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Abstract

In semi-supervised learning, at the limit of
infinite unlabeled points while fixing labeled
ones, the solutions of several graph Laplacian
regularization based algorithms were shown
by Nadler et al. (2009) to degenerate to
constant functions with “spikes” at labeled
points in R? for d > 2. These optimization
problems all use the graph Laplacian regular-
izer as a common penalty term.

In this paper, we address this problem by us-
ing regularization based on an iterated Lapla-
cian, which is equivalent to a higher order
Sobolev semi-norm. Alternatively, it can be
viewed as a generalization of the thin plate
spline to an unknown submanifold in high
dimensions. We also discuss relationships
between Reproducing Kernel Hilbert Spaces
and Green’s functions. Experimental results
support our analysis by showing consistently
improved results using iterated Laplacians.

1 Introduction

Graph Laplacian regularization is one of the most pop-
ular semi-supervised learning (SSL) methods, see e.g.,
(Chapelle et al., 2006) and (Zhu, 2008). Several SSL
methods solve optimization problems by penalizing
regularizer fTLf (or its variations), whose limit given
infinite data points is an “energy” term

/ IV (@)llp® (2)da
Q

where L is the graph Laplacian, p(x) is the underlying
probability density and « is a non-negative number. A
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typical form of the optimization problem (Zhu et al.,
2003; Zhou et al., 2004; Belkin et al., 2004) is

min > (@) =) +nfTLf (1)

where fTLf = 337, . oy wij(f(z:) — f(a;))* X =
X UXy, X1 is the sample set whose label y; is known
and Xy the unlabeled sample set whose labels are un-
known, and wj;; is a similarity weight between sample
x; and x;.

However, in the limit of infinite unlabeled data while
holding the labeled points fixed, with a proper scaling
of p — 0, solutions to problem (1) degenerate to con-
stant functions on unlabeled points, with “spikes” at
labeled points (Nadler et al., 2009). This shows there
is no generalization in the limit, and also results in
unstable solutions in finite unlabeled data case.

In this paper, we show that regularization using higher
order Sobolev semi-norm || f||,, of order m resolves this
problem, given 2m > d where d is the intrinsic dimen-
sion of the submanifold. The Sobolev embedding the-
orem, e.g. see (Adams, 1975, Chapter 5), guarantees
that this method gives continuous solutions of a certain
order in the limit of infinite unlabeled points while fix-
ing labeled ones. We use iterated Laplacian semi-norm
Jo f(x)A™ f(x)dz as this Sobolev semi-norm, which
corresponds to the empirical iterated Laplacian regu-
larizer fTL™ f given finite data, and also has the ad-
vantage of being coordinate free.

Iterated Laplacian regularizer f7L™f or its variation
fTg(L)f have been used by (Smola and Kondor, 2003;
Belkin et al., 2004, 2006). Unlike previous works, we
focus on the analysis from a Sobolev space point of
view given infinite unlabeled points, and in particular,
study the condition for regularizer f7 L™ f to give con-
tinuous solutions. We note that some Laplacian-based
methods, e.g., (Belkin et al., 2006) are guaranteed to
provide continuous solutions due to a different formu-
lation of the optimization problem.

A parallel relation between Green’s functions and re-
producing kernels based on the graph Laplacian also
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plays an important role in this problem, see e.g.,
(Wahba, 1990; Ramsay and Silverman, 1997). By com-
paring Green’s functions and reproducing kernels, we
not only can explain the degenerate solution in prob-
lem (1), but also can explore a close relation between
the Sobolev space and the Hilbert reproducing kernel
space (RKHS) in a more general setting as well as con-
nections between graph Laplacian regularization and
kernel methods.

In practice, SSL by iterated Laplacian regularization
requires only a trivial modification of the code incor-
porating a power of the Laplacian matrix. The ex-
perimental results support our analysis by pointing to
consistent and often significant improvements in classi-
fication error resulting from using iterated Laplacians.
These improvements appear both on simulated data
obtained from a mixture of Gaussian distributions and
a number of standard datasets.

1.1 Problem Setup

Let p(z) be a fixed unknown smooth probability den-
sity on a compact connected submanifold Q c RN
with boundary 0f2, which can be empty. Let the in-
trinsic dimension of @ be d < N, 0 < a <p(z) <b<
+00, p(x) be infinitely differentiable for simplicity, and
f:Q — R be the unknown function to be estimated.
By convenient abuse of notation, f(x) means both the
continuous function value at & and the x element of
column vector f such that f, = f(x).

The task of SSL is to estimate f(z) given [ pairs of
labeled points {(x1,91) - (z;,41)}, and w unlabeled
points {Zi11, - , X4}, where z; € Q is drawn from
p(z) ii.d. y; is the observed function value at x;. We
denote the labeled data set as X = {z1, -+ ,z1},
the unlabeled data set as Xy = {aj41,  , Zitul}s
X = X; U Xy, the corresponding label sets as Y,
and Yy. Let n =1 + u be the total number of sample
points. Ideally we want to estimate f(z) on the whole
submanifold . In a transductive setting, instead, we
estimate f(x) on Xy (or Yy), given Xy, X1 and Y.
An interesting case is when € is a d-dimensional sub-
manifold of Euclidean space RY such that d << N.

In graph Laplacian SSL, all data points are mapped
into vertices of an undirected graph G(V, E). Given
[ labeled data points and wu unlabeled points
(z1,-+ ,Z14y), we build a weighted undirected graph
G(V,E) such that z; is mapped to vertex V;, and
edge weight w(e;;) = w;; is a similarity measure be-
tween x; and x;. Denote the connection weight ma-
trix on graphs as W. A typical weight function is
wi; = e~llzi=2;1*/t Let D be a diagonal matrix with
D;; = Zj w;j, then L = D — W is the unnormalized
graph Laplacian. There are several versions of nor-
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malized graph Laplacian (von Luxburg, 2007; Coifman
and Lafon, 2006), which we will compare in the exper-
iment. A continuous Laplacian in R? is defined as

The limit of fTLf for a fixed function f as n — oo
and t — 0 (Bousquet et al., 2004) at a specific rate is

1 T P 2 9
L L [V e)da

where [V f(2)|* = (Vf(2), V/(2)) = S, (52)? in
R¢. Then by decreasing p as p/n*t%?+1 which tends
to zero, minimization problem (1) given infinite unla-
beled points becomes

min 3 (F@) =+ [ V@@ 2

T, €XL

1.2 Problem in Higher Dimensions

When d = 1, problem (2) has a reasonable continuous
solution. The solution space is an RKHS, the kernel
of which is a density weighted Mexican hat function
as shown by Nadler et al. (2009). When d > 2, the
solution space is too large to give a continuous solu-
tion, and in fact the solution is a constant function on
Xy, with “spikes” of value Y, on Xj. This can also
be seen as overfitting to the data Y7, since the solution
function space is too rich.

Intuitively, the problem comes from the integral of gra-
dient square in higher dimensions. Since the volume
dr = dxidxy---dxy is small in higher dimensions,
it allows ||V f(x)|? to be +oo, while the whole inte-
gral [, [V f(z)||?dx can still be small, or even zero as
long as the infinitesimal quantity dzidzs - - - dxg has a
higher order.

This problem can also be explained from the point
of view of unbounded Green’s functions as discussed
later in the paper. This phenomenon is well known
in splines, see e.g., (Wahba, 1990), but has drawn
less attention in graph Laplacian regularization SSL
community, which is possibly due to the fact that the
finiteness of the data in practical applications can be
viewed as an additional regularizer. Still, the experi-
mental results show marked improvements when this
issue is addressed as we show in Section 5.

2 SSL by Higher Order Regularization

In this section, we introduce one solution to this prob-
lem by higher order Sobolev semi-norm regularization,



Xueyuan Zhou,

Mikhail Belkin

which can be implemented by an iterated Laplacian
semi-norm. We first review several basic facts about
Sobolev spaces, see e.g., (Adams, 1975).

2.1 Sobolev Space Review

Only real-valued functions are considered in this
paper. Let Zi denote the set of all ordered d-
tuples of nonnegative integers. For a € Zi, a =
(1,9, -+ ,aq), each component «; being a nonneg-
ative integer. We denote |a| = Z?:l a; and by D f
the partial derivative

ololf

@1 @2 xd
Oz, Oxy” -+ Oz,

Dof =

A Sobolev space of order m, denoted by H™(Q) (or
Wm™2(Q)) is defined to be the space consisting of those
functions in L?(f2) that, together with all their weak
partial derivatives up to and including those of order
m, belong to L?(Q2)

H™(Q) ={f:D*f € L*(Q) Ya s.t. |a|] <m}

See (Adams, 1975) for more general Sobolev Space
WmP(Q). H™(Q) is frequently used in applications
to boundary value problems, see e.g., (Reddy, 1997).
Define Sobolev semi-inner product (u, v),, which con-
sists of derivatives of order only m as

m! 0" u(x) " v(x)
Z arl- - ag! /Q(Ba:?l - Qxy? )(8x‘f‘1 - 0xy? Jdo

lee|=m

The induced Sobolev semi-norm, see e.g., (Berlinet
and Thomas-Agnan, 2003, Chapter 6), is

m! 6"" €T
J’r(i,(f) = Z\od:m al[...'ad[ fQ(axﬁl_J_C_(aazgd )de

Notice that J¢ (f) is used in thin plate splines on R?
as a regularizer, see e.g., (Wahba, 1990). In subspace
orthogonal to its null, J& (f) is a norm.

Denote by C* a function class whose derivatives up
to order k are continuous. Next theorem describes
an important relation between spaces H™(Q) and C*,
see e.g., (Adams, 1975). The theorem also provides a
direct solution to our SSL problem in high dimensions.

Theorem 1. (The Sobolev Embedding Theorem) Let
Q be a bounded domain in R with a Lipschitz bound-
ary 0. If m — % > k, then

H™(Q) — C*(Q)

where k is a nonnegative integer.
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By abuse of notation, we can also write H™(Q2) C
Ck(Q) for an intuitive understanding. Since H™(2) is
really equivalent classes of functions up to sets measure
of zero, the meaning of the embedding, or “C” has
to be clarified. H™(Q) — Ck(Q) means that each
u € H™(Q) can be modified on sets of zero measure to
get @ in such a way that @ € C*(Q), and ]l or @) <
c||ul| rm (), with ¢ being a constant.

Based on the Sobolev embedding theorem, the fol-
lowing theorem can be found in (Adams, 1975) and
(Berlinet and Thomas-Agnan, 2003, Appendix), which
connects space H™(R?) and an RKHS.

Theorem 2. H™(RY) is an RKHS iff 2m > d.

2.2 Iterative Laplacian Semi-Norm

Define the iterated Laplacian semi-norm as

1) = [ F@A @) 3)
Q
and its empirical version as

I o (f) = fFTL™f

where n means L is built on total n data points.
We show in next section that I,‘fln( f) converges to
I¢ (f) in probability for a smooth function f, either
on submanifolds without boundaries, or on subman-
ifolds with boundaries given proper boundary condi-
tions. Notice that since L is a real symmetric positive
semi-definite matrix, I?, , (f) is a semi-norm without
further conditions. The null space is spanned by the
first eigenvector since 0 = A; < Ay < --- < \,. How-
ever, we need proper boundary conditions for IZ (f) to
be a semi-norm when the boundary set is not empty.
Next lemma shows the conditions used in this paper
for I¢ (f) to be a semi-norm

Lemma 3. Given one of the following two conditions,

I&(f) = 0 and

fQ[A%f(l'_)]Qdﬂ?, even m

d _
1“”‘{LNWAéfmwmmmMm @

1. Submanifold Q has no boundary, i.e., 0Q = ()
2. V(AFf(z)) n=0forz€dQ, k=0,---,m—1

where n is the normal direction on the boundary and
AY is the identity operator.

Equation (4) follows from iterative applications of the
Green’s identity. In fact, I%(f) is closely related
to ng( f), which is used in thin plate splines, see
e.g., (Berlinet and Thomas-Agnan, 2003, Chapter 6),
(Wahba, 1990) and (Taylor, 1996).



Semi-supervised Learning by Higher Order Regularization

An alternative useful way of defining Sobolev space
H™(Q) is through Fourier basis, see e.g., (Taylor, 1996,
Chapter 4 and Chapter 5 App. A), which is not only
coordinate free, but also closely related to the iter-
ated Laplacian semi-norm. Let the i*" eigenvalue and
eigenfunction of the self-adjoint A be A; and ¢;(z).
Since the eigenfunctions ¢;(x) form an L?(Q) basis,

for a given f € L*(Q ) f e 1f1¢17f2 = (f, i) 2,

where (u,v)r2 = [, u(z)v(x)dz. For s > 0, define

D.={f € 1*9): Y ILPX <} (9)

then by (Taylor, 1996, Chapter 5 (A.18))
D, Cc H*(Q) (6)

The following relation is a key step for our analysis.

SO = / f@)A f(e)de = TE(F) (7)

1=1

I (f) is a semi-norm as shown in relation (7). The
null space is spanned by ¢; since only A; = 0. The
Sobolev embedding theorem, together with relations
(5), (6) and (7) imply that if we can bound semi-
norm I¢ (f) for 2m > d, function f will be continuous.
Particularly, the semi-normed space is an RKHS. This
provides a direct and simple solution to the degenerate
problem in (Nadler et al., 2009).

2.3 SSL by Iterated Laplacian

In problem (2), m = 1. In order to obtain a continuous
solution, we need & > 0 as in Ck. By the Sobolev
embedding theorem, we need 2m > d. Only d = 1
satisfies this inequality. This means problem (2) can
only have continuous solutions for d = 1, i.e., either
in R! or on 1-dimensional submanifolds embedded in
higher dimensions. This suggests that in order to find
a continuous solution, we need 2m > d. Therefore, we
propose the following optimization problem for SSL

min > (f(@s) = 9)* + pli 0 (f) (8)

3 Limit Analysis of Iterated Laplacian
Regularizer

In this section, by studying the limit of empirical it-
erated Laplacian regularizer f7L™ f, we show that it
is a good choice to implement the Sobolev semi-norm
of order m. We first assume the density is uniform for
simplicity, then discuss the nonuniform density case.
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3.1 Uniform Density

Theorem 4. Let Q be a compact connected d-
dimensional submanifold of RN without boundary, d <
N, data points x1,--- ,x, be drawn uniformly on €,
and m be a positive integer. Assume f(x) € C*™,
Vol(Q) = 1, then fort, = n~ T where a > 0, as
n — 0o we have

1 1

ﬁ( d/2+1) fTme

/Q @) A™ f(x)dz = T4 (f)
(9)

where t,, is the bandwidth of a Gaussian weight func-
tion, n = 4+ u, is the total number of data points.

Proof. We write Lf(x) to mean the value at point
after applying discrete Laplacian to vector f. Based
on the convergence of graph Laplacian from (Belkin
and Niyogi, 2008, Theorem 3.1), for a fixed f and =z,
as n — 00, we have

1
WLJC(@ — Af(x)

which implies for any z € )

1@)—zr 1) - F(@)AS @)

Since Lf can be seen as another vector, and L(Lf)
is just the application of operator L on Lf. When
f € C?™ by law of large number, we have

%(%)mld W(f) = %(W)meme
— fQ x)A™ f(x)dz = I, (f)
O

Therefore, when 2m > d, theorem (1) guarantees that
regularizer I¢ (f) is enough to restrict solutions to be
continuous. By controlling m, we can even obtain C*
solutions with & > 0.

In the case of a uniform density, square loss with regu-
larizer I¢ (f) on circles or other 1-dimensional domains
without boundary is just thin place splines. However,
for m > 2, As shown in theorem (4), regularizer I (f)
is different from regularizer J¢ (f) used in thin plate
splines. Particularly, the null space of I% (f) for graph
Laplacians is spanned only by ¢1(z), while the null of
semi-norm J¢ (f) consists of polynomials of degree less
than m. In thin plate splines, 2m > d is also required
in order to obtain continuous solutions (Wahba, 1990).

When € has a smooth boundary, the limit of I, ,,(f) is
the same given proper boundary conditions. Since the
technical details are beyond the scope of this paper,
we leave a complete analysis for the future.
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3.2 Nonuniform Density

For a nonuniform bounded density, we can similarly
obtain the limit by the convergence of graph Lapla-
cians with nonuniform density (Hein, 2005, Chapter
2). The only difference is that we have weighted Lapla-
cians (Grigor’yan, 2006), instead of regular Laplacians.
For example, consider the unnormalized graph Lapla-
cian of the form L = D — W for simplicity. We can
rewrite fTL™f as

(LENHTLES),
(

On submanifolds without boundaries or submanifolds
with boundaries with proper boundary conditions for
f, as long as Lf(z) is well defined for sufficiently
smooth f, we can find L™ f(z) = L[L™~V f(x)] it-
eratively and find the limit accordingly. By plugging
in the weighted Laplacian for the limit of L (Belkin
and Niyogi, 2008), we can obtain a similar result as
Theorem (4) using weighted Laplacians.

for even m
[y = {
)T L(

), foroddm

For weighted Laplacians, the highest order differen-
tial operator is always the regular Laplacian, therefore
the limit of the iterated weighted Laplacian contains
I2 (f). This means for arbitrary bounded and smooth
density, the iterated Laplacian regularizer can also re-
strict solution space to be an RKHS when 2m > d.

4 Graph Laplacian, the Green’s
Function and Reproducing Kernel

There is a close relation between Green’s functions
and reproducing kernels, see e.g., (Wahba, 1990) and
(Ramsay and Silverman, 1997, Chapter 20), which can
be related by graph Laplacians. From partial dif-
ferential equations (PDE’s) point of view, solutions
to PDE’s can be written as a linear combination of
Green’s functions centered at labeled points. From
RKHS view, the minimizer can also be written as a
linear combination of kernels at labeled points.

4.1 Green’s Functions

The Green’s function G(x,y) for A is a function of x
such that
AG(z,y) = 6(z —y) (10)

with proper boundary conditions. One way to obtain
the Green’s function is via eigenfunction expansion,

see e.g., (Roach, 1982). When Vi, \; # 0,

G(Z‘,y) =

One potential difficulty is that for the Neumann eigen-
value, we have \; = 0. This is the case for graph

Pi(z)pi
Y | el
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pseudoinverse! of matrix L, ie., K =

Laplacians and their limit operators. Then G(z,y) is
not well defined. In order to solve this problem, we de-
fine Sy as a space spanned by ¢1, while S as a space
of all functions orthogonal to Sp. In S; our Neumann
Green’s function is

G(;v,y) =

By eigenfunction expansion, we can also find the
Green’s function for A™ by using A}, since A™ is self-
adjoint. Solutions to problem (1) then can be written
as f(z) = >, ex, @G (zi, x)+c, where ¢ is a constant.
It can be shown when d > 1, we have G(x,z) — oo,
and Vi, a; — 0 in the limit of infinite unlabeled points,
meaning the solution degenerates to constant c¢. This
explains the degenerate solution problem in (Nadler
et al., 2009) from another point of view.

ZOO ¢1($)¢1(U)

1=2

4.2 Reproducing Property of the Green’s

Function
Consider semi-inner product (u(x),v(z)); =
Jo Vu(z) - Vu(z)de. Note that in the subspace

orthogonal to its null, this is an inner product, with
induced norm ||f(z ||1 = JoIVf(2)]Pdz. In S, the
Green’s function G(z,t) has the reproducing property,
as the following

<f() G 1= Jo V(1) VG(t x)dt
= Jo f( AG (t,z)dt + $,, f(£)VaG(t, z)dt
= Jo f(#)-0(t —z)dt = f(x)

The boundary integral vanishes as a result of the
empty boundary set or the Neumann boundary con-
dition. When G(z,z) < C < oo, the evaluation func-
tionals are bounded by Cauchy-Schwarz inequality,

[f (@) < NGC2)Lfl = VG, @)l fll

This means G(z,t) is a reproducing kernel for the
RKHS with norm || - ||;. However, when G(z,x) — oo,
the corresponding normed space is not an RKHS. The
boundary condition here makes sure the inner product
and its induced norm are properly defined.

4.3 Finite Dimension Spaces

In finite data cases, we always have an RKHS since
any finite dimensional Hilbert space is an RKHS, see
e.g., (Berlinet and Thomas-Agnan, 2003). This means
the discrete Green’s function is the same as reproduc-
ing kernel in the subspace orthogonal to its null. Let
the kernel matrix be K and discrete Green’s function
matrix be G, then for semi-norm f7Lf, the reproduc-
ing kernel in the subspace orthogonal to its null is the
LT (Berlinet

!Notice that the exact kernel for the semi-norm includes
another kernel in its null space.
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Figure 1: The Green’s functions at (—2,—1.8) for a
mixture of two Gaussians.

and Thomas-Agnan, 2003, Chapter 6). The discrete
Green’s function should satisfy GL = I and LG = I,
which implies that G = LT. This is also true for sym-
metric semi-definite matrix L™. We can write both
discrete Green’s function and reproducing kernel for
L™ by eigenfunction expansion as

Gm(x,y) = Km(x,y) — (Lm)+ x,y)
= Yoz gom k(@)9x(y) (11)

where A\, and ¢y () are the k' eigenvalue and eigen-
vector of L. ¢ (x) means the = element of vector ¢.
We can see that for a positive integer m, the smaller Ax
is (compared to A, ), the larger 1/A7* will be (compared
to 1/A}'). This means G, (w,y) will become smoother
and smoother as m increases, since for graph Lapla-
cians, the smaller )\ is, the smoother the associated
eigenvector is, and Ax are in increasing order.

In Figure (1), we show the discrete Green’s function
corresponding to L™ for two Gaussians with unit vari-
ance in R2. In order to bound density away from 0,
we use a mixture of uniform with weight 0.2 and two
well separated Gaussians with equal weight over R2,
whose means are (+1.5,0). We choose bandwidth ¢ for
Gaussian weight of order n~1/(4+2) (Belkin and Niyogi,
2008). As shown in Figure (1), when m increases, the
Green’s function or reproducing kernel “grows” from
“spikes” to smooth functions?. From the contour plot,
even the location of the kernel is not near the means of
the Gaussians, when m increases, the kernel function
recovers the true boundary of the two Gaussians. In
fact, as long as the centers of kernel functions are in rel-
atively high density regions of the Gaussians, a proper
m value will produce a kernel function which changes

2As we increase dimension d, the kernel will become a
much sharper “spike” for m = 1.
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little within those regions. This is exactly the basis for
several graph Laplacian based SSL algorithms.

5 Experiments

In this section, we test the iterated graph Laplacian
regularization method on a mixture of Gaussians and
several real world datasets. We consider a transductive
setting. The solution of problem (8) then becomes

f=(S+pLm)tsy (12)

where Y is a column vector with Y (i) = y; for z; € Xp,
and Y (i) =0 for x; € Xy, S = diag(1,---,1,0,---,0)
with the first [ diagonal entries as 1 and the rest 0. Pa-
rameter ¢ for the Gaussian weight and p are common
for most graph Laplacian based learning algorithms,
while m controls the spectra transform. We test it-
erated Laplacian semi-norms with the following four
empirical Laplacian matrices

L, =D-W

Ly, =D 3LD :=1-D:WD"3

L, =D 'L=I-D'W=I-P

Ly, =1- D;lwg

where L, is the unnormalized graph Laplacian, Ly the
symmetric normalized Laplacian, L, the random walk
Laplacian, P the probability transition matrix on the
same graph, and we call L, the geometry Laplacian
with W, = D™'WD~!, D, being the corresponding
degree diagonal matrix Dg(i,i) = >, Wy(i,j). The
limit operator of L, is density independent (Coifman
and Lafon, 2006).

One key difference between different versions of graph
Laplacians is the density term hidden inside the limit
operators when the density is not uniform. For in-
stance, given a smooth function f(x), L,f(x) —
Af@) = Af(@) — -2:(Vp(@),Vf(a)) when o €
/0. However, for our regularizer fTLf, there is
another density term coming from the integration.
For example, L,f(z) — Af(x), which has no den-
sity drifting term. This means this operator cap-
tures only the geometry of the submanifold. How-
ever, fTLyf — [, f(@)Af(z)p(z)dx, which does have
a density weight. Similarly, this problem also hap-
pens to inner product between eigenvectors of Lapla-
cian. By using different parameters in normalizing the
Laplacian, see (Hein, 2005; Coifman and Lafon, 2006),
we can control the density term in the limit operator.

5.1 Mixture of Two Gaussians

We first test iterated Laplacians on a mixture of two
Gaussians in R?%, using normalized Laplacian L,. We
first generate two Gaussians in R?° with oy = 05 = 1
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Figure 2: f(z) with different m on two Gaussians.

and g1 = po = 0, and then shift their means of the
first dimension to pu; = —1.5 and py = 1.5. Complete
graphs with Gaussian weight are used with ¢t = 20. We
use one labeled point for each class, the left Gaussian
being +1 (z1 < 0) while the right one being —1 (21 >
0), and |Xy| = 600 with balanced splits.

In Figure (2), we plot the estimated function by equa-
tion (12), with x4 = 10~%. Points in R?° are projected
to the first dimension as x axis, with means at £1.5,
and y axis shows the estimator f . When m = 1, this
is the ordinary Laplacian regularization method. We
can easily see the two problems discussed in (Nadler
et al., 2009), numerical instability and flat solutions.
The whole solution shifts to the positive (or the nega-
tive side), which causes solutions to be unstable. Par-
ticularly in SSL, a small amount of random labeled
examples can easily offset the whole solution to one
side of x axis, even with a balanced class distribution.
Moreover, differences between function values (y axis)
of two classes are relatively small. Iterated Laplacians
solve the two problems with a proper m. As m in-
creases, we can see that sign(f) recovers the true la-
bels. First, it shifts solutions to the natural thresh-
old zero as m increases, which makes solutions stable.
Second, it increases the mean difference between the
estimations on the two Gaussians.

5.2 Real World Data Sets

We test the iterated Laplacian method on high dimen-
sional images, text, and gene data sets using symmet-
ric normalized graph Laplacian L,. Since we only fo-
cus on binary classification, we select 3vs8 and 4vs9
in MNIST. Standard binary text data includes aut-
avn, real-sim, pcmac, ccat, gcat, and binary gene data
sets are prostate cancer data (Gene-P) and breast can-
cer data (Gene-B) used in (Pochet et al., 2004)3. We

3Prostate cancer dataset (Singh) and Breast cancer
dataset (van’t Veer).
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Table 1: Classification errors % with std for m = 1
and adaptive m.

DATA SET m=1 ITERLAP m

MNIST 3vs8 7.5 £ 1.5 6.2 +£1.9 6.5

MNIST 4vs9 12.2+ 2.9 8.4 + 2.8 5.4
PCMAC 16.6+ 2.4 12.5+ 2.2 5.0
AUT-AVN 13.7+ 2.6 11.0+ 2.1 4.8
REAL-SIM 9.4 + 3.3 6.2 £ 1.1 5.3
CCAT 24.0+ 2.8 22.1+ 3.1 5.6
GCAT 13.1£ 1.5 12.7£ 2.0 4.2
GENE-P 39.3+ 9.1 29.7+ 9.5 10.3
GENE-B 45.3+ 7.3 41.9+ 7.7 10.0

divide each data set into three disjoint subsets, la-
beled set X, unlabeled set Xy and validation set Xy, .
|X| = 1000, |Xv| = |XL| = 50 for MNIST 3vs8, 4vs9,
pcmagc, aut-avn, real-sim, ccat, gcat data sets, while
Gene-P only has 136 data points and Gene-B has 97
points, so |X| = |Xv| = 10. We use simple settings
for this experiment to emphasize the influence of iter-
ated Laplacian semi-norm of order m. We use KNN
graphs with & = 20, and w;; = 1 if point x; and z;
are neighbors, otherwise w;; = 0, 4 = 0.001 *. The
best m is selected among {1,2,4,8,16} by validation
on Xy. We run 100 random splits, and report the
mean and standard deviation of classification errors
and the average of the chosen m in Table (1). The
iterated Laplacian method improves results across all
datasets. Similar results hold for most reasonable pa-
rameters and graph settings. Results of different m
correspond to the same random split.

We also compare the results between the base case
m = 1 with other fixed m, while the left parameters
are chosen by validation. Results are shown in Table
(2) for m = 4. Before m becomes too large, causing
numerical issues, almost all m > 2 perform better than
m = 1. We can see that for a fixed m, iterated Lapla-
cian regularization also consistently outperforms base
case m = 1. This is not surprising considering the
influence of m to solutions presented in Figure (2).
From the Sobolev embedding theorem, increasing m
restricts solution space to be a smoother space, and
from kernel point of view, increasing m corresponds to
a better density adaptive kernel.

We also test the iterated Laplacian method on the
binary classification bench mark in (Chapelle et al.,
2006), using all four versions of empirical Laplacians.
We add €||f||?> to problem (8) to make the results
comparable to (Chapelle et al., 2006, Chapter 11).
The only difference is that we use an iterated Lapla-
cian. Since the iterated Laplacian method can shift the

threshold to zero, we did not use class mass normaliza-

4We test several other parameter settings, and the con-
clusions are similar.
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Table 2: Classification errors % with std for m = 1
and m = 4.

DATA SET m=1 m=4

MNIST 3vs8 7.5 £ 1.5 5.6 £ 1.3
MNIST 4vs9 12.2+ 2.9 8.0 £ 2.6
PCMAC 16.6+ 2.4 11.5+£ 1.4
AUT-AVN 13.7+ 2.6 10.1£ 1.3
REAL-SIM 9.4 + 3.3 5.8 £ 0.8
CCAT 24.0+ 2.8 21.54+ 2.8
GCAT 13.1£ 1.5 12.0+ 1.3
GENE-P 39.3+ 9.1 29.0+ 8.9
GENE-B 45.3+ 7.3 41.9+ 9.2

tion (CMN). Following the setting of (Chapelle et al.,
2006, Chapter 21), the best test error among four
Laplacians is reported in Table(3), where “LapRLS” is
Laplacian regularized least squares in (Chapelle et al.,
2006, Chapter 12), and “Best” is the best result in
(Chapelle et al., 2006, Chapter 21) among 13 different
algorithms.

First, iterated Laplacians give large improvement com-
pared to the base algorithm m = 1 (QC+CMN) on
almost all datasets. The improvement is even larger
compared to the base case without CMN. Second, re-
sults of iterated Laplacian method are also very com-
petitive compared to other Laplacian related methods
or even the best results, particularly on image and
Gaussian datasets. Iterated Laplacian method per-
forms relatively worse on Text, which is probably be-
cause complete graph is not a good choice for text
data.

Notice that when we add €||f]|*> with e > 0 to the
minimization objective of problem (8), the degenerate
problem still exists since this normed space is L%(),
which is already included in H'(£2). The solution be-
comes f = (S + puL™ + eI)~1SY. The effect of € is to
shift the spectra from Ap to Ax + €. From results in
Table (3), we can also see that the density independent
version of Laplacian Lg4, in fact gives good results in
practice. Although the limit of L, f(x) is independent
of the underlying density, regularizer fTL;” f does de-
pend on the density.

6 Discussion

There can be several variants of the iterated Laplacian
regularizer besides the power of L. For example, we
can add an RKHS norm to complete the semi-norm
to a norm of the form || f[|3,, + puf"L™f as in mani-
fold regularization (Belkin et al., 2006). Other possible
variants are fTe tL f. or S, i LF, such that py, > 0
and > pr = 1. Another interesting way is to use the
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Table 3: Classification errors % for SSL Benchmark.

QC+CMN LapRLS Best IterLap
[ Xz =10
g241c 39.96 43.95 22.76 18.01 (L)
g241d 46.55 45.68 18.64 20.99 (L,)
Digit1 9.80 5.44 5.44 6.54 (Lg
USPS 13.61 18.99  13.61 13.10 (L)
BCI 50.36 48.97  46.90 46.71 (L,,)
Text 40.79 33.68  27.15 38.84 (L,)
X, | = 100
g241c 22.05 24.36 13.49  14.82(L,)
g241d 28.20 2646 4.95  10.55(L,)
Digit1 3.15 292 244 222(L,)
USPS 6.36 4.68 4.68 3.96(Ly)
BCI 46.22 31.36 31.36  43.78(Ls)
Text 25.71 2357  23.09 25.77(L,)

linear combination of the pseudo-inverse of L as in
multiple kernel learning (Argyriou et al., 2006).

Notice that the iterated Laplacian is not p-Laplacian
as discussed in (Chapelle et al., 2006, Chapter 13),
which is defined as

Apf = —5div(|[Vf[[P2V )

which is a second order partial differential operator no
matter what value p is.

Compared to the thin plate splines using J< (f)
(Wahba, 1990), we can view iterated Laplacian reg-
ularization as a generalization of the thin plate splines
from regular domains to unknown submanifolds, from
a coordinate dependent Sobolev semi-norm defined by
partial derivatives to a coordinate free iterated Lapla-
cian semi-norm using Laplacians, from fixed data in-
dependent reproducing kernels to data dependent ker-
nels. One key difference is the null space between the
two methods. The null space of fTL™f is spanned
only by the first eigenvector, while in thin plate splines
the null space is spanned by polynomials of high de-
grees, whose dimension increases fast as d and m in-
crease.

Finally, the choice of m is important in practice. How-
ever, it is still unclear to us how to choose a good m
other than validation.
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