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ABSTRACT

The performance of 24 GCMs available in the fifth phase of the Coupled Model Intercomparison Project

(CMIP5) is evaluated over the eastern Tibetan Plateau (TP) by comparing the model outputs with ground

observations for the period 1961–2005. The twenty-first century trends of precipitation and temperature based

on theGCMs’ projections over the TP are also analyzed. The results suggest that for temperature most GCMs

reasonably capture the climatological patterns and spatial variations of the observed climate. However, the

majority of the models have cold biases, with a mean underestimation of 1.18–2.58C for the months

December–May, and less than 18C for June–October. For precipitation, the simulations of all models over-

estimate the observations in climatological annualmeans by 62.0%–183.0%, and only half of the 24GCMs are

able to reproduce the observed seasonal pattern, which demonstrates a critical need to improve precipitation-

related processes in these models. All models produce a warming trend in the twenty-first century under the

Representative Concentration Pathway 8.5 (rcp8.5) scenario; in contrast, the rcp2.6 scenario predicts a lower

average warming rate for the near term, and a small cooling trend in the long-term period with the decreasing

radiative forcing. In the near term, the projected precipitation change is about 3.2% higher than the

1961–2005 annual mean, whereas in the long term the precipitation is projected to increase 6.0% under rcp2.6

and 12.0% under the rcp8.5 scenario. Relative to the 1961–2005 mean, the annual temperature is projected to

increase by 1.28–1.38C in the short term; the warmings under the rcp2.6 and rcp8.5 scenarios are 1.88 and 4.18C,
respectively, for the long term.

1. Introduction

Global climate models (GCMs) are widely used for

projections of future climate change. The periodic as-

sessments of climate change by the Intergovernmental
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Panel on Climate Change (IPCC) have relied heavily on

GCM simulations of future climate driven by various

emission scenarios. For the IPCC Fourth Assessment

Report (AR4), 24 GCMs were used (Solomon et al.

2007; Randall et al. 2007). These archives offer unprec-

edented opportunities to analyze the projections for the

twenty-first-century climate change and the potential

effects at regional and continental scales.

At a September 2008 meeting involving 20 climate

modeling groups from around the world, a working

group of the World Climate Research Programme

(WCRP) agreed to promote a new set of coordinated

climate model experiments, and these experiments com-

prise the fifth phase of the Coupled Model Intercom-

parison Project (CMIP5). CMIP5 will notably provide

a set of standardized simulations in order to 1) evaluate

how realistic the models are in simulating the recent past,

2) provide projections of future climate change on two

time scales, near term (out to about 2035) and long term

(out to 2100 and beyond), and 3) understand some of the

factors responsible for differences in model projections,

including quantifying some key feedbacks such as those

involving clouds and the carbon cycle.

Because of the nature of future climate simulations,

testing models’ ability to reproduce ‘‘present climate’’

and past climate changes is an important part og evaluat-

ing the GCM projections (Mote and Salathé 2010; Phillips

and Gleckler 2006; Randall et al. 2007; Walsh et al. 2008).

Randall et al. (2007) and Bader et al. (2008) evaluated

the performance of the models archived at the Program

for Climate Model Diagnosis and Intercomparison

(PCMDI) in simulating various aspects of global climate

in the twentieth century. Their results suggest that the

models can capture the large-scale features of climate,

but more uncertainties appear at regional and smaller

scales and large errors occur in regions of sharp eleva-

tion changes. Phillips and Gleckler (2006) evaluated

precipitation from 19 IPCC GCMs’ twentieth-century

runs relative to three observational estimates at both

global and regional scales. Many models were found to

display systematic biases, deviating markedly from the

observed spatial variability and amplitude/phase of

seasonal cycles. However, the ensemble mean of all the

models usually shows better agreement with the obser-

vations than does any single model. Duan and Phillips

(2010) presented aBayesianmultimodelmethod showing

that multimodel prediction results are superior to in-

dividual model results and multimodel results provide

an associated uncertainty estimation of the predictions.

Mote and Salathé (2010) examined the simulations of

twentieth-century climate in the Pacific Northwest by

20 IPCC AR4 models in relation to a gauge-based

global dataset and reanalysis data. Their results show

that no model fell in the best five for both temperature

and precipitation, and likewise no model fell in the worst

five for both. While Walsh et al. (2008) found that some

models consistently rank close to the top no matter which

variables and which regions are examined in their evalu-

ation of 15 IPCC GCMs against the 40-yr European

Centre forMedium-RangeWeather Forecasts (ECMWF)

Re-Analysis (ERA-40) data over Alaska and Greenland.

The Tibetan Plateau (TP), also known as the ‘‘Third

Pole’’ of the world (Qiu 2008), is the highest and most

extensive highland in the world (Zhang and Wu 2000).

The TP has an average elevation of over 4000 m above

sea level and a total area of more than 2.5 million km2,

and it exerts a huge influence on regional and global

climate through mechanical and thermal forcing mech-

anisms (Duan and Wu 2005; Sato and Kimura 2007;

Yanai et al. 1992). The TP is also the source of major

Asian river systems (e.g., the Tarim, AmuDarya, Indus,

Ganges, Brahmaputra, Irrawaddy, Salween, Mekong,

Yellow, and Yangtze) and is considered the water tower

of Asia (Immerzeel et al. 2010). These rivers support

more than a billion people downstream. The TP is

characterized by complex terrains, large area of snow,

mountains, glaciers, permafrost, and mountain lakes.

Meteorological observation and ice core records have

suggested a warming trend over the TP in recent de-

cades (around 0.38C decade21) (Duan et al. 2006; Liu

and Chen 2000; Thompson et al. 2000; Wang et al. 2008).

Also, major climate-induced changes have occurred,

such as glacier retreat (Yao et al. 2004) and permafrost

degradation (Wu and Zhang 2008, 2010). Changes of

meteorological variables (e.g., temperature and pre-

cipitation) and the induced changes may have profound

impacts on the hydrological cycle and river discharge in

the TP. Therefore, quantifying the uncertainties in

GCM projections of climate change over the TP is es-

sential for assisting policymakers and water managers in

adopting strategies reflecting the state of scientific un-

derstanding of the likelihood.

In this paper, we assess the ability of 24 GCMs archived

by CMIP5 in reproducing the twentieth-century precipi-

tation (P) and temperature (T) climatology over the TP

relative to gauge observations. The twenty-first-century

trends of P and T based on the GCMs’ projections over

the TP are also analyzed. The analysis of the model re-

sults described here is directed at the following questions:

d How are the models’ performances over the TP in

reproducing both climatological annual mean and

seasonal cycle, as well as spatial variation of past and

present climate?
d How would the precipitation and temperature change

in the twenty-first century over the TP?
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2. Study area, data, and methodology

The study domain in this paper is limited to the pla-

teau extending over 228–408N and 688–1068E, with

a boundary defined with the elevation above 2000 m

(Fig. 1). Hereafter ‘‘TP’’ refers to the area within these

boundaries. A spatial distribution of 176 meteorological

stations that were used to evaluate the GCM outputs is

also shown in Fig. 1. It can be seen that most of the

gauges lie in the southern and southeastern TP and very

few in the central and western part. The uneven distri-

bution of the gauge stations would affect the accuracy of

regional averages and the spatial interpolation. There-

fore, in this study, we choose the area east of 908E in

the TP (hereafter eastern TP), where there is relatively

dense station coverage, as our evaluation domain.

Monthly temperature and precipitation data at the 176

meteorological stations (Fig. 1) for 1961–2005 were

provided by the China Meteorological Data Sharing

Service System (http://cdc.cma.gov.cn/) and were used

to evaluate the GCM results for the same period.

Our evaluation and projection are based on the

twentieth- and twenty-first-century simulations respec-

tively by the model used in the CMIP5 (data are avail-

able online at http://pcmdi3.llnl.gov/esgcet/home.htm;

note that expansions of all CMIP model acronyms are

available online at http://cmip-pcmdi.llnl.gov/cmip5/docs/

CMIP5_modeling_groups.pdf). Table 1 provides basic

information about the 24 GCMs. The GCM output used

here consists of the monthly surface air temperature and

precipitation. Most simulations were begun in the 1800s

and continued through the twenty-first century, with ra-

diative forcing and CO2 emissions prescribed from Rep-

resentative Concentration Pathways (RCPs) (Meehl

et al. 2007; van Vuuren et al. 2011). To facilitate GCM

intercomparison and validation against the gauge ob-

servations, all the monthly fields of GCM temperature

and precipitation were regridded to 2.08 latitude 3 2.08
longitude grids using the nearest neighbor method, and

the gauged data were interpolated to 2.08 3 2.08 grids
using the inverse distance weighting approach. For the

gauged temperature, a commonly used lapse rate of

0.648C (100 m)21 was adopted during the interpolation

process from points to grids in order to take into account

the elevation effects. For gauged precipitation, we sim-

ply used the inverse distance interpolation algorithm

from points to 2.08 3 2.08 grids, without considering the

influence of topography on precipitation. There are 47

grid cells of 2.08 3 2.08 within the eastern TP.

To facilitate the GCM validation against the obser-

vation data, we simply averaged the temperature and

precipitation values at all the 28 3 28 grids that fell in the

eastern TP to define a regionally averaged monthly,

seasonal, and annual time series of GCM simulations

and observations. The annual average values of tem-

perature and precipitation for each 28 3 28 grid of GCMs

and observations for 1961–2005 were also calculated for

spatial analysis.

Several statistical measures were used to quantify the

accuracy of the GCM simulations: bias (AE5 S2O,

where S andO are simulated and observed long-term

annual mean temperature or precipitation for 1961–

2005); relative bias defined as RE5 (S2O)/O 3 100%;

correlation coefficient R; and root-mean-square error

(RMSE). The correlation coefficient was used to de-

scribe the temporal and spatial similarity between the

observation and the simulation. The mean differences

between simulated and observed climate variable,

FIG. 1. Topography of the Tibetan Plateau (TP), with red dots denoting 176 meteorological

stations over the TP. The region east of 908E within the 2000-m contour line (gray line) is the

evaluation area in this study.
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regardless the sign of the difference, can be described by

RMSE. RMSE is defined as follows:

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

i51

(Omi 2Smi)
2

n

vuuut
, (1)

where Omi and Smi denote observed and simulated

temperature or precipitation, and n is the number of

pairs in the analysis.

For precipitation, we use the normalized RMSE

(NRMSE) to describe the mean deviation of the GCMs

from the observations. The NRMSE is defined as

NRMSE5
RMSE

O
, (2)

whereO is the mean value of the observed precipitation.

3. Model evaluations of the twentieth-century
climate

In this section, we evaluate the performance of the

24 GCMs in reproducing the observed climatological

annual mean, seasonal cycle, and spatial variation of T

and P over the eastern TP for 1961–2005.

a. Temperature

Table 2 shows the statistical summary of the com-

parison between the 24 GCMs’ simulations and obser-

vations of annual mean climate for 1961–2005. The

observed annual mean T in the eastern TP was around

2.98C during 1961–2005.Most of the 24 GCMs (20 out of

24) showed a cold bias in T with negative biases ranging

from 24.358 to 20.038C; only four models showed a

weak warm bias ranging from 0.038 to 0.558C. The

models with the least bias in annual mean T are GFDL-

ESM2M, MPI-ESM-LR, GFDL-ESM2G, CanESM2,

and CanCM4 (Fig. 2). The correspondence between

the modeled and observed annual temperature, in

terms of interannual variation, was very poor, with the

highest R of 0.29 for the BCC-CSM1.1 and negative

values of R for 13 GCMs (Table 2). In term of the

RMSE, the models with the least RMSE are MPI-

ESM-LR, GFDL-ESM2M, GFDL-ESM2G, CanCM4,

and CanESM2, ranging between 0.388 and 0.518C,
while INMCM4 performs worst with the largest RMSE

of 4.398C.

TABLE 1. Information about the CMIP5 climatemodels used for IPCCAR5. Expansions of all CMIPmodel acronyms are available online

at http://cmip-pcmdi.llnl.gov/cmip5/docs/CMIP5_modeling_groups.pdf.

Institute Nation Modeling Center (or group)

Model information

Model name Atmosphere resolution

BCC China Beijing Climate Center, China

Meteorological Administration

BCC-CSM1.1 T42 (;2.81258 3 2.81258) L26

MPI-M Germany Max Planck Institute for Meteorology MPI-ESM-LR T63 (;1.8758 3 1.8758) L47
MRI Japan Meteorological Research Institute MRI-CGCM3 TL159 (;1.1258 3 1.1258) L48
NASA GISS USA NASA Goddard Institute for Space Studies GISS-E2-H ;28 3 2.58

GISS-E2-R ;28 3 2.58
NCAR USA National Center for Atmospheric Research CCSM4 ;0.98 3 1.258
MOHC UK Met Office Hadley Centre HadCM3 N48 (;2.4668 3 3.758) L19

HadGEM2-ES N96 (;1.248 3 1.8758) L38
HadGEM2-CC N96 (;1.248 3 1.8758) L60

CCCma Canada Canadian Centre for Climate Modeling

and Analysis

CanESM2 T63 (;2.81258 3 2.81258) L35
CanCM4 T63 (;2.81258 3 2.81258) L35

CSIRO Australia Communication Scientific and Industrial

Research Organization

CSIRO-Mk3.6.0 T63 (;1.8758 3 1.8758) L18

GFDL USA NOAA Geophysical Fluid Dynamics

Laboratory

GFDL-CM3 C48 (;28 3 2.58) L48
GFDL-ESM2G M45 (;28 3 2.58) L24
GFDL-ESM2M M45 (;28 3 2.58) L24

INM Russia Institute for Numerical Mathematics INM-CM4 ;1.58 3 28
IPSL France Institute Pierre-Simon Laplace IPSL-CM5A-LR LMDZ (;4 1.898 3 3.758)

IPSL-CM5A-MR LMDZ4 (;1.25878 3 2.58)
MIROC Japan National Institute for Environmental

Studies, The University of Tokyo

MIROC4h T213 (;0.56258 3 0.56258)L56
MIROC5 T85 (;1.406258 3 1.406258) L40
MIROC-ESM T42 (;2.81258 3 2.81258) L80
MIROC-ESM-CHEM T42 (;2.81258 3 2.81258) L80

CSIRO-BOM Australia CSIRO/Bureau of Meteorology ACCESS1.0 N96 (;1.258 3 1.8758) L38
NCC Norway Norwegian Climate Centre NorESM1-M F19 (;1.8758 3 2.58) L26
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Greenhouse-driven climate change represents a re-

sponse to the radiative forcing associated with the in-

creases of carbon dioxide, methane, water vapor, and

other radiatively active gases, while changes in the ra-

diative forcing associated with the greenhouse gases

have thus far been relatively small, and a much more

potent change in forcing occurs each year through the

seasonal cycle of solar radiation (Walsh et al. 2008). In

this respect, it is necessary to evaluate the models’

ability to capture the seasonal cycle of past and present-

day climate in the eastern TP. Figure 3 shows mean

monthly temperatures from each GCM and multimodel

ensemble average over the eastern TP for the period

1961–2005. The mean temperatures in summer [June–

August (JJA)] were around 118–12.58C and were from

28.28 to 25.38C in winter [December–February (DJF)]

based on observations. The simulations generally show

similar seasonal patterns to the observation; however,

most models tend to underestimate the observed T, es-

pecially in winter. Consistent with previous studies (e.g.,

Mote and Salathé 2010), the ensemble mean of the

models generally shows closer agreements with the ob-

servation than individual models, with a cold bias of

1.28–2.58C for December–April, and a cold bias less than

18C for JJA. This helps to justify the multimodel ap-

proach in climate projection studies.

Figure 4 illustrates the seasonal dependencies of the

RMSEs for each GCM. Although the RMSEs vary

widely among models and across seasons, in most cases

the RMSEs exhibit largest values in winter and smallest

values in summer (Fig. 4). The models GFDL-ESM2G,

MIROC5, GFDL-ESM2M, and MPI-ESM-LR seem to

perform better than the other models for all seasons in

terms of RMSE (around 1.08C). The corresponding R

relative to the observations for each season is displayed

in Table 3. Consistent with the results of RMSE, the

temporal similarity between the observations and the

simulation is best in summer, with 15 out of 24 models

having R between 0.4 and 0.7, and worst in winter and

spring with 20models havingR less than 0.3 (Table 3). In

other words, most theGCMs perform reasonably well in

simulating T in summer over the eastern TP; this also

explains the small bias (less than 18C) in the ensemble

means for JJA in Fig. 3. In summary, most of the GCMs

are hardly able to simulate the interannual variations of

T; however, most of the models can reproduce the sea-

sonal variations of observed T over the eastern TP, with

the best model performance in summer.

The above analysis describes the temporal variations

of T from the GCMs in comparison with the observation

over the eastern TP during 1961–2005; the following

presents spatial variations of GCMs simulated T over

the TP. Figure 5 shows the spatial map (28 3 28 grids) of
annual temperatures from the 24 GCMs, along with the

observations for 1961–2005. Annual mean temperatures

across the TP shift sharply from more than 238C at the

south of the Himalayas to less than2188C in the central

to northwestern area of TP based on the observations.

The lowest annual temperatures appear in the central

plateau and the northwest corner where elevations

are generally above 5000 m. The temperature over the

TP generally exhibits a decreasing gradient from the

FIG. 2. Area-averaged annual bias (AE) of temperature relative to the observation for each

GCM during 1961–2005 over the entire eastern TP.
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southeast to northwest with the highest temperature in

the southeastern region where the elevations are low.

Figure 5 indicates that most of the models show a spatial

pattern similar to the observations with the spatial cor-

relation coefficient ranging between 0.70 and 0.85 among

the models relative to the observations over the eastern

TP (based on the statistics of the forty-seven 28 3 2 8 grids
within the eastern TP; Table 4). The seasonal spatial pat-

terns of temperatures for the five models with least annual

biases (GFDL-ESM2M, MPI-ESM-LR, GFDL-ESM2G,

CanESM2, and CanCM4) are displayed in Fig. 6. The

spatial pattern of each season generally resembles that

of annual means (Fig. 5). The seasonal R values of

temperature for all the models over the eastern TP are

included in Table 4. It is interesting to note that winter

temperature tends to have a better spatial correspon-

dence with the observations than the other seasons, al-

though winter has the highest bias (Fig. 3) and the lowest

temporalR (Table 3). The bias fields (not shown) suggest

that consistent cold biases occur in the center of TP and

dominant warm biases occur in the southeastern TP and

the surroundings across the models in the autumn. Fur-

ther, there are both positive and negative biases across

the models at any location in other seasons.

b. Precipitation

In this section, we use the same approach to assess the

ability of GCMs in reproducing observed climatological

FIG. 3. Mean monthly temperatures from the 24 GCMs (gray lines) and observation (solid

line) over the eastern TP for the period of 1961–2005 with the dashed line denoting the en-

semble means of the 24 GCMs.

FIG. 4. The seasonal RMSEs of temperature for each GCM over the eastern TP for the period

1961–2005.
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annual mean, seasonal, and monthly precipitation vari-

ations. Annual mean precipitation over the eastern TP is

about 545 mm based on the observation data for 1961–

2005. All GCMs tend to overestimate the observed

precipitation with mean REs ranging widely between

61.0% and 183.0% (Table 2). The top five models with

least RE (61.0%–85.0%) are IPSL-CM5A-LR, MRI-

CGCM3, IPSL-CM5A-MR, HadCM3, and CanESM2

(Fig. 7). These five GCMs also fall into the top six

models with least NRMSE (62.0%–92.0%; Table 2).

The R for annual variation of precipitation varies from

20.27 to 0.19 among the GCMs, suggesting very poor

correspondences between the modeled and observed

annual precipitation variations over the eastern TP.

Figure 8 shows precipitation seasonal cycles from each

GCM and the multimodel ensemble mean, along with

the observations over the eastern TP for the period

1961–2005. More than 80% of annual precipitation oc-

curs during May–September and winter precipitation is

very low based on the observations. The precipitation in

the TP is mostly affected bymonsoon in summermonths

and westerly wind in winter and spring. In summer

months, the heavy precipitation in the southeastern TP

is mainly produced by the southeast monsoon and the

influence of the monsoon weakens from east to west. In

winter and spring, westerly winds bring moisture to the

west TP but the amount is much less than the summer

precipitation from the east monsoon. Only half of

the GCMs are able to reproduce the observed sea-

sonal pattern, although these models consistently over-

estimate the observed precipitation for all seasons. The

multimodel averages are 2.0–6.5 times higher than the

observed precipitation for October–May, and are 80.0%

higher than the observed for summer months. The sea-

sonal NRMSE displayed in Fig. 9 indicates that the

largest NRMSEs of precipitation occur in winter and the

least in summer for most of the models, largely because

the mean precipitation is higher than in winter. The

seasonal precipitation from the GCMs does not corre-

spond with the observations in terms of the seasonal R

for most of the models over the eastern TP (Table 3).

One exception is the BCC-CSM1.1, which has an R of

0.37 for summer and 0.27 for autumn. Despite of the low

skill of most GCMs in reproducing precipitation varia-

tions for each season, the ensemblemean is able to catch

the general seasonal pattern of precipitation with the

wet season occurring in June–September and the dry

season in November–March.

Figure 10 compares spatial pattern of annual pre-

cipitation from 24 models with those from the obser-

vation over the TP for 1961–2005. The annual means

from the observation show a decreasing trend from the

TABLE 3. Correlation coefficient between the modeled and observed seasonal climate over the eastern TP.

Models

Seasonal correlation coef

Temperature Precipitation

Spring Summer Autumn Winter Spring Summer Autumn Winter

ACCESS1.0 0.16 0.57 0.26 0.42 0.06 0.03 0.27 20.01

BCC-CSM1.1 20.13 0.48 0.39 0.08 0.09 0.37 0.23 0.11

CanESM2 0.23 0.42 0.43 0.18 0.23 20.08 0.05 20.29

CanCM4 0.29 0.59 0.42 0.23 0.07 20.03 0.13 0.28

CCSM4 0.34 0.56 0.44 0.39 20.05 20.08 20.03 0.22

CSIRO-MK3 20.08 0.42 0.43 0.14 0.01 0.09 20.07 20.11

GFDL-CM3 0.28 0.48 0.32 0.15 20.08 20.07 0.12 20.13

GFDL-ESM2G 0.11 0.38 0.31 0.35 20.17 20.13 0.00 20.12

GISS-E2-R 0.30 0.37 0.39 0.22 0.30 20.12 0.38 0.03

INMCM4 20.06 0.26 0.20 0.12 0.10 20.01 20.01 20.03

IPSL-CM5A-LR 0.01 0.45 0.25 0.30 0.08 0.03 0.16 20.20

MIROC5 0.04 0.38 0.13 0.21 0.25 20.09 0.12 20.16

MRI-CGCM3 0.27 0.68 0.35 0.01 0.22 0.10 20.03 0.00

NorESM1-M 0.07 0.70 0.20 0.40 20.27 20.12 20.08 0.14

GISS-E2-H 0.30 0.54 0.42 0.03 20.13 0.09 0.48 20.13

MIROC4h 20.02 0.57 0.31 0.20 0.01 0.17 0.02 0.32

MIROC-ESM 20.01 0.52 0.33 0.15 0.39 0.04 0.01 20.05

MIROC-ESM-CHEM 0.04 0.24 0.34 20.06 20.01 0.22 0.15 0.14

IPSL-CM5A-MR 0.18 0.55 0.41 0.23 20.02 0.08 20.04 0.02

GFDL-ESM2M 20.11 0.06 0.18 0.00 0.13 0.06 0.28 20.02

MPI-ESM-LR 0.07 0.46 0.35 0.03 20.01 0.02 0.07 0.07

HadCM3 0.32 0.38 0.24 20.06 0.04 0.18 20.04 20.09

HadGEM2-CC 20.24 0.17 0.53 20.20 20.24 20.22 20.21 20.11

HadGEM2-ES 20.10 0.33 0.20 0.02 20.16 20.03 20.27 20.02
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southeast to the northwest, from approximately 700–

1500 mm to lower than 50 mm. The models generally

followed this spatial pattern in annual means with R

values mostly ranging between 0.53 and 0.73 (Table 4).

The spatial pattern of seasonal precipitation for the five

models with least annual bias is shown in Fig. 11. The

precipitation dominated by the southeast monsoon

mostly occurs in summer in the southeast of the TP, and

very little precipitation (less than 30 mm) occurs in

winter based on the observations (Fig. 11f). The five

FIG. 5. Spatial pattern of annual mean temperatures from the 24 GCMs and observation over the TP at 28 3 28 grids for 1961–2005.
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GCMs capture the general spatial pattern of precip-

itation, with the highest in summer in the southeast and

lowest in winter; however, the models tend to over-

estimate observations for all seasons for the eastern TP

(Figs. 11a–e). It is noticed that, for the entire TP, the five

GCMs not only detect the summer monsoon signals in

the southeast of TP, but also capture the signals of

western wind system in winter and spring in the western

TP. (These signals were not detected in the gauge-based

estimates because of the limited stations in the west of

TP.) The R index for each season over the eastern TP

(Table 4) shows that summer season generally has the

best spatial correspondence with the observations (18 out

of 24 models having R values of 0.7–0.9), suggesting that

most of GCMs are able to detect the monsoon signals.

4. Projected changes in temperature and
precipitation

IPCC AR4 produces six global greenhouse gas emis-

sions scenarios ranked from highest to lowest in terms of

global average emissions at midcentury as AIFI, A2,

A1B, B2, A1T, and B1. The scenario development has

been carried out as a sequential process from socioeco-

nomics and emissions to climate projections and finally

impact assessment. This sequential process prolonged the

integration of information across the three research

communities. A new set of scenarios to facilitate future

assessment of climate change, compatible with the full

range of stabilization, mitigation and baseline emission

scenarios available in the scientific literature, has been

developed by the research community (van Vuuren et al.

2011; Moss et al. 2010). These scenarios are referred to as

representative concentration pathways. The identifica-

tion ofRCPs upfront is done to expedite the development

of integrated scenarios by enabling climate modeling to

proceed in parallel to emission and socioeconomic sce-

nario development. The RCPs have now been agreed

upon that specify radiative forcing through the end of the

twenty-first century (Moss et al. 2010). The philosophy of

the RCP scenarios is to provide a single implementation

of concentrations and radiative forcing in line with the

scenario literature as evaluated for IPCC AR4. It is part

of the Fifth Assessment Report (AR5) process to char-

acterize the uncertainties in a comprehensive manner. In

this paper, rcp2.6 (rcp3-pd) and rcp8.5 were selected for

investigating the twenty-first century climate projections

over the TP as they represent the extreme condition of

radiative forcing and emissions. Rcp8.5 is the highest

forcing and emission scenario, with an increasing radi-

ative forcing to 8.5 W m22 at 2100; rcp2.6, by contrast,

generally represents the lowest forcing and emission

TABLE 4. Spatial correlation coefficient between each GCM and observations in annual and seasonal means (1961–2005) of temperature

and precipitation over the eastern TP (there are total 47 28 3 28 grids for the statistics).

Temperature Precipitation

Annual Spring Summer Autumn Winter Annual Spring Summer Autumn Winter

ACCESS1.0 0.85 0.85 0.86 0.86 0.89 0.86 0.73 0.82 0.80 0.59

BCC-CSM1.1 0.78 0.77 0.80 0.80 0.84 0.71 0.63 0.85 0.85 0.46

CanESM2 0.78 0.78 0.79 0.79 0.86 0.69 0.78 0.79 0.75 0.74

CanCM4 0.79 0.78 0.79 0.80 0.86 0.69 0.77 0.79 0.75 0.70

CCSM4 0.85 0.88 0.87 0.88 0.89 0.57 0.70 0.64 0.57 0.58

CSIRO-MK3 0.82 0.84 0.84 0.84 0.88 0.73 0.82 0.89 0.79 0.67

GFDL-CM3 0.77 0.79 0.80 0.82 0.85 0.70 0.74 0.86 0.74 0.67

GFDL-ESM2G 0.80 0.80 0.81 0.81 0.87 0.67 0.72 0.80 0.55 0.42

GISS-E2-R 0.76 0.80 0.81 0.76 0.76 0.54 0.74 0.53 0.60 0.83

INMCM4 0.71 0.72 0.8 0.77 0.82 0.73 0.69 0.88 0.82 0.67

IPSL-CM5A-LR 0.82 0.82 0.84 0.85 0.88 0.70 0.62 0.85 0.75 0.34

MIROC5 0.80 0.79 0.81 0.81 0.86 0.68 0.77 0.80 0.83 0.65

MRI-CGCM3 0.84 0.87 0.88 0.87 0.89 0.68 0.80 0.78 0.83 0.77

NorESM1-M 0.80 0.80 0.80 0.82 0.87 0.63 0.76 0.68 0.61 0.62

GISS-E2-H 0.70 0.74 0.75 0.71 0.74 0.56 0.71 0.54 0.64 0.79

MIROC4h 0.85 0.86 0.87 0.87 0.89 0.64 0.68 0.79 0.78 0.73

MIROC-ESM 0.71 0.71 0.74 0.77 0.79 0.63 0.61 0.74 0.59 0.32

MIROC-ESM-CHEM 0.70 0.69 0.74 0.77 0.79 0.64 0.60 0.77 0.62 0.42

IPSL-CM5A-MR 0.84 0.84 0.85 0.87 0.90 0.56 0.60 0.68 0.55 0.26

GFDL-ESM2M 0.80 0.80 0.81 0.81 0.87 0.66 0.72 0.78 0.61 0.44

MPI-ESM-LR 0.83 0.82 0.85 0.84 0.87 0.61 0.70 0.68 0.65 0.36

HadCM3 0.82 0.77 0.84 0.77 0.87 0.73 0.74 0.90 0.87 0.61

HadGEM2-CC 0.84 0.70 0.86 0.79 0.89 0.68 0.75 0.78 0.80 0.59

HadGEM2-ES 0.85 0.73 0.86 0.78 0.90 0.69 0.75 0.80 0.81 0.58
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FIG. 6. Seasonal spatial patterns of temperatures from the five GCMs with least annual biases with respect to the observation for

1961–2005.
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scenario throughout the twenty-first century, with a

forcing peaking in 2035 at around 3 W m22 and de-

creasing to 2.6 W m22 by 2100.

One of CMIP5’s aims is to provide projections of fu-

ture climate change on two time scales, near term (out to

about 2035) and long term (out to 2100 and beyond).

Therefore, in this section, we present the projected

changes of climate over the TP in the twenty-first

century with two time scales under scenarios of rcp8.5,

and rcp2.6 (rcp3-pd). Hereafter, ‘‘1980s’’ denotes the

1961–2005 average, ‘‘near term’’ denotes the 2006–35

average, and ‘‘long term’’ donates the 2036–99 average.

Table 5 presents the prediction of linear trends of

annual mean precipitation and temperature from each

GCM on the TP for the near term and long term under

scenarios rcp2.6 and rcp8.5. There are 13 models in-

volved for rcp2.6 and 16 for rcp8.5 because of the un-

availability of some model outputs at the time preparing

this manuscript. The annual mean precipitation on the

TP is generally projected to increase in the twenty-first

century; however, there are great discrepancies in the

changing rates among the models for both terms and

scenarios (Table 5). Under scenario rcp2.6, the in-

creasing trends of annual precipitation range between

FIG. 7. Area-averaged annual relative bias (RE) of precipitation relative to the observation for

each GCM during 1961–2005 over the entire eastern TP.

FIG. 8. Mean monthly precipitation from the 24 GCMs and observation (solid line) over the

eastern TP for the period 1961–2005, with the dashed line denoting the ensemblemean of the 24

GCMs.
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6.0 and 48.0 mm (10 yr)21 among the models with an

average trend of 13.9 mm (10 yr)21 for the near term,

while the mean increasing rate drops to 2.2 mm (10 yr)21

for the long term (2036–99). For scenario rcp8.5, the av-

erage increase rate of annual precipitation is 9.7 mm

(10 yr)21 for the short term and themean increasing trend

nearly doubles for the long term [18.3 mm (10 yr)21].

For the annual temperature, all the models pre-

dict a steadily increasing trend in the twenty-first cen-

tury under rcp8.5 with an average warming rate of

0.478C (10 yr)21 for the near term and 0.738C (10 yr)21

for the long term. On the contrast, rcp2.6 predicts a lower

average warming rate of 0.338C (10 yr)21 for the near

term and a light cooling trend of 0.018C (10 yr)21 for the

long-term period (Table 5).

The evolution of regionally averaged annual temper-

ature and precipitation for rcp2.6 and rcp8.5 simulations

are more clearly illustrated in Fig. 12, along with the

average value for each year. The multimodel averages

highlight the region’s response to different forcing sce-

narios on century time scales. The ensembles of pro-

jections show apparent differences between scenarios

rcp2.6 and rcp8.5. For precipitation, the increasing trend

for the twenty-first century of rcp8.5 is much more sig-

nificant than that of rcp2.6 and the range among models

is much wider than the precipitation trends. The tem-

perature projections show consistently increasing trends

for rcp8.5 in the twenty-first century; note that while the

projected mean temperatures under rcp2.6 show the

warmest time around 2035, then the temperature would

decrease following the evolution of radiative forcings

under rcp2.6.

Figure 13 quantifies the projected changes in response

to different forcing scenarios for the near term and long

term. One axis is the change of annual mean tempera-

ture and another the change of annual mean pre-

cipitation relative to the long-term mean for 1961–2005.

In Fig. 13, temperature change and precipitation change

seem to be correlated for some models. For example,

CanESM2 and GFDL-CM3 tend to be the wettest and

warmest in each period and each scenario; MPI-ESM-

LR and MRI-CGCM3 tend to be the coolest and driest.

The increase of temperature and the difference among

scenarios are small in the near term with the ensemble

average temperature increase between 1.28 and 1.38C for

two scenarios. The average precipitation change in the

short term relative to the 1961–2005 mean is about 3.2%

for both rcp2.6 and rcp8.5 (Fig. 13a), suggesting the

insensitivity of precipitation changes to emission sce-

narios in the short term. The temperature and precip-

itation changes and the difference between scenarios

become substantial as time evolves (Fig. 13b). The

mean increase of temperature and precipitation in the

long term relative to the 1961–2005 mean is 1.88C and

6.0%, respectively, for rcp2.6, and 4.18C and 12.0% for

rcp8.5.

For some applications the changes of climate in a

given seasonmay bemore important than the changes in

the annual mean. Figures 14 and 15 show seasonal

changes in temperature and precipitation for the near

term and long term relative to the 1980s (1961–2005).

The projected temperature changes in the near term

show weak seasonality over the TP for both scenarios.

Winter and spring tend to have slightly larger warming

FIG. 9. The seasonalNRMSEs of precipitation for eachGCMover the eastern TP for the period

1961–2005.
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rates than those of summer and autumn, with an average

temperature rises of 1.28–1.48C in winter and spring and

1.18–1.38C in summer and autumn for the near term.

Consistent with the results in Fig. 14b, the temperature

increase and the dispersion between scenarios turn out

to be large in the long term, with a mean warming of

1.78–2.08C among the four seasons for rcp2.6, and 3.98–
4.68C for rcp8.5 relative to the 1961–2005 mean. Winter

is projected to warm the most and summer the least for

both scenarios. Winter and spring also tend to have

FIG. 10. Spatial pattern of annual precipitation from the 24 GCMs and the observation and over the TP for 1961–2005.
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FIG. 11. Seasonal spatial patterns of precipitation from the five models with least bias with respect to the observations over the

TP for 1961–2005.
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larger intermodel variability than the other seasons for

both periods and scenarios (Fig. 14).

The precipitation changes projected by the models

vary from negative to positive for each season (Fig. 15).

However, on the whole, more than half of the simula-

tions show an increase in precipitation relative to the

1961–2005 seasonal mean. Summer, autumn, and spring

tend to have larger precipitation increases than winter

for both the near term and long term based on the en-

semble averages, with a mean increase of 5%–7% in

summer, autumn, and spring and 2%–4% in winter

during the near term. The difference of projected pre-

cipitation changes among scenarios is within 2% for all

seasons in the near term of the twenty-first century (Fig.

15a), suggesting the insensitivity of precipitation to dif-

ferent forcing scenarios in this period. In the long term,

the mean projected precipitation changes and the dif-

ference between the scenarios become large, with

10.0%–15.0% changes in spring, summer, and autumn

and 6.0% in winter for rcp8.5, and with 5.0–7.0% in

spring, summer, and autumn and 3.0% in winter for

rcp2.6. Similar to temperature, the largest variability of

precipitation among models tends to occur in winter for

all the periods and scenarios (Fig. 15).

5. Discussion

In this study, we evaluate the ability of 24 GCMs used

in the CMIP5 in describing temperature and pre-

cipitation over the eastern TP by comparing with ground

observations for 1961–2005. Most GCMs can capture

the general seasonal and spatial patterns of precipi-

tation and temperature in the observation for the study

domain and can detect the summer monsoon signals in

the southeastern TP and western wind system in winter

and spring (Figs. 10 and 11). However, the multimodel

mean tends to underestimate observed temperature

and overestimate precipitation over the eastern TP on

average. A cold and wet bias was also identified over

the Tibetan Plateau (with the median of 22.58C in

annual average temperature and 110% in precipi-

tation) in the IPCC AR4 GCMs (Christensen et al.

2007). The CMIP5 models did not show significant

improvements for the simulations of precipitation and

temperature over the TP, suggesting that similar model

deficiencies still remain.

Cold bias seems to be a persistent feature in the

GCMs. The composite surface air temperatures from 14

GCMs in the IPCC AR4 for 1981–2000 were generally

18–28C colder than corresponding observations in the

Arctic (Chapman and Walsh 2007). The cold bias

reached278C in the ensemble mean of the AR4 models

in the northeast of European Russia in winter

(Christensen et al. 2007). The general cold bias in the

GCMs implies that most of the models suffer from

a common deficiency in some aspects of their formula-

tion, despite the marked differences in resolution and

the diversity of their physical parameterizations.

A consistent wet bias was also found over the entire

Asia in the IPCC AR4 models, with the largest ap-

pearing in the Tibetan Plateau (Christensen et al. 2007).

It is beyond the scope of the present study to diagnose

TABLE 5. Projected trends of temperature [8C (10 yr)21] and precipitation [mm (10 yr)21] for the near term and long term under

rcp2.6 and rcp8.5.

Model

rcp2.6 rcp8.5

Precipitation Temperature Precipitation Temperature

Near term Long term Near term Long term Near term Long term Near term Long term

BCC-CSM1.1 12.0 1.5 0.33 20.10 219.8 27.8 0.40 0.60

CanESM2 5.1 4.5 0.33 20.07 16.8 37.6 0.67 0.78

CCSM4 26.4 4.3 0.27 20.04 12.5 16.4 0.30 0.57

GFDL-CM3 — — — — 16.9 — 0.67 0.96

GFDL-ESM2G 9.6 3.9 20.03 20.07 12.1 — 0.20 —

GFDL-ESM2M 24.8 22.1 0.23 20.04 7.6 15.1 0.33 —

GISS-E2-R 16.3 1.1 0.20 20.10 5.1 17.0 0.43 0.44

INMCM4 — — — — 17.5 16.4 0.33 0.62

IPSL-CM5A-LR 18.6 21.1 0.37 0.04 0.6 2.5 0.57 0.86

IPSL-CM5A-MR 2.4 3.8 0.40 20.03 8.2 0.4 0.43 0.92

MIROC5 48.1 22.8 0.53 0.02 29.8 35.8 0.67 0.67

MIROC-ESM 17.1 10.3 0.57 — 22.4 19.6 0.73 0.93

MIROC-ESM-CHEM 13.2 5.1 0.60 0.08 24.5 23.0 0.73 0.95

MPI-ESM-LR — — — 20.02 2.9 26.4 0.37 0.70

MRI-CGCM3 6.5 23.8 0.17 0.04 5.6 22.3 0.27 0.62

NorESM1-M 13.6 4.1 0.27 0.02 27.4 28.6 0.40 0.59

AVERAGE 13.9 2.2 0.33 20.01 9.7 18.3 0.47 0.75
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the cause for the systematic cold and wet bias in the

GCMs; however, the typically poor performance of the

models in the TP is likely linked to the coarse resolution

of the models. The complex topography in the TP can

induce many processes such as local circulation (e.g.,

mesoscale mountain/valley wind) that cannot be fully

accounted for by the models due to their course reso-

lution. Giorgi andMarinucci (1996) suggest that the role

of topography is dominant in simulated precipitation,

especially in Alpine regions characterized by complex

topographical features. Kim et al. (2008) show that as

the resolution increases, various monsoon regimes af-

fected by mesoscale terrains exhibit improved details in

the GCMs simulations of the monsoon demarcation,

especially along the steep slope of the Tibetan Plateau.

In this study, the models with least biases for mean an-

nual precipitation, IPSL-CM5A-LR, MRI-CGCM3,

IPSL-CM5A-MR, HadCM3, and CanESM2 (Fig. 7),

have resolutions that are neither the highest nor lowest

of the 24 models, as did the models with the largest bias,

indicating that the slight improvement in the spatial

resolution does not help reduce the biases in this region.

The mean cold bias in the CMIP5 models is largest in

winter and smallest in summer over the TP. This seasonal

pattern of cold bias in the GCMs is consistent with pre-

vious studies, such as in the Arctic (Chapman and Walsh

2007) and East Asia (Christensen et al. 2007). And the

largest cold biases often appear in areas with varying

topography and permanent ice (e.g., Mao and Robock

1998). This feature may imply a common deficiency in

FIG. 12. Simulated traces in (bottom) temperature and (top) precipitation for a subperiod (1961–2005) of the

twentieth and twenty-first century for the entire TP. The heavy black curves represent the average value, calculated

for each year. The top and bottom bounds of the shaded area are the maximum and minimum of the annual value

from the 24 GCM simulations. Mean warming rates for the twenty-first century differ substantially among the sce-

narios after 2035, whereas for precipitation the range is much wider than the precipitation trend.
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the representation of snow–ice albedo in the diverse

models. It appears that the systematic bias and the sig-

nificant problems over the mountain regions (e.g., the

Tibetan Plateau) still remain in the CMIP5 models. The

attribution of the errors requires a detailed diagnostic

study with more reliable and independent observations.

Thewet bias in the CMIP5models over the eastern TP

may also arise from inadequate spatial representation of

the gauge data or the ways in which the gauge data are

interpolated to obtain gridded data (Chen et al. 2010).

Gauge locations usually tend to lie at low elevations

relative to the surrounding terrain. Simple interpolation

of point data to grids may not capture the influence of

orographic lifting on precipitation, especially in topo-

graphically complex regions (Johansson and Chen

2003). Adam et al. (2006) suggest that the correction for

orographic effects resulted in a net precipitation in-

crease of 20.2% in orographically influenced regions.

Furthermore, the gauge data used here to evaluate the

GCMs do not include any undercatch corrections. Ye

et al. (2004) bias-corrected 710 meteorological stations

in China for wind-induced undercatch, a trace amount of

precipitation, and wetting loss (Ye et al. 2004). Their

results suggest that the undercatch correction has in-

creased 19% of the annual mean precipitation from

the 710 stations. Therefore, the gauge precipitation in

this work used to evaluate the GCMs on the TP could

be increased 40% if included both undercatch and

orographic effects. However, even after adding 40%

more to the gauge observations, most of the GCMs

would still overestimate 15%–97% of adjusted observed

precipitation. The fact that most GCMs tend to under-

estimate observed temperature and overestimate ob-

served precipitation over the TP reflects systematic

model biases, especially for complex regions such as the

TP. The results of this study may draw attention of the

modeling groups for further improving the GCMs per-

formance in the complex regions.

It is important to note that different statistical mea-

sures used in the evaluation show different aspects of

climate and their separate application may lead to dif-

ferent conclusions. Brekke et al. (2008) suggest that use

of a greater number of metrics leads to less apparent

difference among models (Brekke et al. 2008). In this

work, we choose some commonly used metrics to eval-

uate the performance of GCMs. The top five models

(Table 6) change depending on the statistical indicators

used. Note that no model falls in the best five for both

temperature and precipitation, and likewise no model

falls in the worst five for both temperature and precip-

itation. Consistent with previous studies in other areas

(e.g., Mote and Salathé 2010; Reichler and Kim 2008;

Phillips and Gleckler 2006), the ensemble mean gener-

ally shows closer agreements with observations than

does any single model over the TP. Therefore, we have

more confidence in the model ensembles in simulating

the TP climate.

6. Conclusions

The performances of the 24 GCMs in the CMIP5 in

simulating recent past climate (1961–2005) over the

FIG. 13. Scatterplots of change in annually averaged TP temperature and precipitation relative to the 1961–2005

annual mean for each GCM for the near term and long term. Green circles indicate scenario rcp2.6 and blue crosses

rcp8.5. The red circle indicates the average mean of rcp2.6, and the red triangle that of rcp8.5.
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eastern TP were evaluated against observations from

176 meteorological stations. The models’ projected

changes over the TP in the twenty-first century climate

relative to those of the 1961–2005 were also described.

The main results are summarized as follows:

1) Most GCMs are able to fairly well capture the

climatological annual mean, seasonal, and spatial

variations of the observed temperature. However,

the models tend to have cold biases in comparison

with the observations, with a mean underestimation

of 1.18–2.58C for the months December–April and

less than 18C for June–October. Winter shows the

biggest cold bias, which points to possible defi-

ciencies in snow–ice feedback processes in the

models.

2) For precipitation, all the GCMs tend to overestimate

the observations in climatological annual means by

62.0%–183.0%. Only half of the 24GCMs are able to

reasonably reproduce the observed seasonal pattern

including the sharp contrast between dry winters and

wet summers. The physics and the temporal and

spatial characteristics of precipitation are complex.

Improving the ability of models to simulate pre-

cipitation should be a priority for climate modelers.

3) For temperature, GFDL-ESM2M, MPI-ESM-LR,

GFDL-ESM2G, CanESM2, and CanCM4 rank the

top five in terms of systematic error (or bias); for

precipitation, IPSL-CM5A-LR,MRI-CGCM3, IPSL-

CM5A-MR, HadCM3, and CanESM2 perform the

best in terms of bias. This means that model perfor-

mances are variable dependent.

FIG. 14. Range (lowest to highest) of projected changes in temperature for each season,

relative to the 1961–2005 mean for that season. In each pair of box-and-whisker plots, the left

one is for rcp2.6 and the right for rcp8.5. Black dots are extreme outliers (5th and 95th per-

centiles). Box-and-whisker plots indicate the 10th and 90th percentiles (whiskers), 25th and

75th percentiles (box ends), and median (black solid middle bar). The red solid middle bars are

the ensemble averages of all GCMs for each season and scenario.

15 MAY 2013 SU ET AL . 3205



4) All models produce a warming trend in the twenty-

first century under rcp8.5; in contrast, rcp2.6 predicts

a lower average warming rate for the near term, and

a small cooling trend in the long-term period with the

decreasing radiative forcing.

5) In the near term, the projected temperature changes

show weak seasonality and little difference between

scenarios, with mean increases of 1.18–1.48C across

the seasons. The largest differences between scenar-

ios and the highest warming rates appear in the long

term, with the mean warming of 1.78–2.08C among

the four seasons under rcp2.6, and 3.98–4.68C under

rcp8.5.

6) Precipitation is generally projected to increase in the

twenty-first century. In the near term, precipitation is

projected to increase 5.0%–7.0% in summer, au-

tumn, and spring and 2.0%–4.0% in winter; in the

long term, the projected changes and the difference

between scenarios increases with time, with 10.0%–

15.0% in spring, summer, and autumn and 6.0% in

FIG. 15. As in Fig. 14, but for precipitation. Unlike for temperature, for any season some

models project increases and some project decreases, although most of the ensemble averages

project increases especially in the long term period.

TABLE 6. Top five models in terms of different annual statistical indicators.

Rank 1 2 3 4 5

Precipitation RE IPSL-CM5A-LR MRI-CGCM3 IPSL-CM5A-MR HadCM3 CanESM2

R MIROC5 NorESM1-M MPI-ESM-LR MIROC4h HadGEM2-ES

RMSE IPSL-CM5A-LR MRI-CGCM3 IPSL-CM5A-MR CanESM2 CSIRO-MK3

Temperature Bias GFDL-ESM2M MPI-ESM-LR GFDL-ESM2G CanESM2 CanCM4

R BCC-CSM1.1 HadGEM2-ES CSIRO-MK3 ACCESS1.0 IPSL-CM5A-LR

RMSE MPI-ESM-LR GFDL-ESM2M GFDL-ESM2G CanCM4 CanESM2
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winter under rcp8.5. The mean increases under

rcp2.6 are half of those under rcp8.5 in the long term.

To evaluate the possible impacts of future climate

changes on the hydrology and water resources of the TP,

a hydrology model could be used by taking the GCM

outputs as the inputs. However, given the coarse spatial

resolutions and the obvious errors of the GCMs,

a downscaling and bias-correction process (Wood et al.

2002) is necessary before taking the GCM outputs for

hydrology models. Furthermore, over the next 90 years,

projections differ much more among various models

than among emissions scenarios for both temperature

and precipitation. To account for this uncertainty, using

the outputs of multimodel ensembles may be an ap-

propriate approach.
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