma 3 shows that adding the terms
in kK to the price and probability make do not af-
fect IC. By Lemma 4, HM is IC across times and
loses no welfare by offering mechanisms based only
on ft_bt. To demonstrate that HM is IR at any one
time, one uses the same approach. This shows that
zt(vs)-ve—pe(ve) > 0, hence Zten zt(ve)-ve—pe(ve) > 0
showing that HM is IR across time.

If the seller’s observations were some functions of val-
uations, such as a censored observation that the buy-
ers’ valuation lies in some region, then by Lemma 2,
the seller does not gain any welfare relative what they
would have obtained by HM in the limit x — 0.

Given truthful observations of valuations, the seller
moves through a sequence of belief states that is inde-
pendent of which mechanisms are offered. The optimal
solution to this belief MDP is therefore myopic. This
myopic behaviour is exactly what HM does in the limit
k— 0.0
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Until now we assumed that valuations were iid given
a parameter . An examination of the proof of The-
orem 1 shows that HM remains optimal under more
general assumptions on the valuation distribution. All
that is required is that the seller moves through a se-
quence of belief states that is independent of which
mechanisms are offered, given truthful observations.
This requirement is true if for all ¢

a=tl(vs)

P((vs)

t—1
s=1>
T
s=t>

t—1

(b5)5:17
(bS)Z:t|(US)

-1
=)

-1
1)

(Zs)i;llv (ps)
t—1 (bb)

s=1»

P((vs)s—¢, (bs)

This alternative assumption includes settings where
valuations are not identically distributed, but may in-
stead depend on the buyers identity or follow some
trend over time.

Repeat Buyers. HM requires the maintainance of a
separate leave-one-out belief for all buyers. This could
require computation of belief updates that is quadratic
in the number of buyers and the solution of a num-
ber of mechanism design problems that is linear in
the number of buyers. If this is a problem, a practi-
cal solution is to draw an analogy with n-fold cross-
validation [16]. The set of buyers is partitioned into ny
sets called folds. A separate belief is then maintained
for each fold on the basis of reports from buyers in
other folds. Buyers who are suspected to collude may
beneficially be put in the same fold.

Maintaining a separate belief for each buyer requires
reliable buyer identification. While this may be diffi-
cult to implement, as the proof of Lemma 4 shows, this
is a necessary condition for IC for any method where
prices are learned.

In the buy-many model of Briest et al [7], buyers op-
timize their surplus by purchasing several lotteries.
This makes designing optimal lotteries computation-
ally challenging and reduces profits. Our model does
not preclude time steps being so close together that a
buyer is essentially purchasing several lotteries at the
same time. So why is HM still optimal, yet simple?
The root of this apparent paradox is that our model
assumes a buyer’s valuations at different times are in-
dependent. More sophisticated models would have to
account for the time-dependence of valuations.

3.1 Risk Aversion

Risk-averse buyers would typically value non-
deterministic lotteries less than deterministic lotteries.
This can be handled by offering insurance, as follows.
If a buyer has valuation v; for item ¢ = 1,...,n, and
selects lottery probabilities z; and price p, then they
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are charged a price p; when the lottery outcome is 4:

n
p+v; — g zjv;, fori=1,...,n.
=1

Di

If risk aversion is described by a monotonically-
increasing strictly concave function C(u) of a risk-
neutral utility u, then it is straightforward to show
that: (i) prices p; make buyers risk neutral; (ii) the
average price paid is p.

4 ROBUST LEARNING
MECHANISMS

The hopeful mechanism (HM) for x = 0 is IC but not
strictly IC. Consider for instance the following simple
deviation scheme: “when buying, claim the highest
possible valuation; when not buying, claim a valua-
tion of zero.” Given a set of buyers deviating in this
fashion and a sufficiently flexible family of beliefs, HM
would construct a posterior valuation distribution with
a peak at the highest possible valuation and a peak at
zero. If the objective were revenue maximization then
HM with x = 0 would then only ever set a price equal
to the highest possible valuation, thereby making very
few sales and very little revenue.

Thus it is possible for buyers to deviate to extreme
valuations at no cost to themselves. This would cor-
rupt the learning process, rendering HM impractical.
Thus, price-learning problems are not problems of IC
learning, but of robust IC learning. We discuss how
such problems might be formulated, describe a heuris-
tic algorithm and a choice of belief update that will be
used in experiments.

Formulation. How might we formulate this problem
when the manner in which buyers lie is unknown? We
identify the following three stationary models in which
a buyer with valuation v deviates to some valuation ©,
given the mechanism M:

1. Essentially-True. Given the true valuations,
the deviation is iid and independent of the mech-
anism: P(D|v, M) = P(D|v). The learning prob-
lem is then equivalent to one in which the true
distribution of buyer valuations v is replaced by a
distribution over deviations ©. HM remains opti-
mal.

Surplus-Dependent. Given the true valuation
and the loss of surplus resulting from the de-
viation for the given mechanism, the deviation
is iid and otherwise independent of the mech-
anism. If the buyer’s surplus when deviating
from v to ® is w(v,D|M), then such models sat-
isfy P(D]v, M) = P(D|v, w(v,v|M) — w(v, | M)).
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This includes the case of quantal response equi-
librium [17].

General Stationary. The deviation is iid given
the valuation and mechanism. This family of devi-
ations is rather large and includes the continuum-
armed bandit problem with one arm per possible
mechanism [18, 19].

Buyers would have to have a rather loose bound on
their bounded rationality to act according to most gen-
eral stationary models. Therefore we restrict our at-
tention to the following surplus-dependent model. A
buyer draws a loss-of-surplus parameter € from distri-
bution P(¢) and deviates to some valuation

De A ={v:wm(v,v) > wpmv,v) — €}

One can envisage a corresponding robust optimal IC
learning problem where the seller observes the se-
quence of deviations ®; for t = 1,2,...,T and at-
tempts to learn about the distributions of v,e and
DD € A°. Solutions to this problem might involve
complex mechanisms that would be difficult to com-
municate and for buyers to decide between. It is not
even obvious how buyers without detailed knowledge
of other buyers should deviate within A€, as illustrated
by the following result.

LEMMA 5 Dewviating up and deviating down can both
be optimal strategies for a surplus-dependent deviator
having the intent of lowering price.

Proof. Consider a sufficiently-smooth one-
dimensional valuation distribution. Taylor expand
the seller’s revenue in the price p around the optimum
price po: pP(v > p) =: co—c1(p—po)?/24+O0((p—po)?).
If buyers deviate by a small amount €, the revenue
becomes J(p,€) := pP(v > p+ ¢€). The maximum of
J(p,€) for small € is at

) +O(é?).

C
p=pote|—5-1
&

1Po
Thus the price decreases with € if ¢y < pgc; and in-
creases if ¢g > p3ey. O

An alternative is to explore simpler settings based on
the SPE that involve a limited number m of lotter-
ies for buyers to select between. The seller might be-
lieve that the loss-of-surplus parameter is at most some
small constant € for most of the population. The given
form for the deviation then makes the observation his-
tory F; the sequence of censoring sets AS and buyers
bs for s = 1,2,...,t — 1. This leads to the following
robust learning problem:

v2,...,07|6 [

T

ZWt(W(]:t,bt)aUt)
=1

max EglE
TEQ, 051,

247

over the space of policies where each mechanism in-
volves at most m distinct choices of lottery.

Algorithm. The above problem is a special case
of Bayesian reinforcement learning. In particular, it
could be viewed as an extension of the linearly pa-
rameterized bandit model of [20] to a setting where
the arms are functions. We explore a heuristic for
the exploration-exploitation trade-off that is related to
the best of sampled sets (BOSS) method [14]. BOSS
samples multiple models from the posterior belief and
selects actions optimistically. While it is optimistic,
like the upper confidence bound approaches to learning
MDPs [21], BOSS is clearer about the role of posterior
beliefs.

Our heuristic samples parameters of the valuation dis-
tribution 61,...,0k from a posterior with hyperpa-
rameters «. It then identifies an optimal mechanism
M, for each sample 6. Some such mechanisms have
a high expected welfare E, 9, W (v, M},) on their sam-
pled valuation distribution relative to the expected
welfare E, W (v, M*) of the myopic mechanism M?*
on the current posterior. This can happen in two
ways. Either sample 6 is “lucky” and both mecha-
nisms My, M* perform well on it, or mechanism My
is substantially different from the myopic mechanism
M*. In the second case, the myopic mechanism is a
risky choice and it is imperative to explore alternatives
such as M.

Thus we identify a specific exploratory mechanism
MX which achieves the maximum over k of

Ey 0, [W (v, My) = W (v, M")].
The two mechanisms M*X = (2% pX) and M* =
(z*,p*) are then superposed to create the mechanism
M; = (z,p) offered to the buyer. For simplicity, we
linearly combine the probabilities and prices via a pa-
rameter A (similar to the previous parameter k), via

zi=X2X 4+ 2", pi= Y+ M

Figure 2 shows an example of a myopic and ex-
ploratory mechanism for a two-dimensional valuation
distribution, as well as the result of superposing them.

There are two steps needed to select A. The first step is
to choose an appropriate form for the sellers prior be-
liefs about the nature of deviations. For instance, ex-
perimental economics widely uses the notion of Quan-
tal Response Equilibrium (QRE) [17] to model devia-
tions from rational behavior. The second step involves
numerically searching for a value of A that maximizes
the average welfare or revenue using a simulation of
buyers responses given the prior beliefs about valua-
tions and deviations.
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Figure 2: Each plot shows the partition of a two-dimensional valuation space induced by a mechanism. The
quantities in parentheses are (p,z1,22): the price, the probability of obtaining item 1 and the probability of
obtaining item 2. From left to right: a myopic mechanism M*; an exploratory mechanism M¥; the result of

superposing them with parameter A = 1/2.

Belief and Update. We assume that valuations
are drawn from a multinomial distribution with pa-
rameters 0 satisfying Zf\; 0 = 1 over a set V =
{v1,v2,...,un}. This is a flexible choice and the as-
sumption of a discrete set could be motivated by a
discretization of the set of monetary units. The seller
does not know # but instead has a Dirichlet prior
with parameters o, ..., ay over it, given by P(f|a) :=
I‘(Zf\il a;) Hfil (627" /T(cv;)) . The Dirichlet is con-
jugate to the multinomial. It is also general enough to
model any specific valuation probabilities, and makes
sense if valuation distributions are driven by discon-
tinuous effects of budget constraints and competing
outside options. However we should expect that this
flexibility would come at the price of slow learning, rel-
ative to a setting where a seller is confident that the
distribution of valuations is from a more restricted set.
Studying refinements seems worthwhile.

We lose conjugacy to the Dirichlet density if a val-
uation v is not directly observed but rather comes
from a set S C V. Bayes’s rule gives the pos-
terior as a mixture of Dirichlets P(8lv € S,a) =
Y ies P(Ovi, a)P(vs|a)/ 370 g P(vj]a). If we want the
belief to remain in a simple family, we could apply as-
sumed density filtering (ADF), expectation propaga-
tion (EP), or improvements thereof [15, 22, 23|. Here,
we apply ADF which computes the full posterior after
each observation and then approximates it by project-
ing it in the sense of minimum Kullback-Leibler (KL)
divergence, into the simple family. For exponential
probability density families, the minimum KL approx-
imation is one that matches the natural moments. The
natural moments for the Dirichlet are Eg|, log 8, =
¥(aw) — ¥(ao), where ¥(z) := L logT'(2). Using the
expression for the exact posterior and matching mo-
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ments, the corresponding ADF update reduces to solv-
ing

N

Zj:l Qj

N
blon) —(1+ D ) +{i € SIF——=
j=1 JjES I

for new hyperparameters a;-. Newton’s method ex-
ploiting sparsity of the Jacobian is effective here.

Solving for Mechanisms. In the case of dis-
crete one-dimensional valuations, the myopic and ex-
ploratory mechanisms are both price-only mechanisms
which are easily enumerated. For multi-dimensional
valuations, the problem can be cast either as a linear
program (LP) or a semi-definite program [24]. The
LP can be difficult to solve directly as there are a large
number of IC constraints: one for each valuation v and
possible deviation v'. We worked with valuations from
a two-dimensional evenly-spaced n x n grid. We con-
structed a relaxed LP by only including IC constraints
for the 5 x 5 square of deviations around a given val-
uation v. For such valuations we found that solutions
to the relaxed LP repeatably satisfied the full IC con-
straint. A constraint sampling approach, as developed
for approximate linear programming [25] could also be
adopted for such problems. The proposed approach
to selecting exploratory mechanisms M¥X requires a
large number of LP solutions. We therefore cached a
large number of LP solutions prior to learning, cor-
responding to 1000 random samples from the initial
belief distribution.
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Figure 3: Left to Right: Mean revenue per unit time for 1D valuations; Mean revenue for 2D valuations;
Cumulative density of total revenue after 1000 steps minus total revenue of Best for 2D valuations. Note that
results for Best fluctuate slightly due to the fact it is computed using (still many) samples.

5 RESULTS

We explore the performance of six policies based on
the method of the previous Section, with K = 4 pos-
terior samples, and revenue as welfare. The first three
methods, SPE, Myopic and CPE, are the method de-
scribed in the previous section, with different parame-
ters. Note that for the purposes of these results, SPE
and CPE only refer to one specific implementation of
the general concepts of SPE and CPE as introduced
in Section 2. These methods are parameterized as fol-
lows: (i) SPE has A = 1/6; (ii) Myopic has A = 0
so that only the myopic mechanism M* is used; (iii)
CPE has A = 1 so that only the exploratory mecha-
nism M is used. For 2D valuations, CPE-L uses all
possible mechanisms and CPE-P only uses price-only
mechanisms. The remaining three methods are as fol-
lows: (iv) HM is the optimal method with no belief
robustness (i.e. in the limit kK — 0 of Theorem 1);
(v) Stubborn is the optimal mechanism for the seller’s
initial belief; (vi) Best is the optimal mechanism if the
valuation distribution is known (which is inachievable
in practice).

Figure 3 shows the performance of these methods
against a simple deviation scheme: “when buying
claim the highest valuation (1,,.0) consistent with the
purchase; when not buying, claim the lowest possible
valuation.” Buyers deviating this way lose no surplus
in any individual buying decision. Aside from HM
(curve HM Deviate) other methods are insensitive to
this deviation as they make censored updates, if any.
Thus the results for other methods are the same in the
presence or absence of deviation. Each result is an av-
erage of 500 runs of length 1000, consistent with other
literature on Bayesian reinforcement learning. At each
step, all policies were confronted with an identical true
valuation.

For 1D valuations, all methods were initialized with a
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Dirichlet belief over valuations in the set {1,2,...,8}
with ap = 1. For 2D valuations, the belief was over
the grid {0,1,2,...,5}% with o 1/6. We use a
smaller ay, in 2D since if we were to set ay = 1, then
the average gap between revenues for Best and Stub-
born would be at most 7.3% (results not shown for
space reasons), so there would be little for any policy
to learn.

As expected, on average: HM outperforms others
given the truth, but degrades rapidly given liars; given
enough samples both CPE and SPE outperform Stub-
born, but SPE learns faster; in 2D, CPE-L outper-
forms CPE-P. The cumulative density shows that My-
opic performs variably: it is often lucky and beats
CPE-L; but it can also “get stuck” due to lack of ex-
ploration. Other experiments with larger (e.g. 8 x 8)
grids (not shown) indicate that CPE-L with K = 4
often only shows a benefit over Stubborn or Myopic
after 2000 or more time steps, given the highly-flexible
Dirichlet prior coupled with censored observations.

6 CONCLUSIONS

We introduced the hopeful mechanism (HM) and
showed that it is an optimal method for incentive com-
patible learning of multi-dimensional economic mecha-
nisms. HM is not robust to irrational buyer behaviour.
Therefore we formulated a robust version of the prob-
lem. Finally we compared heuristic mechanism learn-
ing methods with optimal methods in the presence of
potentially irrational buyers. This comparison demon-
strated that the proposed method learns faster than
alternatives and is robust. Future work on mechanism
learning with alternative priors on valuations, models
of deviations and of the temporal evolution of valua-
tions would be of substantial interest, but of less inter-
est than a general study of exploration with functional
MDPs.
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