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 High and increasing prevalence of neurodevelopmental disorders place enormous personal and 
economic burdens on society. Given the growing realization that the roots of neurodevelopmental disorders 
often lie in early childhood, there is an urgent need to identify childhood risk factors. Neurodevelopment is 
marked by periods of heightened experience-dependent neuroplasticity wherein neural circuitry is optimized by 
the environment. If these critical periods are disrupted, development of normal brain function can be 
permanently altered, leading to neurodevelopmental disorders. Here, we aim to systematically identify human 
variants in neuroplasticity-related genes that confer risk for neurodevelopmental disorders. Historically, this 
knowledge has been limited by a lack of techniques to identify genes related to neurodevelopmental plasticity 
in a high-throughput manner and a lack of methods to systematically identify mutations in these genes that 
confer risk for neurodevelopmental disorders. Using an integrative genomics approach, we determined loss-of-
function (LOF) variants in putative plasticity genes, identified from transcriptional profiles of brain from mice 
with elevated plasticity, that were associated with neurodevelopmental disorders. From five shared 
differentially expressed genes found in two mouse models of juvenile-like elevated plasticity (juvenile wild-
type or adult Lynx1-/- relative to adult wild-type) that were also genotyped in the Mount Sinai BioMe Biobank 
we identified multiple associations between LOF genes and increased risk for neurodevelopmental disorders 
across 10,510 patients linked to the Mount Sinai Electronic Medical Records (EMR), including epilepsy and 
schizophrenia. This work demonstrates a novel approach to identify neurodevelopmental risk genes and points 
toward a promising avenue to discover new drug targets to address the unmet therapeutic needs of 
neurodevelopmental disease. 
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1.  Introduction 

 Neurodevelopmental disorders place enormous personal and economic burdens on society 
[1,2]. In addition to environmental factors, genetic factors are known to be important predictors of 
neurodevelopmental outcomes, and the perinatal period comprises critical windows of disease 
susceptibility when mutations may express their deleterious effects on neurodevelopment. Particularly 
important windows of susceptibility are childhood critical periods that allow brain circuits to be 
refined by sensory and social experiences to establish normal perception and cognition [3–6]. 
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Disruption of these critical periods can alter the developmental trajectory and confer risk for 
neurodevelopmental disorders [7,8]. Previous studies have found that genetic disruptions in 
neurodevelopmental disorder-related genes (MeCP2, Ube3a, Fmr1) led to disruptions in critical 
period plasticity [9–11]. The finding that alteration in neurodevelopmental genes disrupts 
developmental plasticity and leads to neurodevelopmental phenotypes calls for a comprehensive 
search for neurodevelopmental risk genes associated with plasticity. 
 To systematically identify plasticity gene variants, we used one of the best-studied models of 
childhood plasticity, namely critical period plasticity of visual cortex [12]. In response to deprivation 
of light to a single eye for a few days, neural responses in the cortex diminish correspondingly. 
Underlying this plasticity is major circuit remodeling [8] and only occurs naturally in youth - in adults 
there is minimal plasticity. Moreover, perturbations during the critical period are permanent - if the 
eye is occluded throughout juvenile life, there will be a persistent cortex-dependent reduction in 
visual acuity - a condition called amblyopia. Here, we use the mouse model of critical period visual 
plasticity [13] as our starting point to systematically identify genes related to neuroplasticity. This 
model has emerged as an indispensable model system to dissect the molecular mechanisms 
underlying functional cortical plasticity and whose transcriptional representation is functionally 
predictive [14]. Importantly, to control for age, elevated plasticity can be recapitulated in adult mice 
by genetically manipulating genes important for critical period plasticity. Here, we took a strategy of 
generating two transcriptional plasticity signatures from the visual cortex, one from juvenile and the 
other from adult Lynx1-/- mice, the latter upon release of the Lynx1 cholinergic plasticity brake exhibit 
juvenile-like plasticity [15]. These signatures represent the plasticity-permissive transcriptional 
landscape of visual cortex and the genes shared between these signatures are high confidence 
plasticity-related genes referred to here as "putative plasticity genes." Identifying putative plasticity 
genes in a data-driven, genome-wide manner sets the stage for high-throughput detection of potential 
novel risk variants associated to neurodevelopmental disease. 
 Past work to identify neurodevelopmental risk variants has traditionally focused on genome 
wide association studies (GWAS), family-based, or hereditary (e.g. twin, adoption) studies. While all 
are successfully used to identify risk variants, these approaches are inherently disease-centric rather 
than function-centric. By limiting discovery to a specific disease (e.g. microcephaly), discovery of 
cross-disease functional factors are missed. Our approach begins with functional plasticity-related 
genes and identifies any associated disease or phenotypic risk genes. This allows for greater 
biological insight downstream while increasing sensitivity by shrinking the search space to identify 
real associations between neurodevelopmental genes and disease. Moreover, by deriving putative 
plasticity genes using a genome-wide transcriptional approach across multiple models of elevated 
plasticity and coupling it with an integrative genomics methodology to identify risk genes across 
many diseases, we propose a highly systematic approach to identifying neurodevelopment risk genes, 
which does not depend on prior knowledge of either the specific functional role of the plasticity genes 
nor specific diseases. 
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 In order to assess 
the relationship between 
putative plasticity genes 
and neurodevelopment 
outcomes, we utilized a 
biobank of individuals 
with genetic data and 
longitudinal phenotype 
information from a large 
hospital system. To 
identify associations of 
large effect within this 
human dataset, we 
focused on the impact of 
loss-of-function (LOF) 
mutations on nervous 
system disease 
susceptibility. The study 
of LOF mutations in the 
human genome has 
played an important role 
in understanding 
etiologies of human 
disease, as these natural 
human knockouts shed 
light on gene function in 
the context of disease 
[16,17]. In a landmark 
study, MacArthur et al. identified LOF variants within protein coding genes using whole genome data 
from the 1000 Genomes Project [18,19]. They estimated that the typical human genome contains 
around 100 LOF variants and identified rare LOF variants that likely confer risk for disease. This 
work has been extended to elucidate the role and function of genes through LOF mutations in a 
variety of diseases: ABCA1 with pancreatic β-cell dysfunction in Type 2 Diabetes [20]; SETD5 with 
intellectual disability [21]; APOC3 with reduced risk of both ischemic vascular disease and coronary 
disease [22,23]; SLC30A8 with protection from Type 2 Diabetes [24, p. 30], among others. These 
findings have direct applications for identifying molecular targets to guide and accelerate drug 
discovery [25]. Using this strategy, Graham et al. found that antisense oligonucleotides targeting 
ANGPTL3 transcripts reduced levels of atherogenic lipoproteins in humans [26]. In the current study, 
human findings may reveal novel drug targets relevant to neuroplasticity and neurodevelopment. 
Genes identified may be appropriate to directly target with small molecules. In addition, molecular 
editing of these targets in mouse could reveal novel molecular machinery important for disease 
phenotypes seen in human and lead to novel rescue therapeutics. In fact, Diamantopoulou et al. used 

Figure 1. An integrative genomics approach to validate a role for putative 
neuroplasticity genes in human neurodevelopmental disorder. (a) We 
generated transcriptional neuroplasticity signatures from two mouse models of 
elevated, neurodevelopmental plasticity (juvenile and Lynx1-/-) to identify 35 
shared putative plasticity genes used for downstream analysis. (b) We derived 
2117 putative loss-of-function (LOF) variants in 1665 genes in a population of 
10,510 patients from the Mount Sinai BioMe BioBank coupled with disease 
diagnosis data from EMR. (c) We applied an integrative genomics pipeline to 
identify associations between LOF of genotyped putative plasticity genes and 
nervous system diseases by logistic regression controlling demographic 
covariates to provide human-level evidence for multiple neurodevelopmental risk 
genes. 
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such a strategy to identify a LOF mutation in Mirta22 that rescues schizophrenia-related phenotypes 
in a mouse model of 22q11.2 deletion [27]. 
 Here, applying an integrative genomics approach we identified 35 putative plasticity genes 
across two mouse models, including those important in inflammatory processes. After identifying 
putative plasticity genes, we systematically identified LOF variants within these genes across the 
Charles Bronfman Institute of Personalized Medicine Mount Sinai BioMe BioBank and linked 
Electronic Medical Record (EMR) cohort of 10,510 patients. We then assessed associations between 
putative plasticity genes and various neurodevelopment-related diseases using logistic regression that 
controls for demographic covariates (see Figure 1 for the research design). This approach revealed 
potential risk variants in multiple putative plasticity genes for neurodevelopmental disorders, 
including epilepsy and schizophrenia. These findings provide human evidence for a role of plasticity-
related genes in neurodevelopment and establish a novel approach to identify human 
neurodevelopment risk variants. Using model-derived putative plasticity genes as seeds to identify 
neurodevelopmental risk genes in human immediately sets the stage for pre-clinical studies to 
determine the mechanisms by which these novel risk genes disrupt neurodevelopment, and provides 
novel targets for therapeutic discovery.  
 
2.  Methods 
 
All data processing and statistical analyses were conducted in R v 3.2.2 and Python v 2.7.10. 
 
2.1 Neuroplasticity signatures 
 
 To identify putative neuroplasticity genes, we compared primary visual cortex transcriptomes 
of juvenile wild-type mice or adult Lynx1-/- compared to adult wild-type (n = 3 all groups). We used 
Limma [28] to quantile normalized raw microrray probe-level data and RankProd [29] to compute 
rank-based differential expression of mouse genes, which we mapped to orthologous human genes 
using the Mouse Genome Informatics homology reference to yield 176 and 98 gene signatures 
(juvenile wild-type and adult Lynx1-/- respectively), 35 of which were shared (Fisher Exact Test: 
OR=37.1, 95% CI = 23.8–58.0, p < 2.2 x10-16, replication of comparison found in [14]) (Figure 1a). 
Both juvenile and Lynx1-/- mice have elevated experience-dependent plasticity, whereas adult wild-
type mice have reduced plasticity. Transcriptional data was derived from publicly available data 
(GSE89757 [14]). We used the well-established gene set enrichment approach from Enrichr [30] to 
determine known Gene Ontology Biological Processes relevant to the 35 putative plasticity genes 
(using a FDR < 0.05) and further assessed relevance of individual genes that mapped to genotyped 
variants using a literature-based approach. 
 
2.2 Hospital and biobank cohort  
 
The Mount Sinai Hospital, located in Upper Manhattan, NY, has EMR that are de-identified and 
stored within the Mount Sinai Data Warehouse. These records contain clinical (e.g. disease 
diagnoses) and demographic data for over four million patients as of February 2015. The Charles 
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Bronfman Institute of Personalized Medicine BioMe biobank (http://icahn.mssm.edu/research/ipm) 
within the Icahn School of Medicine at Mount Sinai has collected genetic data for over 30,000 
patients with linked EMR as of 2016. For the current analysis, we utilized a subset of BioMe, 
consisting of over 11,000 individuals that were genotyped using the Illumina Human Omni Express 
Exome Bead-8 BeadChip v1.1 array. This cohort consists of 61.2% females and 38.8% males and the 
self-reported racial breakdown is as follows: 46.3% Hispanic/Latino, 33.6% African American, 
18.6% Caucasian, and 1.5% Other (merged from several smaller racial group categories). To account 
for relatedness within this cohort, we used PLINK v1.9 [31] to identify pairs of directly related 
individuals (PI-HAT scores > 0.25). From these pairs, we randomly selected one from each to exclude 
(n=612), resulting in 10,510 individuals used for the analyses.  
 
2.3 Variant annotation 
 
We adapted the protocol used by Glicksberg et al. to annotate genotyped variants as LOF [32]. 
Briefly, we ran 906,917 genotyped variants through three different public annotation tools, namely 
Variant Annotation Tool (VAT) [33], ANNOVAR (v. 2015Apr14) [34], and SnpEff (v. 3.6) [35]. 
Following established procedures [19,36], we restricted output from these annotators to “High” effect 
and relevant types: stop gain, frameshift/indel, and splice site. We performed further quality control 
by excluding variants that were in the final exon of the transcript and those with >2% alternate allele 
frequency. To enhance confidence of these annotations, we only included variants that passed these 
criteria in at least two out of three of the annotators for at least one overlapping transcript. Following 
these steps, we derived 2,117 putative LOF variants in 1,665 genes. For the purposes of this study, we 
collapsed variants to the gene level. When intersecting with the 35 neurodevelopmental genes of 
interest, there were five (IL33, INMT, MAP9, LCN2, LRG1) overlapping with at least one LOF variant 
(Table 1) used for subsequent analyses. 
 

 
 
2.4 Neurodevelopmental disease phenotyping 
 
Disease diagnoses are encoded in the Mount Sinai Hospital de-identified EMR as International 
Classification of Diseases (ICD)-9 codes. In order to increase power for our analyses, we mapped 
these codes to the Clinical Classification Software (CCS; https://www.hcup-
us.ahrq.gov/toolssoftware/ccs/ccs.jsp) for ICD-9-CM single level categories. In total, there are 283 
single level categories. As our focus is neurodevelopment and the nervous system, we restricted this 
list to 38 disease categories where the nervous system is considered the primary affected organ, 
specifically: "Meningitis (except that caused by tuberculosis or sexually transmitted disease)", 
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"Inflammation; infection of eye (except that caused by tuberculosis or sexually transmitted disease)",  
"Other CNS infection and poliomyelitis", "Otitis media and related conditions", "Cancer of brain and 
nervous system", "Delirium, dementia, and amnestic and other cognitive disorders", "Alcohol-related 
disorders", "Substance-related disorders", "Schizophrenia and other psychotic disorders", "Mood 
disorders", "Anxiety disorders", "Personality disorders", "Screening and history of mental health and 
substance abuse codes", "Developmental disorders", "Adjustment disorders", "Attention-deficit, 
conduct, and disruptive behavior disorders", "Impulse control disorders, NEC", "Other nervous 
system disorders", "Other hereditary and degenerative nervous system conditions", "Parkinson`s 
disease", "Headache; including migraine", "Multiple sclerosis", "Paralysis", "Epilepsy; convulsions", 
"Acute cerebrovascular disease", "Coma; stupor; and brain damage", "Spinal cord injury", "Other eye 
disorders", "Retinal detachments; defects; vascular occlusion; and retinopathy", "Glaucoma", 
"Cataract", "Blindness and vision defects", "Other ear and sense organ disorders", "Conditions 
associated with dizziness or vertigo", "Transient cerebral ischemia", "Nervous system congenital 
anomalies", "Poisoning by psychotropic agents", "Suicide and intentional self-inflicted injury". 
 
2.5 LOF gene and disease association analysis 
 
With the genotype and disease data processed, we assessed associations between LOF in these five 
putative plasticity genes and the 38 nervous system-related disease categories of interest (Figure 1b). 
Specifically, we performed a logistic regression for all gene-disease combinations for which there 
were at least three carriers of the gene afflicted with the disease. We also controlled for demography 
in the form of age, self-reported sex, and genetic ancestry using Principal Component Analysis (PCA) 
in the form of the first five Principal Components, which constituted the majority of variance 
explained (Eq. 1). The use of PCA on genetic data for determining and controlling for genetic 
ancestry in association studies is well established [37]. We focused on the significance of the gene 
term and magnitude and direction of the associated βl value, which represents effect size after 
controlling for other covariates (positive values indicate increased risk and vice versa). 
 
  P(disease | β0 + βl·gene + βg·sex + βa·age + βpc1·PC1…+… βpc5·PC5)                (1) 
 
where disease is a binary Yes/No outcome, gene is binary Yes/No indicating presence of LoF 
mutation, age is a continuous constant per year, sex is binary piecewise Female/Male, and PC#  is 
continuous. 
 
3.  Results 
 
3.1 Identifying putative neuroplasticity genes 
 
To identify putative plasticity genes, we generated transcriptional signatures of plasticity by 
comparing primary visual cortex transcriptomes of juvenile wild-type or adult Lynx1-/- compared to 
adult wild-type mice yielding 176 and 98 differentially expressed genes (Figure 1a). Lynx1-/- mice 
have elevated, juvenile-like plasticity [15] and were used to control for non-plasticity aspects of the 
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juvenile signature. We defined putative plasticity genes as the 35 shared between the two signatures 
(Fisher Exact Test: OR=37.1, 95% CI = 23.8–58.0, p < 2.2 x10-16, this statistic reproduced as in [14]). 
Interestingly, using gene set enrichment we found that these genes are predominantly enriched for 
immune processes, including gene sets related to neutrophil degranulation, defense response to fungus, 
immune cell chemotaxis, apoptotic pathways, and cytokine production (Table 2).  
 

 
 
3.2  LOF variants in putative plasticity genes confer risk for neurodevelopmental and nervous system-
related disorders 
 
Applying an integrative genomics approach (Figure 1c), we determined that five of 35 putative 
plasticity genes (IL33, INMT, MAP9, LCN2, LRG1) contained a LOF variant (Table 1) that had been 
genotyped in the BioMe biobank and were included in subsequent analyses. Using a disease carrier 
minimum frequency of three, we were able to perform 27 association tests for three genes (MAP9, 
LCN2, LRG1) across 15 nervous system-related diseases. We found that two genes, LRG1 and LCN2, 
conferred risk for five nervous system diseases (Table 3). Strikingly, two of these diseases, 
schizophrenia and epilepsy, have putative etiologies based in perinatal and childhood 
neurodevelopment (LRG1 - schizophrenia: β = 1.27, p = 0.04; LCN2 - epilepsy: β = 1.22, p = 0.03). 
Additionally, we identified a trending association between MAP9 and blindness and vision defects (β 
= 1.15, p = 0.08). 
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4.  Discussion 
 
 We demonstrate an innovative use of genes relevant to neuroplasticity to identify potential 
human neurodevelopmental risk genes. By applying an integrative genomics approach, we identified 
LRG1 and LCN2 as putative plasticity genes associated with the neurodevelopmental diseases 
epilepsy and schizophrenia in a human population. These genes are correlated to experience-
dependent neural plasticity across two mouse models, suggesting that LOF in human may confer risk 
for neurodevelopmental disorders by disrupting plasticity. Moreover, these genes are regulated by 
inflammation via lipopolysaccharide, which also disrupts experience-dependent plasticity in juvenile 
mouse [14], suggesting LOF in these genes may disrupt a component of neural-immune interaction to 
confer risk for human neurodevelopment. Consistent with that perspective, schizophrenia and 
epilepsy have numerous aberrations in immune function [38,39] and neural plasticity [40–42] and this 
work suggests that a nexus of these aberrations may be juvenile experience-dependent plasticity, 
which is increasingly postulated as an important locus of neurodevelopmental risk [7,8]. 
 LRG1 has been previously identified as dysregulated in the choroid plexus of individual's with 
schizophrenia [43] and marks early granulocyte maturation [44], consistent with gene set enrichments 
indicating the 35 putative plasticity genes are enriched for granulocyte function (see Table 2). In 
contrast, antipsychotics appear to induce an immature granulocytic phenotype [45]. This has generally 
been considered a side-effect (and is separate from potentially fatal agranulocytosis, as induced by 
clozapine [46]), but neutrophils in drug-free individuals with schizophrenia generate elevated reactive 
oxygen species (ROS) [47,48] and ROS levels can be normalized by antipsychotics [49,50]. It should 
be noted, however, that one study found antipsychotics did not decrease ROS in patients with 
schizophrenia [51]. In animal models and postmortem brains of individuals with schizophrenia, there 
is evidence of elevated oxidative stress associated with the parvalbumin interneuron cell type [52]. 
Moreover, genetically reducing the antioxidant glutathione specifically in parvalbumin cells (which 
elevates ROS) leads to dysregulated critical period plasticity [53]. Therefore, we speculate that 
neutrophils may be a source of oxidative stress (i.e. ROS) in schizophrenia and that the suppressive 
effective of antipsychotics on neutrophil function may in fact be a therapeutic phenomenon. Together 
this suggests neutrophils and LRG1 as previously unrecognized components of schizophrenia 
patholophysiology and as putative therapeutic targets that should be explored further. 
 LCN2 is an important cell-autonomous marker of astrocyte activation - a phenotype that shifts 
astrocytes away from their resting-state role in maintaining neural circuit homeostasis to an active 
watchfulness against cellular damage and other forms of danger. In epilepsy, abberations in astrocytic 
regulation of neurotransmitters (i.e. glutamate and GABA) and ions (i.e. K+) likely contribute to 
excitotoxicity and reduced threshold for induction of seizure [54]. Therefore, we hypothesize that 
LOF mutations in LCN2 could cause astrocytes to exit their normal resting-state wherein they 
homeostatically support neural equilibrium, leading to chronic neurotransmitter and ionic 
dysregulations. Moreover, Lcn2 is an exogenous activator of microglia [55] and microglia are 
critically important to juvenile experience-dependent plasticity per se [56]. Together, this suggests 
mutations in LCN2 may confer risk for epilepsy via dysregulation of multiple glial types to produce a 
multi-faceted disruption across neurodevelopment and suggests glia may be a promising therapeutic 
target at the intersection of inflammation and plasticity in epilepsy.  
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 Given that neurodevelopmental disease is highly polygenic, it may be unsurprising that in 
addition to epilepsy, Lcn2 is dysregulated in the Disc1-L100P mouse model of schizophrenia [57]. 
There is a growing but unclear role of both microglia and astrocytes in schizophrenia [58]. 
Functionally, activated microglia go on to secrete soluble inflammatory cytokines C1q, Tnf, and Il1-α 
to activate astrocytes, which then secrete Lcn2 and an unknown toxic substance that inhibits synaptic 
efficacy and kills neurons [59]. We speculate that a microglia-astrocyte-neural circuit may be 
involved in plasticity aberrations in schizophrenia and future work should explore this possibility. 
Consistent with this hypothesis, Gfap expression is elevated in the Disc1-L100P model, indicating a 
reactive astrocyte phenotype [57]. Moreover, sodium valproate normalized Gfap and Lcn2 levels, as 
well as functional correlates of schizophrenia, indicating Lcn2 may be a novel drug target or 
biomarker of successful treatment in schizophrenia. More generally, astrocytes and microglia may be 
an inflammatory hub in epilepsy and schizophrenia that could be targeted for therapeutic intervention.  
 We provide here a highly systematic and high-throughput integrative genomics approach to 
identify neurodevelopmental risk genes. This approach is complementary to existing approaches 
including GWAS, family-based, and hereditary (e.g. twin, adoption) studies. Those approaches have 
been extremely useful for identifying risk variants in a disease-focused manner; our integrative 
genomics approach extends on these by liberating from disease-centric constraints to orient the 
analysis on a function-based approach to identify relevant risk genes across multiple diseases.  
Implementing this approach here, we find that two genes implicated in neural plasticity, LRG1 and 
LCN2, are associated with the neurodevelopmental diseases epilepsy and schizophrenia and may play 
a pathophysiological role at the nexus of immune-brain function. As such, we believe these genes 
may be biomarkers for such neurodevelopmental-related diseases and candidates for drug targets. On 
the other hand, there are a few caveats and limitations to our integrative genomics approach. We used 
two models of plasticity (juvenile and Lynx1-/-), but transcriptional changes in other models could 
further contribute to the identification of neurodevelopmental risk genes in human. Limiting to the 
models used here could exclude genes relevant to neuroplasticity (i.e. false negatives). Additionally, 
though we used a strict FDR threshold to identify putative plasticity genes, the possibility of including 
genes that are not directly relevant to plasticity (i.e. false positives) is possible given the variable 
nature of gene expression profiling. In addition, the specific molecular function of these genes in 
plasticity is not yet established, making interpretation of their role in developmental neuroplasticity 
per se more challenging. Moreover since these genes were identified using differential expression 
analysis, making interpretations of LOF in a given gene challenging and robust experimental work 
should follow. Given the input set of plasticity genes used in this study, we were limited by the 
number of genes that were genotyped and the number of LOF variants in these genes. Separately, 
there are known issues surrounding the accuracy of defining a disease by ICD codes. While robust, 
multimodal electronic phenotyping algorithms exist for many diseases (e.g. PheKB; 
https://phekb.org/), we utilized ICD-based definitions for diseases (via CCS) because there are not 
many algorithms that exist for our disease domain of interest (nervous-system and 
neurodevelopment). Finally, this study used only a single cohort (Mount Sinai BioMe) and given the 
relatively low sample sizes for the diseases for which we identified LOF variants in putative plasticity 
genes (see Table 3) we considered a nominal p value threshold of 0.05 as appropriate for discovery. 
Follow up studies in larger, independent cohorts using a multiple test correction approach, as well as 
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functional experiments to elucidate the specific neurobiological relevance, is critical to validate these 
findings. We further discuss potential approaches to address these issues in follow-up studies within 
the next section.  
 
5. Conclusions and Future Directions 
 
 This study provides significant impact to the field by identifying unrecognized 
neurodevelopment risk genes for schizophrenia and epilepsy through a novel systematic approach 
leveraging Mount Sinai's BioMe BioBank and linked Mount Sinai Hospital’s Electronic Medical 
Record (EMR) data. This integrative genomics approach facilitates high-throughput identification of 
LOF risk variants that may have a deleterious impact on neurodevelopment and the findings set the 
groundwork for functional studies to determine the mechanisms by which these novel risk genes 
disrupt neurodevelopment and to investigate their utility for therapeutic discovery. Using putative 
plasticity genes as the seed genes to identify neurodevelopmental risk genes immediately sets the 
stage to rigorously test the hypothesis that these genes play a role in childhood neurodevelopmental. 
Using the ocular dominance animal model of developmental neuroplasticity [13] from which the 
plasticity genes were derived allows investigators to rapidly return to the mouse to test the effect of 
gene perturbation in neurodevelopment and neuroplasticity.  
 There are several future directions we will pursue to extend and further assess the implications 
of our findings. The relatively low sample sizes of nervous-system related diseases in our cohort (for 
example, see Table 3) coupled with the rare nature of these LOF mutations, limits power to detect 
associations. As such, we plan to perform a cross-validation experiment using genotype and clinical 
data for the 500,000 individuals in the UKBioBank (http://www.ukbiobank.ac.uk/).  Additionally, in 
the hopes of exploring associations for the entire original set of 35 putative neuroplasticity genes, we 
will leverage the UK10K (http://www.uk10k.org) whole exome sequencing data to identify putative 
LOF variants for these genes within the neurodevelopmental cohort (N=3,000). In addition, we will 
increase our collection of genes related to neuroplasticity using other models, such as calorie 
restriction-induced plasticity [60], exercise-induced plasticity [61], drug-induced plasticity [62], as 
well as other plasticity-enhancing gene perturbation models, depending on available transcriptional 
data. Relatedly, we aim to extend these analyses to confirmed plasticity genes whose molecular 
mechanisms in plasticity are well-established, to yield a hypothesis-driven iteration of our approach. 
While it is important to increase the number of starting plasticity genes and use larger quantities of 
human data, it would be additionally valuable to reassess the associations made here using PheKB 
algorithms for nervous-system related diseases to address the limitations of ICD-code based 
phenotyping. Finally, we expect this integrative genomics approach will be generalizable to identify 
risk genes and facilitate focused biological inquiry in other disease contexts to enable drug target and 
biomarker identification. 
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