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Trajectory clustering is a novel and statistically well-founded method for clustering time series 
data from gene expression arrays.  Trajectory clustering uses non-parametric statistics and is 
hence not sensitive to the particular distributions underlying gene expression data.  Each 
cluster is clearly defined in terms of direction of change of expression for successive time 
points (its 'trajectory'), and therefore has easily appreciated biological meaning.   Applying the 
method to a dataset from mouse mammary gland development, we demonstrate that it produces 
different clusters than Hierarchical, K-means, and Jackknife clustering methods, even when 
those methods are applied to differences between successive time points.  Compared to all of 
the other methods, trajectory clustering was better able to match a manual clustering by a 
domain expert, and was better able to cluster groups of genes with known related functions.    

1   Introduction 
 
Clustering is one of the most widely used approaches for analysis of genome-wide 
expression data.  All clustering methods make assumptions about the nature of the 
items clustered and the definition of "similarity" among those items.  For example, 
the popular K-means clustering method assumes that items to be clustered can be 
described by values drawn from K univariate Normal distributions.  When the 
assumptions underlying a clustering method are violated, that method is unlikely to 
produce clusterings that reflect the true underlying groupings of the data.  In 
addition to their distributional assumptions, K-means and other widely used 
clustering methods are not specifically able to take into account the relationship 
among adjacent points in a time series.  

In this paper, we introduce "trajectory clustering," a non-parametric method of 
clustering gene expression data from time course experiments.  No assumptions 
about the distributional nature of gene expression levels are required, nor are 
uniformly spaced time points or any assumptions about the behavior of expression 
between time points.   Furthermore, the method itself involves no free parameters 
(such as the K in K-means) which must be estimated separately.  The trajectories 
used in our clustering method are defined by the direction of change between 
adjacent time points in a series.  The direction of change can take on one of three 

  



possible values: increasing, decreasing or flat.  For a time series containing N time 
points, there are N-1 changes, and 3N-1 possible trajectories.  

We apply trajectory clustering to a dataset from mouse mammary gland 
development, and show that the trajectory clusters correspond better to a manually 
derived expert clustering, and group genes with known biological function more 
accurately than two other popular clustering methods, Hierarchical and K-means.  
Data was acquired by Affymetrix oligonucleotide-based microarray data showing 
secretory activation in the mouse mammary gland.  Secretory activation is a 
unidirectional process that takes place with high temporal coherence during the 
physiological transition from pregnancy to lactation (Neville et al, 2002).  Many of 
the biochemical events in this process have been studied extensively for more than 
three decades (Wilde et al. 1986; Mellenberger and Bauman, 1974; Kuhn, 1968), 
and it is clear that many of the changes are transcriptionally regulated (Rosen et al. 
1999).   However, the molecular mechanisms that regulate and coordinate these 
changes in vivo are not well understood.  Because the process is complex, the most 
efficient way to approach the problem is to begin with a global analysis of gene 
expression prior to, during and subsequent to secretory activation.  

2   Methods 

2.1  Acquisition of time course data from mice 

Five time points were collected between day 12 of pregnancy and day 9 of lactation, 
with 4 replicates at each data point.  Four FVB mice were sacrificed for each of the 
time points investigated (P12, P17, Lac1, Lac2, and Lac9).  Both fourth mammary 
glands were removed from each animal and the imbedded lymph nodes excised.  
The mammary tissue was stored in RNAlater stabilization buffer (Qiagen, Valencia, 
CA) at -20 oC according to protocol.  Total RNA was isolated and purified from 
each sample following the Qiagen RNA extraction/clean-up protocol.  Using a 
spectrophotometer and the RNA 6000 Nano Assay (Agilent Technologies, Palo 
Alto, CA), purity, concentration and integrity of the total RNA was verified.  If the 
samples qualified, the RNA was amplified, labeled, and fragmented following the 
2002 protocol for eukaryotic target preparation (Affymetrix, Santa Clara, CA).  The 
labeled and fragmented cRNA products of the Affymetrix protocol were again 
verified for sample integrity and concentration using RNA 6000 Nano Assay.  
Accepted samples were hybridized to Affymetrix Mu74Av2 microarray chips.  Raw 
data were gathered from scanned array chips using Affymetrix Microarray Suite 
version 5.0.  All animal procedures were approved by the Institutional Animal Care 
and Use Committee of the University of Colorado Health Sciences Center. 

  



2.2  Computational analysis 

We describe our computational approach in three phases.  First, we describe how 
we selected portions of the raw data for further analysis.   Then, we describe the 
details of the trajectory clustering algorithm itself.  Finally, we describe the 
processes by which we evaluated the method and compared it to other approaches.  
All original algorithms were implemented in Matlab v6.1.R12 (MathWorks Inc); 
others were either implemented in Matlab or were  from the GeneSpring (Silicon 
Genetics, Inc.) expression array analysis toolkit.  

2.2.1  Identifying genes with significant changes during the time course 

Many mammary genes are not related to secretory activation, and therefore most 
genes' expression will not change significantly over the course of this experiment.   
Before analyzing the genes putatively related to secretory activation, we applied 
three computational methods to filter out genes which did not vary significantly 
during the course of the experiment.    

The first filter (Hogg & Craig, 1978, p175) identifies genes with at least 
moderate variance over the entire experiment; genes which do not vary at all are not 
likely to be related to secretory activation.   Since we can assume that most genes 
are not related to activation, then the gene with the median variance is a reasonable 
model of null variation, that is, the variation due to factors other than secretory 
activation.    We calculate the variance s2  for each gene.   The null hypothesis is that 
these variances represent random and Normally distributed noise.  We can then 
compute the statistic W=(N-1)s2/median(s2) where N is the number of observations 
of the gene, which is approximately chi-square distributed with N-1 degree of 
freedom.  We calculate a p value for rejecting the null hypothesis that the gene did 
not vary, and perform the False Discovery Rate (FDR) multiple testing correction, 
(Benjamini et al, 1995) setting the false discovery rate to be 10%.  This results in a 
list of genes with significantly greater variation than the median variation gene, with 
at most 10% of that list including genes having true variation less than or equal to 
median variation.  

Our second filter uses Affymetrix's  mRNA detection call to exclude all  genes 
with an Absolute Call of "Absent" in all experiments.  The third filter is used to test 
the consistency of the gene across replicates of a particular time point.  Genes 
whose within-replicate coefficient of variation was greater than 0.03 were removed.  
These preprocessing steps screen out genes with low variance, low mRNA levels, 
and inconsistent expression measurements.   

The final preclustering step is to apply the non-parametric Kruskal-Wallis 
statistic to  select genes whose expression levels are significantly different between 
at least two time points.  Kruskal-Wallis is the non-parametric equivalent of an 

  



ANOVA test.  We then again perform the False Discovery Rate test for multiple 
comparison correction  for  these genes, setting FDR to 0.015.  The initial filtering 
steps greatly reduce the number of genes tested, and hence reduce the penalty in 
statistical power incurred by this correction.  

2.2.2  The Trajectory Clustering algorithm.   

Trajectories are defined to be a sequence of length T-1, where T is the number of 
time points, and each element of the sequence is either I (increase), D (decrease), or 
F (flat).  For example, all the genes whose expression decreased at each point in a 
four measurement series would be assigned to cluster DDD.  Given a list of genes 
which varied significantly across at least two time points, the goal of the clustering 
algorithm is to assign each of these genes to a particular trajectory.  Because the 
Kruskal-Wallis test requires at least one significant difference, no gene should ever 
be assigned to the sequence of all flat (FFFF).  

When the Kruskal-Wallis test identifies a significant difference between an 
adjacent pair of points, the assignment of the gene to the I or D trajectory is trivially 
based on the sign of the difference.   However, it is possible that a significant 
difference is found between expression levels that are not adjacent, yet none of the 
adjacent pairs themselves are found to be significantly different.  For example, the 
expression of a gene at time point 3 may be significantly greater than at time point 
1, yet there may not be a significant difference between the expression levels at time 
points 1 and 2, nor between the expression levels at time points 2 and 3.  The 
challenge in this situation is to determine whether to assign this gene to the II 
trajectory, the FI trajectory or the IF trajectory.  

We will first present a solution to this problem in the three point case, and then 
generalize it to N points.  Let Tij represent the interval between time points i and j.  
The nontrivial case arises when T13 is significant, but not  T12 or T23.   It is possible 
that T12 and T23 contribute equally to the difference in T13, or the difference might 
be heavily weighted toward T12 or T23.  We discriminate between these possibilities 
as follows.  For each of these genes, we sort the expression levels and assign a rank 
to each measurement, then calculate the mean rank difference Ci,j,k,l =  |Ri-Rj| - |Rk-
Rl| for the transitions from i to j and k to l,  where the Rs are the average rank of the 
expression level at a particular time point (over all replicates).  By assumption, the 
difference between points i and l is statistically significant, but the differences 
between i and j and between k and l are not.  The C value is a non-parametric 
measure of the relative contribution of the two transitions to the difference between 
the first and last point.  A large positive C value means the first transition made 
more of a contribution to the total difference than the second transition, and 
therefore that we should assign that gene to the (I or D)F  trajectory depending on 
the sign of the overall difference. A large negative value implies an F(I or D) 

  



trajectory, and a value near zero means that the relative contributions are similar and 
the trajectory should be either II or DD.  In the three time point example above, we 
are interested in C1,2,2,3.     

for i = number of time points down to 3 
  row = 1; col = i; 
  for 1:length of diag of Matrix(i-1)   
   if Hrow,col == 1 
    if Crow,col-1,row+1,col >> 0    
     Hrow,col-1 = 1 
     if Hrow+1,col != 1;     
      Hrow+1,col = 0; 
     end 
    elseif Crow,col-1,row+1,col  << 0 
     if Hrow,col-1  != 1 
      Hrow,col-1   = 0 
     end 
     Hrow+1,col = 1; 
    elseif Crow,col-1,row+1,col    ~= 0 
     Hrow,col-1 = 1 and Hrow+1,col  = 1; 
    end 
   end 
   row = row + 1; 
   col = col + 1; 
  end 
 end 

Figure 1 Pseudocode for iterative clustering of more than 3 time points. diag(i) is 
the ith diagonal of the matrix counting from the main diagonal; it is  equivalent to 
Matlab's diag function.  

All that remains is to determine where the cutoff should be for being "near" 
zero.  Since there are many orderings in which both mean ranks are the same, many 
Ci,j,k,ls will be exactly zero.  However, we might also reasonably treat small 
differences in average rank by assuming that the relative contributions are similar.  
We used an ad hoc, percentile-based cutoff C*, calling the top C* percentile of the 
negative differences, and the bottom C* percentile of the positive differences to be 
near zero. In this dataset, the clustering is not very sensitive to the particular choice 
of C*.  We chose C* to allow average rank differences of <= 1 to count as near 
zero.  Any C* between 26 and 31 achieved this for most of the clusters, so we 
selected C*=30 for the analysis below.  If the distribution of C scores were known, 
a statistically sound cutoff could be specified, but that is currently an open problem. 
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Figure 2 Recursive expansion of the three point case, starting with the final time 
point (see pseudocode in Figure 1) and executing along successive diagonals.  
Diag(x) represents the values in x's diagonal, shown by the dashed-boxes.   The last 
diagonal is translated to the a trajectory by sign. 

The above approach can be generalized to more than three time points.  We 
initialize an upper diagonal matrix H with bits set to one based on the significance 
tests, i.e.  Hij = 1 if the null hypothesis was rejected for Tij, and 0 otherwise.  We 
work three points at a time, starting with the final time point and executing along 
successive diagonals. Additional bits are set to 1 based on the following process.  At 
the end of the process, the last diagonal of the H matrix can be straightforwardly 
translated to a particular trajectory, substituting F for 0s and either I or D for 1s, 
depending on the sign of the difference.   Figures 1 (pseudocode) and 2 describe the 
process in detail.  

2.3  Manual  clustering  

One of the authors [Neville] has long experience in secretory activation, and 
performed an ad hoc, semi-manual clutering of the genes, using tools available in 
GeneSpring (Silicon Genetics, www.sigenetics.com) and her extensive knowledge 
of the biology of secretory activation.  The ad hoc method required direct user 
interaction and took many hours to complete, and relied on a variety of unsupported 
assumptions. The procedure was as follows. Beginning with the same list of genes 
that varied significantly over at least one pair of time points, each pair of adjacent 
time points was tested for differences using the Mann-Whitney U test (which is 
equivalent to the Kruskal-Wallis test when there are only two conditions) with a 
critical level of P< 0.05.   These were assigned to the I or D trajectory using the fold 
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change filter with the fold difference set at 1.1. All genes that did not fit this 
criterion were initially assigned to the F trajectory.   These cutoffs were set to 
coincide with intuition for a subset of the important genes which we examined 
manually.  The one interval sets were combined into 81 preliminary classes 
reflecting the patterns of expression over the four intervals in the dataset. 

Classes containing two or more flat sets in a row (e.g. DDFF, IFFD, IFFF, 
FFFF) were further examined to determine whether there was a statistically 
significant change over two or more consecutive intervals. For each FF class an 
initial sort was made into genes that changed or remained flat over two intervals 
using the Mann-Whitney test as describe above.   For FFF or FFFF classes the genes 
were initially examined in sets of FF classes.  Those that showed no significant 
change were examined by eye over 4 or 5 time points.   A significant change was 
seen in about 200 genes in classes containing the FF, FFF and FFFF patterns, about 
half the genes in FF and FFF trajectories and all the genes in the FFFF trajectories 
as predicted.  

As with the automated method, the hardest problem is to apportion the changes 
in these genes over the two, three, or four intervals over which a significant change 
was noted.  To do this each of the intervening adjacent pairs was tested using a 
Welsh t-test with a critical value of 0.20.  Again, this particular value was selected 
because it agreed with the expert's intuitions about the assignments; also note that 
the Normality assumptions underlying this test are not valid for this data.  Adjacent 
pairs which were different under this test we assigned to either I or D, all others 
were left as F.  

2.4  Other clustering techniques 

For comparison to more established techniques, hierarchical and K-mean clustering 
were used to cluster our time series data.  In hierarchical clustering (Eisen MB et al. 
1998), two types of similarity metric were calculated; Euclidean distance and 
jackknife correlation (Heyer LJ, et al. 1999).  A complete-linkage hierarchical 
clustering was used for the purpose of computing a dendrogram that represent all 
elements into a single tree.  We used Matlab's "cluster" function to draw a 
horizontal line on the dendrogram tree,  and produced the user defined number of 
clusters.  We divided the hierarchical tree into 20 and 9 clusters, to obtain results 
comparable to the trajectory method (see results).  In addition, K means clustering 
(Tavazole, S. et al, 1999) is designed to partition the data into K groups by 
minimizing the within-group sum-of-squares.  We used the K means algorithm in 
GeneSpring with Pearson correlation to partition the genes into 20 and 9 clusters.   

 

  



 

Figure 3 Clusters produced by automatic trajectory clustering for secretory 
activation in the mammary gland.  Four replicates at each of five time points, 
Pregnancy days 12 and 17 and lactation days 1, 2 and 9, are represenedt in each 
plot.  Intensities were normalized to the median for each gene and plotted on a log 
scale. 

3 Results 
3.1  Significantly varying genes and their trajectory clusters. 

The preprocessing and Kruskal-Wallis test  resulted in 1358 genes with at least one 
significant difference (with FDR=0.015, so approximately 20 of these are likely 
false positives).  There are 4 intervals between the points and therefore the potential 
to generate 34=81 trajectories (actually 80, since FFFF cannot be occupied with this 
method).  Figure 3 shows the 72 populated clusters, identifying the trajectory and 
the number of genes in the cluster; 20 of these were occupied by 20 or more genes.  

  



These  20 large clusters contained  975 (or 72%) of the total genes.  We therefore 
used 20 as the target for K means and hierarchical clustering. 
 

Number of interval Number of manual Other cluster Number of other Percent of other Discrimination 
 Cluster  Cluster Cluster to manual index 
        Cluster  
      
4 73 TC 72 55.1 0.80 
4 20 TC 20 61.0 0.75 
2 9 TC 9 77.4 0.56 
4 20 KM 20 41.0 0.78 
2 9 KM 9 28.6 0.59 
4 20 JK 20 39.4 0.59 
2 9 JK 9 30.0 0.34 

      
Using mean difference values     
      

4 20 KM 20 34.6 0.47 
2 9 KM 9 32.9 0.42 
4 20 JK 20 26.9 0.57 
2 9 JK 9 43.9 0.48 

Table 1 Clustering quality measures (see text). TC is trajectory clustering, KM is 
K-means and JK is hierarchical jackknife. 

 

3.2  Comparison with manual trajectory clustering.   

Manual clustering resulted in 73 clusters which in general overlapped the results of 
the automated algorithm, particularly in the twenty large clusters.  Table 1 shows 
the degree of overlap between each of the clustering methods and the manual 
method. In mouse mammary gland secretory activation studies, the two middle 
intervals (P17-Lac1-Lac2) showed the greatest number of significant changes, we 
therefore also combined clusters that had the same trajectories for these two central 
transitions, creating 9 clusters.  In this latter analysis 77.4% of the genes mapped to 
the same cluster in the automatic and manual methods (Table 1).  Furthermore, 
inspection suggested that genes that.differed between the automatic and manual 
methods diverged only slightly in assigned trajectories, and then only when the 
difference between two time points was small relative to the variance of the time 
points. 

3.3  Comparison with other clustering methods. 

The same mapping approach was used to compare 20 and 9 clusters from K-Means 
and hierarchical jackknife methods to the manual clusterings.  We matched each K-

  



means and hierarchical cluster to the manual cluster that had the most genes in 
common, without allowing multiple matches.  As seen in Table 1, 41% and 28.6% 
of the genes in the 20 and 9 K-Means clusters  mapped on to the most closely 
corresponding manual cluster.  Similarly, 39.4% and 30% of the 20 and 9 
hierarchical Jackknife clusters were mapped on to the manual clusters.  To ensure a 
fair comparison, we performed another set of K-Means and hierarchical Jackknife 
clusters using differences between adjacent time points rather than the raw values.  
The results show that 34.6% and 32.9% of 20 and 9 K-Means clusters, and 26.9% 
and 43.9% of hierarchical Jackknife clusters mapped on to the closest manual 
cluster.   

3.4  Separation of functional groups by trajectory clustering.   

Although trajectory clustering produces a statistically well-founded grouping that is 
much more similar to the ad hoc expert grouping than traditional methods, it is 
unclear how well the manual clustering represents biological reality.  To determine 
whether trajectory clustering could separate and/or identify biologically relevant 
genes we examined the genes associated with six functional classes known to be 
important in secretory activation (milk proteins, energy metabolism, fatty acid 
synthesis, cholesterol synthesis, adipocyte-specific and fatty acid degradation), and 
measured the purity of each cluster with respect to these classes. A discrimination 
index was calculated as follows.  For each cluster, consider each pair of functional 
groups A and B.  If the cluster contains only genes of one or the other functional 
group, the cluster gets a discrimination score of 1.  If the cluster contains both 
groups, it gets a score of 1 - {(GA + GB) / (TotA + TotB)}, where GA and GB are the 
number of genes of each functional type in the cluster and TotA and TotB are the 
total number of genes  in that functional group.  The discrimination score for the 
cluster is the mean score over all pairs of functions.  Table 1 shows the 
discrimination scores. Both automatic and manual trajectory clustering gave a 
discrimination index of 0.80 using the full number of clusters derived here.  All 
other methods gave lower discrimination scores, although the K-means method for 
20 clusters gave an index of 0.78 which is quite close.  

We also examined each of the genes with known function specifically in the 
trajectory clustering. With one exception milk genes clustered into related groups all 
beginning with I, indicating that they all increase significantly at the end of 
pregnancy.  All continued to increase in subsequent intervals falling into 4 related 
groups with slightly different patterns of expression.  The one gene that does not 
increase during pregnancy (clustered to FFIF 75) is PTHrP, a gene encoding a 
protein hormone involved in calcium regulation (Neville et al, 2002), which could 
be deleterious in the pregnant animal and may, therefore be differentially regulated.  
The genes of energy metabolism, with two exceptions, fell into downward going 

  



clusters, suggesting a relative fall in ATP generation in this tissue, which must 
devote most of its energy to synthetic reactions and transport.  Of greatest interest of 
the genes for fatty acid and cholesterol synthesis; both groups cluster predominantly 
to FIFF 75 and are, therefore, turned off during pregnancy, turning on immediately 
after birth of the pups, a point at which our histological studies show that secretion 
is activated (McManaman, J. and Neville, M.C., unpublished).  These genes are 
likely, therefore, to be coordinately regulated and indeed many in both classes are 
up-regulated by the transcription factor SREBP-1 (Horton, et al. 2002).  
Interestingly SREBP-1 itself falls into the cluster FFIF 75.  Genes that mediate fatty 
acid degradation, in general by the β-oxidation pathway were distributed among 
four clusters showing different butrelated patterns of decrease.   The mammary 
gland contains several different tissue compartments whose proportion changes with 
secretory development.  We know that the milk protein genes reflect the epithelial 
compartment and assume that the changes in the metabolic pathways illustrated also 
represent this compartment.  In order to evaluate changes in another tissue 
compartment, the adipose compartment which is quite prominent in the mammary 
gland, we examined the expression pattern of 5 adipose specific genes.  These genes 
cluster into 5 distinct clusters, which have in common a D in first interval, the 
interval that reflects late pregnancy.  We know from other studies (McManaman 
and Neville, unpublished) that a the relative proportion of adipose tissue declines 
steeply during pregnancy, with much small changes during lactation as reflected in 
the variation in the last three time intervals. We also examined two categories of 
genes known to decrease during secretory activation, adipocyte specific genes and 
genes that are involved in fatty acid degradation.  Both segregated into 
predominantly down-going clusters. 

4   Discussion 
Trajectory clustering is a non-parametric clustering method using only the direction 
of change between subsequent time points to group genes in time course study.  
Clustering using various ad hoc schemes to conform as closely as possible to expert 
intuition gave quite similar results to trajectory clustering, and rather different than 
the other methods.  More importantly, trajectory clustering also showed the ability 
to discriminate among genes in relevant functional categories better than the 
alternative methods.  

Trajectory clustering has a natural interpretation, unlike the other methods 
studied. In this case, where each interval studied represents a well-characterized and 
different process, linking gene change directions to each of these intervals facilitates  
interpretation.  For example, two important synthetic processes, milk protein 
synthesis, and lipid and sterol synthesis show distinct temporal activation.  Thus the 
synthesis of all but one of the proteins we have classified as milk proteins are turned 
on in late pregnancy; many of these (see group IFIF 48) do not change between late 

  



pregnancy and the first day after birth, increasing sharply on the second day of 
lactation.  Many of these molecules including β-casein, and whey acidic protein are 
known to be regulated by stat5, a mediator of prolactin signaling, whose mRNA and 
phosphorylation change little over the period of parturition (Rosen, et al. 1999).  On 
the other hand the genes that regulate lipid synthesis are known to be regulated by 
the transcription factor, SREBP-1.  A large proportion of these genes does not 
increase during pregnancy but are activated on the first day of lactation.  SREBP-1 
shows a similar pattern of activation, suggesting that its activation and up-regulation 
are needed to turn on lipid and cholesterol synthesis.   A number of other 
transcription factors are found in these two clusters, JunD1, Pou 11 and TCFL4 
(MCX) are located in IFIF whereas NFAT and Sox13 are found in FIFF.  These 
genes are candidates for further investigation. 

The spread of some classes of functionally related genes across similar clusters 
(e.g. FIFF and FIIF) suggests that collapsing some distinctions may be of biological 
value.   Certainly as the number of time points increases, the number of trajectories 
increases exponentially, and therefore some cluster combining is probably 
warranted.  Since each trajectory has a well defined relationship to all the others,  
we expect in future work to be able to identify a well-founded method for 
combining trajectory clusters as defined here.  
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