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The diagnosis and treatment of cancers, which rank among the leading causes of mortality in developed 
nations, presents substantial clinical challenges. The genetic and epigenetic heterogeneity of tumors can lead 
to differential response to therapy and gross disparities in patient outcomes, even for tumors originating from 
similar tissues. High-throughput DNA sequencing technologies hold promise to improve the diagnosis and 
treatment of cancers through efficient and economical profiling of complete tumor genomes, paving the way 
for approaches to personalized oncology that consider the unique genetic composition of the patient's tumor. 
Here we present a novel method to leverage the information provided by cancer genome sequencing to match 
an individual tumor genome with commercial cell lines, which might be leveraged as clinical surrogates to 
inform prognosis or therapeutic strategy. We evaluate the method using a published lung cancer genome and 
genetic profiles of commercial cancer cell lines. The results support the general plausibility of this matching 
approach, thereby offering a first step in translational bioinformatics approaches to personalized oncology 
using established cancer cell lines. 
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1.  Introduction 

Despite innovations in relevant diagnostics and therapeutics over the past decades, cancers remain 
among the leading causes of mortality in developed nations. Although many common molecular 
drivers of oncogenesis are known to exist, the majority of cancers are heterogeneous in their 
molecular characteristics, leading to disparities in response to standard cancer therapies. High-
throughput sequencing technologies, with promise to offer complete DNA sequence profiling of 
cancer genomes, present novel opportunities understanding the unique molecular characteristics of 
tumors profiled in clinical populations. Knowledge of the unique molecular characteristics of a 
tumor, as detailed by its genomic sequence, could inform diagnosis, prognosis and treatment, 
thereby establishing a basis for personalized oncology. 
 

In order to gain clinical utility from personal cancer genomes, the molecular characteristics 
latent in the cancer genomic sequence must be related to a broader biological context. Aberrations 
in a cancer genome, such as somatic variations in single nucleotides, copy number or novel gene 
fusions can serve as informative biomarkers that inform diagnosis, prognosis or treatment. For 
example, mutations in the epidermal growth factor receptor (EGFR) have been associated with 
response to gefitinib in non-small cell lung cancer (NSCLC)1, and mutations in KRAS are known 
to be predictive of response to cetuximab in colon cancers2.  Such markers have great clinical 
value when they are well characterized, however a complete genomics sequence of a cancer is 
likely to present many novel molecular aberrations that have minimal to no precedence in the 



 
 

literature. Furthermore, consideration for only a subset of the markers available in a fully 
sequenced cancer genome might miss molecular and biological features important for 
individualized treatment. 

 
In order to assess functional correlates of disease progression or therapeutic susceptibility, 

approaches to personalized oncology need to consider molecular phenotypes salient in individual 
tumor biology along with the tumor’s genotype. For example, expression levels of human 
epidermal growth factor receptor 2 (HER2) are predictive of response to trastuzumab3, and various 
cellular metabolic features have been associated with tumor progression4. Ideally, it would be 
possible to functionally investigate these molecular phenotypes towards a personalized course of 
clinical care (e.g. test the response of several different chemotherapies to determine the best course 
of treatment), however it is not possible to conduct such clinical experimentation in vivo without 
placing the patient in danger of serious harm. One solution is to create autologous tumor cell lines 
from tumor tissue excised from the patient. However, the technical capacity to establish, maintain, 
and functionally test autologous cell lines is not at all common in most clinical settings, and 
therefore may not be as viable as a therapeutic option during the course of clinical care for cancer 
patients. 

 
Here we describe a method to match a personal cancer genome with commonly studied 

commercially available cancer cell lines based on shared genetic profiles. Commercial cell lines 
serve as an attractive option for personalized oncology, because they are readily and economically 
available through commercial suppliers, and the pharmacological and biochemical characteristics 
of many of the available cancer cell lines are well reported in the literature. Furthermore, it has 
been shown that large collections of cancer cell lines can serve as "systems" to functionally 
characterize the pathophysiological properties of individual tumors5. Once a personal cancer 
genome is matched to a commercial cell line, it is possible that the cell line and the prior 
knowledge around that cell line could serve as an in vitro surrogate for clinical functional 
assessment of tumor biology. We offer a profile similarity approach that matches a cancer genome 
with commercial cell lines based on profiles of shared somatic variability at multiple loci. The 
method is assessed using data from a recently published genomic sequence of a lung cancer tumor, 
which was matched to genotyped cell lines found in the GlaxoSmithKline cancer cell line genomic 
profiling data.  
 

2.  Methods 

2.1.  Data 

A set of somatic single nucleotide variants discovered in a NSCLC genome through paired 
genome sequencing in a lung cancer patient was obtained from the supplementary information 
provided by Lee et al6. Variant positions were mapped to dbSNP rsId’s by genomic location. SNP 
genotype profiles for commercial cancer cell lines were downloaded from the Cancer Biomedical 
Informatics Grid (caBIG) website (https://cabig.nci.nih.gov/caArray_GSKdata/) via FTP. Allele 



 
 

frequency information was downloaded from data provided by the International HapMap Project 
Phase IIa7. We aggregated in vivo tumor xenograft screening data made available through the 
National Cancer Institute (NCI) Developmental Therapeutics Program (DTP) website 
(http://dtp.nci.nih.gov/webdata.html). The DTP screening data provides assessments of the anti-
tumor efficacy of a wide range of chemical compounds evaluated across various clinical endpoints 
in human tumor xenograft models8. 

2.2.  Profile similarity 

A profile similarity metric was computed by comparing common variant loci between the cancer 
genome and the cancer cell line SNP profiles. The SNP profiles for the commercial cell lines only 
represent the genotype of various primary cancer cells, and therefore offer no means to distinguish 
somatic variants from neutral variation. We used allele frequency data from the HapMap project 
as a proxy for the normal baseline genotype. In this way, a locus was said to be a cancer-
associated variation if it was not found to harbor the associated major allele for that locus found in 
the HapMap data. We then derived a multi-locus identity metric to compute a similarity score 
between to genomic profiles based on shared genotypes at somatically variant positions. For each 
locus an identity-by-similarity (IBS) score was computed based on the number of alleles shared 
between the profiles at that locus. The IBS score = 0 if no alleles are share, 1 if one allele is 
shared, or 2 if both profiles are homozygous for the same allele. The multi-locus profile identity 
score (mIS) was computed by summing the IBS scores across all shared loci and dividing by twice 
the number of common loci: 
 

 

 
Where L is the number of common variant loci between two genomic profiles i and j, and  is the 
genotype of the Ith locus in profile i, and  is the genotype of the Ith locus in profile j.  

2.3.  Matching the lung cancer genome to cell lines 

To match the NSCLC genome to cell lines we computed the mIS score between the somatic 
variants  and the SNP profiles for all cell lines found in the GSK data set. To estimate a p-value for 
mIS scores we computed a random distribution of mIS scores by constructing random genotype 
profiles by sampling randomly from the GSK data, and computing the mIS score between the 
NSCLC profile and the random genotype for one thousand iterations. The empirical p-value for an 
mIS score was computed as the proportion of mIS scores from the random distribution greater 
than the given mIS score.  



 
 

2.4.  Clustering tumors by 
therapeutic profiles 

The DTP inhibition data was averaged 
by tumor type and compound. For each 
tumor type defined in the DTP data set, 
a chemotherapeutic profile was defined 
as the average inhibition for each 
compound against which the tumor was 
evaluated. A distance matrix was 
computed between tumors using the 
Pearson's correlation of compound 
inhibition response values. Only 
statistically significant correlations 

were retained. Hierarchical clustering was performed on the correlation distance matrix (1 - 
correlation) using the average agglomeration method. The significance of the compound inhibition 
clustering was assessed by multiscale bootstrap resampling across 1,000 bootstrap replicates using 
the pvclust package (http://www.is.titech.ac.jp/~shimo/prog/pvclust/). All computations were 
performed using the R language for statistical computing (http:// www.r-project.org). 

3.  Results 

Using genomic location information we mapped 9,754 somatic single nucleotide variants and their 
genotypes to dbSNP rsId identifiers. Among these loci we found 391 that overlapped with the 
SNPs measured on the SNP array used to profile the cancer cell lines in the GSK data set. This 
common set of loci was used to compute the profile similarity between the NSCLC genome and 
the cancer cell lines. After computing mIS profile similarity scores (see methods) between the 
NSCLC genome and all cell lines profiled in the GSK data set, we find 16 cell lines to be 
significantly associated with the personal cancer genome by genetic profile (Table 1). The 
distribution of mIS scores across the GSK data set is shown in Figure 1. The top match among the 
GSK cancer cell lines is bladder carcinoma line J82. While other lung carcinomas are found 
among the top results, we also find non-obvious associations between various leukemias and 
lymphomas.  

 
To explore the plausibility of these cell line associations, we obtained chemotherapeutic 

screening data from the NCI Developmental Therapeutics Program (DTP) and clustered tumors 
based on their response to various chemotherapies (Figure 2). Based on chemotherapy response 
profiles, we find that Lewis lung carcinomas, a model for non-small cell lung cancer, generally 
cluster with several leukemias and reticular (lymphoid) sarcoma, which is reflective of our cell 
line match results. 

 

 
Figure 1. Distribution of genetic profile similarity scores 
between the lung cancer genome and GSK cancer cell lines. 



 
 

4.  Discussion 

In effort to relate a personal cancer genome to cancer cell lines for personalized oncology, we 
developed a profile similarity method that computes a similarity score between two genetic 
profiles based on shared alleles at somatically variant sites. We applied this method to a published 
non-small cell lung cancer genome and a set of SNP profiles from the GSK cancer genomic 
profiling data set. We found that the personal cancer genome could be significantly matched with 
16 cell lines from the GSK data set by genetic profile (Table 1). While we find a number of lung 
cancer cell lines among these significant matches, we also find equally significant matches for 
non-lung cancers, including various Hodgkin lymphomas, leukemias and bladder cancer.  
 

 It is not immediately apparent why the lung cancer genome would be associated with these 
seemingly unassociated cancers. One possible explanation is that there are many passenger 
mutations after the cancer initiation event has started9, and that the similarities are being driven by 
these mutations. Since passenger mutations are not necessarily causal, and could therefore 

Table 1.  Cancer cell lines from the GSK genomic profiling data set with genetic profiles significantly 
similar to the individual NSCLC genome based on mIS scores. 

Cancer Type Cell Line mIS score P-value 

Carcinoma of Bladder J82 0.84 2.3x10-2 
Acute T Cell Lymphoblastic Leukemia of 
Hematopoietic and lymphatic system CCRFCEM 0.83 3.3 x10-2 

Lymphoma of Hematopoietic and lymphatic system SR 0.83 3.3 x10-2 
Hodgkin Lymphoma of Hematopoietic and lymphatic 
system RPMI6666 0.83 3.3 x10-2 

Lung Adenocarcinoma NCIH1975 0.82 4.8x10-2 

Lung Adenocarcinoma NCIH2228 0.82 4.8x10-2 

Atypical Carcinoid Tumor of Lung NCIH720 0.82 4.8x10-2 

Small Cell Lung Carcinoma of Lung NCIH524 0.82 4.8x10-2 

Burkitt Lymphoma of Hematopoietic and lymphatic 
system MC116 0.82 4.8x10-2 

Burkitt Lymphoma of Hematopoietic and lymphatic 
system 1A2 0.82 4.8x10-2 

Carcinoma of Uterus KLE 0.82 4.8x10-2 

Sarcoma of Bone SW1353 0.82 4.8x10-2 

Carcinoma of Uterus RL952 0.82 4.8x10-2 

Myeloma of Hematopoietic and lymphatic system HuNS1 0.82 4.8x10-2 

Carcinoma of Breast MT3 0.82 4.8x10-2 

Acute T Cell Lymphoblastic Leukemia of  CEMC1 0.82 4.8x10-2 

 



 
 

confound variation based similarity metrics like the one used in this study. In this case, future 
work might involve inclusion of prior knowledge of cancer causal variants to reduce false 
positives, or look across multiple cancer genomes to understand patterns of earlier versus later 
mutations from a data-driven perspective. 
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Figure 2. Hierarchical clustering of tumors profiled by the National Cancer Institute Developmental 
Therapeutics Program based on their chemotherapeutic inhibition response profiles. Values at the inner nodes 
represent bootstrap p-values estimated by multiscale bootstrap resampling using 1,000 boostrap replicates. 



 
 

 
Another explanation is that these associations might point towards some shared etiological or 

pathophysiological characteristics. Smoking is a well-known risk factor for lung cancers, leading 
to consistent genetic lesions observable in the genomes of lung cancer tumors. Smoking is also a 
substantial risk factor for bladder cancer10, which is the top match in our results, and is also known 
to be associated with increased risk of various leukemia’s and lymphomas11. Therefore the 
computed similarity between the lung cancer genome and these cell lines might have a basis in 

Table 2. Gene-associated variants driving the similarity score between the personal lung cancer genome profile 
and the top cell-line match bladder carcinoma (J82). Both the lung cancer genome and J82 exhibit somatic 
variation at these positions and share at least one variant allele. 

dbSNP rsID Gene region Gene symbol Gene description 

rs169124 intronic BMP6 bone morphogenetic protein 6 

rs13378247 intronic ENOX1 ecto-NOX disulfide-thiol exchanger 1 

rs11182675 intronic NELL2 NEL-like 2 (chicken) 

rs7824149 intronic NECAB1 N-terminal EF-hand calcium binding protein 1 

rs938726 intronic EIF2C2 eukaryotic translation initiation factor 2C, 2 

rs10983337 intronic ASTN2 astrotactin 2 

rs639839 intronic NRG3 neuregulin 3 

rs16907794 intronic NELL1 NEL-like 1 (chicken) 

rs2425562 intronic PTPRT protein tyrosine phosphatase, receptor type, T 

rs2837583 intronic DSCAM Down syndrome cell adhesion molecule 

rs10852799 intronic DNAH9 dynein, axonemal, heavy chain 9 

rs8024401 intronic GABRG3 gamma-aminobutyric acid (GABA) A receptor, gamma 3 

rs9555507 intronic MYO16 myosin XVI 

rs10483422 intronic NPAS3 neuronal PAS domain protein 3 

rs11158839 intronic SLC8A3 solute carrier family 8 (sodium/calcium exchanger), member 3 

rs9620769 intronic TTC28 tetratricopeptide repeat domain 28 

rs13112477 intronic C4orf22 chromosome 4 open reading frame 22 

rs6720773 intronic COL6A3 collagen, type VI, alpha 3 

rs10932540 intronic VWC2L von Willebrand factor C domain-containing protein 2-like 

rs7550703 intronic HHAT hedgehog acyltransferase 

rs1881410 intronic LOC730124 similar to hCG2041586 

rs4730038 intronic LHFPL3 lipoma HMGIC fusion partner-like 3 

rs2642484 intronic CNTNAP2 contactin associated protein-like 2 

rs7819262 intronic TUSC3 tumor suppressor candidate 3 

rs2910639 intronic ADAMTS12 ADAM metallopeptidase with thrombospondin type 1 motif, 12 

rs16870537 intronic C7 complement component 7 
 



 
 

shared common genetic lesions due to smoking. It is also known that individuals affected by 
Hodgkin’s lymphoma have an increased risk of lung cancer and non-Hodgkin lymphomas12, 
suggesting a possible shared molecular pathophysiology among the various forms of cancer. 
Therefore, despite the fact that many of the matches are not of the same tumor type as the lung 
cancer genome, it is possible that they still might serve as functional surrogates for personalized 
clinical investigation. 
 

To gain functional support 
for the plausibility of these 
cell line associations, we 
clustered tumors based on 
their response to various 
chemotherapies (Figure 2). 
Based on chemotherapy 
response profiles, we find that 
non-small cell lung cancer 
model tumors (Lewis lung) 
cluster significantly with both 
each other and other non-lung 
tumor types. A scatterplot of 
the chemotherapeutic profile 
similarity between a NSCLC 
tumor and leukemia is shown 
in Figure 3. Although the cell 
lines used in the DTP 
screening data set are not 
precise matches for the cell 
lines in the GSK data set, we 
can draw support for the 
notion that unrelated cancers 
such as lymphomas or 

leukemias could serve as functionally relevant clinical surrogates for lung cancer tumors. 
 
We find additional support for a plausible functional relationship through investigation of the 

variants driving the similarity between the lung cancer genome and cell lines. The best match in 
our data set was a bladder carcinoma cell line (J82). The gene associated variants shared between 
the lung cancer genome and the J82 cell line are shown in Table 2. Although all of these shared 
loci are intronic, it's still possible that they could be disrupting gene function through an effect on 
alternative splicing, or might serve as surrogate markers for mutational disruption of other loci in 
the same gene through linkage disequilibrium. Among these genes we find several known to be 
associated with cancers. PTPRT, a protein tyrosine phosphatase receptor, is a signaling molecule 
known to be implicated in oncogenic transformation in several different cancers13, including colon 

 
Figure 3. Comparison of the chemotherapeutic response profiles between a 
model of non-small cell lung cancer tumor model and a leukemia 
characterized in the NCI DTP data. The points represent the inhibition 
proportion (treatment/control) for a compound. 



 
 

cancer14,15, glioma16, and melanoma17. NELL1 and NELL2, growth factor like protein thought to be 
involved in regulation of cell growth, has also been associated with multiple cancer types, 
including esophageal adenocarcinoma18, colon cancer and Burkitt's lymphoma19. TUSC3, a 
putative tumor suppressor gene, has been associated with pancreatic cancer20, prostate cancer21 
and ovarian cancer22.  It's possible that these pleiotropic oncogenes are driving the similarity 
relationship between the lung cancer genome and J82 based on common patterns of oncogenic 
mutation. Several other genes underlying this similarity are not known to be oncogenic, however 
variants in BMP6, COL6A3, C7, GABRG3 and NRG3 are known to be associated with various 
complex and Mendelian diseases.   
 

We acknowledge several limitations in our approach. Foremost, we recognize that since the 
GSK cell lines were profiled by SNP microarray, that the analysis was appreciably constrained to 
only the loci measured on the array platform. Future work might employ sophisticated imputations 
algorithms to expand the genotype profiles in the GSK data set, but ideally full genome 
sequencing data for these cell lines would likely be necessary for clinical application of this 
approach. We also acknowledge that the DTP chemotherapeutic profiling data can only offer 
indirect support for functional associations between these cell lines, as many of the cell lines 
profiled in the GSK data set are not represented in the NCI DTP screening data set. Efforts are 
needed to comprehensively characterize the chemotherapetuic response profiles of these cell lines 
and to provide a machine-readable representation of these data in the public domain. 
 

Future work in this area will incorporate improved similarity metrics that give added 
importance to somatic variations more likely to play a causal role in tumorigenesis or metastasis, 
such as mutations in evolutionary conserved regions, or in loci known to act as expression 
quantitative trait loci (eQTLs) for genes associated with oncogenesis. More importantly, future 
work should incorporate experimental validation of predicted cell line matches to test whether or 
not the predicted cell line match exhibits clinical characteristics (e.g. chemotherapeutic response) 
similar to the individual tumor genome to which it was matched. Developments in this area will 
provide novel directions in personalized oncology that leverage the clinical, economic, and 
scientific benefits of well studied and characterized commercial cancer cell lines. 
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