
CCCG 2015, Kingston, Ontario, August 10–12, 2015

Local Doubling Dimension of Point Sets

Aruni Choudhary ∗ Michael Kerber†

Abstract

We introduce the notion of t-restricted doubling dimen-
sion of a point set in Euclidean space as the local intrinsic
dimension up to scale t. In many applications informa-
tion is only relevant for a fixed range of scales. We
present an algorithm to construct a hierarchical net-tree
up to scale t which we denote as the net-forest. We
present a method based on Locality Sensitive Hashing
to compute all near neighbors of points within a certain
distance. Our construction of the net-forest is proba-
bilistic, and we guarantee that with high probability,
the net-forest is supplemented with the correct neighbor-
ing information. We apply our net forest construction
to various applications including approximate Rips and
Čech complexes and pair decompositions.

1 Introduction

Motivation Often, one wants to perform tasks on
data which lives in high dimensional spaces. Typically,
algorithms for manipulating such high dimensional data
take exponential time with respect to the ambient di-
mension. This is frequently quoted as the “curse of
dimensionality”. In many cases, however, practical in-
put instances lie on low dimensional manifolds and a
natural question arises as to how do we exploit this
structural property to invent computationally feasible
algorithms.

A well-established approach is to define a special no-
tion of dimension on a point set to capture its intrinsic
dimension. The doubling dimension of a point set P is
the smallest integer ∆ such that every ball centered at
any p ∈ P of radius R is covered by at most 2∆ non-
empty balls of radius R/2 for any R. For instance, if P
is a sample of an affine subspace of dimension d, it holds
that ∆ = Θ(d), and often, ∆� d holds for more general
samples of d-manifolds. A common goal is therefore to
replace the exponential dependency on d by ∆ in the
complexity of geometric algorithms.

The concept of (hierarchical) net-trees can be visu-
alized as a generalization of quadtrees and allows for
the translation of quadtree-based algorithms (which are
exponential in d) to instances with small ∆. Technically,

∗Max Planck Institute for Informatics Saarbrücken, Germany,
aruni.choudhary@mpi-inf.mpg.de
†Max Planck Institute for Informatics Saarbrücken, Germany,

mkerber@mpi-inf.mpg.de

a net-tree provides a hierarchy of nets which summarize
the point set in terms of a clustering scheme at differ-
ent scales. For n points with doubling dimension ∆, a
net-tree can be constructed in expected 2O(∆)O(n log n)
time, matching the time for constructing a quadtree
except for replacing d with ∆ [10]. As an application of
particular importance, net-trees permit the efficient con-
struction of well-separated pair decomposition (WSPD)
which have various applications in geometric approxima-
tion, such as constructing spanners, finding approximate
nearest-neighbors, approximating the diameter and the
closest-pair distance.

In some applications, it is natural to investigate only
an interval of scales. Applications which use net-trees
can easily be adapted to ignore low scales by pruning
off the lower part of the tree up to the appropriate
scale. We instead concentrate on the more challenging
question of upper bounding the range of scales. In
such cases, the doubling dimension does not capture
the intrinsic complexity of the problem at hand, since
it may be defined by a ball that is beyond the range of
considered scales. Moreover, the net-tree construction
of [10] proceeds in a top-down fashion, considering the
high scales of the point set first. Therefore, it suffers
from potentially bad large-scale properties of the point
set, even when these properties are irrelevant for the
given application.

Contributions In this paper, we introduce the con-
cept of t-restricted doubling dimension ∆t, which is the
smallest integer such that any ball centered at any p ∈ P
of radius R ≤ t is covered by at most 2∆t non-empty balls
of radius R/2. In this paper, we restrict our attention to
the case of point sets in Euclidean space. We present an
algorithm to construct a net-forest, which contains the
relevant data of a net-tree up to scale t. The runtime of
the construction depends on ∆Ct, where C is a constant
independent of n and d and is defined later on. We hence
eliminate the dependence on the doubling dimension ∆.
The major geometric primitive of our algorithm is to
find all points which are at a distance at most Θ(t) from
a given p ∈ P . We propose an approach based on Local-
ity Sensitive Hashing (LSH) from [6]. The LSH based
construction of the net-forest yields an expected runtime
of O

(
dn1+ρ log n(log n+ (14/ρ)∆7t/ρ)

)
where ρ ∈ (0, 1)

is a parameter which can be chosen to be as small as
desired. Comparing this bound with the full net-tree con-



27th Canadian Conference on Computational Geometry, 2015

struction, our approach makes sense if nρ log n� 2O(∆)

and ∆O(t) � ∆.
As a consequence of our result, we can construct the

part of the WSPD where all pairs are in distance at most
Θ(t), adapting the construction scheme of [10, Sec.5].
That means that any application of WSPD that restricts
its attention to low scales can profit from our approach.
Our approach also extends to the related concept of
semi-separated pair decomposition [1].

As a further application, we show how to approxi-
mate Rips and Čech complexes using net-forests. These
simplicial complexes are standard tools for capturing
topological properties of a point cloud. Such a complex
depends on a scale parameter; in particular, in the con-
text of persistent homology [7], filtrations are considered,
which encode complexes at various scales. In [13], an
approximate Rips filtration of size at most n( 2

ε )O(k·∆)

has been constructed using net-trees. “Approximate”
means that the exact and approximate filtrations are
interleaved in the sense of [4] and therefore yield similar
persistence diagrams, which summarize the topological
properties of the point set. On the other hand, it is
common to limit the construction of filtrations to an
upper threshold value t. In such a scenario, our results
yield a filtration of size n( 2

ε )O(k·∆O(t)), thus replacing
the exponential dependence on the doubling dimension
by the O(t)-restricted doubling dimension. We also show
how to approximate Čech complexes up to scale t, with
the same size bound as for Rips complexes, building
upon the framework of Choudhary et al. [5].

Organization of the paper Section 2 gives a brief
overview of doubling spaces and net-trees. We introduce
the concept of the restricted version of the doubling
dimension in Section 3. In Section 4 we present an
algorithm to construct the net-forest up to a desired
scale. Our algorithm uses the concept of LSH which we
detail in Section 5. In Section 6 we present applications
of the net-forest. We summarize our results and conclude
in Section 7.

2 Background

We fix P to be a finite point set consisting of n points
throughout. As mentioned before, we restrict our atten-
tion to the Euclidean case P ⊂ Rd, although some of
the presented concepts could be extended to arbitrary
metric spaces with some additional effort. In particular,
the distance between any two points can be computed
in O(d) time in the Euclidean case.

Doubling dimension A discrete ball centered at a
point p ∈ P with radius r is the set of points Q ⊆ P
which satisfy ‖p − q‖ ≤ r for all q ∈ Q. The doubling
constant [2, 14] is the smallest integer λ such that for

all p ∈ P and all r > 0, the discrete ball centered at p of
radius r is covered by at most λ discrete balls of radius
r/2. The doubling dimension ∆ of P is dlog2 λe. For ex-
ample, a point set that is sampled from a k-dimensional
subspace has a doubling dimension of Θ(k), independent
of the ambient dimension d. In contrast, the d boundary
points of the standard (d− 1)-simplex form a doubling
space of dimension dlog2 de. Even worse, we can con-
struct a subset of doubling dimension Θ(d) by placing
2Θ(d) points inside the unit ball in Rd such that any two
points have a distance of at least 3/2 (the existence of
such a point set follows by a simple volume argument).
It is NP-hard to calculate the doubling dimension of a
metric [9], but it can be approximated within a constant
factor [10, Sec.9].

Nets and Net-trees A subset Q ⊆ P is an (α, β)-
net, denoted by Nα,β , if all points in P are in distance at
most α from some point in Q and the distance between
any two points in Q is at least β. Usually, α and β are
coupled, that is, β = Θ(α), in which case we talk about
a net at scale α.

We can represent a nested sequence of nets for increas-
ing scales α using a rooted tree structure, called the
net-tree [10]. It has n leaves, each representing a point
of P , and each internal node has at least two children.
Every tree-node v represents the subsets of points given
by the sub-tree rooted at v; we denote this set by Pv.
Every v has a representative, repv ∈ Pv that equals the
representative of one of its children if v is not a leaf.
Moreover, v is associated with an integer `(v) called
the level of v which satisfies `(v) < `(parent(v)), where
parent(v) is the parent of v in the tree. Finally, each
node satisfies the following properties

• Covering : Pv ⊆ B(repv,
2τ
τ−1 · τ

`(v))

• Packing : Pv ⊇ P
⋂

B(repv,
τ−5

2τ(τ−1) · τ
`(parent(v)))

where B(p, r) denotes the ball centered at p with radius
r and τ = 11.

The covering and packing properties ensure that each
node v has at most λO(1) children where λ is the dou-
bling constant for P . Moreover, for any α, a net at
scale α can be accessed from the net-tree immediately;
see [10, Prop.2.2] for details. A net-tree can be con-
structed deterministically in time 2O(∆)O(dn log(n · Φ))
where Φ represents the spread of P , using the greedy
clustering scheme of Gonzalez [8] as a precursor to the
tree construction. The dependence on the spread can
be eliminated by constructing the tree in 2O(∆)dn log n
time in expectation (the additional factor of d compared
to [10] accounts for the fact that we work with the Eu-
clidean metric, and therefore take into account the cost of
computing distances in our computational model). The
net-tree construction is oblivious to knowing the value of



CCCG 2015, Kingston, Ontario, August 10–12, 2015

∆. One can extract a net at scale ` [10, Pro.2.2] by col-
lecting the set of nodes from T satisfying the condition
N (`) = {repv|`(v) < ` ≤ `(parent(v)}. The net-tree can
be augmented to maintain, for each node u, a list of
close-by nodes with similar diameter. Specifically, for
each node u the data structure maintains the set

Rel(u) := {v ∈ T | `(v) ≤ `(u) < `(parent(v)) and

‖repu − repv‖ ≤ 14τ `(u)}.

Rel(.) is computed during the construction without
additional cost.

3 t-restricted doubling dimension

Definition 1 The t-restricted doubling constant of P
is the smallest positive integer λt such that all the points
in any discrete ball centered at p ∈ P of radius r with
r ≤ t are covered by at most λt non empty balls of radius
r/2. The corresponding t-restricted doubling dimension
∆t is dlog λte.

By definition, ∆t ≤ ∆ for any P . More precisely, ∆t is
zero for t smaller than the closest-pair distance of P , and
equals ∆ when t is the diameter of P . While ∆ for sam-
ples from an affine subspace of dimension k is bounded by
Θ(k), this is not generally true for samples of k-manifolds
where ∆ increases due to curvature. To sketch an ex-
treme example, consider an almost space-filling curve γ
in Rd which has distance at most ε to any point of the
unit ball, where ε is chosen small enough. We let P be
a sufficiently dense sample of γ. While ∆t = 1 for small
values of t, we claim that ∆t = Θ(d) for t = 1; indeed,
any sparser covering of the unit ball with balls of radius
1/2 would leave some portion of the ball uncovered, and
by construction, γ goes through that uncovered region,
so that some point in P is missed.

The “badness” of the previous example stems from the
difference between Euclidean and geodesic distance of
points lying on a lower-dimensional manifold. A common
technique for approximating the geodesic distance is
through the shortest-path metric: Let G = (P,E) denote
the graph whose edges are defined by the pairs of points
of Euclidean distance at most t; we call such a graph a
t-intersection graph. The distance of two points p and q
is then defined as the length of the shortest path from p
to q (we assume for simplicity that G is connected). The
concept of doubling dimensions extends to any metric
space and we let ∆′ denote the doubling dimension of P
equipped with the shortest path metric. While ∆t and
∆′ appear to be related, ∆′ can be much larger than
∆t: an example is shown in Figure 1. Moreover, using
the shortest-path metric raises the question of how to
compute shortest path distances efficiently, if the cost of
metric queries is taken into account.

Figure 1: Consider a regular k-gon in the plane with
all vertices on the unit circle. To each vertex, attach an
“arm” of length 4 in the direction outwards the origin.
We call the endpoint of such an arm a tip. Let M
denote the obtained shape (as depicted). Let P denote
a sufficiently dense point sample of M . Let G be the
t-intersection graph on P ; we choose t appropriately so
that the shortest path metric on G approximates the
distances on M very closely. Fixing an arbitrary vertex
of the k-gon, the furthest tip has a distance of at most
4 + π < 8 on M , so there is a ball of radius less than
8 containing all of P . However, any pair of tips has a
distance of more than 8, so no ball of radius less than
4 can contain two tips. It follows that any covering of
P with balls of radius less than 4 requires at least one
ball per tip. Therefore, the doubling dimension ∆′ of
this metric is at least dlog2 ke. On the other hand, for
the Euclidean metric on a plane, we can easily see that
the doubling dimension ∆ = O(1), and therefore, ∆t is
a constant as well.

4 Net-forests

We next define an appropriate data structure for point
sets of small t-restricted doubling dimension, where t is
a parameter of the construction. Informally, a net-forest
is the subset of a net-tree obtained by truncating all
nodes above scale t. More precisely, it is defined as a
collection of net-trees with roots v1, . . . , vk such that
the representatives repv1 , . . . , repvk form a (t, t)-net and
the point sets Pv1 , . . . , Pvk are disjoint and their union
covers P . We define Rel(u) for a node in the forest the
same way as for net-trees: it is the set of net-forest nodes
that are close to u and have similar diameter. As for
net-trees, we call a net-forest augmented if each node u
is equipped with Rel(u).

Construction Our algorithm for constructing a net-
forest is a simple adaptation of the net-tree algorithm:
we construct a (t, t)-net of P by clustering the point set
and assign each point in P to its closest net-point. Each
root in the net-forest represents one of the clusters. We
also compute Rel(u) for each root by finding the close-by
clusters to u. Having this information, we can simply
run the net-tree algorithm from [10] individually on
each cluster to construct the net-forest. For augmenting
it, we use the top-down traversal strategy as described
in [10, Sec.3.4], inferring the neighbors of a node from
the neighbors of its parent –since we have set up Rel(·)



27th Canadian Conference on Computational Geometry, 2015

for the roots of the forest, this strategy is guaranteed to
detect neighboring nodes even if they belong to different
trees of the forest.

Both the initial net construction and the Rel(·)-
construction require the following primitive for a point
set Q, which we call a near-neighbor query : Given a
point q ∈ Q and a radius r, return a list of points in
Q containing exactly the points at distance r or smaller
from q). In the remainder of the section, we give more
details on how to compute the net and the associated
clusters, and how to find the neighbors for each such
cluster, assuming that we have a primitive which can
perform near-neighbor queries. In Section 5, we show
the implementation of such a primitive.

Net construction We construct the net using a
greedy scheme: For any input point, store a pointer
N(p) pointing to the net point assigned to point p. Ini-
tially, N(p) ← ∅ for all p. As long as there is a point
p with N(p) = ∅, we set N(p)← p and query the near-
neighbor primitive to get a list of points with distance
at most t from p. For any point q in the list we update
N(q) ← p if either N(q) = ∅ or ‖p− q‖ < ‖N(q)− q‖.
Then we pick the next point p with N(p) = ∅.

At the end, the set of points p with N(p) = p represents
the net at scale t and the points q satisfying N(q) = p
constitute p’s cluster. The net thus constructed is a
(t, t)-net. Moreover, we set `(v) = blogτ

(
τ−1
2τ t

)
c for each

root node v.

Computing the Rel(.) set for the roots After com-
puting the net-points and their respective clusters, we
need to augment the net-points with neighboring infor-
mation. Recall that Rel(u) contains nodes in distance at
most 14τ `(u) from repu. Since we have a (t, t)-net, the
level of any root node u satisfies 14τ `(u) ≤ 7t. Hence
we need to find neighbors of net-points within 7t, the
minimum distance between any two net-points being
more than t. By the doubling property, any root net-

node can have at most λ
log2

7t
t/2

7t such neighbors which
simplifies to 14∆7t . We use the near-neighbor primitive
to compute such neighbors.

5 Near-neighbors primitive

We describe the primitive used in the previous section
which performs near-neighbor queries. Our approach
follows the notion of locality-sensitive hashing (LSH)
introduced by [11] for the Hamming metric and extended
to Euclidean spaces in [6]. LSH is a popular approach
to find approximate near-neighbors in high dimensions
because of its near linear complexity in n and d.

Locality Sensitive Hashing LSH applies several
hash functions on a point set such that close points

are more likely to map to the same hash-buckets than
points which are sufficiently far apart. A typical appli-
cation of LSH is the (r, c)-nearest neighbor problem: If
there exists a point within distance r of the query point
q, report some point within distance cr of q, c > 1.

However, for our construction we wish to solve the
following problem: report all points within distance r of
the query point. We need the LSH oracle for two steps
in our construction: constructing the net at scale t and
computing the Rel(·) for the root-nodes. We show that
both these steps requires a runtime sub-quadratic in n
by a slight modification of the method presented in [6].
We repeat some of their definitions for clarity:

Definition 2 A family of hash functions H = {h : S →
U} is called (r1, r2, p1, p2)-sensitive if for all a, b ∈ S,
the following holds for p1 ≥ p2 and r1 ≤ r2:

• if ‖a− b‖ ≤ r1, Pr1 = P [h(a) = h(b)] ≥ p1

• if ‖a− b‖ ≥ r2, Pr2 = P [h(a) = h(b)] ≤ p2

We amplify the gap between Pr1 and Pr2 by con-
catenating k such hash functions, creating the fam-
ily of hash functions G = {g : S → Uk} such that
g(x) = (h1(x), h2(x), ..., hk(x)). For g(x), we have the
modified properties:

• if ‖a− b‖ ≤ r1, P [g(a) = g(b)] ≥ pk1
• if ‖a− b‖ ≥ r2, P [g(a) = g(b)] ≤ pk2

We describe our near-neighbor primitive next: The input
is a point set Q with n points and a distance r > 0. As a
pre-processing step, we choose l hash functions g1, · · · , gl
uniformly at random from G [6, Sec.3]. and hash each
p ∈ Q to the buckets gi(p)∀i ∈ [1, l]. Given a query
point q ∈ Q (we only consider near neighbor queries for
points within Q), we check for any point p in bucket
gi(q) whether the distance to q is at most r. We output
such points as the near-neighbors of q.

We need to specify the parameters of LSH in the above
description. Most importantly, we have to ensure that,
with high probability, the output contains all points in
distance r from q. Moreover, we want the buckets to be
of small size so that the primitive does not have to filter
out too many false positives.

The performance of the LSH scheme depends upon a
parameter ρ ∈ (0, 1) which appears as an exponent of n in
the runtime. We choose the parameters p1, p2, r1 and r2

of the hashing scheme such that ρ = log p1
log p2

≈ r1
r2

[6, Sec.4].
In the following parts of the section, we let ρ = r1

r2
.

Lemma 1 Let r1 := r and r2 := r/ρ, k := d− logp2 ne
and l := d2nρ ln n√

δ
e with an arbitrarily small constant δ.

The near-neighbor primitive has the following properties:

(i) With probability at least 1− δ, all points in distance
at most r are reported for all query points.



CCCG 2015, Kingston, Ontario, August 10–12, 2015

(ii) For any query point q, the aggregate expected size of

all buckets g1(q), ..., gl(q) is at most l(C̃ + 1), where

C̃ is the number of points in Q with distance at
most r2 to q.

(iii) The pre-processing runtime is O(dnkl) and the ex-

pected query runtime for a point is O(dl(k + C̃)),

where C̃ is defined as in (ii).

We defer the proof to Appendix A.

Net-forest construction using LSH We analyze the
complexity of our net-forest construction from Section 4
with our near-neighbor primitive in Lemma 5 under
Appendix B. The primitive is used in the construction
of the (t, t)-net, where we find the near-neighbors in
distance at most t for a subset of points that form the
net in the end. That means, we initialize the primitive
with r ← t and Q← P .

The second appearance of the near-neighbor primitive
is in the construction of the Rel(.) sets for the roots of
the net forest. Recall that the roots are represented by
the net-points constructed before; let M denote the set
of net-points and |M |m.We simply have to find all pairs
of points of distance at most 7t among the net-points;
and to do so we call the near neighbor primitive with
r ← 7t and Q←M for all q ∈M (see Lemma 6).

Theorem 2 The expected time for constructing the net-
forest using LSH is

O

(
dn1+ρ log n

(
log n+

(
14

ρ

)∆7t/ρ

))
.

We defer the details of the proof to Appendix B.
We see how the choice of ρ affects the complexity

bound: For ρ very close to zero, we get a almost linear
complexity in n, to the price that we have to consider
larger balls in our algorithm and thus increase the re-
stricted doubling dimension.

6 Applications

Well-Separated Pair Decomposition A pair of net-
tree nodes (u, v) is ε-well-separated if it satisfies
max{diam(Pu),diam(Pv)} ≤ ε‖repu − repv‖, where
diam(Pu) denotes the diameter of the points stored in
u. Informally speaking, all pairs of points (p, q) with
p ∈ Pu, q ∈ Pv have a similar distance to each other if
(u, v) is well-separated. An ε-well-separated pair decom-
position (ε-WSPD) [3] is a collection of ε-well-separated
pairs such that for any pair (p, q) ∈ P × P , there exists
a well-separated pair (u, v) such that p ∈ Pu and q ∈ Pv;
we say that such a pair (p, q) is covered by (u, v).

An ε-WSPD of size nε−O(∆) can be computed in time
d
(
2O(∆)n log n+ n(1/ε)O(∆)

)
[10]. A WSPD considers

pairs over all scales of distance, because it has to cover
any pair of points. Our structure only requires that all
pairs of points in distance at most t are covered. We
call the resulting structure a t-restricted ε-WSPD.

We construct the t-restricted ε-WSPD as follows: We
start by constructing the corresponding augmented net
forest; let u1, . . . , um be its roots. Since we know the
Rel(·) set for any root, we can identify pairs (ui, uj)
such that ui is in Rel(uj) and vice versa (this also in-
cludes pairs where ui = uj). For any such pair, we call
genWSPD(ui, uj) from [10, Sec.5], which simply traverses
the sub-trees until it finds well-separated pairs. We
output the union of all pairs generated in this way.

Theorem 3 For 0 < ε < 1 and t > 0, our algorithm
computes a t-restricted ε-WSPD of size nε−O(∆7t) in
expected time NF + dnε−O(∆7t), where NF is the com-
plexity for computing the net-forest from Theorem 2.

We defer the proof to Appendix C.

Semi-Separated Pair Decomposition(SSPDs)
SSPDs [1] are a related concept to the WSSDs with
some advantages. We briefly describe them and present
our t-restricted version of SSPDs in Appendix D.

Approximating Simplicial Complexes For a point
set P , let rad(Q) denote the radius of the minimum en-
closing ball of Q ⊆ P . The Čech complex on P at scale
r is defined as: Čech(r) := {Q ⊆ P | rad(Q) ≤ r}.
The Rips complex is defined as: Rips(r) := {Q ⊆
P | diam(Q) ≤ 2r}. Rips and Čech complexes are
standard constructions for topological analysis of point
clouds; more precisely, one constructs a sequence of Rips
or Čech complexes for growing r (called a filtration) and
tracks the evolution of topological features in the pro-
cess. This gives rise to the persistence diagram [7], a
multi-scale summary of the topological properties of the
point cloud. However, a major computational drawback
of this approach is that both Rips and Čech complexes
become prohibitively large when P has high ambient
dimension. A common remedy is to bound the maximal
dimension k of the simplices constructed in the filtration
(bounding the filtration size to O(nk+1)) and/or bound
the maximal scale r which is considered.

Several recent works have come up with approximate
Rips (Čech) filtrations of significantly smaller size. In
this case, “approximate” means that the persistence dia-
gram of the exact and approximate filtrations are ε-close
in interleaving distance [4]. Sheehy [13] showed how to
compute an ( 1

1−2ε )-approximate Rips filtration of size

n( 2
ε )O(k·∆) in expected time d2O(∆)n log n + n( 2

ε )O(∆),
where k denotes the maximal dimension of the con-
structed approximation. His algorithm works by creating
simplicial complexes on a hierarchically sparsified point
set, obtained through the net-tree. In [5], Choudhary et



27th Canadian Conference on Computational Geometry, 2015

al. gave an alternative algorithm for (1 + ε)-approximate
Čech filtrations with the same guarantees and running
time, building upon the framework from [12].

For the case that the highest scale in the construction
is bounded for t, our results imply that ∆ can be replaced
with ∆7t in the size bound above.

Theorem 4 An approximate filtration of size at most
n( 2

ε )O(k·∆7t) can be computed for both Rips and Čech
filtrations for the range [0, t].

Proof. For Rips-complexes, this follows directly by ap-
plying the algorithm of [13, Sec.10] on a net forest of
scale t. Since w = {u ∪ Rel(u)} captures all edges
of length at most 5t > t between a point p ∈ Pu
and q ∈ Pw, the algorithm is able to compute the
E(p) sets [13, Sec.10] successfully, thereby yielding a
filtration of size at most n( 2

ε )O(k·∆7t).

To prove the same for Čech complexes, we need to ap-
ply our net-forests to a generalization of WSPDs (called
well-separated simplicial decomposition) first; we post-
pone the details to Appendix E. �

Approximating the t-doubling dimension One can
approximate ∆t for any point set P up to a constant
factor by constructing a net-forest T of scale t over P .
Let x denote the maximum out-degree of any node in
T . Then log x is a constant-factor approximation of ∆t.
This follows directly from the arguments of [10, Sec.9].

7 Conclusion and future work

In this paper we presented an algorithm to construct a
hierarchical net-forest up to a certain scale and applied it
to the construction of WSPDs, SSPDs, and approximate
Rips and Čech complexes. Finding more applications
tailored for the t-restricted doubling dimension is an
appealing research direction we would like to look into.

Acknowledgement This research is supported by
the Max Planck Center for Visual Computing and Com-
munication.

References

[1] Mohammad A. Abam and Sariel Har-Peled. New
constructions of SSPDs and their applications. Com-
put. Geom. Theory Appl., 45(5-6):200–214, July
2012.

[2] Patrice Assouad. Plongements Lipschitziens dans
Rn. Bulletin de la Societe Mathematique de France,
111:429–448, 1983.

[3] Paul B. Callahan and S. Rao Kosaraju. A decom-
position of multidimensional point sets with appli-
cations to k-nearest-neighbors and n-body potential
fields. J. ACM, 42(1):67–90, January 1995.

[4] Frédéric Chazal, David Cohen-Steiner, Marc Glisse,
Leonidas J. Guibas, and Steve Y. Oudot. Proxim-
ity of persistence modules and their diagrams. In
Proceedings of the Twenty-fifth Annual Symposium
on Computational Geometry, pages 237–246, 2009.

[5] Aruni Choudhary, Michael Kerber, and
R. Sharathkumar. Approximate Čech complexes in
low and high dimensions. http://people.mpi-inf.
mpg.de/~achoudha/Files/Papers/AppCech.pdf.

[6] Mayur Datar, Nicole Immorlica, Piotr Indyk, and
Vahab S. Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Pro-
ceedings of the Twentieth Annual Symposium on
Computational Geometry, pages 253–262, 2004.

[7] Herbert Edelsbrunner and John Harer. Computa-
tional Topology. An Introduction. American Mathe-
matical Society, 2010.

[8] Teofilo F. Gonzalez. Clustering to minimize the
maximum intercluster distance. Theor. Comput.
Sci., 38:293–306, 1985.

[9] Lee-Ad Gottlieb and Robert Krauthgamer. Prox-
imity algorithms for nearly doubling spaces. SIAM
J. Discrete Math., 27(4):1759–1769, 2013.

[10] Sariel Har-Peled and Manor Mendel. Fast construc-
tion of nets in low dimensional metrics, and their
applications. In SIAM J. Comput, pages 150–158,
2005.

[11] Piotr Indyk and Rajeev Motwani. Approximate
nearest neighbors: Towards removing the curse of
dimensionality. In Proceedings of the Thirtieth An-
nual ACM Symposium on Theory of Computing,
STOC ’98, pages 604–613, 1998.

[12] Michael Kerber and R. Sharathkumar. Approxi-
mate Čech complexes in low and high dimensions. In
International Symposium on Algorithms and Com-
putation, pages 666–676, 2013.

[13] Donald R. Sheehy. Linear-size approximations to
the Vietoris-rips filtration. Discrete & Computa-
tional Geometry, 49(4):778–796, 2013.

[14] Kunal Talwar. Bypassing the embedding: Algo-
rithms for low dimensional metrics. In Proceedings
of the Thirty-sixth Annual ACM Symposium on
Theory of Computing, STOC ’04, pages 281–290,
2004.

http://people.mpi-inf.mpg.de/~achoudha/Files/Papers/AppCech.pdf
http://people.mpi-inf.mpg.de/~achoudha/Files/Papers/AppCech.pdf


CCCG 2015, Kingston, Ontario, August 10–12, 2015

A Proof of Lemma 1

Proof. First we bound the expected aggregate size of
the buckets. A bucket contains “close” points which are
in distance at most r2 from q and “far” points which
are further away. However, since the probability of a far
point falling in the same bucket as q is at most pk2 , the

expected size of a single bucket is at most C̃+npk2 ≤ C̃+1
by our choice of k. Since there are l buckets, (ii) is
satisfied.

For (i), fix two points q1, q2 ∈ Q such that ‖q1− q2‖ ≤
r1. We have to ensure that gj(q1) = gj(q2) for some
j ∈ {1, . . . , l}; this implies that q1 will be reported for
query point q2, and vice versa for at least one of the
l buckets. The probability for gj(q1) = gj(q2) for a

fixed j is at least pk1 , which is p
− logp2 n

1 = n−ρ. Hence
the probability that gj(q1) 6= gj(q2) holds for all j ∈
{1, . . . , l} is at most (1 − n−ρ)l because we choose the
hash functions uniformly at random. There are at most
n2 point pairs within distance at most r1. By the union
bound, the probability that at least one such pair maps
into different buckets is at most n2(1− n−ρ)l. Now we
can bound

n2(1− n−ρ)l = n2(1− n−ρ)2nρ ln n√
δ

= n2(1− 1

nρ
)n
ρ ln n2

δ ≤ n2e− ln n2

δ = δ,

where we used the fact that (1− 1/x)x ≤ 1/e for all
x ≥ 1. It follows that the probability that all pairs of
points in distance at most r1 fall in at least one common
bucket is at least 1− δ. This implies (i).

It remains to show (iii): in the pre-processing step,
we have to compute k · l hash functions for n points.
Computing the hash value for a point p, hi(p) takes
O(d) time [6, Sec.3.2]. For a query, we have to identify
the buckets to consider in O(dkl) time and then iterate

through the (expected) l(C̃ + 1) candidates (using (ii)),
spending O(d) for each. �

B Proof of Theorem 2

To prove Theorem 2, we first need to prove two support-
ing Lemmas, which we do next.

Lemma 5 The expected time to construct the (t, t)-net
using LSH is

O

(
dn1+ρ log n

(
log n+

(
2

ρ

)∆t/ρ ))
.

Proof. We consider the time spent on all near-neighbor
queries: Let the resulting net consist of m ≤ n points.
This implies that the algorithm proceeds in m rounds
and queries the near-neighbors of m points. Let C̃i
denote the number of points in distance t/ρ from the

i-th query point. By Lemma 1, the total complexity for
all near-neighbor queries is:

O

(
ndkl +

m∑
i=1

dl(k + C̃i)

)
= O(ndkl + dl

m∑
i=1

C̃i)

We only need to bound the sum of the C̃i. For that, we fix
some q ∈ P and count in how many sets C̃i may it appear.
Let pi denote the net-point chosen in the i-th iteration.
We call such a net-point close to q if the distance to q is
at most t/ρ. By definition, the net-points close to q lie in
a ball of radius t/ρ centered at q. Since any pair of net-
points has a distance of more than t, any ball of radius
t/2 can contain at most one close net point. Following
the definition of the t-restricted doubling dimension, the

number of such net-points can be at most λ
log2

t/ρ
t/2

t/ρ which

simplifies to
(

2
ρ

)∆t/ρ . It follows that

m∑
i=1

C̃i ≤ n
(

2

ρ

)∆t/ρ

.

Hence, we get the claimed running time, observing that
k = O(log n) and l = O(nρ log n) by Lemma 1. All addi-
tional operations in the net construction besides the calls
of the primitive are dominated by that complexity. �

Lemma 6 Computing the Rel(.) sets using LSH takes
expected time

O

(
dn1+ρ log n

(
log n+

(
14

ρ

)∆7t/ρ

))
.

Proof. The proof is analogous to the proof of Lemma 5:
Let C̃i (for i = 1, . . . ,m) denote the number of net-
points in distance at most 7t

ρ to the i-th net point. The
same packing argument as in the previous Lemma shows
that any C̃i can be at most (14

ρ )∆7t/ρ , so that their sum

is bounded by m( 14
ρ )∆7t/ρ . Analogous to the proof of

Lemma 5, we can thus bound the runtime to be as
required, noting that m ≤ n. �

B.1 Proof of Lemma 2

Proof. Using Lemma 5 and Lemma 6, constructing the
net and its Rel(·) sets are within the complexity bound.
Constructing a single net-tree for a node containing
ni points takes time at most 214∆2tni log ni (the factor
of 14 in the exponent can be seen by a careful analy-
sis of [10, Sec.3.4]). Constructing individual net-trees
for the clusters takes time:

∑m
i=1 214∆2tdni log ni Since∑m

i=1 ni = n, the above runtime simplifies to be at most
214∆2tdn log n. Augmenting the net-forest takes time
dn214∆7t [10, Sec.3.4]. The runtimes for the latter steps
are dominated by the Rel(·) and net construction for
sufficiently large values of n. �



27th Canadian Conference on Computational Geometry, 2015

C Proof of Theorem 3

Proof. For correctness, any pair of nodes generated is
ε-well-separated by definition. For the relaxed covering
property, consider a pair (p, q) of points in distance at
most t. There are roots u1, u2 in the net-forest with
p ∈ Pu1

and q ∈ Pu2
. Since the diameter of u1 and u2

is at most 2t, the distance of repu1
and repu2

is at most
5t < 7t. Therefore, u2 ∈ Rel(u1) (and vice versa), and
there will be a pair generated that covers (p, q).

For the size bound, we can use the same charging
argument as in [10, Sec.5]. We can additionally ensure
by our construction that in all doubling arguments, the
radius of the balls in question is at most 7t and therefore
replace the doubling dimension by ∆7t in the bound. The
running time follows because the number of recursive
calls of genWSPD is proportional to the output size, and
we spend O(d) time per recursion step. �

D Semi-Separated Pair Decomposition

A pair of net-tree nodes (u, v) is called ε-semi-separated
if min(diamu, diamv) ≤ ε‖repu − repv‖. An ε-semi-
separated pair decomposition (ε-SSPD) is a collection of
ε-semi-separated pairs such that for any pair of points
(p, q) ∈ P × P there exists a semi-separated pair (u, v)
such that p ∈ Pu and q ∈ Pv; we say that such a pair
(p, q) is covered by (u, v). This is a weaker notion than
the WSPD, because it only requires that the smaller
diameter of the participating sets be small compared
to the distance between them. The advantage of using
a SSPD over a WSPD is reduced weight: The weight
of a WSPD W is defined as w =

∑
(x,y)∈W (|x| + |y|).

The weight of any WSPD can be Ω(n2) in the worst
case [1]. In contrast, it is possible to construct a SSPD
with near linear weight, where the weight in question
is an analogous definition to the one used for WSPDs.
An ε-SSPD of expected weight O(ε−O(∆)n log n) can be
calculated in O(ε−O(∆)n log n) expected time [1].

We adapt the algorithm of [1, Sec.4] to compute a t-
restricted SSPD, which requires that only pairs of points
in distance at most t be covered. The construction is
as follows: first we construct the net-forest at scale t.
Let u1, · · · , um denote the root nodes of the net-forest.
We invoke the algorithm of [1, Sec.4] on each of the
sets {ui ∪ Rel(ui)}. We output the union of the pairs
generated by each invocation. The SSPD generated this
way also ensures coverage of points which are at most
5t apart and hence, covers all pairs of points at most t
apart. Moreover, the pairs involved in the SSPD have
the additional property that their diameter is at most
16t.

Theorem 7 For 0 < ε < 1, our algorithm com-
putes a t-restricted ε-SSPD of P of expected weight

( 2
ε )O(∆16t)O(n log n) in ( 2

ε )O(∆16t)O(n log n) expected
time, after computing the net forest at scale t.

Proof. To prove correctness, consider points p and
q such that ‖p − q‖ ≤ 5t. Let ui and uj be the
root nodes of the net-forest covering p and q respec-
tively. By a simple application of the triangle inequality,
‖repui−repuj‖ ≤ 7t. Hence, ui ∈ Rel(uj) and vice versa.
This ensures that the algorithm creates a semi-separated
pair which covers the pair (p, q). For the diameter, let
us say that we work with the set Pm = {u∪Rel(u)} and
wish to upper bound diam(Pm). For any ui, uj ∈ Rel(u)
covering points a and b respectively, it follows from the
triangle inequality that ‖a− b‖ ≤ 16t. Hence the claim
about the diameter is true.

Next we bound the weight of the SSPD. Consider
the individual invocations of the algorithm of [1] af-
ter constructing the net-forest. Let Ni denote the
number of points in ui ∪ Rel(ui). Then the total
weight of the SSPD is

∑m
i=1O(ε−O(∆16t)Ni logNi) ≤

O(ε−O(∆16t) log n)
∑m
i=1Ni. To bound the sum S =∑m

i=1Ni, consider any point p covered by ui. This point
participates in at most 2O(∆7t) invocations of the algo-
rithm, since that is precisely the maximum possible size
of the Rel(.) set. This implies that the contribution of
point p to S is at most 2O(∆7t). Hence the sum S is at
most 2O(∆7t)n, and bound follows. A similar argument
bounds the runtime as well. �

E Approximate Čech Complexes

Well Separated Simplicial Decomposition The con-
cept of well-separated simplicial decomposition (WSSDs)
of point sets, introduced by Kerber and Sharathku-
mar [12] and extended to doubling spaces by Choudhary
et al [5], generalizes the concept of WSPD to larger
tuples. A (k + 1)-tuple (v0, v1, . . . , vk) is called ε-well
separated if each vi is a node of the net-tree and for any
ball B which contains at least one point of each vi, it
holds that

v0 ∪ v1 ∪ .... ∪ vk ⊆ (1 + ε)B

where (1 + ε)B denotes a ball with same center as B and
radius multiplied by (1 + ε). An (ε, k)-WSSD is a set
of ε-well-separated tuples of length (k + 1) such that
any k-simplex is covered by some tuple. In [5], an (ε, k)-
WSSD of size n(2/ε)O(∆·k) is constructed in expected
time d

(
2O(∆)n log n+ n(2/ε)O(∆·k)

)
.

Similar as before, we define a t-restricted (ε, k)-WSSD
to be a collection of ε-well-separated tuples such that
each k-simplex that fits into a ball of radius t is covered
by a tuple. The statement is equivalent to the condi-
tion that the radius of the smallest minimum enclosing
ball containing points from each node of the tuple is
at most t.



CCCG 2015, Kingston, Ontario, August 10–12, 2015

Construction of the t-restricted WSSD We de-
scribe the algorithm to construct the t-restricted (ε, k)-
WSSD and prove its correctness and runtime. In this ap-
pendix, we will heavily rely on the notations, algorithms,
and results presented in [5]. The algorithm proceeds
iteratively; for k = 1, we construct a (2t)-restricted ε/2-
WSPD using the algorithm from Section 6. To construct
Γk+1 from Γk, we iterate over the tuples γ ∈ Γk. We
use the scheme of [5, Sec.3], computing an approximate
meb of γ and then exploring ancestors of v0 and their
descendants at appropriate levels. The only complica-
tion arises when the algorithm requests for an ancestor
higher than root of the tree of v0. In such a case, our
algorithm uses the root as the ancestor. In the following
lemma, we will show that with this approach, we still
cover all simplices with meb radius of at most t.

Lemma 8 The algorithm computes a t-restricted (ε, k)-
WSSD.

Proof. We show by induction that with modified ances-
tor search, we still cover all simplices with meb radius
at most t. For k = 1, the correctness of the algorithm
follows from Theorem 3 in Section 6, Let Γk−1 cover
all (k − 1)-simplices γ which satisfy rad(γ) ≤ t. Con-
sider any k-simplex σ = (m0, . . . ,mk) with rad(σ) ≤ t.
From [5, Lem.9], there exists a point (say mk) such that
mk ∈ 2meb(σ′) where σ′ := σ \ {mk} and 2meb(σ′)
represents a ball with twice the radius and the same
center as meb(σ′). Since σ′ is a (k − 1)-simplex and
rad(σ′) ≤ rad(σ) ≤ t, it is covered by some k-tuple
γ = (v0, . . . , vk−1) ∈ Γk−1. To prove correctness, we
show that when our algorithm reaches tuple γ, it pro-
duces a (k + 1)-tuple (γ, x) such that mk ∈ Px which
implies that the simplex σ is covered by the (k+1)-tuple
(γ, x).

When handling γ, the algorithm searches for an ances-
tor of v0 at an appropriate scale. If this ancestor is found
within the tree of v0 in the net-forest, the arguments
from [5, Lem.12] carry over to ensure that a suitable x
is found. So let us assume that the algorithm chooses
the root of the tree of the net-forest that v0 lies in. Call
that root node a0. The algorithm considers all nodes in
Rel(a0) and creates new tuples with their descendants.
Moreover, the net-forest contains a leaf representing the
point mk; let a′ denote the root of its tree. It suffices to
show that a′ ∈ Rel(a0). Since rad(σ) ≤ t, the distance
of m0 and mk is at most 2t. Moreover, the distance of
m0 to repa0 is at most t, because the representatives of
the roots form a (t, t)-net. The same holds for mk and
a′. Using triangle inequality, the distance of repa0 and
repa′ is at most 4t. This implies that a′ ∈ Rel(a0). �

Lemma 9 The size of the computed t-restricted (ε, k)-
WSSD Γk is n( 2

ε )O(∆7t·k).

Proof. The proof of [5, Lem.13] carries over directly –
indeed, we can replace all occurrences of ∆ by ∆7t. This

comes from the fact that a node u has at most 14∆7t

nodes in Rel(u), and for any node in Rel(u) we reach
descendants of a level of at most O(log(2/ε)) smaller
then u (see the proof of [5, Lem.13] for details). Since
every node in the net-forest has at most 2O(∆t) children,
we create at most

14∆7t

(
2

ε

)O(∆t)

=

(
2

ε

)O(∆7t)

tuples in Γk from a tuple in Γk−1. With that, the bound
can be proved by induction. �

Lemma 10 Computing a t-restricted (ε)-WSSD takes
time nd(2/ε)O(∆7t·k) after computing the net forest at
scale t.

Proof. The proof is analogous to [5, Lem.14], plugging
in the running time for t-restricted ε-WSPD from Theo-
rem 11 and the size bound from Lemma 9. �

Computing the approximate Čech filtration We
use the scheme of [5, Sec.4] to construct the
(1 + ε)-approximate filtration on the t-restricted WSSD.
The original construction works without modifica-
tion. Using the notation from [5, Sec.4]., for any
WST σ = (v0, v1, . . . , vk) with `(vi) ≤ h, we add
σ′ = (vcell(v0, h), vcell(v1, h), . . . , vcell(vk, h)) to Aα if
rad(σ′) ≤ θ∆. The only potential problem with the
t-restricted case is that such a vcell() might be a node
higher than a root of the net-forest. This cannot happen,
however, since h is chosen such that

2τ

τ − 1
τh ≤ ε

7
α.

Since α ≤ t and ε ≤ 1, we have that

h < blogτ
τ − 1

2τ
tc = `(u)

for any root u in the net-forest.

Theorem 11 A t-restricted (ε, k)-WSSD of size
n( 2

ε )O(∆7t·k) can be computed in time

NF + nd

(
2

ε

)O(∆7t·k)

,

where NF is the complexity for computing the net-forest
from Theorem 2. Within the same time bound, we
can construct a sequence of approximation complexes
(Aα)α∈[0,t] of size n( 2

ε )O(∆7t·k) whose persistence mod-
ule is an (1 + ε)-approximation (in the sense that the
two modules are interleaved [4]) of the truncated Čech
filtration (Cα)α∈[0,t].

The claim follows directly from Lemmas 8, 9 and 10 and
the preceding construction.


	Introduction
	Background
	t-restricted doubling dimension
	Net-forests
	Near-neighbors primitive
	Applications
	Conclusion and future work
	Proof of Lemma 1
	Proof of Theorem 2
	Proof of Lemma 2

	Proof of Theorem 3
	Semi-Separated Pair Decomposition
	Approximate Cech Complexes

