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Abstract

The standard compressive sensing (CS) aims
to recover sparse signal from single mea-
surement vector which is known as SMV
model. By contrast, recovery of sparse sig-
nals from multiple measurement vectors is
called MMV model. In this paper, we con-
sider the recovery of jointly sparse signals in
the MMV model where multiple signal mea-
surements are represented as a matrix and
the sparsity of signal occurs in common lo-
cations. The sparse MMV model can be for-
mulated as a matrix (2, 1)-norm minimiza-
tion problem, which is much more difficult
to solve than the l1-norm minimization in
standard CS. In this paper, we propose a
very fast algorithm, called MMV-ADM, to
solve the jointly sparse signal recovery prob-
lem in MMV settings based on the alter-
nating direction method (ADM). The MMV-
ADM alternately updates the recovered sig-
nal matrix, the Lagrangian multiplier and
the residue, and all update rules only involve
matrix or vector multiplications and summa-
tions, so it is simple, easy to implement and
much faster than the state-of-the-art method
MMVprox. Numerical simulations show that
MMV-ADM is at least dozens of times faster
than MMVprox with comparable recovery ac-
curacy.
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1 INTRODUCTION

Many signals of interest often have sparse represen-
tations, meaning that signal is well approximated by
only a few nonzero coefficients in a specific basis. Com-
pressive sensing (CS) has recently emerged as an ac-
tive research area which aims to recover sparse signals
from measurement data (Candes et al., 2006; Donoho,
2006a). In the basic CS, the unknown sparse signal
is recovered from a single measurement vector, this
is referred to as a single measurement vector (SMV)
model. In this paper, we consider the problem of find-
ing sparse representation of signals from multiple mea-
surement vectors, which is known as the MMV model
(Chen et al., 2006). In the MMV model, signals are
represented as matrices and are assumed to have the
same sparsity structure. Specifically, the entire rows
of signal matrix may be 0.

The MMV model was initially motivated by a neu-
romagnetic inverse problem that arises in Magnetoen-
cephalography (MEG), a brain imaging modality (Cot-
ter et al., 2005). It is assumed that MEG signal is a
mixture of activities at a small number of possible acti-
vation regions in the brain. MMV model has also been
found in array processing (Gorodnitsky et al., 1997),
nonparametric spectrum analysis of time series (Sto-
ica et al.,1997), equalization of sparse communication
channel, linear inverse problem (Cotter et al.,2005),
DNA microarrays (Erickson et al., 2008) and source lo-
cation in sensor networks (Malioutov et al.,2003) etc..

Some known theoretical results of SMV have been
generalized to MMV (Chen at al., 2006) such as the
uniqueness under both l0-norm criteria and l1-norm
criteria, and the equivalence between the l0-norm ap-
proach and the l1-norm criteria. Several computa-
tion algorithms have also been proposed for solving
MMV problem. It has been proven that under certain
conditions, the orthogonal matching pursuit (OMP)
method can find the sparsest solution for MMV, just
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like in SMV (Chen et al.,2006). The matching pur-
suit (MP) algorithm and the FOCal Underdetermined
System Solver (FOCUSS) for SMV have also been ex-
tended to MMV (Cotter et al.,2005; Gorodnitsky et
al.,1997). Tropp et al. proposed the simultaneous or-
thogonal matching pursuit (S-OMP) method (Tropp et
al., 2006a) and the convex relaxation method (Tropp,
2006b) to solve MMV.

Among these algorithms, most approaches adopted
the matrix (2, 1)-norm as the optimization objective
functions (Chen et al.,2006; Cotter et al.,2005; Eldar
et al.,2009). However, unlike the SMV model where
the l1 minimization can be efficiently solved, the con-
vex optimization problem resulted from MMV is much
more difficult to solve. Some existing algorithms re-
formulated it as a second-order cone programming
(SOCP) problem or a semidefinite programming prob-
lem (SDP) (Stojnic et al.,2009), however both SOCP
and SDP are computationally expensive and can only
be used for small-size problems.

Recently, Sun et al. proposed a new algorithm called
MMVprox to solve MMV problems (Sun et al.,2009).
They first derived the dual optimization problem of the
primal (2, 1)-norm minimization problem, then formu-
lated the dual optimization as a minmax problem, and
finally employed the prox-method (Nemirovski, 2005)
for solving variational inequality problems to solve the
minmax problem. By taking advantage of the almost
dimension-independent convergence rate O(1/t) of the
prox-method, the authors claimed that the MMVprox

algorithm scales well to larger size problems. However,
numerical simulations show that although MMVprox is
much faster than SOCP, it is still very slow for rela-
tive large size problems, and its scalability is still not
applicable for real large size problems in practice.

In this paper, we present a new fast algorithm (called
MMV-ADM) to solve MMV problems based on the
alternating direction method (ADM). ADM is an ap-
proximate augmented Lagrangian multiplier method
and has recently been successfully applied to solve l1-
norm minimization problems in SMV model of com-
pressive sensing (J.Yang et al.,2010). J. Yang et
al. proposed several ADM based algorithms (called
YALL1) and compare them with the state-of-the-art
l1-minimization algorithms. A.Yang et al. (2010)
also made similar comparisons, and they pointed out
that YALL1 is the fastest algorithm and has the
best overall performance for synthetic data among the
other state-of-the-art methods such as the orthogo-
nal matching pursuit (OMP) (Donoho et al., 2006),
homotopy method (Osborne et al., 2000), sparse re-
construction by separable approximations (SpaRSA)
(Wright et al.,2009), fast iterative shrinkage-threshold
algorithm (FISTA) (Beck et al., 2009) and L1LS (Kim

et al.,2007).

Our works in this paper is to extend the ADM to
solve the matrix (2, 1)-norm minimization in the MMV
model. Since the matrix (2, 1)-norm is not component-
wise separable as the vector l1-norm, as pointed out in
Sun et al. (2009), solving (2, 1)-norm minimization
is much more difficult than solving l1-norm minimiza-
tion. The proposed MMV-ADM only involves matrix
or vector multiplication and summation operations, no
need to evaluate first derivatives of the objective func-
tion at each iteration as in MMVprox algorithm, it is
much faster than MMVprox. Numerical simulations
show than MMV-ADM is dozens of times faster than
MMVprox, so it scales well to large size problems.

Notations. For a d-dimensional vector v = (vi)
d
i=1,

its lp-norm (p ≥ 1) is defined as ‖v‖p = (
∑d
i=1 v

p
i )1/p,

for an m×d matrix A = (aij) ∈ Rm×d, the (r, s)-norm
of A is defined as ‖A‖r,s = (

∑m
i=1 ‖ai‖sr)1/s, where ai

denotes the ith row of A. In particular, the (2, 1)-norm
is ‖A‖2,1 =

∑m
i=1 ‖ai‖2. The Frobenius norm ‖A‖F is

defined as ‖A‖F =
√∑

i,j a
2
ij , it is easy to see that

‖A‖2F = 〈A,A〉 = tr(ATA), where 〈·, ·〉 denotes the
inner product of two matrices, tr(·) is the trace of a
matrix, AT is the transpose of A.

2 PROBLEM FORMULATION

In the SMV model of CS, it is assumed that there
exists a d-dimensional unknown sparse signal x ∈ Rd
and a measurement vector b ∈ Rm, they are related by
a linear sensing process b = Ax, where A ∈ Rm×d is
the sensing matrix and is assumed to be known. If we
assume the sensing matrix A to be overcomplete, i.e.,
m < d, the original signal x can then be reconstructed
from the underdetermined system of linear equations
Ax = b, and there are infinite number of solutions
for x. In order to recover the sparse signal x from
this underdetermined linear system, in the basic CS,
the approach is to seek the sparsest solution within
all solutions of the linear system, i.e., via solving the
following optimization problem

(p0) : min
x
‖x‖0, s.t. Ax = b (1)

where ‖x‖0 denotes the l0 (quasi) norm of x, i.e., the
number of nonzero components of x. Since ‖x‖0 is not
convex and is combinatorial in nature, l0 minimization
problem (p0) is NP-hard. It is thus often relaxed to
the following convex l1-norm minimization problem

(p1) : min
x
‖x‖1, s.t. Ax = b (2)

Theoretical results show that under some mild condi-
tions, the solution of (p1) is also the sparsest solution,
i.e., the solution of (p0) (Donoho,2006b).
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The l1-minimization problem (p1) has been well stud-
ied, many efficient algorithms have been proposed to
solve it, such as the homotopy method, OMP method,
fast iterative-shrinkage threshodling and the ADM
method mentioned above.

Unlike the SMV model, in the MMV model, n multi-
ple measurement vectors are available which can be ar-
ranged as a measurement matrix B ∈ Rm×n. The re-
covered signals are represented by a matrix X ∈ Rd×n,
the aim of MMV compressive sensing is to recover
jointly sparse X from the system of the linear equa-
tions AX = B. In this paper, joint sparsity specifically
means than X has many zero rows. This problem can
be formulated as follows

(P0) : min
X
‖X‖2,0, s.t. AX = B (3)

where ‖X‖2,0 measures the number of rows in X that
contain nonzero entries. However, (P0) is a combinato-
rial optimization problem and is thus NP-hard (Chen
et al.,2006). Similar to the use of l1-norm to replace
l0-norm in SMV, the matrix (2, 0)-norm in (P0) is usu-
ally replaced by the matrix (2, 1)-norm that results in
the following convex relaxation problem

(P1) : min
X
‖X‖2,1, s.t. AX = B (4)

Existing algorithms reformulate (P1) as SOCP or SDP
problem, and then solve it using the interior point
method or the bundle method. However, being the
second-order methods, the SOCP and SDP have high
computation complexity, making them do not scale
well to high-dimensional problems.

Recently, Sun et al. considered an equivalent opti-
mization problem of (P1) by replacing the (2, 1)-norm
with its square, and obtain the following optimization

min
X

1

2
‖X‖22,1, s.t. AX = B (5)

They then proposed an algorithm called MMVprox to
solve (5). They first derived the dual problem of (5)
as follows (Sun et al.,2009)

max
Y

{
− 1

2
‖ATY ‖22,∞+ < Y,B >

}
(6)

and then transformed (6) into a minmax optimization
problem and finally solve it by the prox-method de-
veloped in (Nemirovski, 2005). The prox-method has
been proven to enjoy almost dimension-independent
convergence rate of O(1/t) , so the MMVprox algo-
rithm is expected to be much faster than SOCP and
SDP in the computation of sparse signal recovery of
the MMV model. Experimental results in (Sun et
al.,2009) confirmed this conclusion.

However, numerical experiments show that MMVprox

is still very slow for relative large size problems. In this
paper, we develop a new fast algorithm called MMV-
ADM to efficiently solve the optimization problem (4)
based on the alternating direction method (ADM).
Our motivation is that among the state-of-the-art algo-
rithms for solving the l1-minimization problem (2), the
well-known iterative shrinkage-thresholding algorithm
(ISTA) has a worst-case convergence rate of O(1/t)
that is the same as the prox-method, the fast iterative
shrinkage-thresholding algorithms (FISTA) developed
in (Beck et al.,2009) has improved convergence rate of
O(1/t2), better than the prox-method. However, A.
Yang et al. have pointed out that ADM based method
is even faster than FIST (A.Yang et al., 2010). So
our MMV-ADM is expected to be much faster than
MMVprox, numerical simulations in the experimental
section confirm this.

3 RECOVERY OF JOINTLY
SPARSE VECTORS BASED ON
ADM

The classical alternating direction method (ADM) was
designed to solve the following structured optimization
problem (J.Yang et al.,2010)

min
x,y
{f(x) + g(y)} s.t. Ax+By = b (7)

where x, y are vectors of dimension m and n, respec-
tively, and f, g are two real-valued functions defined on
m and n dimensional spaces, respectively. A,B, b are
matrices or vectors of appropriate dimensions. Vari-
ables x and y are separate in the objective function
and coupled only in the constraint. The augmented
Lagrangian function of (7) is

L(x, y, λ) = f(x) + g(y)− λT (Ax+By − b)

+
β

2
‖Ax+By − b‖22 (8)

where λ is the Lagrangian multiplier and β > 0 is a
penalty parameter. Given λ(k), the value of lambda at
the kth iteration, the classical augmented Lagrangian
method iterates as follows{ (x(k+1), y(k+1)) = argminx,yL(x, y, λ(k))

λ(k+1) = λ(k) − γβ(Ax(k+1) +By(k+1) − b) (9)

When γ ∈ (0, 2), convergence of the above iteration
is guaranteed provided that the subproblem is solved
with an increasingly high accuracy at every iteration
(Rockafellar, 1973). However, accurate joint mini-
mization with respect to (x, y) is usually computation-
ally expensive. Instead, ADM employs the separability
structure in (7) and replaces the joint minimization by
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two simpler subproblems. Given (y(k), λ(k)), iteration
is as follows

{ x(k+1) = argminxL(x, y(k), λ(k))
y(k+1) = argminyL(x(k+1), y, λ(k))

λ(k+1) = λ(k) − γβ(Ax(k+1) +By(k+1) − b)
(10)

The convergence result of (10) has been established
when γ ∈ (0, (

√
5 + 1)/2) in Glowinski (1989). ADM

has also recently been applied to total variation based
image restoration and reconstruction (Esser, 2009).

We now investigate how ADM can be applied to solve
the recovery of jointly sparse vectors in MMV model,
we consider the following constrained optimization
problem

min
X
‖X‖2,1, s.t. ‖AX −B‖F < δ (11)

this is a relaxation of problem (4) by assuming that the
measurement data contain noise and the linear equa-
tion AX = B does not exactly hold. It is easy to see
that (11) is equivalent to the following unconstrained
problem

min
X

{
‖X‖2,1 +

1

2µ
‖AX −B‖2F

}
(12)

When δ and µ approach to 0, the solutions of (11) and
(12) approach to the solutions of (4). Thus, we focus
on deriving an efficient algorithm for (12) based on the
ADM. We first introduce an auxiliary matrix variable
E ∈ Rm×n to measure the residue between AX and
B, then (12) is equivalent to

min
X,E

{
‖X‖2,1 +

1

2µ
‖E‖2F

}
s.t. AX + E = B (13)

The augmented Lagrangian function of (13) is

L(X,E, Y ) = ‖X‖2,1 +
1

2µ
‖E‖2F

− < Y,AX + E −B > +
β

2
‖AX + E −B‖2F (14)

where Y ∈ Rm×n is the Lagrangian multiplier and the
augmented Lagrangian subproblem is of the form

min
X,E

L(X,E, Y ) (15)

Given (X(k), E(k), Y (k)), we will derive update rules
for (X(k+1), E(k+1), Y (k+1)) based on the ADM. First,
given (X(k), Y (k)), we update E(k+1). By removing
terms that do not depend on E and adding proper
terms not dependent on E, the optimization (15) with
respect to E is equivalent to

min
E

{ 1

2µ
‖E‖2F− < Y (k), E +AX(k) −B >

+
β

2
‖E +AX(k) −B‖2F

}
(16)

This is a quadratic optimization problem with respect
to E, by letting the gradient of the objective function
with respect to E to be 0, we have

(
1

µ
+ β)E + β(AX(k) −B)− Y (k) = 0 (17)

it is easy to obtain that the minimizer of (16) is given
by

E(k+1) =
µβ

1 + µβ

[ 1

β
Y (k) − (AX(k) −B)

]
(18)

Next, given (X(k), E(k+1), Y (k)), consider the iteration
with respect to X, by deleting and adding appropriate
terms that do not depend on X and after some manip-
ulations, the optimization problem (15) is equivalent
to the following optimization problem

min
X

{
‖X‖2,1 +

β

2
‖AX + E(k+1) −B − 1

β
Y (k)‖2F

}
(19)

As in J.Yang et al. (2010), we do not solve (19) ex-
actly, instead we approximate the second term in the
objective function by its Taylor expansion at x(k) up
to the second order as

‖AX + E(k+1) −B − 1

β
Y (k)‖2F ≈

‖AX(k) + E(k+1) −B − 1

β
Y (k)‖2F +

2 < G(k), X −X(k) > +
1

τ
‖X −X(k)‖2F (20)

where τ > 0 is a proximal parameter and

G(k) = AT (AX(k) + E(k+1) −B − 1

β
Y (k)) (21)

is the gradient of the function ‖AX + E(k+1) − B −
1
βY

(k)‖2F evaluated at x(k). Drop the constant term in

(20), the optimization problem (19) is approximated
by the following optimization,

min
X

{
‖X‖2,1 + β < G(k), X −X(k) >

+
β

2τ
‖X −X(k)‖2F

}
(22)

by adding an appropriate constant term and after sim-
ple manipulations, it is easy to see that this optimiza-
tion problem is equivalent to

min
X

{ τ
β
‖X‖2,1 +

1

2
‖X − (X(k) − τG(k))‖2F

}
(23)

There exists a closed-form solution to this matrix
(2, 1)-norm optimization problem. Recall that in the
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classical SMV model of CS, when solving the following
l1-minimization problem

x∗ = arg min
x
{λ‖x‖1 +

1

2
‖x− c‖22} (24)

where x is a vector variable and c is a constant vector,
a well-known result is that the closed-form solution of
(24) is given by

x∗i = Shrink(ci, λ)
4
=
{ ci − λ, if ci > λ
ci + λ, if ci < −λ
0, otherwise

(25)

Here, the function Shrink(·, ·) is the so-called iterative
shrinkage-thresholding (or soft-thresholding) function
(Donoho, 1995). Since the matrix (2, 1)-norm ‖X‖2,1
is the l1-norm of the vector consisting of the l2-norm
of rows of X as its components, we have the following
lemma.

Lemma 3.1. Consider the following optimization
problem

X∗ = arg min
X
{λ‖X‖2,1 +

1

2
‖X − C‖2F } (26)

where X∗, X,C are matrices of same dimension and C
is a constant matrix, the minimizer of (26) is given by

X∗ = Row Shrink(C, λ) (27)

where the function Row Shrink(C, λ) is defined as fol-
lows: let the ith rows of matrices X∗ and C be (x∗)i

and ci, respectively, then

(x∗)i =
{ ‖ci‖2−λ

‖ci‖2 ci, if ‖ci‖2 > λ

0, otherwise
(28)

Proof. By the definition of the matrix (2, 1)-norm, the
original optimization problem (26) is equivalent to the
following row-wise optimization problems for all rows
of X and C,

(x∗)i = arg min
xi
{λ‖xi‖2 +

1

2
‖xi − ci‖22} (29)

where xi is the ith row of X. Let f(xi)
4
= λ‖xi‖2 +

1
2‖x

i−ci‖22, then if ‖ci‖2 ≤ λ, let xi = θci, θ is a scalar
parameter, then f(θci) = λ‖θci‖2 + 1

2‖(θ − 1)ci‖22 ≥
1
2 (θ2 + 1)‖ci‖22, this implies that when θ = 0, i.e.,
xi = 0, the objective function achieves its minimum.
If ‖ci‖2 > λ, let xi = θci, then f(θci) = (λθ + 1

2 (θ −
1)2‖ci‖2)‖ci‖2, if the minimum of f is achieved at θ0,
θ0 must be a stationary point. Compute the deriva-
tive of f(θci) with respect θ and let it be 0, we have

θ0 = ‖ci‖2−λ
‖ci‖2 . This completes the proof of the Lemma.

According to Lemma 3.1, the solution to (23) is

X(k+1) = Row Shrink(X(k) − τG(k),
τ

β
) (30)

Finally, the Lagrangian multiplier is updated by

Y (k+1) = Y (k) − γβ(AX(k+1) + E(k+1) −B) (31)

In J.Yang et al. (2010), for vector l1-norm minimiza-
tion, it has been proven that if the parameters satisfy
τλmax+γ < 2, where λmax is the maximum eigenvalue
of ATA, then the iteration sequence converges to a so-
lution of the optimization problem. The theoretical
result about the convergence of our matrix iteration
sequence is left as a future research topic, numerical
simulations in the following section show good conver-
gence of the proposed method.

The MMV-ADM is actually a first-order primal-dual
algorithm because it iterates the primal variable X
and the dual variable Y simultaneously. Furthermore,
it updates the error at each iteration so as to make
the algorithm converge quickly, this is a striking fea-
ture of MMV-ADM than existing methods. In sum-
mery, the overall MMV-ADM algorithm is depicted in
Algorithm 1.

Algorithm 1 MMV-ADM algorithm
Input: Sensing matrix A, multiple measurement

data matrix B, parameters µ,β,τ , and γ.
Initialization: Randomly initialize X(0), Y (0).
k = 0;
while (not converged)

1. E(k+1) = µβ
1+µβ

[
1
βY

(k) − (AX(k) −B)
]
.

2. G(k) = AT (AX(k) + E(k+1) −B − 1
βY

(k)).

3. X(k+1) = Row Shrink(X(k) − τG(k), τβ ).

4. Y (k+1) = Y (k) − γβ(AX(k+1) + E(k+1) −B)
5. k = k + 1;

end
Output: The jointly sparse signal X, the

Lagrangian multiplier Y and the residue E.

4 EXPERIMENTS

In this section, we conduct numerical simulations
to compare our MMV-ADM algorithm with the
MMVprox method in L. Sun et al. (2009). As in
L. Sun et al. (2009) and J. Yang et al. (2010), we
use synthetic data to test the algorithms. For each
simulation, we first randomly generate an m × d ma-
trix A with its entries obeying the normal distribution
N(0, 1) of mean 0 and variance 1, then we generate
a d × n sparse matrix X̄ with a given sparsity level,
which is characterized by its number of nonzero rows
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k. Given k, we first randomly generate k different
numbers in 1, . . . , d, indicating the indices of nonzero
rows in X̄. For each nonzero row, we then randomly
generate its elements following normal distribution of
mean 0 and variance 1. This X̄ is reserved as the
ground truth for comparison with the recovered signal
X later. Using X̄, we generate a m × n matrix by
B = AX̄ +E where elements of E are Gaussian noise
of mean 0 and standard deviation σ.

To measure the accuracy of the recovered signal X,
we use the following relative error as in J.Yang et al.
(2010),

RelErr =
‖X − X̄‖F
‖X̄‖F

(32)

In order to make comparisons reasonable, this relative
error is also used to measure the performance of the
MMVprox algorithm, while in L. Sun et al. (2009),
they utilized the mean squared error ‖X − X̄‖F /

√
dn

instead. Completely fair comparisons between two al-
gorithms are impossible because two methods use dif-
ferent strategies and they have different parameters, so
in our simulations, we put them together into a Mat-
lab procedure so that they have similar initial condi-
tions and stoping conditions. We also run them on the
same computer, making the CPU time comparison is
reasonable.

Throughout our experiments, we fix the parameters of
MMV-ADM as µ = 0.0001, β = 0.2, τ = 0.8, γ = 0.5,
and ε = 0.001, where ε specifies the stoping condition
‖X(k+1) −X(k)‖F /‖X(k)‖F < ε.

A remarkable advantage of MMV-ADM over
MMVprox is its fast speed. Fig. 1 shows the
average relative error versus the iteration numbers of
the two algorithms when the signals are noise free,
i.e., σ = 0, both the horizontal and vertical axes
are in log scales. The relative error is obtained by
averaging 10 runs of each algorithm with random
initializations. The parameters are: m = 50, d = 100,
n = 80. As can be seen, MMV-ADM converges much
faster than MMVprox, in about 50 iterations, the
averaged relative error reaches as low as 10−5, while
it takes MMVprox several thousands of iterations to
reach similar relative error.

Fig. 2 shows the average relative error versus the itera-
tion numbers of the two algorithms when the measure-
ment data B are contaminated by Gaussian noise with
σ = 0.001. The parameters are the same as in Fig. 1.
MMV-ADM also converges faster than MMVprox in
less than 100 iterations with the averaged relative er-
ror 10−3.

It must also be noted that with increasing itera-
tions, MMVprox can achieve lower relative errors than
MMV-ADM, and the latter has a trend that the rel-

Figure 1: Relative errors versus iteration numbers for
signals free of noise.

ative error is increasing slightly (for noising signals),
a phenomenon that has also been observed and ex-
plained in J.Yang et al. (2010). This is because MMV-
ADM is an approximating algorithm, its main merit is
its fast speed in solving a problem to an accepted accu-
racy. Also as pointed out there, a usually overlooked
point in evaluating the performance of an algorithm
is that algorithm speed should be evaluated relative
to solution accuracy. J. Yang et al. also concluded
that solving l1-problem to high accuracy is not nec-
essary whenever observed data are contaminated by
noise. The value of our MMV-ADM algorithm lies in
that within only 100 iterations it achieves small rel-
ative errors, while MMVprox must run several thou-
sands of iterations to achieve similar results, although
MMVprox can further reduce the relative errors with
increasing iterations, it is not necessary to reach such
high accuracy for noisy measurement data.

Next, we compare the performance of the two algo-
rithms for different combinations of (m, k). Table 1
and Table 2 show the results, where “Iter”, “Rel-
Err” and “AvTi” are iteration numbers, relative er-
rors and average CPU time, respectively. All parame-
ters are the same as Fig. 2. One can see that MMV-
ADM achieves comparable accuracy with MMVprox in
about only 45-65 iterations (around 0.1 seconds), while
MMVprox will take thousands of iterations (about 4
seconds).

Fig.3 and Fig.4 show the performance of two algo-
rithms with increasingm. We fix n = 2m, d = 4m, and
then increase m from 10 with stepsize 10. Fig.3 shows
that when m increases from 10 to 350, the iteration
number of MMV-ADM increases only from about 40
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Figure 2: Relative errors versus iteration numbers for
noisy signals.

Table 1: Performance of our MMV-ADM algorithm

d = 100 MMV-ADM
m/d k/m Iter RelErr AvTi
0.5 0.1 48.7 0.00556 0.0939
0.5 0.2 62.1 0.00631 0.1242
0.4 0.1 49.1 0.00602 0.0863
0.4 0.2 63.9 0.00637 0.1168
0.3 0.1 47.4 0.00768 0.0840
0.3 0.2 65.8 0.00931 0.1188

to 80, this reveals the almost constant iteration num-
ber of MMV-ADM. For all cases, the algorithm stops
when the relative error decreases to the order of 10−3.
Fig.3 also shows the CPU time of MMV-ADM which
increases from about 0.1 seconds to about 23 seconds.
Fig.4 shows the iteration numbers and CPU time for
the MMVprox algorithm when m is increased from 10
to 200. Both are much larger than those of MMV-
ADM. When m is greater than 200, the computation
time grows rapidly and become unaccepted, so we have
not simulated the cases when m > 200.

These results show that MMV-ADM scales much
better to large-size problems than MMVprox. Al-
though the computation complexity of both MMV-
ADM and MMVprox is O(mdn), MMV-ADM con-
verges within dozens of iterations while MMVprox

converges after thousands of iterations. This is be-
cause in ADM-MMV, the residue matrix E is up-
dated at every iteration so that the error converges
to small value quickly. In MMVprox, the projection
wt,s = Pzt−1

(γF (wt,s−1)), ‖wt,s − wt,s−1‖2 ≤ δ (see

Table 2: Performance of MMVprox algorithm

d = 100 MMVprox

m/d k/m Iter RelErr AvTi
0.5 0.1 4072 0.0015 3.7832
0.5 0.2 4147.8 0.0018 3.8291
0.4 0.1 4179.6 0.0047 3.4934
0.4 0.2 4132.1 0.0055 3.4767
0.3 0.1 5686.3 0.0212 4.2048
0.3 0.2 5445.2 0.0062 3.9961

Figure 3: Iteration numbers and CPU time of MMV-
ADM versus m.

L. Sun et al. (2009) for details) usually takes thou-
sands of iterations to converge to an accepted error,
although in theory it needs only two iterations to con-
verge, searching for wt,s close enough to wt,s−1 con-
sumes thousands of iterations. In addition, when the
problem dimension (m in our numerical experiments)
increases, the iteration number increases not too much,
but the total time increases significantly as indicated
in Fig. 4.

Finally, Fig. 5 plots the relative error versus the iter-
ation numbers of the MMV-ADM for X̄ with various
number k of nonzero rows, it can be seen that for dif-
ferent k values, the algorithm behaves similarly.

5 CONCLUSION

In this paper, we propose a fast algorithm for jointly
sparse vector recovery in multiple measurement vec-
tor (MMV) model of compressive sensing. The MMV
sparse signal recovery is formulated as a matrix (2, 1)-
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Figure 4: Iteration numbers and CPU time of
MMVprox versus m.

norm minimization problem with matrix equality con-
straint. The proposed algorithm, called MMV-ADM,
is based on the alternating direction algorithm of the
augmented Lagrangian multiplier method. The MMV-
ADM alternately updates the signal matrix, the multi-
plier and the residue, and all update rules only involve
matrix or vector multiplications and summations, so it
is simple, easy to implement and much faster than the
state-of-the-art method MMVprox. Numerical simula-
tions show that MMV-ADM is at least dozens of times
faster than MMVprox with comparable recovery ac-
curacy. The theoretical treatment of convergence of
the MMV-ADM algorithm and its applications to real
problems are the future research topics.
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