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Abstract

Let P be a set of n points in Rd. In the projective
clustering problem, given k, q and norm ρ ∈ [1,∞], we
have to compute a set F of k q-dimensional flats such that
(
∑
p∈P d(p,F)ρ)1/ρ is minimized; here d(p,F) represents

the (Euclidean) distance of p to the closest flat in F .
We let fqk (P, ρ) denote the minimal value and interpret
fqk (P,∞) to be maxr∈P d(r,F). When ρ = 1, 2 and ∞
and q = 0, the problem corresponds to the k-median, k-
mean and the k-center clustering problems respectively.

For every 0 < ε < 1, S ⊂ P and ρ ≥ 1, we show that
the orthogonal projection of P onto a randomly chosen
flat of dimension O(((q + 1)2 log(1/ε)/ε3) log n) will ε-
approximate fq1 (S, ρ). This result combines the concepts
of geometric coresets and subspace embeddings based on
the Johnson-Lindenstrauss Lemma. As a consequence,
an orthogonal projection of P to an O(((q + 1)2 log((q +
1)/ε)/ε3) log n) dimensional randomly chosen subspace
ε-approximates projective clusterings for every k and ρ
simultaneously. Note that the dimension of this subspace
is independent of the number of clusters k.

Using this dimension reduction result, we obtain new
approximation and streaming algorithms for projective
clustering problems. For example, given a stream of
n points, we show how to compute an ε-approximate
projective clustering for every k and ρ simultaneously
using only O((n + d)((q + 1)2 log((q + 1)/ε))/ε3 log n)
space. Compared to standard streaming algorithms with
Ω(kd) space requirement, our approach is a significant
improvement when the number of input points and their
dimensions are of the same order of magnitude.

1 Introduction

Consider the projective clustering problem: For a set P
of n points in Rd, given integers k, q < n and an integer
norm ρ ≥ 1, compute a set F of k q-dimensional flats
(or q-flats) such that (

∑
p∈P d(p,F)ρ)1/ρ is minimized;

here d(p,F) represents the Euclidean distance of p to
its closest point on any flat in F . We define

fqk (P, ρ) := min
F

(
∑
p∈P

d(p,F)ρ)1/ρ
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and interpret fqk (P,∞) to be minF maxp∈P d(p,F). The
projective clustering problem is a generalization of sev-
eral well-known problems. For example, when ρ = ∞,
q = 0 this problem is the minimum enclosing ball (MEB)
problem (when k = 1) and the k-center clustering prob-
lem (for arbitrary k). When ρ =∞ and q = 1, we get the
minimum enclosing cylinder (MEC) (for k = 1) and the
k-cylinder clustering problem (for arbitrary k). When
q = 0, we get the k-median clustering problem (for ρ = 1)
and the k-means clustering problem (for ρ = 2). The pro-
jective clustering problem is NP -Hard [5] and, therefore,
most research has focused on the design of approxima-
tion algorithms. For an error parameter 0 < ε < 1, an
ε-approximate projective clustering is a set of q-flats F̃
such that (

∑
p∈P d(p, F̃)ρ)1/ρ ≤ (1 + ε)fqk (P, ρ).

Projective clustering is an important task arising in
unsupervised learning, data mining, computer vision and
bioinformatics; see [31] for a survey of some of these appli-
cations. Given its significance, clustering problems have
received much attention leading to new approximation
algorithms. The early algorithms for these problems had
exponential dependence on d [2, 4] and were well-suited
for low-dimensional inputs. However, for many practi-
cal problems, the number of input points n and their
dimension d are in the same order of magnitude [21].

Badoiu, Indyk and Har-Peled [8] made a breakthrough
in the design of high-dimensional clustering algorithms.
They designed a coreset-based algorithm that quickly
constructs a small “most-relevant” subset E of the input
points P with the property that an optimal clustering on
E is an approximate clustering for P , and use this coreset
to compute an approximate clustering. Based on this
idea, several coreset-based approximation algorithms for
projective clustering were developed, also for the design
of streaming algorithms for projective clustering1; see
for example [11, 20, 22]. In recent research, depending
on the problem, different definitions of coreset have been
used. These definitions vary from weak to strong notions
of when a subset is relevant, and therefore yield different
size bounds (see for instance [21] for a careful discussion).

Throughout this paper, we use the following definition:
a coreset (with respect to ε, q, ρ) is a subset E ⊆ P
such that the affine subspace spanned by E contains a

1In the streaming setting, algorithms are allowed to make one
or few passes over the data and compute an approximate solution
using a small workspace.
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q-flat F with (
∑
p∈P d(p, F )ρ)1/ρ ≤ (1 + ε)fq1 (P, ρ). We

let Cρ(q, ε) denote the worst-case size of such a coreset
for approximating fq1 (P, ρ). This is a comparably weak
version of coresets: we only require that the subspace
spanned by E contains some ε-approximate solution; we
do not require that the optimal solution for E is that
ε-approximation. For problems such as MEB, MEC,
1-mean, or 1-median, there are coresets whose size is
independent of the number of points and the ambient
dimension [7, 8, 23, 35].

Another useful tool for the design of high-
dimensional clustering algorithms is the random projec-
tion method [36]. At its heart is the following well-known
lemma [26] which says that an orthogonal projection of
any point set to a random O(log n/ε2)-dimensional flat
ε-approximates pairwise distance between all pairs of
points; see [16] for an elementary proof.

Theorem 1 (Johnson-Lindenstrauss) For 0 < ε <
1, a set P ⊂ Rd of n points, and m ≥ 36 ln(n)/ε2, there
is a map π̂ : Rd → Rm such that

(1− ε)‖u− v‖2 ≤ ‖π̂(u)− π̂(v)‖2 ≤ (1 + ε)‖u− v‖2

for any u, v ∈ P . Moreover, a randomly chosen map π̂ of
the form π̂(p) =

√
d/m · π(p) where π is the orthogonal

projection to a m-dimensional subspace of Rd, satisfies
that property with probability at least 1/2.

We abuse notations and refer to π̂ as above as a random
projection to an m-dimensional flat.

The Johnson-Lindenstrauss Lemma shows that ran-
dom projections approximate pairwise distances between
points. A natural question is what other geometric and
structural properties of high-dimensional point cloud
are preserved by random projections, and numerous
such properties have been identified [1, 12, 24, 28, 32].
Random projection techniques are widely used for clus-
tering problems: ongoing research focuses in particular
to the case of k-means clustering [9, 14, 15], although
it has also been used for certain projective clustering
problems [8, 30].

Our results. We establish a link between coresets
and the random projections for the projective cluster-
ing problem in Section 2. We show that, for every
0 < ε < 1, q ≥ 0, and ρ ≥ 1, a random projection to
a O(((q + 1)2 log((q + 1)/ε)/ε3 log n)-dimensional space
ε-approximates fq1 (S, ρ) for all S ⊆ P . The main ingre-
dient of our proof is to show that a random projection to
an O(Cρ(q, ε) log n/ε2)-dimensional subspace “preserves”
all flats defined by subsets of size Cρ(q, ε).Our argument
follows the standard proof technique for subspace embed-
dings (as sketched in [14, 29]) by approximately preserv-
ing the lengths of vectors taken from a sufficiently dense
ε-net. For a given q and any ρ ≥ 1, the existence of small-
sized coresets with Cρ(q, ε) = O((q+1)2/ε log((q+1)/ε))

is known [35]. This leads to the previously mentioned
bound on the dimension of the projected space.

As a consequence, we show that by projecting to
the same dimension, also fqk (P, ρ) is preserved for all k
and ρ ≥ 1. Note that the dimension of the subspace is
independent of k and ρ and is only logarithmic in n. Our
results imply that improved bounds on the size of the
coreset Cρ(q, ε) lead to better bounds on the dimension
of the random subspace. Interestingly, unlike previous
applications of coresets, we do not require a fast method
to compute Cρ(q, ε). Therefore, we can shoot for even
smaller-sized coresets without being restricted by its
computation time (Section 3).

Our results has the following applications (Section 4):
For a given q and a stream of n points, we give an algo-
rithm that can compute projective clustering of P for
every value of k and ρ using only O(((q + 1)2 log((q +
1)/ε)/ε3)(n+ d) log n) space. Almost all known (multi-
pass) streaming algorithms for projective clustering prob-
lems have a linear dependence on the product of k and d,
and therefore, they tend to require Ω(nd) space for when
k = Θ(n). As opposed to this, our algorithm requires
Õ(n+ d) space which is particularly useful when n and
d are of the same order of magnitude. Also, in many
practical scenarios, the number of clusters k and the
norm ρ are not known in advance. Our algorithm is
also useful in such cases since our dimension reduction
technique works for all values of k and ρ simultaneously.

We also generically improve approximation algorithms
for projective clustering problems. Again, we project P
onto a randomly chosen subspace and compute an ap-
proximate solution in the projected subspace. We obtain
a solution in the original d-dimensional space by “lifting”
each cluster from the projected space separately. For the
approximate k-cylinder problem, our approach yields
a bound of O(n log n2k log k/ε + dn logn

ε3 ) which improves

the previously known best O(nd2k log k/ε) [7]; note that
k and d are decoupled in our complexity bound.

Finally, since our results imply that, under random
projections, the radius of MEB is approximated for ev-
ery subset of the input, we immediately get an approx-
imation scheme for a d-dimensional Čech complex in
Euclidean space by a Čech complex in lower dimen-
sions. In particular, this result bounds the persistence of
high-dimensional homology classes of the original Čech
complex. Recently, these results have been proven inde-
pendently by Sheehy [34].

2 Generalized Johnson-Lindenstrauss Lemma

Recall the definition of fq1 (P, ρ) as the Lρ-distance of P
to the best fitting q-flat. We show that a random pro-
jection to appropriately large subspaces approximately
preserves fq1 (S, ρ) for any subset S ⊆ P . What dimen-
sion is appropriate for a projection depends on the cor-
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responding coreset size C := Cρ(q, ε); precisely, picking
a O(C log(n)/ε2)-dimensional subspace is enough.

We outline the proof of the statement before giving
the technical details in the remainder of the section. For
a set S ⊂ P , we let 〈S〉 denote the span of S, that is, the
subspace spanned by the points in S. We know that any
subset of P has a coreset of size C whose span contains
an approximately optimal q-flat F . If the distance of
F to any p ∈ P is preserved under the projection, we
can guarantee to preserve fq1 (S, ρ) approximately as well.
We ensure this preservation by the stronger property
in Lemma 3 that for any p ∈ P , the distance to any
q-flat in the span of any subset of P of cardinality C is
preserved. Note that the number of such subspaces is
bounded by nC and therefore polynomial in n.

Lemma 3 in turn follows easily from a generalization
of the Johnson-Lindenstrauss lemma that we prove first:
for an integer c > 0, we show that a random projection
to roughly c log(n)/ε2 dimensions preserves for all subset
S of c points the distance between any two points in
〈S〉. While the proof of this subspace embedding result
has been outlined in previous work [14, 29], we are not
aware of a formal proof of the statement.

Lemma 2 For 0 < ε < 1, a set P ⊂ Rd of n points,
an integer c ≥ 0, and m ≥ λ · c log(n)/ε2 for a suitable
constant λ, a random projection π̂ satisfies with high
probability that for any subset S ⊂ P of cardinality c
and for any u, v ∈ 〈S〉

(1− ε)‖u− v‖ ≤ ‖π̂(u)− π̂(v)‖ ≤ (1 + ε)‖u− v‖.

Proof. The proof of Theorem 2.1 in Dasgupta and
Gupta [16] implies the following statement: When pro-
jecting a unit vector in Rd to a fixed m = O(c log n/ε2)-
dimensional subspace, the probability that its squared
length does not lie in ((1−ε)m/d, (1+ε)m/d) is at most

2 exp(−mε
2

4
) ≤ 2 exp(−λc log n

4
) ≤ n−8c

for a suitable constant λ. As they argue, the same bound
applies for a fixed unit vector and a uniformly chosen
m-dimensional subspace.

A result by Feige and Ofek [19] (see also [6]), trans-
lated in geometric terms, says that by approximately
preserving the pairwise squared distances between a set
of at most exp(c ln 18) sample points belonging to an
c-dimensional subspace, we can approximately preserve
the squared length of all unit vectors in the subspace,
and thus all pairwise distances; see [32, Proof of Cor. 11]
for further explanations. Hence, for a fixed subspace, we
need to preserve exp(2c ln 18) ≤ exp(6c) distances. More-
over, we want to preserve distances in nc many subspaces,
yielding a total of exp(6c)nc ≤ n7c distances to be pre-
served. By the union bound, choosing a m-dimensional
subspace uniformly at random, the probability of success

is at least 1− n7c

n8c ≥ 1− 1/nc. �

The preservation of point-to-flat distances in low-
dimensional subspaces is a simple consequence:

Lemma 3 Let 0 < ε < 1, P ⊂ Rd a set of n points and
q < c positive integers. With high probability, a random
projection to an O(c log n/ε2)-dimensional flat satisfies
for all subsets S ⊂ P of cardinality c, all q-flats Q ⊂ 〈S〉,
and all p ∈ P that

(1− ε)d(p,Q) ≤ d(π̂(p), π̂(Q)) ≤ (1 + ε)d(p,Q).

Proof. For any p ∈ P and any Q ⊂ 〈S〉, there exists
a space with c + 1 points that contains both p and Q.
Let t ∈ Q be the point such that d(p,Q) = ‖p − t‖.
Applying Theorem 2 for c′ := c+ 1 immediately implies
that d(π̂(p), π̂(Q)) ≤ ‖π̂(p)− π̂(t)‖ ≤ (1+ε)d(p,Q). The
second inequality follows similarly, considering the point
t′ ∈ Q that realizes d(π̂(p), π̂(Q)). �

We show our main theorem that random projections
preserve fq1 (S, ρ) for any S ⊆ P .

Theorem 4 Let 0 < ε < 1, P ⊂ Rd consist of n points,
q ≥ 0 an integer and ρ ∈ Z≥1 ∪ {∞}. Then with high
probability, for m ≥ λ · Cρ(q, ε/2) log(n)/ε2 with a suit-
able constant λ, a random projection π̂ satisfies for all
subsets S ⊆ P

(1− ε)fq1 (S, ρ) ≤ fq1 (π̂(S), ρ) ≤ (1 + ε)fq1 (S, ρ).

Proof. Let S ⊆ P arbitrary. We start by showing the
second inequality: By the coreset property, there exists a
subset E ⊂ S of Cρ(q, ε/2) points such that 〈E〉 contains
a q-flat F that is an ε

2 -approximate solution. For ρ 6=∞,
applying Lemma 3 with ε′ = ε/3, we get that

fq1 (π̂(S), ρ) ≤

∑
p∈S

d(π̂(p), π̂(F ))ρ

1/ρ

≤

∑
p∈S

(1 + ε/3)ρd(p, F )ρ

1/ρ

≤ (1 + ε/3)(1 + ε/2)fq1 (S, ρ) ≤ (1 + ε)fq1 (S, ρ),

where we use (1 + ε/3)(1 + ε/2) < 1 + ε for 0 ≤ ε ≤ 1.
For ρ =∞, the proof for ρ = 1 directly carries over.

For the first inequality, we apply the coreset property
on the set π̂(S): let π̂(E′) be a coreset for π̂(S). Let
G denote the approximate solution in 〈π̂(E′)〉; it holds
that G = π̂(F ′) for some q-flat F ′ in 〈E′〉. Using again
Lemma 3, we have that

(1− ε)fq1 (S, ρ) ≤ (1− ε

2
)(1− ε

3
)

∑
p∈S

d(p, F ′)ρ

1/ρ

≤ (1− ε

2
)

∑
p∈S

d(π̂(p), G)ρ

1/ρ

≤ (1− ε

2
)(1 +

ε

2
)fq1 (π̂(S), ρ) ≤ fq1 (π̂(S), ρ).
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Again, the case ρ =∞ is analogue to ρ = 1. �

Theorem 4 implies that fqk (P, ρ) is preserved for
any k ≥ 1.

Corollary 5 With the notations of Theorem 4 and k ≥
1, a random projection π̂ satisfies with high probability

(1− ε)fqk (P, ρ) ≤ fqk (π̂(P ), ρ) ≤ (1 + ε)fqk (P, ρ).

Proof. Let F = {F1, . . . , Fk} denote an optimal collec-
tion of q-flats, that is, for any p ∈ P , the closest flat in
F has distance at most fqk (P, ρ). Let Pi ⊆ P be the set
of points closest to Fi, for i = 1, . . . , k. Note that Fi
is the optimal q-flat for Pi, in other words, it realizes
fq1 (Pi, ρ).

2 Using Theorem 4 on the subsets Pi, we get
for ρ <∞ that

fqk (π̂(P ), ρ) ≤
k∑
i=0

fq1 (π̂(Pi), ρ)

≤
k∑
i=0

(1 + ε)fq1 (Pi, ρ) = (1 + ε)fqk (P, ρ),

proving the second inequality. The first part follows the
same way considering an optimal F for π̂(P ). The case
ρ =∞ is analogous, replacing all sums by max. �

3 Coresets for Projective Clustering

Recall that Cρ(q, ε) is defined as the coreset size for
approximating the Lρ-optimal q-flat, in the sense that
there exists a subset of Cρ(q, ε) input points whose span
contains an ε-approximate optimal q-flat. Because of
space restrictions, we omit the (simple) proofs of the
results in this section (see Appendix A).

The case of 0-flats For a point set P ⊂ Rd, we
consider the point that minimizes, for a fixed ρ ∈ [1,∞],

δ(q) :=

∑
p∈P

d(p, q)ρ

1/ρ

over all q ∈ Rd. We call the minimizer o in Rd the
optimal center and note that δ(o) = f01 (P, ρ). We call
o′ an ε-approximate center, if δ(o′) ≤ (1 + ε)δ(o). Since
Theorem 4 only requires a bound on the coreset and
no method to compute it, we can free ourselves from
algorithmic considerations and concentrate on existential
results.

A lower bound of Ω(1/ε) can be derived easily by
considering the standard simplex. This has been done
by Bădoiu and Clarkson [10] for the case ρ =∞.

2For ρ = ∞, this is not necessarily true for any optimal solution,
but we can replace every q-flat with the optimal one wlog

Theorem 6 There exists a point set such that no subset
of less than 1/(2ε) points contains an ε-approximate
center, i.e., Cρ(0, ε) = Ω(1/ε).

The following result gives an almost tight upper bound
for arbitrary ρ. It follows directly from the techniques
introduced by Shyamalkumar and Varadarajan [35] for
the case of lines through the origin.

Theorem 7 For any (finite) point set P ⊂ Rd, there
is a set S ⊂ P of O(1/ε log(1/ε)) points such that the
subspace spanned by S contains an ε-approximate center.
In other words, Cρ(0, ε) = O(1/ε log(1/ε)).

Smaller coresets exist for special cases: for ρ =∞, a
coreset of size O(1/ε) (in fact, of size d1/εe) exists [10].
It is also known that for ρ = 2, the squared distance
function d2(x, P ) is a quadratic function in x and can
therefore be tackled through sparse greedy optimization
in the Frank-Wolfe framework [13, 25].

Theorem 8 For ρ = 2, there is a set of O(1/ε) points
such that their subspace contains an ε-approximate cen-
ter, i.e., C2(0, ε) = O(1/ε).

The case of general q The best known bounds for
Cρ(q, ε) with q ≥ 0, are again due to Shyamalkumar and
Varadarajan. The aforementioned result for lines yields
that Cρ(1, ε) = O(1/ε log(1/ε)), the same bound as for
q = 0 [35, Lemma 3.2]. They use the line case in an
inductive argument to show [35, Lemma 3.3]:

Theorem 9 For q ≥ 1, Cρ(q, ε) = O(q2/ε log(q/ε)).

A natural question is to ask about the tightness of
the coreset bounds: for the point case q = 0, we conjec-
ture that coresets of size O(1/ε) exist for any norm ρ
(currently, this is only established for ρ ∈ {2,∞}). For
general q, an improved upper bound of O(q/ε) would
yield a target dimension linear in q in our dimension
reduction result.

4 Applications

Streaming algorithms for projective clustering We
consider the projective clustering problem in a streaming
context. In this setup, we do not return the cluster
centers (the q-flats) but only an ε-approximation of
fqk (P, ρ). We let S(n, d, q, k, ε, ρ) be the space complexity
for this problem. We assume that n, the size of the
stream, is known in advance.

Set m := O((q + 1)2/ε3 log n log((q + 1)/ε)). In the
simplest variant, our streaming initially chooses a d×m
projection matrix uniformly at random, projects every
point from the stream to Rm, and stores all points in a
set P ′. The algorithm, then uses an (offline)-algorithm
to approximate fqk (P ′, ρ). The total work space of this
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algorithm is O(dm + nm + S), where dm is the space
required to store the projection matrix, nm is the size
of P ′, and S is the space required to find approximate
clustering of P ′. Using any approximation algorithm
that computes using linear space, we obtain a streaming
algorithm to approximate fqk (P, ρ) with a space complex-
ity of O((q + 1)2(n+ d)/ε3 log n log((q + 1)/ε)). This is
much smaller than the input size of O(dn) and, for small
q, not too far from the lower bound of Ω(n) [3].

In a similar fashion, our results can be used to speed
up other streaming approaches: Again, we choose ini-
tially a d ×m projection matrix uniformly at random
which is stored throughout the algorithm. Further-
more, we maintain the workspace of a streaming al-
gorithm that computes an approximation of the con-
sidered projective clustering problem in m dimensions.
When a new point p ∈ Rd arrives, we compute its pro-
jection π̂(p) ∈ Rm and treat this as an input to the
m-dimensional streaming algorithm. We return the out-
put value of the m-dimensional streaming algorithm as
our result. The correctness of the approach (with high
probability) follows from Corollary 5. The space com-
plexity is O(dm + S), with S the space complexity of
the m-dimensional streaming algorithm.

Approximate Projective Clustering. Our technique
is also useful for the computation of approximate
cluster centers: For a set P of n points in Rd, let
T (n, d, q, k, ε, ρ) denote the time complexity to com-
pute k q-flats F that ε-approximate the optimal so-
lution, that is, (

∑
p∈P (d(p,F))ρ)1/ρ ≤ (1 + ε)fqk (P, ρ).

We design a new algorithm as follows: Set ε′ := ε/5.
First, we randomly project the input point set from d to
m := O(Cρ(q, ε

′) log n/ε′2) dimensions. Let P ′ be this
set of projected points. Then, we (ε′-approximately)
solve the same problem for P ′ in m dimensions, using
some algorithm for this problem as a black box. The
computed solution clusters P ′ in k subsets of points
that are closest to a particular q-flat in the solution.
We let P 1, . . . P k be the pre-image of these k clusters
and assume wlog that P i ∩ P j = ∅. For each P i, we
compute an ε′-approximation of the best fitting q-flat.
We return the collection of these k q-flats as solution.
Correctness of this approach follows from Theorem 4
and Corollary 5. As an example, we get the k-center
problem by setting ρ =∞ and q = 0. Using the bounds
C∞(0, ε) = 2/ε, T (n, d, 0, k, ε,∞) = O(nd2k log k/ε) and
T (n, d, 0, 1, ε,∞) = O(ndε2 + 1

ε5 ) from [7], we get a running
time of

O(n log n2k log k/ε +
dn log n

ε3
).

Approximating Čech complexes A standard tool in
capturing topological properties of point cloud data is

the Čech complex 3. It is usually defined to be the nerve
of balls of some fixed radius α centered at the points
from the sample P , and denoted as Cα(P ). An equivalent
definition is that a k-simplex {p0, . . . , pk} is in Cα(P ) if
and only if the radius of meb(p0, . . . , pk) is at most α.

The downside of Čech complexes is the size: Their d-
skeleton can consist of up to O(nd+1) simplices. Recent
work suggests to work instead with an approximation of
the Čech complex [27] (or of the closely related Vietoris-
Rips complex [33] [17]). “Approximation” in this context
means that the persistence diagrams of the modules
induced by the Čech filtration and by the approximate
filtration are close to each other. Theorem 4 for q = 0,
k = 1 and ρ = ∞ implies that the radius of MEBs is
preserved for any subset. That implies immediately that
Čech complexes can be approximated by Čech complexes
in lower dimensions.

Proposition 10 For 0 < ε ≤ c−1
c < 1 with c > 1

and arbitrary constant, a set P ⊂ Rd of n points, and
m = Θ(log(n)/ε3), a random projection π̂ : Rd → Rm
satisfies with high probability that

C(1−cε)α(P ) ⊆ Cα(π̂(P )) ⊆ C(1+cε)α(P ).

An interesting consequence of this statement is that a
Čech complex cannot have any significantly persistent
features in dimensions higher than m. Independently
from our work, Sheehy [34] recently showed a slightly
stronger result, projecting to Θ(log(n)/ε2) dimensions.
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A Missing proofs of Section 3

Proof of Theorem 6 Consider the standard (n − 1)-
simplex spanned by n points in Rn, namely the points
e1, . . . , en. The optimal center for any ρ is the barycenter
o given by (1/n, . . . , 1/n), and we have that

δ(o) = n1/ρ
√
n− 1

n
.

Choose a subset of size c, w.l.o.g. e1, . . . , ec and let F
be the affine subspace spanned by these points. Let o′

denote the barycenter of the (c− 1)-simplex (e1, . . . , ec).
Now o′ is the point that minimizes δ(·) over F , since o′ is
the orthogonal projection on F of any ei with i > c. So,
assuming that F contains an ε-approximate center, o′

must be an approximate center. On the other hand, δ(o′)
is easily computed by noting that d(o′, ei) =

√
(n− 1)/n

for any i ≤ c and d(o′, ei) =
√

(n+ 1)/n for any i > c.
This yields(

c

(√
c− 1

c

)ρ
+ (n− c)

(√
c+ 1

c

)ρ) 1
ρ

= δ(o′) ≤ (1 + ε)δ(o) = (1 + ε)n1/ρ
√
n− 1

n
.

Raising to the ρ-th power and dividing by n yields
that

c

n

(√
c− 1

c

)ρ
+
n− c
n

(√
c+ 1

c

)ρ
≤ (1+ε)ρ

(√
n− 1

n

)ρ
.

Because this bounds has to hold for every n, it must also
hold in the limit for n→∞. That results in(√

c+ 1

c

)ρ
≤ (1 + ε)ρ,

and by solving for c yields that c ≥ 1/(2ε+ ε2) ≥ 1/(3ε)
for ε ≤ 1.

Proof of Theorem 7 We define an iterative procedure
which creates points c0, c1, . . . such that ci is in the sub-
space spanned by i input points. The initial point c0
is chosen to be point closest to the optimal center.4 If
some ci is an ε-approximate center, we are done. Oth-
erwise, we show that we can chose a point ci+1 that is
significantly closer to o. For that, let s be the point the
maximizes

d(ci, p)

d(o, p)

over all p ∈ P . By construction, d(ci, s) ≥ (1 + ε)d(o, s)
We choose ci+1 as the point on the line segment cis

4Again, since we only care about existence, we can conveniently
assume that the center is known to us.

that is closest to o. It follows easily [35, Lemma 2.1]
that d(ci+1, o) ≤ (1 − ε/2)d(ci, o). Combined with the
triangle inequality and the fact that c0 is the closest
point to o in P , this implies that for any p ∈ p:

d(ck, p) ≤ d(ck, o) + d(o, p)

≤ (1− ε/2)kd(c0, o) + d(o, p)

≤ (1 + (1− ε/2)k)d(o, p).

For k = O(1/ε log(1/ε)), this means that d(ck, p) ≤
(1 + ε)d(o, p) for all p ∈ P , which directly implies that
δ(ck) ≤ (1 + ε)δ(o).

Proof of Theoerem 8 Writing A for the matrix whose
columns are the points in P and ∆ for the standard sim-
plex with points e1, . . . , en, we can consider the function
g : ∆→ R defined by

g(x) =

n∑
i=1

‖Ax−Aei‖2

=

n∑
i=1

(x− ei)TATA(x− ei)

= xTMx+ xT b+ a

with M = nATA, b = −2
∑
ATAei, and a =∑

eTi A
TAei. Therefore, g is a quadratic function. We

apply the Frank-Wolfe optimization on the (convex) func-
tion g: this method starts in an arbitrary point x0 in P
and improves the approximation quality in every step
by moving towards the point in P which the steepest
descent. The obtained sequence of iterates x0, x1, . . .
converges to the (unique) minimum of g, and by con-
struction, the iterate xi lies in the span of i points of P .

A crucial quantity in the convergence behavior of
Frank-Wolfe is the quantity Cg: this is a scaled form of
the Bregman divergence of the function g, measuring
the difference between g(y) and the value at y of the
tangent plane of g at x, for all pairs x and y. Since
g is a quadratic function, [13, Sec. 4.3] asserts that
Cg ≤ diam(P )2. Writing r for the radius of the MEB of
P , this implies Cg ≤ 4r2.

Slightly abusing notation, we let o ∈ ∆ denote the
point that minimizes g. Using Theorem 2.3 from [13],
after running the Franke-Wolfe optimization for k :=
2d1/εe steps, we find an iterate xk on a k-simplex which
satisfies

g(xk)− g(o) ≤ 4εCf ≤ 16εr2 ≤ 16εg(o),

where the last inequality comes from the fact that with p
being the furthest point from o, it holds that g(o) ≥ ‖o−
p‖2 ≥ r2. Therefore, we have that g(xk) ≤ (1 + 16ε)g(o).
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