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Anonymized electronic health records (EHR) are often used for biomedical research. One persistent
concern with this type of research is the risk for re-identification of patients from their purportedly
anonymized data. Here, we use the EHR of 731,850 de-identified patients to demonstrate that the average
patient is unique from all others 98.4% of the time simply by examining what laboratory tests have been
ordered for them. By the time a patient has visited the hospital on two separate days, they are unique in
72.3% of cases. We further present a computational study to identify how accurately the records from a
single day of care can be used to re-identify patients from a set of 99 other patients. We show that, given
a single visit’s laboratory orders (even without result values) for a patient, we can re-identify the patient
at least 25% of the time. Furthermore, we can place this patient among the top 10 most similar patients
47% of the time. Finally, we present a proof-of-concept technique using a variational autoencoder to
encode laboratory results into a lower-dimensional latent space. We demonstrate that releasing latent-
space encoded laboratory orders significantly improves privacy compared to releasing raw laboratory
orders (<5% re-identification), while preserving information contained within the laboratory orders
(AUC of >0.9 for recreating encoded values). Our findings have potential consequences for the public
release of anonymized laboratory tests to the biomedical research community. We note that our findings
do not imply that laboratory tests alone are personally identifiable. In the attack scenario presented here,
reidentification would require a threat actor to possess an external source of laboratory values which are
linked to personal identifiers at the start.
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1. Introduction

Electronic Health Records (EHRs) have been widely adopted as a component of the modern
American healthcare system (1). EHRs contain information such as disease-related diagnosis billing
codes, lab test orders and results, procedures performed, and medications prescribed. Although
EHRs are primarily designed for the purpose of encounter documentation and billing, the data can
also be repurposed for efforts to improved clinical care (2, 3) or for biomedical investigation (4—6).

For use in research, EHRs are often de-identified in accordance with the Health Insurance Portability
and Accountability Act (HIPAA) (7). HIPAA’s Privacy Rule mandates protection for identifiable
variables such as name, zip code, date of birth, etc. Because of this, public release of EHR data
requires either (1) expert ‘“determination” or (2) “safe harbor” privacy practices. Expert
determination involves an individual with appropriate knowledge and experience determining that
data poses minimal risk. “Safe harbor” practice is the removal of 18 pieces of information from the
EHR, with the 18th being a “catch-all” category for “any other unique identifying characteristic.”
However, the definition for what constitutes individually identifiable information has been
challenged by a variety of re-identification attacks and privacy breaches (8, 9). In practice, the
privacy rule does not constrain the types of uses of health data once it has been de-identified by
these methods, although covered entities sometimes take additional precautions such as data use
agreements that forbid intentional re-identification.

Re-identification is the process of matching anonymized personal data with its owner via linkage
with an external resource. Information such as a person’s name and address are obviously
identifying, but in some circumstances data such as disease diagnoses or lab tests may be
identifiable. In fact, there have been several important examples of this type of privacy attack.
Loukides et al. demonstrated that existing privacy protection methods were not sufficient to protect
against re-identification by identifying a subset of 2800 patients from using EHR diagnosis codes
alone (10). Although the diagnosis code dataset from EHRs were anonymized, the risk for re-
identification came from cross-referencing with a secondary data source that contained the patient’s
exact diagnosis codes. Other researchers have developed strategies to anonymize combinations of
disease billing codes with linked demographics (11).

In this manuscript, we first demonstrate the uniqueness of the pattern of physician-ordered
laboratory tests for specific individuals. After finding that these laboratory orders are highly specific,
we propose an algorithm and evaluation framework to re-identify patients using only a single day
of laboratory orders. Following this, we explore if latent variables can be constructed using a
variational autoencoder which simultaneously preserve information contained within the laboratory
orders and also increase patient privacy.

416



Pacific Symposium on Biocomputing 2019

2. Methods

We present an overall workflow of the study in Figure 1. While we do use EHRs of real patients in
this paper, our dataset is anonymized (i.e., de-identified) and does not include any explicit identifiers
for patients such as name, social security number, hospital medical record number, or specific dates
of encounters. Our dataset uses pseudo-identifiers for each patient that are internally consistent but
do not map to outside datasets. All re-identification methods and results presented do not attempt to
match pseudo-identifier to real identities, as that would violate ethical research practice, patient
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2.1. Data  preparation  of
research cohort and laboratory
tests

We used the EHRs of patient visits from
the Mount Sinai Hospital (MSH), a
tertiary-care urban hospital located on
the Upper East Side of Manhattan in
New York City. For this study, we
obtained the records of all individuals
between 18-90 years old. Since we
sought to obtain generalized re-
identifiability statistics, we did not
select for patients based upon any
particular criteria.

We queried the MSH EHRs for all
possible laboratory tests ordered and
their values. We removed laboratory
tests that did not have numeric value
results, could not be made to give binary
data (e.g. positive/negative result),
could not be used to give ordinal results

Figure 1. Overall workflow of our study. A) Data for this study (e.g. low/medium/high), had results
was obtained from the Mount Sinai Hospital Data Warehouse
B) Cosine distances between each patient-day event were
calculated C) Evaluation by Recall @ n fromn=1ton= 100 i .
D) Use of a variational autoencoder to anonymize laboratory values which were long text strings
orders.

which were clearly erroneous and
nonsensical results (e.g., some labs had
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describing laboratory tests in place of results), or had other missing information such as order date.
2.2.  Assessment of how characteristic patient laboratory tests are for individual patients

We first characterized how unique each patient’s laboratory tests were. To do this, we
concatenated all the laboratory tests which had been ordered at any time point for each patients
into a single standardized text string. We then computed the MDS5 hash of this standardized text
string so that each unique combination of laboratory tests could be represented as a unique 128-
bit checksum. Ultimately, patients who have received the same permutations of laboratory tests
will have exactly the same MDS5 hash. Finally, we checked for overlap among the MD5 hashes
in order to determine the uniqueness of laboratory test orders.

2.3.  Assessing if using one day of patient records is sufficient to re-identify patients

We next sought to determine if a single day of patient records would be sufficient to re-identify a
patient compared to a random sample of other patients. For computational tractability we included
in this analysis only those laboratory tests which had been ordered at least 500 times.

2.3.1. Creation of patient-day-laboratory vectors

Each individual patient’s laboratory records were collapsed to the day in which they were ordered.
If the same laboratory test was ordered more than once on the same day, we took only one
occurrence of that test. We thus assembled each patient-day as a vector 0 of length /, where / is the
count of all laboratory tests obtained from the EHRs. Laboratory tests for a given patient-day were
considered to be a binary variable where 0 denotes absence (laboratory test not ordered for this
patient on this day) and 1 denotes presence (laboratory test ordered for this patient on this day)

2.4. Vector distance metrics

After computing the binary lab vector for each patient-day, we then determined pairwise similarities
between patient-day vectors by computing their cosine distance. The cosine distance is a
straightforward measure of similarity between vectors computed by taking the dot product of two
vectors divided by the product of the two vectors’ magnitude (Eq. 1).

0105
— A 1
1611621 ()

cosine distance = 1

We thus assembled a symmetric MxM pairwise cosine distance matrix where M is the total number
of patient-days. Each (7,j) entry in the distance matrix corresponds to the cosine distance between
laboratory tests on patient-day i and patient-day j. We selected cosine distance as the similarity
metric because it is a vector space metric commonly used information retrieval settings. The cosine
distance in the special case of non-negative binary data (e.g. 0, 1) is also known as the Ochai distance
and has a range of [0, 1] where 0 is perfect dissimilarity and 1 is perfect similarity.
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2.5.  Patient-day re-identification algorithm

Because the running time of pairwise distance computation grows according to the square of the
patient-day counts (i.e. O(n?), quadratic complexity), it was not computationally feasible to
compute the pairwise distances between all patient-day vectors. We thus posed our re-
identification task as an attempt to see if, given a single-day of patient records, we could re-
identify the patient based upon his or her other day’s records compared to the records of 99 other
randomly selected individuals.

Specifically, we randomly selected a single patient-day vector to act as the seed “breached
record” for query. Our dataset for re-identification comprised of that breached patient’s other
patient-day vectors, not including the breached record, and all of the patient-day vectors of
another 99 randomly selected patients. We then computed the cosine distance of this query
vector from all other patient-day vectors in our sample. Then for each patient, we calculated the
mean of the cosine distances of all their vectors from the query vector. Thus, in the end, given
one patient-day record we had 100 distances corresponding to the mean distance of 100 other
patients from this one patient-day. We computed this for all patient-days in the dataset. We then
repeated the entire above algorithm 100 times.

For each iteration of the previous algorithm, we ultimately obtained 100 scores for distance
between our query patient-record and 99 randomly selected individuals, plus the other records
belonging to the initial patient from whom we extracted the seed “breached” record.

2.6.  Patient-day re-identification evaluation framework

We evaluated our performance using a modified version of the “Recall (@ n” metric commonly used
in information retrieval. Since there is only one correct patient match to our query “breached”
record, we evaluated if this correct patient match was within the scores corresponding to the n closest
patients. The score per patient record and n was computed as a binary variable (e.g. patient is within
n closest records = 1 or patient not within n closest records = 0). Recall @ n=1 implies that the
correct match was the closest score to our patient. Recall (@ n=100 will always be 100% since that
implies that the patient is within the closest 100 patients queried, which will always be the case since
we are querying a sample of 100 patients.

The expected recall @ n is n/100 for a completely random classifier. Thus, we can assess our re-
identification algorithm as the improvement over random classification (the null hypothesis). This
formulation analogous to the area under the receiver-operating characteristic curve (“AUROC”)
commonly used for assessing supervised machine learning classification performance.

2.7.  Generalization of patient laboratory test data using a variational autoencoder

Finally, we sought to determine whether we could encode laboratory tests orders into a reduced-
dimensional latent space which was still useful but could reduce re-identifiability. To do this, we
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employed a variational autoencoder implemented in Keras (https:/github.com/keras-team).
Variational autoencoders feature two major architectural components: First, an encoding model
which takes a sequence of inputs (in our case, binary presence or absence of lab tests) and encodes
them into a latent hidden representation space. A generative decoder then decodes the latent space
representation back into a probability distribution representing the input data. We employed a
standard VAE loss function which is the sum of the binary cross entropy between the input lab test
vectors and output lab test vectors plus the Kullback-Liebler divergence between the learned
encoding probability distribution and a unit Gaussian (Eq. 2).

I=—> p(Tout)logq (i) + KL (Z(latent), N(0,1)) )
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Figure 2: Architecture of variational autoencoder

and 23 latent neurons were insufficiently accurate, but 2* (16) latent space neurons produced
experimentally acceptable results. The architecture of the model is given Figure 2.
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3. Results
3.1. Electronic health record data

From the selected cohort of 731,850 individuals, we obtained laboratory records from those with
at least one recorded laboratory test. These individuals had 342,485,583 laboratory test values
for 2,635 different possible laboratory procedures. These distinct labs had been ordered on
average 468.0 times per patient (standard deviation: 1,415) with a minimum frequency of one
and a maximum frequency of 94,749 different laboratory results. This range of results is likely
due to the fact that Mount Sinai Hospital sees a unique mix of patients, from everyday office
visits to patients who may remain in the intensive care unit for weeks. The average patient had
records for 49.8 different kinds of labs (standard deviation of 40.4) with a minimum of one kind
of laboratory test and maximum of 442 types of different laboratory tests. The laboratory tests
in total represented a period totaling 17,657 years (6,449,310 patient-days). Patients had a mean
of 8.81 different days (standard deviation: 20.6) with at least one laboratory test result. The total
range of days per patient was from one day to 2.47 years. 81.6% of patients had 10 or fewer
days of laboratory results and 90.7% had fewer than 20 days of laboratory values. There were
218 different laboratory tests ordered only once (8.3% of all tests) and 1,186 laboratory values
were ordered less than 1000 times (45.0% of all tests).

3.2.  What percentage of patients can be uniquely identified by laboratory tests ordered for
them?

1.001 . . . Weanalyzed the uniqueness of the laboratory
: tests ordered per patient, e.g. what percentage

of patients had perfectly unique laboratory

- tests different from all other patients (Figure
: 3). This corresponds to the ability to perfectly
recognize a patient by simply knowing what
laboratory test have been ordered. We did not
consider the numerical results for the lab, but
merely assessed whether the tests had been
ordered for a given patient or not. In total,
56.1% of patients could be perfectly
characterized by their laboratory results (e.g.,
their particular combination of laboratory
tests was completely different from all other
patients in the EHR). However, the
distinguishability increased very rapidly with

0.504

0.254

Percentage of perfectly distinguishable individuals

0.00+
2 4 6 8 10
Number of patient visits

Figure 3: Percentage of patients whose particular increasing count of encounters in the EHR.
pattern of visits are completely unique to them, by Patients who had at least two days of
number of visits to hospital. laboratory values were different from all
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other patients 72.3% of the time. Patients who had at least nine days of laboratory values (the
mean number of days per patient) were different from all other patients 98.4% of the time.

3.3.  Can we re-identify patients using only 1 day of laboratory tests?

=}
Ed

Recall @ n
&
3
Recall @ n

Recall
1.00

0.254

0.004 0.0

Figure 4: Reidentification performance using only one day of lab values.
Panel on right shows distribution from 250 simulations.

We next formulated a theoretical privacy “attack”: Given only a single day of records for a
patient, could we re-identify this individual from a set of 99 other individuals? We show the
performance for this re-identification task in Figure 4. Here, the red line represents the
probability for random re-identification and the blue line represents the added ability to
distinguish above random. We ranked the query individual as the most similar individual 25%
of the time. We could place the query individual among the top 10 individuals 47% of the time.

3.3.1. Assessing the performance of latent variables from variational autoencoder to predict
laboratory orders

After applying a variational autoencoder to encode input EHR variables, we first assessed
whether our encoded latent variables indeed adequately model the dataset. This is important,
because we do want to ensure they retain adequate information in the data. We then attempted
to predict whether a given test would be ordered for a patient or not on a given day. It is important
to show that the latent variables are actually associated with laboratory results before we can
demonstrate that they may be useful for anonymity.
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We found that our latent
variables were highly
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3.3.2. Comparing raw lab tests to latent-space abstracted laboratory tests for privacy
preservation

We assessed the ability to re-identify patients based upon cosine distance of latent variables.
This is the same algorithm as used previously to re-identify patients, but with our encoded
variables representing patient labs instead of using the patient labs themselves. We found that
in every case, using encoded latent variables gave greater privacy protection compared to the
raw lab values used for the same samples (Figure 6).
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For recall @ I through recall @ 99 (since 100 samples were used per assessment), latent space
performed significantly better at all points (p<107'¢, matched pairs t-test). We were only able to
perfectly match the individual from one day of laboratory orders 5% of the time, compared to
25% of the time using the raw laboratory orders as shown previously.

4. Discussion

Using the Mount Sinai Hospital (MSH) patients’ laboratory test history and a straightforward
similarity measure, we discovered that by the time the patient has had contact with the hospital on
nine separate days, their laboratory test orders are completely unique to that patient 98.4% of the
time. This is a significant finding, since it implies that public datasets which contain all of the
laboratory tests ordered for a specific person may be able to be matched against a known set of
electronic health records (EHR) with perfect fidelity in some cases. We also show that we can obtain
reasonable re-identification performance using a single day of laboratory values. Finally, we
demonstrate that latent encoded variables make the problem of re-identification significantly more
difficult without knowing the exact model used to encode the latent variables.

One of our primary motivations for this study stems from the idea that lab tests as are commonly
used as covariates in statistical models to help to produce more accurate probability estimates for
outcomes. For example, if a researcher intended to study the effect of statin therapy on incident
heart disease, he or she would need to adjust for a levels of baseline LDL cholesterol and other lab
tests. Instead of using actual lab tests, lower-dimensional encoded variables which contain the
same amount of information as the lab tests would serve just as well as control variables. This is
exactly analogous to the use of genetic SNP principal components to represent genetic ancestry in
genome-wide association studies. One of the major values of our study is that we demonstrate that
lower-dimensional representations of the EHR contain similar amounts of information as
unprocessed records, while simultaneously preserving privacy.

Our study had several limitations. First, the work was performed with data from only one healthcare
institution. However, MSH is a large tertiary care hospital with a significant diversity of patients.
We also focused exclusively on laboratory test orders and did not include data such as disease
diagnoses, ethnicity, gender, etc. which are often included in EHR. In our re-identification analysis,
we attempted to identify an individual against a subset of 99 other random individuals, not the entire
cohort of patients. Although this is a realistic scenario when performing biomedical research on a
specific patient population, further analysis is needed to understand if our methods hold true when
identifying an individual from the entire database. Finally, we assessed here only the binary presence
or absence of laboratory test orders. It is quite possible that considering the numeric results of
laboratory tests could increase re-identifiability substantially. For example, hypothetical patients
with LDL cholesterol test results of 60mg/dL vs. 600mg/dL would be easily separable, although our
current method considers only the fact that LDL tests were ordered for both patients. However, as
we have demonstrated, considering only the binary absence or presence of orders already works
reasonably well and we believe our performance metrics are conservative.
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Potentially, replacing our variational autoencoder with other kinds of autoencoders or other
dimensionality-reduction methods would also have been effective. Autoencoders essentially work
by learning compression and decompression functions which minimize a loss function, whereas
variational autoencoders learn a probability distribution which minimizes a loss function.
Experimentally, our use of a VAE worked well enough to learn latent variables. By introducing this
as a proof-of-concept, we felt that it would not be too valuable to benchmark against other
alternatives. Future experimental and theoretical work could explore the dimensionality reduction
methods used in this paper more thoroughly. Finally, we cannot release the training dataset since it
contains the real patient records of hundreds of thousands of patients and could potentially enable
future reidentification attacks.

We must also note here that our findings do not imply a threat model whereby patients may be
identified from laboratory tests themselves, without a threat actor having an outside source of
information. We show here only that lab tests are highly distinctive. For re-identification, the
techniques presented here would require the threat actor to have at least some amount of information
from another data source containing laboratory tests which were matched to actual patient
identifiers. Furthermore, our re-identification technique only attempted to re-identify from one out
of 100 instead of one out of the entire dataset, since our method for computing pairwise vector
distances would not scale computationally to that extent.

Taken altogether, we believe that our findings have significant implications for the release of
anonymized laboratory test results to the broad biomedical research community. Researchers should
consider the possible consequences of making extensive laboratory order data for patients freely
available, and should inform patients that this level of detail may potentially make them open to re-
identification.

If researchers choose to release data, we suggest they consider providing latent-variable encoded
laboratory values instead if this data would remain useful in their particular scientific context.
Potentially, the methods we demonstrate here for laboratory test orders could be applied to other
forms of data contained within the EHR.

Scientists have an obligation to respect their subjects’ generosity in donation of data by maintaining
their privacy and here we have demonstrated one method to make re-identification more
challenging.
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