
28 4 MACH ENVIRONMENT

4 Mach Environment

See the section “General Mach Information” at the end of theA Programmers’s Guide to the Mach
User Environment to find the current include file names and paths needed to compile code using the
Mach system calls.

3.3 Inheritance of Shared versus Copied Memory 27

mem[0] = CHILD_CHANGED;
printf("\n");
printf("CHILD: lock = %d\n", *lock);
printf("CHILD: changing lock to %d\n", CHILD_WAIT);
printf("\n");
*lock = CHILD_WAIT;
while (*lock == CHILD_WAIT);

/* wait for parent to change lock */
if ((ret = vm_deallocate(task_self(), lock,

sizeof(int), TRUE)) != KERN_SUCCESS) {
mach_error("vm_deallocate returned value of ", ret);
printf("Exiting.\n");
exit();

}
if ((ret = vm_deallocate(task_self(), mem,

MAXDATA * sizeof(char), TRUE)) != KERN_SUCCESS) {
mach_error("vm_deallocate returned value of ", ret);
printf("Exiting.\n");
exit();

}
printf("CHILD: Finished.\n");

}

26 3 USE OF VIRTUAL MEMORY

TRUE)) != KERN_SUCCESS) {
mach_error("vm_allocate returned value of ", ret);
printf("Exiting with error.\n");
exit();

}
if ((ret = vm_inherit(task_self(), lock, sizeof(int),

VM_INHERIT_SHARE)) != KERN_SUCCESS) {
mach_error("vm_inherit returned value of ", ret);
printf("Exiting with error.\n");
exit();

}
*lock = NO_ONE_WAIT;
if ((ret = vm_allocate(task_self(), &mem, sizeof(int) * MAXDATA,

TRUE)) != KERN_SUCCESS) {
mach_error("vm_allocate returned value of ", ret);
printf("Exiting with error.\n");
exit();

}
mem[0] = COPY_ON_WRITE;

printf("value of lock before fork: %d\n", *lock);
pid = fork();
if (pid) {

printf("PARENT: copied memory = %d\n",
mem[0]);

printf("PARENT: changing to %d\n", PARENT_CHANGED);
mem[0] = PARENT_CHANGED;
printf("\n");
printf("PARENT: lock = %d\n", *lock);
printf("PARENT: changing lock to %d\n", PARENT_WAIT);
printf("\n");
*lock = PARENT_WAIT;
while (*lock == PARENT_WAIT);

/* wait for child to change the value */
/* beware of optimizing compilers */

printf("PARENT: copied memory = %d\n",
mem[0]);

printf("PARENT: lock = %d\n", *lock);
printf("PARENT: Finished.\n");
*lock = PARENT_WAIT;
exit();

}
while (*lock != PARENT_WAIT);

/* wait for parent to change lock */
/* beware of optimizing compilers */

printf("CHILD: copied memory = %d\n", mem[0]);
printf("CHILD: changing to %d\n", CHILD_CHANGED);

3.3 Inheritance of Shared versus Copied Memory 25

3.3.2 Programming Example III, cowtest.c

/*
* This program demonstrates the use of vm_inherit and copy on write
* memory. A child and parent process will share memory, polling this
* memory to see whos turn it is to proceed. First some memory is allocated,
* and vm_inherit is called on this memory, the variable ’lock’. Next more
* memory is allocated for the copy on write test. A fork is executed, and
* The parent then stores new data in the copy on write memory
* previously allocated, and sets the shared variable signaling to the
* child that he is now waiting. The child, polling the shared variable,
* realizes it is his turn. The child prints the value of the variable
* lock and a value of the copy on write memory as the child sees it.
* You will notice that the value of the lock is what the parent
* set it to be, but the value of the copy on write memory is the original
* value and not what the parent changed it to be.
* The parent then awakes and prints out the two values once more.
* The program then ends with the parent signaling the child via the
* shared variable lock.
**/
#include <mach.h>
#include <stdio.h>

#define NO_ONE_WAIT 0
#define PARENT_WAIT 1
#define CHILD_WAIT 2
#define COPY_ON_WRITE 0
#define PARENT_CHANGED 1
#define CHILD_CHANGED 2

#define MAXDATA 100

main(argc, argv)
int argc;
char *argv[];

{
int pid;
int *mem;
int *lock;
kern_return_t ret;

if (argc > 1) {
printf("cowtest takes no switches. ");
printf("This program is an example of copy on write \n");
printf("memory and of the use of vm_inherit.\n");
exit();

}
if ((ret = vm_allocate(task_self(), &lock, sizeof(int),

24 3 USE OF VIRTUAL MEMORY

Through execution of this program, the user will notice that the changes to the copied memory
are not seen from the child to the parent; that is when the parent changes the value, the child does
not see this change. On the other hand, any change in the shared memory is noticed by both tasks.

The copied memory in this example is actually copy-on-write memory. That is, the memory is
never really copied until one of the tasks desires to write in this region.

3.3.1 Virtual Memory, Inheritance

vm_inherit allows a task to specify how the various regions of its memory will be passed to any
child tasks that it forks. By default all memory is passed to the child as a logical copy (actually
copy-on-write).vm_inherit allows a task to specify that certain page-regions of its memory are
to be shared with any children it subsequently forks, or are not to be passed at all to that child.

The inheritance parameter may be set toVM_INHERIT_SHARE, VM_INHERIT_COPY or
VM_INHERIT_NONE. The size parameter is measured in bytes but only integral numbers of
pages are dealt with. The pages are selected by rounding down the start address to a page boundary
and then rounding up the end address to a page boundary.

int *lock;
kern_return_t ret;

if ((ret = vm_inherit(task_self(), lock, sizeof(int),
VM_INHERIT_SHARE)) != KERN_SUCCESS) {
mach_error("vm_inherit returned value of ", ret);
exit(1);

}

3.2 Virtual Memory Copying 23

3.2 Virtual Memory Copying

Thevm_copy primitive is another alternative tovm_read. In either case the task port used as the
first parameter may specify the caller’s address space or that of some other task. If another task’s
port is usedvm_read copies memory from that task’s address space to the caller’s address space.
On the other hand,vm_copy moves the memory from one part of the designated task’s address
space to another section of that address space. The fact that these primitives do not actually copy
the data regions, but only map the regions as copy-on-write pages, means that they actually have
some use even in copying data in the caller’s own address space. If a task wants multiple virtual
memory references to the same data, it can use either of these primitives to set this up. No data is
actually copied until one of the virtual memory areas is modified.

The destination region must be allocated prior to the call tovm_copy.

int *data1, *data2;
kern_return_t rtn;

/* note that data2 was previously allocated. */

if ((rtn = vm_copy(task_self(), data1, vm_page_size, data2)) !=
KERN_SUCCESS) {
mach_error("vm_copy returned value of ", rtn);
exit(1);

}

An complete example of a program usingvm_copy can be found in the Mach example directory
asvm_copy.c.

3.3 Inheritance of Shared versus Copied Memory

This final virtual memory example illustrates the use ofvm_inherit, and the difference between
copied and shared memory. The problem posed is to have two memory regions, one inherited and
shared by a child task and one region simply copied by the UNIX fork call. To show the difference
between the two acquisition methods, the parent and child will take turns printing out and changing
the values of the two regions.

The first step towards a solution is to allocate and fill with data two regions of memory. The
address of the memory that is to be shared by the child task is passed tovm_inherit, using the
VM_INHERIT_SHARED flag. The shared memory is used in this program as a lock to regulate
whether the child or parent process is to proceed. After forking, the child will wait while the parent
prints out the value of the shared memory and the value of the copied memory. After the parent is
finished, he changes the lock causing himself to wait and signaling the child to continue. The child
prints the contents of the two regions then changes the lock and waits. The lock change signals
the parent to once again print the memory values. The parent changes the lock and exits. The
child notices the lock change, deallocates the two memory regions, and exits. Be aware that code
which loops on a lock that some other task is going to modify is sometimes deleted by optimizing
compilers. Either the variable should be tagged as ”volitile” if your compiler understands that
construct or optimizing may need to be turned off.

22 3 USE OF VIRTUAL MEMORY

printf("vmread: Exiting.\n");
exit();

}
printf("Successful vm_read.\n");

if (vm_page_size != data_cnt) {
printf("vmread: Number of bytes read not equal to number");
printf("available and requested. \n");

}
min = (vm_page_size < data_cnt) ? vm_page_size : data_cnt;

for (i = 0; (i < min); i++) {
if (data1[i] != data2[i]) {

printf("vmread: Data not read correctly.\n");
printf("vmread: Exiting.\n");
exit();

}
}
printf("Checked data successfully.\n");

if ((rtn = vm_deallocate(task_self(), data1,
vm_page_size)) != KERN_SUCCESS) {
mach_error("vm_deallocate returned value of ", rtn);
printf("vmread: Exiting.\n");
exit();

}

if ((rtn = vm_deallocate(task_self(), data2,
data_cnt)) != KERN_SUCCESS) {
mach_error("vm_deallocate returned value of ", rtn);
printf("vmread: Exiting.\n");
exit();

}
}

3.1 Allocation, Deallocation, and Reading 21

3.1.4 Programming Example II, vm read.c

/*
*
* This program is a test of vm_allocate, vm_read and vm_deallocate.
* First some memory is allocated, and filled with data. vm_read is
* then called, with reading starting at the previously allocated chunk.
* The contents of the two pieces of memory, one retreived by vm_allocate, and
* one by vm_read is compared. vm_deallocate is then used to rid of the
* two chunks of memory.
*
***/

#include <mach.h>
#include <stdio.h>

main(argc, argv)
int argc;
char *argv[];

{
char *data1, *temp;
char *data2;
int data_cnt, i, min;
kern_return_t rtn;

if (argc > 1) {
printf("vm_read takes no switches. ");
printf("This program is an example vm_read\n");
exit();

}

if ((rtn = vm_allocate(task_self(), &data1, vm_page_size,
TRUE)) != KERN_SUCCESS) {
mach_error("vm_allocate returned value of ", rtn);
printf("vmread: Exiting.\n");
exit();

}

temp = data1;
for (i = 0; (i < vm_page_size); i++)

temp[i] = i;
printf("Filled space allocated with some data.\n");
printf("Doing vm_read....\n");
if ((rtn = vm_read(task_self(), data1, vm_page_size, &data2,

&data_cnt)) != KERN_SUCCESS) {
mach_error("vm_read returned value of ", rtn);

20 3 USE OF VIRTUAL MEMORY

char *data1;
kern_return_t rtn;

if ((rtn = vm_deallocate(task_self(), data1,
vm_page_size)) != KERN_SUCCESS) {
mach_error("vm_deallocate returned value of ", rtn);
printf("vmread: Exiting.\verb+\+n");
exit(1);

}

3.1.3 Virtual Memory Reading

vm_read makes it possible for one task to read the virtual memory of another. In the example
below, a task is reading its own memory. The first parameter tovm_read is the task whose address
space is to be read. Note the parameteraddress, which is the first address to be read, must be on a
page boundary. Size is in bytes and must be an integral number of pages. The data read is returned in
a newly allocated region. The size in bytes of this new region is also returned.vm_deallocate
should be used on the region returned byvm_read when it is no longer needed.

char *data1, *data2;
int data_cnt;
kern_return_t rtn;

if ((rtn = vm_read(task_self(), data1, vm_page_size, &data2,
&data_cnt)) != KERN_SUCCESS) {
mach_error("vm_read returned value of ", rtn);
printf("vmread: Exiting.\verb+\+n");
exit(1);

}

19

3 Use of Virtual Memory

3.1 Allocation, Deallocation, and Reading

The program for this section will demonstratevm_allocate,vm_read, andvm_deallocate.
The purpose of this example is to checkvm_read to be sure the data was read correctly.

The first step in solving this problem is to get a chunk of memory and fill it with data.
vm_allocate is used to get the virtual memory. Data is then stored in it. The next step is to call
vm_read. vm_read allows a task to read another task’s virtual memory. Passing the address of
the previously allocated memory as a starting point,vm_read is called. Note that our example is
a simplified use ofvm_read since a task is reading its own memory.vm_read returns a newly
allocated region containg the data read. Note that the parametersize, which is the number of
bytes to be read, must be an integral number of pages.vm_read can be checked by comparing the
data received with the previously allocated chunk. If both spaces contain the same data,vm_read
worked correctly. To clean up before ending this example program, both allocated spaces must
be deallocated by callingvm_deallocate. Note that the data returned byvm_read must be
deallocated.

3.1.1 Virtual Memory Allocation

vm_allocate allocates a region of virtual memory, placing it in the specified task’s address space.
The size parameter is the number of bytes to allocate which is rounded to an integeral number
of virtual pages. If last parameter isTRUE the kernel allocates a region of memory at the next
convenient location and returns the virtual address as the second parameter. If the last parameter
is FALSE, the kernel allocates memory starting at the address specified by the second parameter.
vm_page_size is a global constant defined viamach.h. A page of newly allocated memory is
zero-filled when it is first touched.

char *data1;
kern_return_t rtn;

if ((rtn = vm_allocate(task_self(), &data1, vm_page_size,
TRUE)) != KERN_SUCCESS) {
mach_error("vm_allocate returned value of ", rtn);
printf("vmread: Exiting.\verb+\+n");
exit(1);

}

3.1.2 Virtual Memory Deallocation

vm_deallocate affects only the memory of task specified as the first parameter. This function
reliquished access to the memory specified in the parameters: address and size. Other tasks which
have access to this physical memory may continue to use it. Note the size is expected in bytes and
is rounded up to give a page boundary. Never usevm_deallocate on memory that has been
acquired by UNIXmalloc.

18 2 MESSAGE COMMUNICATION BETWEEN PROCESSES

if ((err = env_del_port(environment_port, port_name))
!= KERN_SUCCESS) {
mach_error("PARENT: env_del_port returned ", err);
exit(1);

}
if ((err = port_deallocate(task_self(), my_port))

!= KERN_SUCCESS) {
mach_error("PARENT: port_deallocate returned ", err);
exit(1);

}
printf("PARENT: Finished successfully.\n");

}
else printf("Error from fork.\n");

}

2.12 Programming Example I, simp ipc.c 17

for (i = 0; i < MAXDATA; i++)
printf("%d ", msg_rcv.inline_data[i]);

printf("\n");
setup_simp_reply(&msg_xmt, &msg_rcv);
if ((ret = msg_send(&msg_xmt, MSG_OPTION_NONE,

0)) != SEND_SUCCESS){
mach_error("PARENT: msg_send returned value of ", ret);
exit(1);

}
printf("PARENT: Successful msg_send.\n");

}

main (argc, argv)
int argc;
char **argv;

{
kern_return_t err;
port_t my_port;
env_name_t port_name;
int fret;

if (argc > 1) {
printf("no arguments to simp_ipc\n");
exit(1);

}
/* create a port name that both the child and parent will know */
sprintf(port_name, "ipc_test_%d", getpid());

/* create and register port for parent to receive on */

if ((my_port = Register(port_name)) == PORT_NULL)
exit(1);

/* fork returns 0 if child, and the child’s ID to the parent. */
fret = fork();
if (fret == 0) { /* child process */

if ((my_port = LookFor(port_name)) == PORT_NULL)
exit(1);

child_routine(my_port);
printf("CHILD: Finished successfully.\n");

}
else if (fret >0) { /* parent process */

parent_routine(my_port);

16 2 MESSAGE COMMUNICATION BETWEEN PROCESSES

}

/* This routine is called to demonstrate the passing of a simple message.
* Please see program comment for order of events. */

void child_routine(my_port)
port_t my_port;

{
msg_return_t ret;
int i;
struct simp_msg_struct msg_xmt, msg_rcv;

setup_simp_request(&msg_xmt, my_port);
if ((ret = msg_rpc(&msg_xmt.h, MSG_OPTION_NONE, sizeof(msg_xmt), 0,

0)) != RPC_SUCCESS) {
mach_error("CHILD: msg_rpc returned value of ", ret);
exit(1);

}
printf("CHILD: Successful msg_rpc.\n");

}

void parent_routine(my_port)
port_t my_port;

{
msg_return_t ret;
int i;
int x;
msg_header_t msg_xmt;
struct simp_msg_struct msg_rcv;

msg_rcv.h.msg_local_port = my_port;
msg_rcv.h.msg_size = sizeof(msg_rcv);
if ((ret = msg_receive(&msg_rcv.h, MSG_OPTION_NONE, 0)) !=

RCV_SUCCESS) {
mach_error("PARENT: msg_receive returned value of ", ret);
exit(1);

}
printf("PARENT: Successful msg_receive.\n");
printf("PARENT: Data..");

2.12 Programming Example I, simp ipc.c 15

* associated with the given name.
*/

port_t LookFor(name)
env_name_t name;

{
port_t result;
kern_return_t error;

if ((error = env_get_port(environment_port, name,
&result)) != KERN_SUCCESS) {

mach_error("CHILD: env_get_port returned ",
error);

exit(1);
}

printf("CHILD: Successful env_get_port.\n");
return(result);

}

/* This routine is used by the parent to create a port, and to associate the
* port name with the port via the environment manager.
* port_allocate is used to allocate a port, and then env_set_port is called
* passing the name of the port, and the newly allocated port. */

port_t Register(name)
env_name_t name;

{
port_t result;
kern_return_t error;

if ((error = port_allocate(task_self(), &result)) != KERN_SUCCESS) {
mach_error("PARENT: port_allocate returned value of ", error);
exit(1);

}
if ((error = env_set_port(environment_port, name,

result)) != KERN_SUCCESS) {
mach_error("PARENT: env_set_port returned value of ", error);
exit(1);

}
printf("PARENT: Successful env_set_port.\n");
return(result);

14 2 MESSAGE COMMUNICATION BETWEEN PROCESSES

{
int i;

msg_xmt->h.msg_local_port = thread_reply();
msg_xmt->h.msg_remote_port = my_port;
msg_xmt->h.msg_size = sizeof(struct simp_msg_struct);
msg_xmt->h.msg_id = 0x12345678;
msg_xmt->h.msg_type = MSG_TYPE_NORMAL;
msg_xmt->h.msg_simple = TRUE;

msg_xmt->t.msg_type_name = MSG_TYPE_INTEGER_32;
msg_xmt->t.msg_type_size = 32;
msg_xmt->t.msg_type_number = MAXDATA;
msg_xmt->t.msg_type_inline = TRUE;
msg_xmt->t.msg_type_longform = FALSE;
msg_xmt->t.msg_type_deallocate = FALSE;
for (i = 0; i < MAXDATA; i++)

msg_xmt->inline_data[i] = i;

}

/* This procedure is used to set up the reply message that the parent is
* sending to the child. Note that the remote_port of the received message
* designates where the reply message will be sent. No data is sent in this
* message, so the size of the message is simply the size of the message
* header. */

void setup_simp_reply(msg_xmt, msg_rcv)
msg_header_t *msg_xmt;
struct simp_msg_struct *msg_rcv;

{
msg_xmt->msg_remote_port = msg_rcv->h.msg_remote_port;
msg_xmt->msg_local_port = PORT_NULL;
msg_xmt->msg_id = 0x12345678;
msg_xmt->msg_size = sizeof(msg_header_t);
msg_xmt->msg_type = MSG_TYPE_NORMAL;
msg_xmt->msg_simple = TRUE;

}

/* This procedure is used by the child to get the communication port.
* The child got the name as part of its inherited static variable space.
* Port rights, however, are not inherited across forks. env_get_port,
* a utility of the environment manager is called to return the port

2.12 Programming Example I, simp ipc.c 13

2.12 Programming Example I, simp ipc.c

/*
* This program is an illustration of MACH message passing from a child
* to the parent process and back. In this example, the child is passing
* a simple message where the data is stored in the message. The program
* allocates a port to use for communication. The environment manager
* is used to register the port with a name that both the parent
* and child know. The program forks a child process which
* then uses env_get_port to acquire the port needed for communication.
* A message, containing the data the parent needs, is formed by the child
* and sent with msg_rpc to the parent. msg_rpc does a send and a receive
* using the same message buffer. The parent does a receive on the
* established communication port receiving the message from the child.
* Upon receiving the child’s message, the parent constructs and sends
* a confirmation or reply message back to the child indicating he received
* the child’s message and data. The call to msg_rpc by the child
* receives the parent’s reply. The child then tells the environment
* manager the communication port is no longer needed, and calls
* port_deallocate.
*
**/

#include <stdio.h>
#include <mach.h>
#include <mach_error.h>
#include <mach/message.h>
#include <servers/env_mgr.h>

#define MAXDATA 20

/* simple message structure */
struct simp_msg_struct {

msg_header_t h;
msg_type_t t;
int inline_data[MAXDATA];

};

/* This routine is used to set up the message containing the data that
* the child will send to the parent. Here the data is a simple array of
* integers. */

void setup_simp_request(msg_xmt, my_port)
struct simp_msg_struct *msg_xmt;
port_t my_port;

12 2 MESSAGE COMMUNICATION BETWEEN PROCESSES

msg_xmt.t.msg_type_deallocate = FALSE;
/* set msg_xmt.out_of_line_data to point to the data */

2.11 A Non-Simple Message 11

};
struct simp_msg_struct msg_xmt;

if ((ret = msg_rpc(&msg_xmt.h, MSG_OPTION_NONE, sizeof(msg_xmt), 0,
0)) != RPC_SUCCESS) {
mach_error("CHILD: msg_rpc returned value of ", ret);
exit(1);

}

2.11 A Non-Simple Message

Messages arenon-simple if they contain ports or out-of-line data. The next example shows how to
construct a data containing out-of-line data. The most common reasons for sending data out-of-line
are that the data block is very large or is of variable size. In-line data is copied by the sender into
the message structure and then often copied out of the message by the receiver. Out-of-line data,
however, is mapped by the kernel from the address space of the sender to the address space of the
receiver. No actual copying of data is done unless one of the two tasks subsequently modifies the
data. This is an example of copy-on-write data sharing.

The fields that change values from those in the simple message example aremsg_simple,
msg_type_inline, and possiblymsg_type_deallocate. See Section 2.6 for details on
msg_remote_port and msg_local_port. An example program of non-simple message
passing can be found in the Mach examples directory. This example is not included in this
document, but can be found in the fileool_ipc.c in the Mach examples directory.

struct ool_msg_struct {
msg_header_t h;
msg_type_t t;
int *out_of_line_data;

};
struct ool_msg_struct msg_xmt;
port_t comm_port;

msg_xmt.h.msg_local_port = thread_reply();
msg_xmt.h.msg_remote_port = comm_port;
msg_xmt.h.msg_size = sizeof(struct ool_msg_struct);
msg_xmt.h.msg_id = 0x12345678;
msg_xmt.h.msg_type = MSG_TYPE_NORMAL;
msg_xmt.h.msg_simple = FALSE;

msg_xmt.t.msg_type_name = MSG_TYPE_INTEGER_32;
msg_xmt.t.msg_type_size = 32;
msg_xmt.t.msg_type_number = MAXDATA;
msg_xmt.t.msg_type_inline = FALSE;
msg_xmt.t.msg_type_longform = FALSE;

10 2 MESSAGE COMMUNICATION BETWEEN PROCESSES

msg_rcv.h.msg_local_port = comm_port;
if ((ret = msg_receive(&msg_rcv.h, MSG_OPTION_NONE, 0)) !=

RCV_SUCCESS){
mach_error("CHILD: msg_receive returned value of ", ret);
exit(1);

}

2.9 Setting up a Reply Message

At this point a message has already been received in the structuremsg_rcv. A reply message is to
be constructed and sent to the sender ofmsg_rcv. Note that the reply message,msg_xmt is simply
a msg_header_t since no data is required. Themsg_remote_port field, where to send the
message, is set to the remote port of the previously received message. The earliermsg_receive
call set the remote port field ofmsg_rcv to themsg_local_port field specified by the sender.
See the comment in Section 2.6 about setting up themsg_local_port field.

struct simp_msg_struct {
msg_header_t h;
msg_type_t t;
int inline_data[MAXDATA];

};
msg_header_t msg_xmt;
struct simp_msg_struct *msg_rcv;

msg_xmt.h.msg_remote_port = msg_rcv->h.msg_remote_port;
msg_xmt.h.msg_local_port = PORT_NULL; /* no reply expected */
msg_xmt.h.msg_id = 0x12345678;
msg_xmt.h.msg_size = sizeof(msg_header_t);
msg_xmt.h.msg_type = MSG_TYPE_NORMAL;
msg_xmt.h.msg_simple = TRUE;

2.10 RPC, Send/Receive

msg_rpc does amsg_send followed by amsg_receive using the same message buffer.
msg_size is, as usual, the size of the message that is being sent. The third parameter tomsg_rpc
represents the maximum size of the message buffer for the message to be received. In this case it is
the size of the message being sent because we know that the reply message is smaller.

msg_return_t ret;
struct simp_msg_struct {

msg_header_t h;
msg_type_t t;
int inline_data[MAXDATA];

2.7 Sending Messages 9

msg_xmt.t.msg_type_number = MAXDATA;
msg_xmt.t.msg_type_inline = TRUE;
msg_xmt.t.msg_type_longform = FALSE;
msg_xmt.t.msg_type_deallocate = FALSE;
/* fill the msg_xmt.inline_data array with the desired data */

2.7 Sending Messages

The first parameter tomsg_send is the address of amsg_header_t. This message will be sent
to the port indicated by themsg_remote_port field. Send rights tomsg_local_port are
given to the receiver so that it may send a reply message.

msg_return_t ret;
struct simp_msg_struct {

msg_header_t h;
msg_type_t t;
int inline_data[MAXDATA];

};
struct simp_msg_struct msg_xmt;

if ((ret = msg_send(&msg_xmt.h, MSG_OPTION_NONE, 0)) != SEND_SUCCESS){
mach_error("CHILD: msg_send returned value of ", ret);
exit(1);

}

2.8 Receiving Messages

msg_receive is used to retrieve the next message from a port specified in the
msg_remote_port field. The fieldmsg_size must be set to the size of the buffer for
the message and thus the maximum permitted size of the message being received. If the message
that is queued on the port is too big, the receive will fail. Whenmsg_receive returns, the
msg_remote_port field will be set to the sender’smsg_local_port field, or the port that
reply messages are expected on andmsg_size will be set to the size of the message that was
received.

msg_return_t ret;
struct simp_msg_struct {

msg_header_t h;
msg_type_t t;
int inline_data[MAXDATA];

};
struct simp_msg_struct msg_rcv;

msg_rcv.h.msg_size = sizeof(msg_rcv);

8 2 MESSAGE COMMUNICATION BETWEEN PROCESSES

&comm_port)) != KERN_SUCCESS) {
mach_error("env_get_port returned ", error);
exit(1);

}

2.6 Setting up a Simple Message

A message consists of a fixed length header defined by the structuremsg_header_t followed by
a variable number of typed data items. A message issimple if it does not contain any out-of-line
data (pointers) or any ports. Themsg_remote_port field must contain the port to which the
message is to be sent. In this case it iscomm_port. Themsg_local_port field should be set
to the port or port set on which a reply message is expected.thread_reply(), which returns
the thread’s reply port is used as the reply port. An example of using a port set for the reply port can
be found inA Programmer’s Guide to the Mach User Environment.

typedef struct {
unsigned int :24,

msg_simple : 8;
unsigned int msg_size; /* in bytes */
int msg_type; /* NORMAL, EMERGENCY */
port_t msg_local_port;
port_t msg_remote_port;
int msg_id; /* user supplied id */

} msg_header_t;

struct simp_msg_struct {
msg_header_t h;
msg_type_t t;
int inline_data[MAXDATA];

};
struct simp_msg_struct msg_xmt;
port_t comm_port;

msg_xmt= &msg_xmt_data;
msg_xmt.h.msg_local_port = thread_reply();
msg_xmt.h.msg_remote_port = comm_port;
msg_xmt.h.msg_size = sizeof(struct simp_msg_struct);
msg_xmt.h.msg_id = 0x12345678;
msg_xmt.h.msg_type = MSG_TYPE_NORMAL;
msg_xmt.h.msg_simple = TRUE;

msg_xmt.t.msg_type_name = MSG_TYPE_INTEGER_32;
msg_xmt.t.msg_type_size = 32;

2.3 Port Deallocation 7

2.3 Port Deallocation

port_deallocate is used to relinquish a task’s access to a port. If the task has ownership and
receive rights to the port, theport_deallocate destroys the port and notifies (on their notify
ports) all the other tasks that have send rights to the port.

port_t my_port;
kern_return_t error;

if ((error = port_deallocate(task_self(), my_port)) != KERN_SUCCESS) {
mach_error("PARENT: port_deallocate returned value of ", error);
exit(1);

}

2.4 Environment Manager Server/Checking in a Port

The Environment Manager is used as a repository for named ports.env_get_port can be used to
associate a name with a port. Note that the port must have been previously acquired either through a
message, or fromport_allocate, or be one of the special system ports that are aquired on task
creation. Name has been set to a string.

env_name_t name;
port_t comm_port;
kern_return_t error;

if ((error = env_set_port(environment_port, name,
comm_port)) != KERN_SUCCESS) {

mach_error("PARENT: env_set_port returned value of ", error);
exit(1);

}

2.5 Environment Manager Server/Looking up a Port

env_get_port can be used to look up a port when the name of the port is known. If
env_set_port has not been called to associate a port with the given name,env_get_port
will fail.

env_name_t name;
port_t comm_port;
kern_return_t error;

/* Name has been previously set to a desired string. */

if ((error = env_get_port(environment_port, name,

6 2 MESSAGE COMMUNICATION BETWEEN PROCESSES

Next the parent takes a message structure and fills in the header fields needed by
msg_receive: msg_remote_port, representing the port on which the message is to be
received, andmsg_size, the maximum size of the expected message. With this message
structure, the parent callsmsg_receive. msg_receive returns the message queued on the port
designated by themsg_remote_port field. Remember that the child’s message contained a port
to send a reply message to, themsg_local_port field. Upon return frommsg_receive, the
msg_remote_port field is set to the child’smsg_local_port field, the expected reply port.

In our example, the parent is going to send a message back to the child indicating that it received
the message containing the data. This reply message contains no data itself; it is just a confirmation.
The parent sets themsg_remote_port field of the reply message to themsg_remote_port
field of the previously received message.msg_send is now called to send the reply message to the
port indicated by themsg_remote_port field.

The earlier call ofmsg_rpc by the child will now receive the parent’s reply message. Our
example is over except for cleaning up.env_del_port is called to let the Environment Manager
know the name/port association is no longer needed.port_deallocate is then called by the
parent which owns the communication port to destroy it.

Detailed discussion of the various calls used by the example are given next and the complete
text of the program is given in Section 2.12.

2.1 Mach Error Printing

mach_error is an error routine that accepts a string and an error value. The string is then printed
along with an error string associated with the value.

kern_return__t error;
mach_error("PARENT: port_allocate returned value of", error);

2.2 Port Allocation

port_allocate is used to create a port. The first argument toport_allocate is the task the
port is to belong to, in this case the process itself ortask_self().

port_t result;
kern_return_t error;

if ((error = port_allocate(task_self(), &result)) != KERN_SUCCESS) {
mach_error("PARENT: port_allocate returned value of ", error);
exit(1);

}

5

2 Message Communication Between Processes

The first sample program shows how to pass messages between two tasks. This is a good illustration
of the following fundamental Mach features: allocation, deallocation, and use of ports; use of the
Environment Manager; setting up message structures; and communication between two processes
via messages on ports. In this example the parent task will fork a child task, which will send the
parent a message containing data. The parent will then notify the child that he received the data by
sending a reply message.

At this point, the reader should be aware that most programmers do not code IPC at this level of
detail, but instead use the Mach Interface Generator (MIG) to produce the message handling code.
The use of MIG is explained in theProgrammers’s Guide to the Mach User Environment. Users
who are new the the probably want to read that document before attempting to write code following
these examples.

This example uses a Mach version of the UNIX fork utility to create a child task. The UNIX
part of the fork creates a complete copy of the parent’s address space and prepares the child to
begin executing immediately after the fork call. The Mach part of the fork creates two ports for
the child task: its task kernel port, defined bytask_self(); and a notification port, defined by
task_notify(). The task port is the port that represents that task in calls to the kernel. The
notify port is the port on which the task may receive special messages from the kernel. The child
task also inherits an exception port, a bootstrap port and some ports for system servers such as the
Environment Manager and the Netmsgserver. Access to user defined ports is not inherited through
forking. The thread that is created has a thread kernel port, referenced bythread_self(), and
a thread reply port, referenced bythread_reply() created for it. The thread kernel port is the
port that represents the thread in kernel call. The thread reply port is a port on which the thread can
receive any initialization messages from its parent.

Message passing between the parent and child cannot take place until a port is known by both
processes. Before forking, a string is constructed to be used as the name of the communication port
and a port is allocated using theport_allocate call. Then the Environment Manager function
env_set_port is called to associate the name with the port. This name is available to both
processes after forking since it is a static variable. After the fork the child can acquire send rights to
the port usingenv_get_port.

Now that both tasks have access to the communication port, a message is constructed by the
child. This message contains a fixed sized message header and a variable sized data portion.
When constructing the message, the child sets themsg_remote_port field in the header to the
communication port established earlier. This field designates the port to which the message is to be
sent. Another header field that the child must be sure to set properly ismsg_local_port. This is
the port on which the child will wait for a reply message. In this example, the child will receive the
reply message on his thread reply port. The task that receives the message constructed by the child
automatically receives send rights to themsg_local_port. Since the child task wishes to send
a message and then immediately receive a reply message, it usesmsg_rpc instead ofmsg_send
andmsg_receive. msg_rpc does a send followed by a receive using the same message buffer
for both calls.

4 1 INTRODUCTION

1.2.5 Standard Mach Servers

There are a couple of standard servers that support use of Mach style communications. One is the
NetMsgServer. It passes Mach IPC messages between machines. It also provides network-wide
port registration and lookup functions. The names of these calls arenetname_check_in and
netname_look_up. The man sectionnetname.3 documents them. The other general purpose
Mach server is the Environment Manager. It can register or lookup ports or named strings but
does not communicate with other Environment Managers. The functions that it provides are
documented in the manualThe Mach Environment Manager or in the man sectionsenv_conn.3,
env_list.3, andenv_port.3. In general, one decides to register a port with the NetMsgServer
if it is to be known by tasks on arbitrary remote machines within the local network. Ports are
registered with the Environment Manager if they are to be used only by tasks which share access
to the same Environment Manager. Often such tasks are part of the same creation tree or are
performing a computation on a single node.

The examples in this document demonstrate the creation of tasks and threads, message passing
between tasks, shared memory communication between tasks and threads, and the use of the virtual
memory primitives.

1.2 Basic Mach Concepts 3

from multiple clients may find one request blocked, but be able to continue working on another
request. Creating or destroying a thread is also a much less expensive operation than creating or
destroying a task.

1.2.3 Communications

There are two basic ways to communicate between tasks or between threads within a task: shared
memory and message passing (IPC). The most obvious and probably most efficient form of
communication between two threads in the same task is through shared memory. The most common
form of communication between tasks is through message passing. However, threads in the same
task may send messages to each other as long as the programmer is careful about which threads
are waiting for messages on which ports. Also, it is possible for a task to share memory with
tasks that have a common ancestor. Since these tasks will probably be on the same machine this
sharing can be efficient. Unrelated tasks can also share memory, but that style of memory sharing
is made potentially more complex when two unrelated tasks are not located on the same node.
Memory sharing between unrelated tasks is not covered in this tutorial. When two threads/tasks are
using the same memory, locking is often needed. Unfortunately, hardware mechanisms for locking
memory locations vary from one machine to another. The Mach C threads library package provides
machine-independent locking primitives. Tasks that don’t use the C threads library must provide
their own locking protocols.

1.2.4 Virtual Memory Primitives versus Malloc

The Mach kernel provides a set of primitives to allow a programmer to manipulate the virtual
address space of a task. The two most fundamental ones arevm_allocate to get new virtual
memory andvm_deallocate to free virtual memory. The programmer also has available the
UNIX functionssbrk, malloc andcalloc.

The decision to use one allocation method rather than another should be based on several factors.
sbrk is now obsolete and only retained for backward compatibility with older UNIX programs. It
is not recommended that new programs which expect to use Mach features should usesbrk. In
fact,sbrk callsvm_allocate to increase the user’s address space.vm_allocate always adds
new, zero-filled virtual memory in paged-aligned, multiple of page-sized chunks (where a page is
currenly 4K or 8K bytes).Malloc allocates approximately the size it is asked for (plus a few
bytes) out of a pre-allocated heap.calloc is the same asmalloc except that it zeros the memory
before returning it.malloc andcalloc are library subroutine calls whilevm_allocate is a
kernel syscall which is somewhat more expensive.

The the most obvious basis on which to choose an allocation function is the size of the desired
space. There is one other consideration, however, which is the desirability of page-aligned storage.
If the memory that is allocated is to be passed out-of-line in a message, it is more efficient if it is
page-aligned. Note that it is essential that the correct deallocation function be used. If memory
has beenvm_allocated it must bevm_deallocated, if it wasmalloced it must befreed.
Memory that is received out-of-line from a message has beenvm_allocated by the kernel.

2 1 INTRODUCTION

Aug. 1986 or in theMach Kernel Interface Manual. The latter document gives the complete calling
semantics for all the Mach system calls.

1.2.1 Ports, Port Names and Port Sets

Recently a new abstraction has been added to Mach: theport set. A port set is a group of ports
which can be received on in parallel. That is, a thread can do amsg receive call on a port set and
will receive the first message that appears on any of the ports in the set. In earlier versions of Mach
there was only one port set, which was the set of allenabled ports. Port sets are only used for
receiving messages, you can not send to a port set. When ports are created they are not a member
of any port set but may be added to a port set by the callport set add. A port may be a member
of only one port set at a time, and the task must have receive rights to a port before it can enter it
into a port set. A port set cannot be sent in a message. If a task wishes to transfer an entire port
set to another task, each of the ports must be sent as a separate port with receive rights and then the
receipient must redefine a new port set with all the ports in it.

A port name is a new term used to refine the way in which ports are referred to. The use of
the term port or the typeport t implies that the task has at least send rights for the port. The term
port name and typeport name t implies that the task may not have any rights to the port and
could be holding its name for some other task. The only place where the distinction is important in
code is the type used during message passing. If the typeport t is used, the kernel will map the
port rights to the receipient of the message. If the typeport name t is used no rights mapping is
done and the agrument gets passed as a simple integer. All three typesport t, port name t
andport set name t are defined to be the same basic C type and may be used interchangeabley
in C code. This allows for backwards compatibility with code that was written when onlyport t
existed and allows primitives to work for either ports, port sets or port names.

1.2.2 Tasks versus Threads

Mach tasks have independent address spaces and typically communicate by sending messages to
each other. Separate tasks can be used to perform parts of a computation on different workstations
connected by a network. The port and message passing facilities of Mach have been designed
to allow transparent communication between tasks whether they are on the same node or on two
separate nodes in a network. All message operations are location independent and, in theory, it is
impossible to tell whether a message has been sent to or received from a task on the same machine
or a remote one. In practice, however, the timing and failure modes are different between local
messages and remote messages. System services such as remote file access and network message
communication are themselves implemented as tasks communicating via messages.

Threads, on the other hand, share their memory and access rights with the other threads in a task.
They often communicate within a task through shared memory locations. Threads are intended
to allow separate execution units to work in parallel on the same problem. This gives a user an
easy way to get parallel computation on a multi-processor. On a single processor, multiple threads
may simplify the structure of a program that is logically doing several different functions. Multiple
threads are also useful if some of a program’s actions may cause a line of exection to be blocked,
while other lines of execution could usefully continue. For example, server that handles requests

1

1 Introduction

1.1 Tutorial Documents

This document is one of two tutorials designed to teach basic Mach programming skills. This
manual explains the use of the Mach kernel calls. It begins with an introduction to the basic Mach
abstractions of ports, messages, virtual memory, tasks and threads. It then contains a number of
simple programs which send and receive Mach messages, and use virtual memory.

There is a companion document to this one,A Programmer’s Guide to the Mach User
Environment that explains the use of higher level methods for implementing multi-threaded
programs and interprocess communication. Before writing programs that use the system calls
directly, the user should be aware that the methods outlined in the other document may be used to
solve his problem more simply.

The final section ofA Programmer’s Guide to the Mach User Environment describes where to
find the mach environment on-line at CMU and how to use it.

1.2 Basic Mach Concepts

In many ways the Mach operating system can be viewed as an extension of the UNIX operating
system. Existing 4.3bsd programs which do not use knowledge about internal UNIX data structures
will continue to function in Mach. However, Mach provides a number of new features not available
in traditional UNIX systems. The primary motivation for the differences between Mach and UNIX
was a desire to better support multiprocessors and to provide a solid foundation for distributed
computing.

In order to use Mach’s new features, the programmer needs to be familiar with four fundamental
Mach abstractions:

� A task is an execution environment, including a paged virtual address space and protected
access to system resources such as processors and ports. In general for a task to be useful,
it must have at least one thread executing within it. Thus when we speak of communicating
with a task, it means to communicate with a thread running in that task. A task with one
thread is the Mach equivalent of a traditional process.

� A thread is the basic unit of execution. It consists of a processor state, an execution stack
and a limited amount of per thread static storage. It shares all other memory and resources
with all the other threads executing in the same task. A thread can only execute in one task.

� A port is a communication channel - a logical queue of messages protected by the kernel.
Only one task can receive messages from a port, but all tasks that have access to the port
can send messages.

� A message is a typed collection of data objects used in communication between threads.

This tutorial presents and explains several simple programs which make use of these Mach
abstractions to solve simple programming problems. A more detailed explanation of the basic Mach
abstractions can be found in the Unix Review articleThreads of a New System, Richard F. Rashid,

A Programmer’s Guide to the Mach System Calls

Linda R. Walmer
Mary R. Thompson

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, PA 15213

Version of: December 28, 1989

Abstract

This document is one of two tutorials designed to teach basic Mach programming skills.
This manual explains the use of the Mach kernel calls. The companion document to this
one, A Programmer’s Guide to the Mach User Environment explains the use of higher
level methods for implementing multi-threaded programs and interprocess communication.
Before writing programs that use the system calls directly, the user should be aware that
the methods outlined in the other document may be used to solve his problem more simply.

Comments, suggestions and additions to this document are welcome.

The material developed under this subcontract was or is sponsored by the Defense Advanced Research Projects Agency

(DoD), ARPA order 4864, monitored by the Space and Naval Warfare Systems Command under Contract Number N00039-

87-C-0251.

The views and conclusions contained in this document are those of the authors and should not be interpreted as

representing official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or Department

of the Navy, Space and Naval Warfare Systems Command, or Carnegie-Mellon University, unless designated by other

documentation.

i

Contents

1 Introduction 1
1.1 Tutorial Documents � 1
1.2 Basic Mach Concepts� 1

1.2.1 Ports, Port Names and Port Sets� 2
1.2.2 Tasks versus Threads� 2
1.2.3 Communications� 3
1.2.4 Virtual Memory Primitives versus Malloc� � � � � � � � � � � � � � � � � � 3
1.2.5 Standard Mach Servers� 4

2 Message Communication Between Processes 5
2.1 Mach Error Printing � 6
2.2 Port Allocation� 6
2.3 Port Deallocation� 7
2.4 Environment Manager Server/Checking in a Port� � � � � � � � � � � � � � � � � � 7
2.5 Environment Manager Server/Looking up a Port� � � � � � � � � � � � � � � � � � � 7
2.6 Setting up a Simple Message� 8
2.7 Sending Messages� 9
2.8 Receiving Messages� 9
2.9 Setting up a Reply Message� 10
2.10 RPC, Send/Receive� 10
2.11 A Non-Simple Message� 11
2.12 Programming Example I, simpipc.c � 13

3 Use of Virtual Memory 19
3.1 Allocation, Deallocation, and Reading� 19

3.1.1 Virtual Memory Allocation � 19
3.1.2 Virtual Memory Deallocation� 19
3.1.3 Virtual Memory Reading� 20
3.1.4 Programming Example II, vmread.c� 21

3.2 Virtual Memory Copying� 23
3.3 Inheritance of Shared versus Copied Memory� 23

3.3.1 Virtual Memory, Inheritance� 24
3.3.2 Programming Example III, cowtest.c� 25

4 Mach Environment 28

