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Abstract

Given a finite but large set of objects de-
scribed by a vector of features, only a small
subset of which have been labeled as ‘posi-
tive’ with respect to a class of interest, we
consider the problem of characterizing the
positive class. We formalize this as the prob-
lem of learning a feature based score function
that minimizes the p-value of a non para-
metric statistical hypothesis test. For lin-
ear score functions over the original feature
space or over one of its kernelized versions,
we provide a solution of this problem com-
puted by a one-class SVM applied on a sur-
rogate dataset obtained by sampling subsets
of the overall set of objects and representing
them by their average feature-vector shifted
by the average feature-vector of the original
sample of positive examples. We carry out
experiments with this method on the predic-
tion of targets of transcription factors in two
different organisms, F. Coli and S. Cerere-
visiae. Our method extends enrichment anal-
ysis commonly carried out in Bioinformatics
and its results outperform common solutions
to this problem.

1 MOTIVATION

Machine learning algorithms are being applied success-
fully in a growing number of diverse domains. Stan-
dard supervised learning methods assume that the
training set is a sample of input-output pairs i.i.d.
from some probability distribution, but there are many
cases where this assumption does not hold.

In this paper, we are motivated by applications in
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bioinformatics, where machine learning algorithms are
used to predict the functions of some biological objects
such as genes or proteins. For example, we will carry
out experiments later on the prediction of the genes
that are the target of some transcription factors [15, 5].
Other applications include the identification of mi-
croRNA genes|[21], the inference of protein-protein in-
teractions [3] or the discovery of disease-specific genes
[4]. In this latter application for example, a small set of
genes involved in one disease is known and we would
like to predict which other genes among all human
genes are also involved in that disease. Typically, the
number of genes associated to a disease is very small
compared to the complete human genome, there are
no clearly identified negative genes (because it is dif-
ficult to design experiments that would prove that a
gene is not related to a disease), and all human genes
of interest for which we want to obtain predictions are
given in advance.

The class of problems we are interested in can be ab-
stracted as follows: we assume that we have a finite
universe of N objects each one described by a vector
of features and out of which IV, are already known
to share some function, and the goal is to rank the re-
maining N — N, unlabeled objects by decreasing order
of their probability to share that function, by inferring
a score function computed from the vector of features.
The most prominent characteristics of this problem
with respect to classical supervised learning problems
are as follows:

e There are only positive and unlabeled objects and
no clearly identified negative ones.

e N, is typically very small with respect to N.

e Although N can be very large, all possible unla-
beled objects are supposed to be known and we
are interested only in making predictions for this
finite set of objects (transductive).

Several solutions have been proposed for these prob-
lems. The simplest one is probably to directly apply
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standard supervised classification methods assuming
that all unlabeled examples are negative and using
cross-validation to obtain non-trivial predictions for
the unlabeled examples (e.g., [15, 9]). It is shown in
[9] that, under the assumption that the labeled ex-
amples are selected randomly from the positive exam-
ples, this approach predicts class conditional proba-
bilities that differ by only a constant factor from the
conditional probabilities predicted by a model trained
from the true labeling. This assumption is however
unlikely to be met in our setting where we can not
even assume that examples have been independently
drawn from some probability distribution. Instead of
considering all unlabeled examples as negative, one
could also select a subset of reliable negative examples
from the unlabeled ones, for example using some prior
knowledge about the problem [3, 21, 5] or other algo-
rithmic solutions [22]. Another approach is to forget
the unlabeled examples and learn a model only from
the positive ones; methods such as one-class SVM [17]
have been used by several researchers for that pur-
pose [20, 4, 21]. Some other specific algorithms have
also been proposed [6, 14]. In particular [6] proposes a
variant of the C4.5 algorithm for learning with positive
and unlabeled examples only.

In this paper, we propose an extension of gene set en-
richment analysis methods that are commonly used in
bioinformatics [2, 7]. Given a small set of genes, de-
termined by some experimental analysis or some prior
functional categorization, the goal of these methods is
to determine what these genes have in common that a
set of random genes drawn from the genome of inter-
est does not, by exploiting statistical hypothesis tests
to determine for which features the subset of genes
is ‘enriched’. In this paper, we propose to formalize
and generalize this research process as the problem
of defining a hypothesis space of scoring functions of
features and a statistical testing procedure, and from
them to learn a function of the features whose scoring
appears as maximally significant according to the sta-
tistical test. In doing this, we analyze the nature of the
multiple testing problem in this context and provide
a procedure for avoiding its possible optimistic bias.
We then consider the particular case of linear scoring
functions, and derive an efficient algorithm based on
an adaptation of one-class SVM models.

The rest of paper is structured as follows. In Sec-
tion 2, we formalize the framework and provide an
algorithm for linear models. In Section 3, we experi-
mentally compare this algorithm with state-of-the-art
methods on the prediction of transcription factor tar-
gets. Section 4 concludes the paper.
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2 ENFORCING STATISTICAL
SIGNIFICANCE

After a brief overview of statistical hypothesis testing
whose aim is also to introduce the terminology used in
the paper, we formulate our approach and then address
the case of learning linear score functions.

2.1 Statistical Hypothesis Testing

Statistical hypothesis testing aims at making decisions
from experimental data. The definition of a statisti-
cal test starts with the statement of a null hypothesis
Hj that one wants to challenge using the data. Then,
one defines an appropriate statistic 7" and computes
its value T,ps from the data. Such a statistic can be
any function computed from the data, but in practice
one will target statistics that are expected to be small
if Hy is true and large otherwise (or vice-versa). One
then seeks to compute the probability to observe a
value of the statistic as extreme as T,;s assuming that
the null hypothesis is true. This probability is called
the p-value of the test; when the p-value is smaller
than a pre-defined significance threshold «, one re-
jects the null hypothesis. Computationally, the key
point is the determination of the p-value given the ob-
served data only. One can distinguish parametric and
non-parametric tests. Parametric tests make some ad-
ditional assumptions such as normality which take ad-
vantage of prior knowledge and/or make it possible
to compute analytically the p-value. Non-parametric
tests on the other hand do not require additional as-
sumptions but they then rely on ranking statistics or
resampling methods to compute the p-value.

In many applications, several hypotheses are in fact
tested in parallel for example to determine which
among several random variables (or features) are sig-
nificantly correlated with a specific target variable. In
this case, considering as significant all tests with a p-
value smaller than the significance level « can be dan-
gerous. Indeed, among N statistical tests, one can
expect to obtain on the average «.IN of them with a
p-value lower than «, under the assumption that all
null hypotheses are true. This is the so-called multiple
testing problem [16], which can be addressed in several
ways. One common technique is to control the family-
wise error rate (FWER) instead of the p-value of each
individual hypothesis. For a given p-value threshold,
the family-wise error rate is the probability of having
at least one false positive among the tests with p-values
lower than this threshold. Practically, one ranks the
multiple tests by increasing p-value, then computes
the family-wise error rate for these nested subsets and
stops to add additional tests as soon as the family-wise
error rate exceeds the pre-specified significance level
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«. The family-wise error rate associated to each test
in the ranking can thus be considered as an adjusted or
corrected p-value taking into account the multiplicity
of the tests. Like for the computation of the p-value,
there exist parametric and non-parametric methods,
among which permutation based, to compute adjusted
p-values for controlling the FWER [13].

2.2 Learning a Maximally Significant Test
Statistic

In our context, let us denote by S, Sy, and S respec-
tively the set of positive objects, the set of unlabeled
objects and S = S; USy the universe of objects and by
N_, Ny, and N their respective cardinalities, and let
us denote by x(0) € X the vector of features describ-
ing all objects of S. We state the general objective of
learning a test statistic for our problem as follows:

Find a function f : X — IR such that for some given
statistic g : RN+ — IR, the probability of observing
a combined value g({f(z(0))lo € S'}) for a subset
S’ of size Ny drawn at random from S greater than
g({f(z(0))|o € St+}) is as small as possible:

(1)

= argg}g;lp(f,g, 54,5)

p(f,9.5+,9) & Pseresn)(9(f(8) > g(f<5+)))(7 |
2
where we denote by f(S) the ensemble of values taken
by f for the objects o in S, and by R(S,Ny) the col-
lection of all subsets S’ of size Ny that can be drawn
in S, R(S,Ny) = {8 C S : |5 = Ny} and by
Psicr(s,n,)(.) the probability of the occurrence of the
event in argument when subsets S’ are drawn uni-
formily in R(S, Ny):

1

|R(S,N.

L(E(S"),
+)l

S’€R(S,N,)

Psicps,n, ) (E(S") =

where E(S') denotes any event depending on S’ and
1(.) is the indicator function equal to 1 when its argu-
ment is true, 0 otherwise.

The function f to be learned computes some score on
the objects from their feature vector, while g is a given
(fixed) function that aggregates these scores to provide
a statistic on a subset of objects. Since we want to
maximize the significance of the test, g(f(S)) should
grow with the values in the set f(S). Following the
statistical terminology introduced in the previous sec-
tion, the probability in (2) for a given (f, g) pair will be
called its apparent p-value, with lower p-values mean-
ing more significantly higher values of f in S} and thus
a better score function f. The goal is thus to find a
score function whose values on S; are higher than un-
der the null hypothesis that S would have been drawn
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at random from S. Good candidate positive examples
among the unlabeled ones are then predicted as those
that correspond to the highest values of f.

The solution as formulated in (1) and (2) corresponds
to a non-parametric test as it does not make any hy-
pothesis about the distribution of the data S and, at
least theoretically, the p-value in (2) can be computed
from the data simply by enumerating all possible sub-
sets S’ in S. It can also be considered as a permutation
test of independence between f and a binary random
variable taking a value of 1 for the examples in S} and
0 elsewhere. Indeed, selecting a random subset of size
Ny in S is equivalent to permuting the value of this
binary variable in S.

Addressing the multiple testing problem. The
problem as formulated in (2) is not regularized: the
larger the space F of functions that is explored, the
more chance we have to find a function f* with a p-
value smaller than any given a > 0 even if our null
hypothesis, stating that Sy is a random subset of ob-
jects from S, is true. Adopting a strategy similar to
the solutions proposed for the multiple statistical test-
ing problem, one should thus also control the FWER
when selecting a function in a space F of candidate
functions. If we are only interested in an unbiased es-
timate of the p-value of f* determined by (1), we can
compute an adjusted p-value as follows:

padj(f*vf35+7s): (3)
Ps"eR(S7N+)(§}g£p(fvg, S",8) <p(f*,9,5+,5)).

This adjusted p-value (3) measures the proportion of
random subsets that can be separated by a function in
F from other random subsets with an apparent p-value
as low as the one determined for S;. It thus estimates
the probability of making a mistake when declaring
the optimal f* in F as significant. The lower it is, the
more significant is the score function f* found.

This adjusted p-value depends both on the candi-
date function space F and on the problem. When
the observed (or apparent) p-value p(f*,g,S4,95) is
fixed, the larger F, the easier it will be to mini-
mize p(f,g,5",S) for a random subset S and thus
the higher the adjusted p-value. On the other hand,
larger F means also a lower uncorrected p-value
p(f*, 9,54+, 5) and thus makes it harder finding a ran-
dom subset that can be separated with an as low p-
value. There should thus be a tradeoff in terms of the
complexity of F which could be determined by investi-
gating the variation of paq;(f*, F;, Sy, S) for a nested
collection of hypothesis spaces F; C Fo C F3 C ...

Let us also notice that, for a fixed p(f*, g, Sy, .S), this
adjusted p-value can be thought of as a measure of the
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complexity of the function space F related to the data
S, and it is possible to draw some similarity between
this measure and the empirical Rademacher complex-
ity [1]. Indeed, both measures evaluate the capability
of a function space to separate randomly labeled ver-
sions of a data sample S. A difference however is that
the p-value (3) also takes into account the quality of
the fit of the observed data through p(f*,g,S54,5),
which is not the case of the empirical Rademacher
complexity.

Monte-Carlo estimation of p-values. In princi-
ple, the p-value (3) can be computed directly from
the data, either exactly by drawing all subsets S” €
R(S, Ny) or approximately by drawing only a number
of them by Monte-Carlo (3):

ﬁadj(f*afvs—i-as) =
1 T
7 2. 1minp(f,9,57,9) < p(f*. 9.8+, 9)), (4)
i=1

where the S} denote random subsets of size N} drawn
from S.

In turn, the values of (2) used twice in this formula
may also be estimated by Monte-Carlo, by using a sim-
ilar approximation, namely

T
§0.9.5'.8) = 7 S Ma(F(SD) 2 9IS, 5)

where the S/ denote random subsets of size Ny drawn
from S.

But since for each subset S;, one has to compute
mings p(f, g,5;,S) over F that also requires an addi-
tional sampling of random subsets S; in S and as many
minimizations over F as there are subsets S/, in gen-
eral, this procedure may not be practically feasible.
Nevertheless, if F is finite (and not too large), one
can directly exploit the efficient resampling techniques
proposed in [13] to avoid the double permutation pro-
cedure and render the computation of (3) tractable.
But, since in what follows, we will consider infinite
function spaces, these exact or approximate Monte-
Carlo computations of (3) for direct minimization will
not be practically feasible in general.

Choice of a statistic. The statistic g allows to in-
troduce various hypotheses in the problem. In what
follows, we will restrict ourselves to a function g that
simply sums up the values of f in the given sample.
Equations (1) and (2) thus translate into the following
problem:

[*=arg ?ggPS/eR(s,m)( > f@0) = D fla(o)

o'esS’ oeSy

(6)

).
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We will see that this will lead to a simple algorithm in
the case of linear score functions.’

Special cases. Before we address the case of linear
functions f, let us now discuss how our general frame-
work relates to some standard non parametric tests for
two specific forms of the output space of the functions
in F.

Let us first assume that functions in F can take only
their value in {0,1}. In this case, > g f(z(0)) is the
number of objects in S’ for which f(z(0)) is equal to
1 and the p-value becomes the probability that there
are more objects o for which f(z(0)) = 1 in a ran-
dom S’ than in S, . It thus corresponds exactly to the
p-value of a (one-tailed) Fisher exact test for measur-
ing the association between the two (binary) classifica-
tions of the objects, according to their membership to
S+ and to their values for f. This p-value can thus be
computed analytically without enumerating all possi-
ble random subsets S’ by computing the sum of several
hypergeometric probabilities. When N is large, it can
also be approximated by a chi-square statistic.

Another sensible choice is to use functions f that out-
put a ranking of the objects, ie. functions that asso-
ciate to each object o its rank among the N objects
in S as a function of its input features (o). In this
case, for a given ranking function f, the p-value in
(2) is the probability that the sum of ranks in a ran-
dom sample would be greater or equal to the observed
one in S, . It corresponds exactly to the p-value of a
Wilcoxon rank sum test, that can be computed exactly
for small sample sizes or be approximated by a normal
distribution for larger sample sizes. Since the area un-
der the ROC curve (AUC) is proportional to the rank
sum statistic, this p-value measures also the probabil-
ity that the AUC of the ranking f for distinguishing
objects in S; from unlabeled objects is greater than
expected by chance. When one considers functions f
that are rankings only, minimizing probability (2) thus
amounts at maximizing the AUC.

2.3 Linear Score Functions

In this section, we particularize the proposed frame-
work to the case of linear score functions over the orig-
inal feature space. The extension to non-linear func-

!Other alternatives could be imagined inspired by clas-

sical statistical tests. For example, instead of a simple sum,
one could instead derive a t-test like statistic that also takes
into account the variation of the values of f in the sub-
set, e.g., g(f(S)) = u(f(S))/o(f(S)), where u(f(S)) and
o(f(S)) denote respectively the mean and standard devi-
ation of the values in f(S). This would ensure that the
values of f in addition to be larger on the average in Sy
than in a random subset are also close to each other.
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tions with kernels is straightforward and is addressed
in the Appendix.

When all features are numerical (z(0) € X = IR™), one
can consider score functions f that are linear combi-

nations of the attribute values, ie.?:

F={f:R" - R|f(z) =w'z,we R"}. (7)

In this case, the optimization problem (6) may be writ-
ten:

w = argmin Pyepesn) (Y we(0) > 3 uw”a(o)).
o€s’ o€S
(8)

meaning to find a direction w* such that the average
projection of the objects in Sy on this direction is as
often as possible greater than the average projection
of the objects in a random subset S”. The average of a
linear projection being the projection of the average,
this objective may be further rewritten:

w* = argmin Psreps,n, ) (w’2'(S) > 0),  (9)

where we define:

2(8) = N% S (o) - N% S 2(0),

0€s’ 0€Sy

(10)

as the center of mass of the feature vectors in S’ rela-
tive to the center of mass of feature vectors in S, .

Estimating the probability in (9) by Monte-Carlo from
T random subsets {S7, 55, ..., 5%}, one thus gets the
following minimization problem:

* 1 T, ./0Q!
w :argrrgnfgl(w z'(S]) > 0).

(11)

Formulations of the problem in (9) and (11) can be
interpreted as finding a hyperplane that separates as
many vectors z'(S’) as possible from the origin, the
latter coinciding with the target subset S; given the
centering in (10). This problem is similar to the prob-
lem solved by one-class SVM [17] that also amounts at
separating some input feature vectors from the origin.

When it is possible to find a vector w that leads to
a null (estimated) p-value, i.e. the data is linearly
separable, then there are actually an infinite number
of such directions. In this case, we propose to adopt
the same strategy as in one-class SVM, i.e. look for the
direction w that maximizes the margin. This direction
can be obtained by solving the following optimization
problem, for any p > 0 [17]:

1
min §||w||2 subject to w?x'(S]) < —p,i=1,...,T
(12)

ZNote that since f is only used to make pairwise com-
parisons in (2), there is no need to introduce a bias term.
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Translated to our context, the resulting w is such that
when using f(z) = % as a score function, it max-
imizes the gap between the score of S} and the score
of its closest random subsets:

. P
sen o Y ) = Y flalo)) = Tl

0€s’ 0€Sy
(13)

Although maximizing this gap does not influence the
apparent p-value (which remains equal to zero), we
show below that this can be interpreted as choos-
ing a linear combination of minimal adjusted p-value,
among all those of zero apparent p-value.

When the vectors 2/(S)) are not linearly separable
from the origin, it is not possible to drive the apparent
p-value in (11) to zero and problem (12) has no solu-
tion. Again, we will adopt in the case the same strat-
egy as in one-class SVM and allow that some subsets S
cross the hyperplane by introducing slack variables in
the optimization problem. Adapting soft-margin one-
class SVM to our problem, we thus propose to solve
the following optimization problem to obtain w™*:

. L, 9 1
min —l|lw||” + — i —
welR™,£€RT pelR 2” I vT ;(6 P)

subject to wTx'(S)) < —p+&,& >0,Vi=1,...,T.
(15)

(14)

Note that, although the optimization includes a bias
term p, this term is not exploited in the final score
function. The parameter v €]0,1] is introduced to
balance the minimization of the p-value and the max-
imization of the margin. As v increases, the margin
will increase but the p-value will also increase. Trans-
posing results in [17], assuming that the solution to
(14) is such that p > 0, v is an upper bound on the
fraction of vectors 2/(.S;) that fall on the same side of
the hyperplane w”x + p = 0 as the origin. v is thus
also an upper bound on the fraction of vectors x’(S?)
such that w?2’(S!) > 0 and thus an upper bound on
the estimated p-value (11).

On the link between margin and adjusted p-
value. Let us assume that the random subsets S
are fixed and that it is possible to linearly separate all
the T vectors z/(S}) from the origin. Let us further
consider that we use the following algorithm to learn
a linear score function for a given subset S, :

e Compute the solution w* of (12)

e If the resulting (maximum) margin m* = W
is greater than m, then output the linear score

function f(z) = w*’z

e Otherwise return the function f(x) =0, V.
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Apparent p-value ——

Adjusted p-value —

0.0d

*

m
Figure 1: Evolution of the apparent and adjusted p-
values with the margin threshold

m

This algorithm returns a trivial solution as soon as
the margin corresponding to the positive set Sy is not
large enough. m is thus a parameter of the algorithm
that controls its complexity. The evolution of the ap-
parent and adjusted p-values of this algorithm when
m is increased is depicted in Figure 1. When m is
equal to 0, the algorithm returns a solution as soon
as the subset is separable. Since we assume that this
is the case of Sy, its apparent p-value is thus zero
for m = 0. It also remains so while m remains lower
than the maximum margin m*. When m is greater
than m*, it is not possible anymore to find a score
function with a margin greater than m and thus the
apparent p-value becomes 1. For a given m < m*, the
adjusted p-value is the proportion of random subsets
that can be separated from the other random subsets
with a margin of at least m (for which the apparent
p-value computed by the algorithm is 0) and thus it
is monotonically decreasing with m. When m > m*,
the p-value of S being 1, it is always greater or equal
to the p-value that can be obtained on any random
subsets and thus the adjusted p-value equals 1. This
shows that the value of the parameter m that mini-
mizes the adjusted p-value is m* and it corresponds
to the linear score function which is the solution of
(12). Maximizing the margin can thus be interpreted
as minimizing the adjusted p-value.

In the non-separable case, the analysis must also take
into account the effect of the parameter v, and so the
relation between margin maximization and adjusted
p-value is less straightforward. Intuitively, however,
we think that also here the regularization introduced
by the formulation (14) should have a beneficial effect
in terms of minimizing the adjusted p-value.

3 EXPERIMENTS

In this section, we carry out experiments with the pro-
posed method on the prediction of regulatory networks
in Escherichia coli and Yeast S. cerevisiae from mi-
croarray expression data.

Problem and Datasets. The elucidation of regu-
latory networks is an important problem of systems
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biology. Transcription factors (TF) are proteins that
control the transcription of genes into messenger RNA
and play a key role in transcriptional regulation. For a
given organism, one has typically a partial knowledge
only of which genes are regulated by a given TF. Sev-
eral researchers have proposed the use of learning tech-
niques to complete this partial knowledge by integrat-
ing various experimental data about genes [15, 10, 5].
From a subset of genes that are known to be regulated
by a given transcription factor (the positive set), the
goal is to predict what are the genes in the unlabeled
set that are the more likely to be also regulated by
this TF. This problem is a very good representative of
the setting that we introduced earlier. Typically, for a
given transcription factor, there are only a few positive
examples of genes that it regulates and negative ex-
amples are usually not reported in the databases. All
genes (and their describing features) are furthermore
known in advance and they can thus not be assumed
to be drawn from some probability distribution.

We gathered two datasets corresponding to two dif-
ferent organisms, the yeast Saccharomyces cerevisae
(Yeast) and the bacteria E.Coli (Ecoli). The datasets
contain respectively 6178 genes and 4345 genes. As in-
put features from which to infer the regulation, we se-
lected microarray expression data. For Yeast, we used
the expression data produced in [19] and [8], totaliz-
ing 157 numerical features for 6178 genes. For Ecoli,
we use the expression data collected in [11]3, yielding
445 numerical features for 4345 genes. The regulatory
network for Yeast was obtained from [18]. It contains
the regulated genes for 80 different transcription fac-
tors, totalizing 1164 interactions involving 606 genes.
The number of known regulated genes per transcrip-
tion factor ranges from 4 to 57 (median 10). The regu-
latory network for Ecoli was obtained from RegulonDB
[12]*. Tt contains the regulated genes for 154 transcrip-
tion factors and totalizes 3293 interactions involving
1164 genes. For Ecoli, [15] noticed that these 4345
genes comprises several operons, ie. groups of genes
that are regulated together and whose expressions are
also very close. These operons introduce an undesir-
able positive bias in the predictors if no particular care
is taken. While [15] adapted the cross-validation pro-
cedure to ensure that no operon was split between the
training and test set, we adopted a simple strategy
that consists in only keeping in our dataset one repre-
sentative gene randomly selected in each operon. The

3We downloaded the v3 build 1 release from
http://gardnerlab.bu.edu/data/PLoS_2007/data_
and_validation.html and use the GCRMA normalized
data in our experiments.

“We downloaded the preprocessed files exploited in [11]
from http://gardnerlab.bu.edu/data/PLoS_2007/data_
and_validation.html.
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list of operons was downloaded from regulonDB [12]
and the sampling resulted in a reduction of the num-
ber of genes in the dataset from 4345 to 2925. Given
that we will use a two-stage cross-validation in our
experiments, we have furthermore removed from the
Ecoli dataset all transcription factors which have less
than 4 known target genes. The final dataset contains
2925 genes, 63 transcription factors, 1446 interactions
involving 554 genes with a number of regulated genes
per TF ranging from 4 to 357 genes (median 6).

Note that our goal in this paper is not to get the best
results on the problem of predicting regulatory net-
works but merely to assess the proposed algorithms.
The former would imply the consideration of addi-
tional input features and up-to-date training networks.

Compared Methods and Protocol. In our exper-
iment, we compare five differents methods. Except the
last one, all these methods rank the genes using a lin-
ear score function:

PU: our method with a linear score function as de-
scribed in Section 2. This method has two parameters:
the number of random subsets T and the regulariza-
tion parameter of one-class SVM, v. The first one has
been fixed to 1000 in all our experiments. The optimal
value of the second parameter will be determined by
cross-validation (see below).

2SVM: a two-class support vector machines applied
using the unlabeled examples as negative examples.
To get an unbiased prediction for all unlabeled exam-
ples, we adopted the same strategy as in [15]: the set
of unlabeled examples is splitted into & subsets of ap-
proximatively the same sizes, a model is learned using
in turn k — 1 of these subsets as the negative examples
and all positive examples. This model is then used to
compute the score for the hold-out subset. A linear
kernel was used and both the regularization param-
eter of SVM, C, and the number of subsets k& were
determined by cross-validation. Note that, since we
are only interested in the ranking of the unlabeled ex-
amples and not the absolute score values, this method
is also equivalent to the method in [9, 5].

1SVM: a one-class SVM trained using only the posi-
tive examples. Following [4], we centered the data so
that the origin coincides with the center of mass of
the unlabeled examples. This modification turns out
to be crucial to obtain good accuracy in our experi-
ments. We use a linear kernel and the regularization
parameter v was determined by cross-validation.
CML: a simple method that ranks the genes accord-
ing to the following linear score: f(x) = (Z(S4+) —
z(Sy))Tz where #(S;) (resp. Z(Sy)) computes the
center of mass in S (resp. Sy). This function projects
each example on the line connecting the positive and
unlabeled centers of mass. This method can be seen
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as an extreme case of both 1ISVM that distinguish the
positive from the center of mass of the negatives and
PU that distinguish the negatives from the center of
masses of the positives.

CORR: this method simply ranks the genes accord-
ing to their average correlation with the genes in the
positive set. This method is based on the assumption
that the expressions of genes that are co-regulated by
the same TF's should be correlated.

To compare these methods, we adopted a protocol sim-
ilar to the one proposed in [4]: the set of positive exam-
ples was divided into 5 subsets of approximatively the
same size®. Each subset was removed in turn from the
positive set and introduced among the unlabeled ex-
amples. Then a model was learned with each method
to rank the unlabeled examples, including the holdout
positive subset. The rank of each positive gene among
the unlabeled examples (not counting the other posi-
tive genes) was computed and normalized by the to-
tal number of unlabeled examples. A ROC curve was
then obtained from all these ranking by computing as
a function of x the proportion of positive genes that
are ranked among the top % of the unlabeled genes.
The area under this curve (AUC) was then computed
as well as the average normalized rank of all positive
genes. When a given method depends on the value of
some parameters, their optimal value was determined
by an additional internal cross-validation loop follow-
ing the same scheme as the external one (again with 5
fold cross-validation or leave-one-out)®.

Results. Table 1 reports average results over the 80
and 61 task respectively. We observe that on the av-
erage, the PU method is better than all other tested
methods on the Yeast dataset and it ranks second, af-
ter 2SVM, on the Ecoli dataset. On Yeast, 1SVM is
almost as good as PU and better than 2SVM, while on
Ecoli, 1SVM is much worse than these two methods.

These results are confirmed by the pairwise compar-
isons displayed in Table 2. In Yeast, PU is better
than 1SVM and 2SVM for 70% of the TFs and it im-
proves these methods respectively by 3% and 9%. In
Ecoli, PU is only better than 2SVM in 30% of the
cases (nevertheless with an average improvement of 9%
of the AUC in these cases) and better than 1SVM in
80% of the cases (with an improvement of more than
10%). The two simple methods, CML and CORR,
are competitive in Yeast with CML even better than

®When S, contained less than 5 objects, a leave-one-out

procedure was used.

S0 for PU and 1SVM was optimized in
{0.001,0.01,0.1,0.25,0.5,0.75}, C for 2SVM was searched
in {0.0001,0.001,0.01,0.1,1.0,10.0,100.0}, and the num-
ber of folds k in {2,3,4}. These values were narrowed

down by preliminary experiments on a subset of the data.
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Table 1: Average results (£ standard deviations) on the two regulatory networks

Method PU 2SVM 1SVM CML CORR
Yeast, 80 TFs

AUC 0.880£0.095 0.843+0.120 0.8744+0.093 0.8654+0.111 0.843£0.117
Avg rank 0.1454+0.106 0.186+0.130 0.152+0.102 0.1614+0.121  0.184+0.126
Ecoli, 61 TF's

AUC 0.850+0.119 0.863+0.118 0.791+0.114  0.747+128  0.828+0.136
Avg rank 0.17840.134 0.166+0.134 0.243+0.127 0.290+0.139 0.20040.146

Table 2: Pairwise comparison of all methods. In each cell, we report the number of TFs where the row method
is better than the column method (in terms of AUC) as well as the average relative improvement (in %) of AUC
of the row method versus column method for those TFs for which the former outperforms the latter.

Yeast, 80 TF's

Ecoli, 61 TFs

Method PU_ 2SVM ISVM CML CORR
PU - 55/9.3 56/2.7 62/3.4 67/6.5
2SVM  25/3.6 -  28/4.7 30/7.9 38/8.3
1ISVM  24/3.9 52/9.5 -  42/4.7 65/5.8
CML 18/1.8 50/9.4 38/1.9 -  61/4.2
CORR 13/1.5 42/7.3 15/1.5 19/1.4 -

Method PU  25VM 1SVM  CML CORR
PU - 19/85 49/11.1 55/17.5 38/7.2
2SVM  42/6.2 -  49/14.2 53/21.7 43/10.0
ISVM  12/5.8 12/9.1 -  45/11.0 19/10.8
CML 6/49 8/81 16/3.7 - 12/9.7
CORR 23/3.5 18/7.0 42/11.5 49/17.4 -

2SVM in 60% of the TFs. In Ecoli, the CML method
is much worse than all methods but the correlation
based method is still better than 1SVM in 70% of the
TF's and it improves it by more than 10% in average.

The fact that 1ISVM and the two simple methods are
competitive in Yeast and that they are not in Ecoli
suggests that the unlabeled examples are more infor-
mative in Ecoli than in Yeast. This might come from
the fact that input features in Ecoli are compiled from
very diverse experiments while they are more narrow
in scope in the Yeast dataset where both feature sub-
sets measure expression values related to the cell cycle.

4 DISCUSSION

We presented in this paper a method for learning with
positive and unlabeled examples. The main idea be-
hind this method is to explicitely derive a test statis-
tic that minimizes the p-value of a non-parametric test
trying to characterize the positive examples among the
set of all examples, positive and unlabeled. With lin-
ear score functions, the resulting method is equivalent
to a one-class SVM applied on aggregated features in
random subsets of objects. Experiments on the pre-
diction of Yeast and Ecoli regulatory interactions (to-
talizing 141 distinct classification problems) show that
the method is most often better than one-class SVM
and competitive with two-class SVM.

There is a fundamental difference between our formu-
lation and the standard use of one-class SVM for PU
learning problems. Indeed, the idea behind one-class
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SVM is that the unlabeled examples are outliers with
respect to the positive set. In constrast, our method is
based on the idea that positive examples are the out-
liers inside the set of all examples. We believe that
the latter hypothesis is more natural in the targeted
applications. It also naturally leads to the exploita-
tion of the negative examples, which are neglected by
the standard one-class SVM solution. With respect to
two-class SVM, we do not make the assumption that
all unlabeled examples are negative and do not have to
use cross-validation to get an unbiased prediction for
the unlabeled examples. Our method is also computa-
tionally advantageous with respect to two-class SVM
as it requires only one training on a subset of exam-
ples, whose size is furthermore controlled by the user
through the number of random subsamples T

In terms of future works, we would like to exploit this
approach with more complex scoring functions, begin-
ning with non-linear kernels. There also exist exten-
sions of one-class SVM model for multiple kernel learn-
ing [4], whose applications in our framework would
be straightforward. More generally, we believe that
the idea of formulating learning problems as search-
ing for good statistical tests is a general framework
that deserves to be further studied and could lead to
the design of novel algorithms. In particular, the link
between multiple hypothesis testing, adjusted p-values
and regularization is an interesting future direction for
theoretical research.
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