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Abstract

Matrix coherence has recently been used to
characterize the ability to extract global in-
formation from a subset of matrix entries in
the context of low-rank approximations and
other sampling-based algorithms. The signif-
icance of these results crucially hinges upon
the possibility of efficiently and accurately
testing this coherence assumption. This pa-
per precisely addresses this issue. We intro-
duce a novel sampling-based algorithm for es-
timating coherence, present associated esti-
mation guarantees and report the results of
extensive experiments for coherence estima-
tion. The quality of the estimation guar-
antees we present depends on the coher-
ence value to estimate itself, but this turns
out to be an inherent property of sampling-
based coherence estimation, as shown by our
lower bound. In practice, however, we find
that these theoretically unfavorable scenar-
ios rarely appear, as our algorithm efficiently
and accurately estimates coherence across a
wide range of datasets, and these estimates
are excellent predictors of the effectiveness of
sampling-based matrix approximation on a
case-by-case basis. These results are signifi-
cant as they reveal the extent to which coher-
ence assumptions made in a number of recent
machine learning publications are testable.

1 Introduction

Very large-scale datasets are increasingly prevalent in
a variety of areas, e.g., computer vision, natural lan-
guage processing, computational biology. However,
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several standard methods in machine learning, such as
spectral clustering, manifold learning techniques, ker-
nel ridge regression or other kernel-based algorithms
do not scale to such orders of magnitude. For large
datasets, these algorithms would require storage and
operation on matrices with thousands to millions of
columns and rows, which is especially problematic
since these matrices are often not sparse. An attractive
solution to such problems involves efficiently generat-
ing low-rank approximations to the original matrix of
interest. In particular, sampling-based techniques that
operate on a subset of the columns of the matrix can
be effective solutions to this problem, and have been
widely studied within the machine learning and theo-
retical computer science communities (Drineas et al.,
2006; Frieze et al., 1998; Kumar et al., 2009b; Williams
and Seeger, 2000). In the context of kernel matrices,
the Nyström method (Williams and Seeger, 2000) has
been shown to work particularly well in practice for
various applications ranging from manifold learning to
image segmentation (Fowlkes et al., 2004; Talwalkar et
al., 2008).

A crucial assumption of these algorithms involves their
sampling-based nature, namely that an accurate low-
rank approximation of some matrix X ∈ R

n×m can
be generated exclusively from information extracted
from a small subset (l ≪ m) of its columns. This
assumption is not generally true for all matrices, and
explains the negative results of Fergus et al. (2009).
For instance, consider the extreme case:

X =




∣∣∣
∣∣∣

∣∣∣
∣∣∣

e1 . . . er 0 . . . 0∣∣∣
∣∣∣

∣∣∣
∣∣∣


 , (1)

where ei is the ith column of the n dimensional iden-
tity matrix and 0 is the n dimensional zero vector.
Although this matrix has rank r, it cannot be well ap-
proximated by a random subset of l columns unless
this subset includes e1, . . . , er. In order to account for
such pathological cases, previous theoretical bounds
relied on sampling columns of X in an adaptive fash-
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ion (Bach and Jordan, 2005; Deshpande et al., 2006;
Kumar et al., 2009b; Smola and Schölkopf, 2000) or
from non-uniform distributions derived from proper-
ties of X (Drineas and Mahoney, 2005; Drineas et al.,
2006). Indeed, these bounds give better guarantees for
pathological cases, but are often quite loose nonethe-
less, e.g., when dealing with kernel matrices using RBF
kernels, and these sampling schemes are rarely utilized
in practice.

More recently, Talwalkar and Rostamizadeh (2010)
used the notion of coherence to characterize the ability
to extract information from a small subset of columns,
showing theoretical and empirical evidence that coher-
ence is tied to the performance of the Nyström method.
Coherence measures the extent to which the singular
vectors of a matrix are correlated with the standard
basis. Intuitively, if the dominant singular vectors of a
matrix are incoherent, then the subspace spanned by
these singular vectors is likely to be captured by a ran-
dom subset of sampled columns of the matrix. In fact,
coherence-based analysis of algorithms has been an ac-
tive field of research, starting with pioneering work
on compressed sensing (Candès et al., 2006; Donoho,
2006), as well as related work on matrix completion
(Candès and Recht, 2009; Keshavan et al., 2009b) and
robust principle component analysis (Candès et al.,
2009).

In Candès and Recht (2009), the use of coherence is
motivated by results showing that several classes of
randomly generated matrices have low coherence with
high probability, one of which is the class of matrices
generated from uniform random orthonormal singular
vectors and arbitrary singular values. Unfortunately,
these results do not help a practitioner compute co-
herence on a case-by-case basis to determine whether
attractive theoretical bounds hold for the task at hand.
Furthermore, the coherence of a matrix is by definition
derived from its singular vectors and is thus expensive
to compute: the prohibitive cost of calculating singular
values and singular vectors is precisely the motivation
behind sampling-based techniques. Hence, in spite of
the numerous theoretical work based on related no-
tions of coherence, the practical significance of these
results largely hinges on the following open question:
Can we efficiently and accurately estimate the coher-
ence of a matrix? In this paper, we address this ques-
tion by presenting a novel algorithm for estimating
matrix coherence from a small number of columns.

The remainder of this paper is organized as follows.
Section 2.1 introduces basic definitions, and provides
a brief background on low-rank matrix approximation
and matrix coherence. In Section 3 we introduce our
sampling-based algorithm to estimate matrix coher-
ence. We then formally analyze its behavior in Sec-

tion 4 presenting both upper and lower bounds on
performance. We also use this analysis to derive a
novel coherence-based bound for matrix projection re-
construction via Column-sampling (defined in Section
2.2). Finally, in Section 5 we present extensive exper-
imental results on synthetic and real datasets. In con-
trast to our worst-case theoretical analysis in the pre-
vious section, these results provide strong support for
the use of our proposed algorithm whenever sampling-
based matrix approximation is being considered. Em-
pirically, our algorithm effectively estimates matrix co-
herence across a wide range of datasets, and these co-
herence estimates are excellent predictors of the effec-
tiveness of sampling-based matrix approximation on a
case-by-case basis.

2 Background

2.1 Notation

Let X ∈ R
n×m be an arbitrary matrix. We define

X(j), j = 1 . . .m, as the jth column vector of X,
X(i), i = 1 . . . n, as the ith row vector of X and Xij

as the ijth entry of X. Furthermore, X(i:j) refers to
the ith through jth columns of X and X(i:j) refers
to the ith through jth rows of X. We denote by
‖X‖F the Frobenius norm of X and by ‖v‖ the l2
norm of the vector v. If rank(X) = r, we can
write the thin Singular Value Decomposition (SVD)
as X = UXΣXV⊤

X . ΣX is diagonal and contains the
singular values of X sorted in decreasing order, i.e.,
σ1(X) ≥ σ2(X) ≥ . . . ≥ σr(X). UX ∈ R

n×r and
VX ∈ R

m×r have orthogonal columns that contain
the left and right singular vectors of X correspond-
ing to its singular values. We define PX = UXU⊤

X

as the orthogonal projection matrix onto the column
space of X, and denote the projection onto its orthog-
onal complement as PX,⊥ = I−PX . We further define
X+ ∈ R

m×n as the Moore-Penrose pseudoinverse ofX,
with X+ = VXΣ+

XU⊤
X . Finally, we define K ∈ R

n×n

as a symmetric positive semidefinite (SPSD) matrix
with rank(K) = r ≤ n, i.e. a symmetric matrix with
non-negative eigenvalues.

2.2 Low-rank matrix approximation

Starting with an n × m matrix X, we are interested
in algorithms that generate a low-rank approximation,
X̃, from a sample of l ≪ n of its columns. The accu-
racy of this approximation is often measured using the
Frobenius ‖X−X̃‖F or the Spectral distance ‖X−X̃‖2.
We next briefly describe two of the most common al-
gorithms of this form, the Column-sampling and the
Nyström methods.

The Column-sampling method generates approxima-
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tions to arbitrary rectangular matrices. We first sam-
ple l columns of X such that X =

[
X1 X2

]
, where

X1 has l columns, and then use the SVD of X1,
X1 = UX1

ΣX1
V⊤

X1
, to approximate the SVD of X

(Frieze et al., 1998). This method is most commonly
used to generate a ‘matrix projection’ approximation
(Kumar et al., 2009b) of X as follows:

X̃col = UX1
U⊤

X1
X. (2)

The runtime of the Column-sampling method is dom-
inated by the SVD of X1 which takes O(nl2) time to
perform and is feasible for small l.

In contrast to the Column-sampling method, the
Nyström method deals only with SPSD matrices. We
start with an n× n SPSD matrix, sampling l columns
such that K =

[
K1 K2

]
, where K1 has l columns,

and define W as the l × l matrix consisting of the in-
tersection of these l columns with the corresponding l
rows of K. Since K is SPSD, W is also SPSD. With-
out loss of generality, we can rearrange the columns
and rows of K based on this sampling such that:

K =

[
W K̂⊤

1

K̂1 K̂2

]
(3)

where

K1 =

[
W

K̂1

]
and K2 =

[
K̂⊤

1

K̂2

]
. (4)

The Nyström method uses W and K1 from (3) to gen-
erate a ‘spectral reconstruction’ approximation of K
as K̃nys = K1W

+K⊤
1 . Since the running time com-

plexity of SVD on W is in O(l3) and matrix multi-
plication with K1 takes O(nl2), the total complexity
of the Nyström approximation computation is also in
O(nl2).

2.3 Matrix Coherence

Matrix coherence measures the extent to which the
singular vectors of a matrix are correlated with the
standard basis. As previously mentioned, coherence
has been used to analyze techniques such as com-
pressed sensing, matrix completion, robust PCA, and
the Nyström method. These analyses have used a va-
riety of related notions of coherence. If we let ei be the
ith column of the standard basis, we can define three
basic notions of coherence as follows:

Definition 1 (µ-Coherence). Let U ∈ R
n×r con-

tain orthonormal columns with r < n. Then the µ-
coherence of U is:

µ(U) =
√
nmax

i,j

∣∣Uij

∣∣ . (5)

Definition 2 (µ0-Coherence). Let U ∈ R
n×r contain

orthonormal columns with r < n and define PU =
UU⊤ as its associated orthogonal projection matrix.
Then the µ0-coherence of U is:

µ0(U) =
n

r
max
1≤i≤n

‖PUei‖2 =
n

r
max
1≤i≤n

‖U(i)‖2 . (6)

Definition 3 (µ1-Coherence). Given the matrix X ∈
R

n×m with rank r, left and right singular vectors, UX

and VX , and define T =
∑

1≤k≤r U
(k)
X V

(k)
X

⊤

. Then,
the µ1-coherence of X is:

µ1(X) =

√
nm

r
max
ij

∣∣Tij

∣∣ . (7)

In Talwalkar and Rostamizadeh (2010), µ(U) is used
to provide coherence-based bounds for the Nyström
method, where U corresponds to the singular vectors
of a low-rank SPSD kernel matrix. Low-rank matri-
ces are also the focus of work on matrix completion by
Candès and Recht (2009) and Keshavan et al. (2009b),
though they deal with more general rectangular matri-
ces with SVD X = UXΣXV⊤

X , and they use µ0(UX),
µ0(VX) and µ1(X) to bound the performance of two
different matrix completion algorithms. Note that a
stronger, more complex notion of coherence is used in
Candès and Tao (2009) to provide tighter bounds for
the matrix completion algorithm presented in Candès
and Recht (2009) (definition omitted here). Moreover,
coherence has also been used to analyze algorithms
dealing with low-rank matrices in the presence of noise,
e.g., Candès and Plan (2009); Keshavan et al. (2009a)
for noisy matrix completion and Candès et al. (2009)
for robust PCA. In these analyses, the coherence of
the underlying low-rank matrix once again appears in
the form of µ0(·) and µ1(·).
In this work, we choose to focus on µ0. In compari-
son to µ, µ0 is a more robust measure of coherence, as
it deals with row norms of U, rather than the maxi-
mum entry of U, and the two notions are related by
a simple pair of inequalities: µ2/r ≤ µ0 ≤ µ2. Fur-
thermore, since we focus on coherence in the context
of algorithms that sample columns of the original ma-
trix, µ0 is a more natural choice than µ1, since existing
coherence-based bounds for these algorithms (both in
Talwalkar and Rostamizadeh (2010) and in Section 4
of this work) only depend on the left singular vectors
of the matrix.

3 Estimate-Coherence Algorithm

As discussed in the previous section, matrix coherence
has been used to analyze a variety of algorithms, under
the assumption that the input matrix is either exactly
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Input: n× l matrix (X1) storing l columns of arbitrary n×m matrix X, low-rank parameter (r)
Output: An estimate of the coherence of X

Estimate-Coherence(X1, r)

1 UX1
← SVD(X1) � keep left singular vectors

2 q ← min
(
rank(X1), r

)

3 Ũ← Truncate(UX1
, q) � keep top q singular vectors of X1

4 γ(X1)← Calculate-Gamma(Ũ) � see equation (8)
5 return γ(X1)

Figure 1: The proposed sampling-based algorithm to estimate matrix coherence. Note that r is only required
when X is perturbed by noise.

low-rank or is low-rank with the presence of noise. In
this section, we present a novel algorithm to estimate
the coherence of matrices following the same assump-
tion. Starting with an arbitrary n×m matrix, X, we
are ultimately interested in an estimate of µ0(UX),
which contains the scaling factor n/r as shown in Def-
inition 2. However, our estimate will also involve sin-
gular vectors in dimension n, and as we mentioned
above, r is assumed to be small. Hence, neither of
these scaling terms has a significant impact on our es-
timation. As such, our algorithm focuses on the closely
related expression:

γ(U) = max
1≤i≤n

‖PUei‖2 =
r

n
µ0 . (8)

Our proposed algorithm is quite similar in flavor to the
Column-sampling algorithm discussed in Section 2.2.
It estimates coherence by first sampling l columns of
the matrix and subsequently using the left singular
vectors of this submatrix to obtain an estimate. Note
that our algorithm applies both to exact low-rank ma-
trices as well as low-rank matrices perturbed by noise.
In the latter case, the algorithm requires a user-defined
low-rank parameter r. The runtime of this algorithm is
dominated by the singular value decomposition of the
n × l submatrix, and hence is in O(nl2). The details
of the Estimate-Coherence algorithm are presented
in Figure 1.

4 Theoretical Analysis

In this section we analyze the performance of
Estimate-Coherence when used with low-rank ma-
trices. In Section 4.1, we present an upper bound on
the convergence of our algorithm and we detail the
proof of this bound in Section 4.3. In Section 4.2
we present a lower bound using an adversarially con-
structed class of matrices.

4.1 Upper Bound

The upper bound presented in Theorem 1 shows that
Estimate-Coherence produces a monotonically in-
creasing estimate of γ(·), and the convergence rate of
the estimate is a function of coherence.

Theorem 1 (Upper Bound). Define X ∈ R
n×m with

rank(X) = r ≪ n, and denote by UX the r left sin-
gular vectors of X corresponding to its non-zero sin-
gular values. Let X1 be a set of l columns of X sam-
pled uniformly at random, let the orthogonal projection
onto span(X1) be denoted by PX1

= UX1
U⊤

X1
and de-

fine the projection onto its orthogonal complement as
PX1,⊥. Let x be a column of X that is not in X1 that
is sampled uniformly at random. Then the following
statements can be made about γ(X1), which is the out-
put of Estimate-Coherence(X1):

1. γ(X1) is a monotonically increasing estimate of
γ(X). Furthermore, if X′

1 =
[
X1 x

]
with x⊥ =

PX1,⊥x, then 0 ≤ γ(X′
1) − γ(X1) ≤ γ(z), where

z = x⊥/‖x⊥‖.

2. γ(X1) = γ(X) when rank(X1) = rank(X). For
any δ > 0, this equality holds with probability 1−δ
for l ≥ r2µ0(UX)max

(
C1 log(r), C2 log(3/δ)

)
for

positive constants C1 and C2.

The second statement in Theorem 1 leads to Corollary
1, which relates matrix coherence to the performance
of the Column-sampling algorithm when used for ma-
trix projection on a low-rank matrix.

Corollary 1. Assume the same notation as defined
in Theorem 1, and let X̃col be the matrix projec-
tion approximation generated by the Column-sampling
method using X1, as described in (2). Then, for

any δ > 0, X̃col = X with probability 1 − δ, for
l ≥ r2µ0(UX)max

(
C1 log(r), C2 log(3/δ)

)
for positive

constants C1 and C2.

Proof. When rank(X1) = rank(X), the columns of X1
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span the columns of X. Hence, when this event occurs,
projectingX onto the span of the columns ofX1 leaves
X unchanged. The second statement in Theorem 1
bounds the probability of this event.

4.2 Lower Bound

Theorem 1 suggests that the ability to estimate matrix
coherence is dependent on the coherence of the matrix
itself. The following result proves that this is in fact
the case: it shows for any large γ0 the existence of
matrices X with γ(X) = γ0, for which an estimate
γ(X1) based on a random sample X1 is almost always
significantly different from γ(X).

Theorem 2 (Lower Bound). Fix positive integers
n,m and r, with r≪min(n,m) and let Cr̄

n
≪ γ0 ≤ 1,

where r̄ = max(r, log n) and C is a constant. Then,
there exists a matrix X∈Rn×m with rank(X)= r and
γ(X)=γ0 such that the following holds for any set of
l columns, X1, sampled from X:

{
γ(X1) ≤ C r̄

n
if X1 does not include X(1),

γ(X1) = γ0 otherwise.
(9)

Proof. Let X0 be a matrix formed by r orthonormal
n−1 dimensional vectors such that γ(X0) ≤ Cr̄/n.
Such a matrix exists. In fact, by Lemma 2.2 of Candès
and Recht (2009) and the so-called ‘random orthogonal
model’, sampling uniformly at random from the set of
all possible r orthonormal vectors leads to a matrix
X0 with γ(X0) ≤ Cr̄/n, with high probability.

Next, we rescale the first column of X0 such that

‖X(1)
0 ‖2=1− γ0 and let v be an r dimensional vector

with v1 =
√
γ0 and vi = 0 for i > 1. To construct

X with properties described in the statement of the
theorem, we first let X(r+1:m) be all zeros. We then
set the first row of X(1:r) equal to v⊤, and set the re-
maining (n−1) × r submatrix equal to X0. Overall,
the construction is:

X =




√
γ0 0

∣∣∣
∣∣∣

0 . . . 0

X
(1)
0 X

(2:r)
0

∣∣∣
∣∣∣


 . (10)

Observe that the first r columns of X are its top left
singular vectors. Now, for a sample X1 extracted from
X, γ(X1) has precisely the properties indicated in the
statement of the theorem.

Theorem 2 implies that in the worst case, all columns
of the original matrix could be required when sampling
randomly, and this lower bound on the number of sam-
ples holds for all column-sampling based methods that
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Figure 2: Synthetic dataset illustrating worst-case per-
formance of Estimate-Coherence.

rely on the coherence of the sample to generate an es-
timate.

A simple and extreme unfavorable case is illustrated
by Figure 2 based on the following construction: gen-
erate a synthetic matrix with n = 1000 and k = 50
using the Rand function in Matlab, and then replace
its first diagonal with an arbitrarily large value, lead-
ing to a very high coherence matrix. Then, estimating
coherence using Estimate-Coherence with a sam-
ple that does not include the first column of the matrix
cannot be successful, as illustrated in Figure 2.

4.3 Proof of Theorem 1

We first present Lemmas 1 and 2, and then complete
the proof of Theorem 1 using these lemmas.

Lemma 1. Assume the same notation as defined in
Theorem 1. Further, let PX′

1
be the orthogonal projec-

tion onto span(X′
1) and define s = ‖x⊥‖. Then, for

any l ∈ [1, n − 1], the following equalities relate the
projection matrix PX′

1
to PX1

:

PX′

1
=

{
PX1

+ zz⊤ if s > 0;

PX1
if s = 0.

(11)

Proof. First assume that s = 0, which implies that x

is in the span of the columns of X1. Since orthogonal
projections are unique, then clearly PX′

1
= PX1

in
this case. Next, assume that s > 0, in which case
the span of the columns of X′

1 can be viewed as the
subspace spanned by the columns of X1 along with
the subspace spanned by the residual of x, i.e., x⊥.
Observe that zz⊤ is the orthogonal projection onto
span(x⊥). Since these two subspaces are orthogonal
and since orthogonal projection matrices are unique,
we can write PX′

1
as the sum of orthogonal projections

onto these subspaces, which matches the statement of
the lemma for s > 0.

Lemma 2. Assume the same notation
as defined in Theorem 1. Then, if l ≥
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r2µ0(UX)max
(
C1 log(r), C2 log(3/δ)

)
, where C1

and C2 are positive constants, then for any δ > 0,
with probability at least 1− δ, rank(X1) = r.

Proof. Assuming uniform sampling at random,
Talwalkar and Rostamizadeh (2010) shows that
Pr[rank(X1) = r] ≥ Pr

(
‖cV⊤

X,lVX,l − I‖2 < 1
)
for

any c ≥ 0, where VX,l ∈ R
l×r corresponds to the

first l components of the r right singular vectors of
X. Applying Theorem 1.2 in Candès and Romberg
(2007) and using the identity rµ0 ≥ µ2 yields the
statement of the lemma.

Now, to prove Theorem 1 we analyze the difference:

∆l =
∣∣γ(X′

1)− γ(X1)
∣∣

=
∣∣∣max

j
e⊤j PX′

1
ej −max

i
e⊤i PX1

ei

∣∣∣ . (12)

If s = ‖x⊥‖ = 0, then by Lemma 1, ∆l = 0. If s > 0,
then using Lemma 1 and (12) yields:

∆l = max
j

e⊤j
(
PX1

+ zz⊤
)
ej −max

i
e⊤i PX1

ei (13)

≤ max
j

e⊤j zz
⊤ej = γ(z). (14)

In (13), we use the fact that orthogonal projections
are always SPSD, which means that e⊤j zz

⊤ej ≥ 0 for
all j and ensures that ∆l ≥ 0. In (14) we decouple
the max(·) over PX1

and zz⊤ to obtain the inequal-
ity and then apply the definition of γ(·), which yields
the first statement of Theorem 1. Finally, the second
statement of Theorem 1 follows directly from Lemma
1 when s = 0 along with Lemma 2, as the former
shows that ∆l = 0 if rank(X1) = rank(X) and the
latter gives a coherence-based finite-sample bound on
the probability of this event occurring.

5 Experiments

In contrast to the lower bound presented in Section 4.2,
our extensive empirical studies show that Estimate-
Coherence performs quite well in practice on a vari-
ety of synthetic and real datasets with varying coher-
ence, suggesting that the adversarial matrices used in
the lower bounds are rarely encountered in practice.
We present these empirical results in this section.

5.1 Experiments with synthetic data

We first generated low-rank synthetic matrices with
varying coherence and singular value spectra, with
n = m = 1000, and r = 50. To control the low-rank
structure of the matrix, we generated datasets with ex-
ponentially decaying eigenvalues with differing decay
rates, i.e., for i ∈ {1, . . . , r} we defined the ith singular

value as σi = exp(−iη), where η controls the rate of
decay and ηslow = .01, ηmedium = .1, ηfast = .5. To
control coherence, we independently generated left and
right singular vectors with varying coherences by man-
ually defining one singular vector and then using QR to
generate r−1 additional orthogonal vectors. We asso-
ciated this coherence-inducing singular vector with the
r/2 largest singular value. We defined our ‘low’ coher-
ence model by forcing the coherence-inducing singular
vector to have minimal coherence, i.e., setting each
component equal to 1/

√
n. Using this as a baseline,

we used 3 and 8 times this baseline to generate ’mid’
and ’high’ coherences (see Figure 3(a)). We then used
Estimate-Coherence with varying numbers of sam-
pled columns to estimate matrix coherence. Results
reported in Figure 3(b-d) are means and standard de-
viations of 10 trials for each value of l. Although the
coherence estimate converges faster for the low coher-
ence matrices, the results show that even in the high
coherence matrices, Estimate-Coherence recovers
the true coherence after sampling only r columns. Fur-
ther, we note that the singular value spectrum influ-
ences the quality of the estimate. This observation is
due to the fact that the faster the singular values de-
cay, the greater the impact of the r/2 largest singular
value, which is associated with the coherence-inducing
singular vector, and hence the more likely it will be
captured by sampled columns.

Next, we examined the scenario of low-rank matrices
with noise, working with the ‘MEDIUM’ decaying ma-
trices used in the low-rank experiments. To create a
noisy matrix from each original low-rank matrix, we
first used the QR algorithm to find a full orthogonal
basis containing the r left singular vectors of the orig-
inal matrix, and used it as our new left singular vec-
tors (we repeated this procedure to obtain right sin-
gular vectors). We then defined each of the remaining
n−r singular values of our noisy matrix to equal some
fraction of the rth singular value of the original ma-
trix (0.1 for ‘SMALL’ noise and 0.9 ‘LARGE’ noise).
The performance of Estimate-Coherence on these
noisy matrices is presented in Figure 3(e-f), where re-
sults are means and standard deviations of 10 trials for
each value of l. The presence of noise clearly has a neg-
ative affect on performance, yet the estimates are quite
accurate for l = 2r in the ‘LOW’ noise scenario, and
even for the high coherence matrices with ‘LARGE’
noise, the estimate is fairly accurate when l ≥ 4r.

5.2 Experiments with real data

We next performed experiments using the datasets
listed in Table 1. In these experiments, we implicitly
assume that we are interested in the coherence of an
underlying low-rank matrix that is perturbed by noise.
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Figure 3: Experiments with synthetic matrices. (a) True coherence associated with ‘low’, ‘mid’ and ‘high’
coherences. (b-d) Exact low-rank experiments measuring difference between the exact coherence and the estimate
by Estimate-Coherence. (e-f) Experiments with low-rank matrices in the presence of noise, comparing exact
and estimated coherence with two different levels of noise.

Dataset Type of data # Points (n) # Features (d) Kernel
NIPS bag of words 1500 12419 linear
PIE face images 2731 2304 linear
MNIS digit images 4000 784 linear
Essential proteins 4728 16 RBF
Abalone abalones 4177 8 RBF
Dexter bag of words 2000 20000 linear
KIN-8nm kinematics of robot arm 2000 8 polynomial

Table 1: Description of real datasets used in our coherence experiments, including the type of data, the number
of points (n), the number of features (d) and the choice of kernel (Asuncion and Newman, 2007; Gustafson et
al., 2006; LeCun and Cortes, 1998; Sim et al., 2002).
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Figure 4: Experiments with real data. (a) True coherence of each kernel matrix K. (b) Difference between the

true coherence and the estimated coherence. (c-d) Quality of two types of low-rank matrix approximations (K̃),

where ‘Normalized Error’ equals ‖K− K̃‖F /‖K‖F .

We used a variety of kernel functions to generate SPSD
kernel matrices from these datasets, with the resulting
kernel matrices being quite varied in coherence (see
Figure 4(a)). We used Estimate-Coherence with
r set to equal the number of singular values needed
to capture 99% of the spectral energy of each kernel
matrix. Note that in practice, when we do not know
the exact spectrum of the matrix, r can be estimated
based on the spectrum of the sampled matrix.1

Figure 4(b) shows the estimation error over 10 tri-
als. Although the coherence is well estimated across
datasets when l ≥ 100, the estimates for the two
high coherence datasets (nips and dext) converge most
slowly and exhibit the most variance across trials.
Next, we performed spectral reconstruction using the
Nyström method and matrix projection reconstruction
using the Column-sampling method, and report results
over 10 trials in Figure 4(c-d). The results clearly illus-
trate the connection between matrix coherence and the
quality of these low-rank approximation techniques, as
the two high coherence datasets exhibit significantly

1The choice of r does indeed affect results, as can be
seen by comparing the experimental results in this paper
with those of Talwalkar and Rostamizadeh (2010) in which
r is set to a fixed constant across all datasets, independent
of the spectra of the various matrices.

worse performance than the remaining datasets.

6 Conclusion

We proposed a novel algorithm to estimate ma-
trix coherence. Our theoretical analysis shows that
Estimate-Coherence provides good estimates for
relatively low-coherence matrices, and more generally,
its effectiveness is tied to coherence itself. We corrob-
orate this finding by presenting a lower bound derived
from an adversarially constructed class of matrices.
Empirically, however, our algorithm efficiently and ac-
curately estimates coherence across a wide range of
datasets, and these estimates are excellent predictors
of the effectiveness of sampling-based matrix approxi-
mation. These results are quite significant as they re-
veal the extent to which coherence assumptions made
in a number of recent machine learning publications
are testable. We believe that our algorithm should
be used whenever low-rank matrix approximation is
being considered to determine its applicability on a
case-by-case basis. Moreover, the variance of coher-
ence estimates across multiple samples may provide
further information, and the use of multiple samples
fits nicely in the framework of ensemble methods for
low-rank approximation, e.g., Kumar et al. (2009a).
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