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Preface

In this thesis, I present the results of my work concerning the nonlinear modeling
of radial stellar pulsations. I will focus on classical Cepheids, particularly on the
double-mode phenomenon.

History of nonlinear modeling of radial stellar pulsations begins in the sixties
of the previous century. It is summarized in the Introduction (Chapter 1). At the
beginning convection was disregarded in model equations. Qualitatively, almost all
features of the radial pulsators were successfully modeled with purely radiative hy-
drocodes. Among problems that remained, the most disturbing was modeling of the
double-mode phenomenon. This long-standing problem seemed to be finally solved
with the inclusion of turbulent convection into the model equations. Turbulent con-
vection recipes are described in more detail in Chapter 2, which can be regarded
as second part of the Introduction. This detailed description provides necessary
theoretical background for the further considerations presented in this thesis.

Although dynamical aspects of the double-mode behaviour were extensively stud-
ied, its origin, particularly the specific role played by convection, remained obscure.
To study this and other problems of radial stellar pulsations, I implemented the
convection into pulsation hydrocodes. These codes are partly based on old radia-
tive Stellingwerf’s codes. Implementation of turbulent convection into the model
equations is not an easy task. Construction of the static model builder, as well as
linear stability analysis, require substantially different methods than used in radia-
tive codes. Hence, model builder and linear nonadiabatic codes were written anew.
Nonlinear code was largely rewritten. All the codes, their physical and numeri-
cal ingredients, are described in detail in Chapter 3. Some test results presented
in Chapter 4, concerning the modeling of single-mode Cepheids confirm, that the
codes are robust and reproduce basic properties of the observed Cepheids.

Described codes adopt the Kuhfuß convection model. In other codes, particularly
in the Florida-Budapest hydrocode, used in computation of most of the published
double-mode models, different approximations concerning e.g., eddy-viscous terms
or treatment of convectively stable regions are adopted. Particularly the neglect of
negative buoyancy effects in the Florida-Budapest code and its consequences, were
never discussed in the literature. These consequences are severe, as I describe in
Chapters 5 and 6. Concerning the single-mode pulsators, neglect of negative buoy-
ancy leads to smaller pulsation amplitudes, in comparison to amplitudes computed
with code including these effects (Chapter 5). In Chapter 6, I show that this effect
reduces the amplitude of the fundamental mode very strong. This property of the
Florida-Budapest models is crucial in bringing up the stable double-mode Cepheid
pulsation involving fundamental and first overtone modes (F/1O). Such behaviour
is not observed in models computed including negative buoyancy. As the neglect of



negative buoyancy is physically not correct, so are the double-mode Cepheid models
computed with the Florida-Budapest hydrocode.

Extensive search for F/1O double-mode Cepheid pulsation with the codes includ-
ing negative buoyancy effects yielded null result. Some resonant double-mode F/1O
Cepheid models were found (Chapter 7), but their occurrence was restricted to a
very narrow domain in the Hertzsprung-Russel diagram. Resonant excitation of the
doubly-periodic pulsation is discussed in Chapter 7, based on very interesting radia-
tive models. These considerations provide the background for the double-overtone
Cepheid models, involving first and second overtones, discussed in Chapter 8. Model
computations intended to model the double-overtone Cepheids in the Large Mag-
ellanic Cloud, revealed some stable double-mode pulsations, however, restricted to
a narrow period range. Resonances are most likely conductive in bringing up the
double-mode behaviour observed in these models. However, majority of the double-
overtone LMC Cepheids cannot be reproduced with our codes. Hence, the modeling
of double-overtone Cepheids with convective hydrocodes is not satisfactory, either.

As I summarize in Chapter 9, double-mode pulsation still lacks satisfactory ex-
planation, and problem of its modeling remains open.

This thesis presents and extends the results included first of all in the two refereed
papers:

Smolec & Moskalik (2008a) – Chapters 3, 4 and 5
Smolec & Moskalik (2008b) – Chapter 6

Also some results from the following publications are presented,
Baranowski, Smolec, Dimitrov et al. (2009) – Chapter 4
Smolec & Moskalik (2007) – Chapter 7
Smolec (2009) – Chapter 7
Dziembowski & Smolec (2009) – Chapter 8

Unpublished material is included in Chapter 7 (Section 7.3) and in Chapter 8 (Sec-
tion 8.3).



Chapter 1

Introduction

1.1 Stellar pulsation in the pre-computer era

One of the most important classes of variable stars in astronomy are Cepheids. Vari-
ability of the prototype of the class, δ Cephei, was discovered by John Goodricke
(1786). However, the first Cepheid variable, η Aquilae, was discovered one month
before by Edward Pigott (Pigott 1785). Light curves of these periodic variables
have very characteristic non-symmetric shape, with shorter rising branch, and about
twice as long descending branch. Few years earlier, Goodricke discovered other vari-
able star, Algol (Goodricke 1783). Symmetric light curve led him to interpreta-
tion of Algol’s variability in terms of eclipses1. In case of δ Cephei, Goodricke didn’t
make any statements regarding the nature of its variability. Due to the absence of
any other ideas on causing the light variation in stars, also δ Cephei and other vari-
ables with similar light curves were interpreted as binaries. Better telescopes and
systematic observations led to the discovery of plenty of Cepheid-like stars at the
onset of the twentieth century. So-called cluster variables with periods below one
day, found mostly in globular clusters, are prototypes of other very important class
of variables, RR Lyrae stars. At that time however, distinction between RR Lyrae
stars and Cepheids was not clear, and many authors regarded it as artificial, treating
cluster variables as short period Cepheids. Extensive observations of the Magellanic
Clouds with the 24-inch Bruce Telescope at Harvard Observatory, led to the dis-
covery of 1777 variables, reported by Leavitt (1908). Light curves of many of
these stars resembled those of cluster variables. For sixteen of them, period was
determined, and already in 1908 Mrs Leavitt stated, It is also worthy of notice that
(in Table VI) the brighter variables have the longer periods. This was the first state-
ment of the period-luminosity relation, fully established by Pickering (1912).
Two years later, Hertzsprung (1914) calibrated the period-luminosity relation
and used it to derive the distance to the Small Magellanic Cloud. The career of
Cepheids as one of the most important distance indicators in astrophysics began.

At the beginning of the twentieth century the binary hypothesis was in serious
trouble. Schwarzschild (1900) discovered that η Aquilae not only changes its
brightness, but also colour, and hence, a spectral type. Even complicated models,
assuming multiple star systems, couldn’t account for the bumps, clearly present on

1original suggestion was by Pigott; see Hoskin (1979) for the exciting history of the cooperation
of these two astronomers, living in York, next to each other
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the light curves of Cepheid-type variables. In no case the second component was
visible in the spectrum. In a seminal paper, On the Nature and Cause of Cepheid
Variation, Shapley (1914) collected all the arguments against binary hypothesis.
He pointed out that the only thing Cepheids have in common with ordinary spectro-
scopic binaries is periodic oscillation of spectral lines, in all other respects Cepheids
stand out as unexplainable anomalies. The strongest argument of Shapley was based
on the size of the orbits. Shapley convincingly showed that in many cases of short-
period variables, postulated orbits are smaller than the size of the visible component
of the system. At that time, the basics of the today’s Hertzsprung-Russell diagram
were just established (Hertzsprung 1905, 1907, Russell 1913, 1914) and it
became clear that Cepheid are much more luminous than the Sun, and also remark-
ably larger. Shapley concluded that the radial pulsation of the star’s atmosphere is
the simplest explanation, void of difficulties inherent in binary hypothesis.

Probably the last paper attempting to interpret the Cepheid variability in terms
of binary motion was published by Hoyle & Lyttleton (1943). However, much
earlier Baade (1926) proposed a test for pulsation hypothesis, that proved beyond
doubt, that intrinsic pulsation is responsible for the observed variability. Periodic
variation of stellar surface induces temperature and luminosity changes. These two
effects can be separated to yield the radius variation, that can be checked indepen-
dently through the integration of the radial velocity curve.

The idea of pulsation was not entirely new. Already in 1879, August Ritter
(Ritter 1789) studied the properties of pulsating spheres of constant density.
Particularly, he established the famous period-density relation, stating that the pul-
sation period is proportional to the inverse square-root of the density. Although
Ritter suggested that variable stars can be pulsating gas spheres, his work was not
noticed by the astronomers of that time. It was sir Arthur Eddington who played
a key role in establishing the theory of stellar pulsation. At that time stellar astro-
physics was in infancy. However, Eddington (1918, 1919) was able to describe
the basic physical ideas behind the stellar pulsation. He considered the pulsating
stars as thermodynamical engines for which energy gains should compensate the dis-
sipation. He realized that without a driving mechanism, pulsations would die out.
In his famous monograph, Internal Constitution of the Stars, Eddington (1926)
concluded that under appropriate conditions stars can pulsate self-excitedly. He
proposed two different mechanisms to maintain the pulsations. In the first one (to-
day called the ǫ-mechanism), energy input is modulated during the pulsation cycle,
just as in ordinary engine. The mechanism assumes increased energy release from
internal atomic sources during the compression phase. At that time the nuclear
source of star’s energy was just being established. In the second mechanism, so-
called valve mechanism (or κ-mechanism, as we call it today), pulsations can be
excited even in case of constant heat input. Mechanism requires the valve which
could temporarily modulate the heat flow, leading to minimum heat leakage during
the compression phase. This can be assured by increased opacity of stellar material
during the compression.

Due to poor understanding of the composition and structure of giant stars, the
first mechanism, the modulation of energy generation, was regarded as main cause
of stellar pulsation. Particularly, it was not known that in giant stars the density
contrast is very high, the ratio of the central density, ρc, to the mean density, ρ̄
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exceeding 105. Therefore, the central displacement amplitude was overestimated by
many orders of magnitude. Around 1950 attempts were made to construct more
reliable models of giant stars. To this purpose ENIAC was used in Princeton by
the group led by Martin Schwarzschild (Richardson & Schwarzschild 1948,
Hen & Schwarzschild 1949). One of the main findings was the extremely high
central mass concentration in giant stars. Epstein (1950) analysed these results
in the context of pulsation theory. He found that the displacement in nuclear active
regions was ≈ 10−6 of that at the surface, and hence, the properties of pulsation
were not determined in the central regions of stars, but in their envelopes. It became
clear that the appropriate valve has to be found.

Solution was found already in 1953 by soviet astrophysicist Sergei Zhevakin
(Zhevakin 1953). He analysed stellar envelopes including second helium ionization
zone. Zhevakin found significant driving associated with that zone, and postulated
that it can overcome the dissipation present in other parts of the envelope. Works
of Zhevakin were published in Russian and at the time of cold war, and therefore,
were not widely known outside the Soviet Union, until he was invited to contribute
to the Annual Review of Astronomy and Astrophysics in 1963 (Zhevakin, 1963).
The crucial role of He+ ionization was also found by Cox (1958) and Cox &
Whitney (1958), however, in indirect way. Cox (1958) attempted to explain
the observed phase-lag between light and velocity variation of Cepheid variables.
He concluded that the energy flux must be modulated in the regions of partial
ionization of abundant chemical elements. Cox & Whitney (1958) used semi-
theoretical arguments to derive the period-luminosity relation, and concluded that
only second ionization of helium provides quantitative agreement with observed re-
lation. Numerical computation of reliable giant models and analysis of their stability
by Baker & Kippenhahn (1962), confirmed the role of partial ionization regions
in exciting the stellar pulsation. Since that time computers became wide-spread and
numerical computations started to play a key role in our understanding of stellar
pulsation. Short review of these computations will be presented in Section 1.4. For
more detailed review on the historical, pre-computer works, I refer the reader to the
article by Gautschy (2003).

In the last decades thousands of pulsating variable stars were discovered. They
can be separated into several groups populating almost all regions of the Hertzsprung-
Russel diagram, from compact and faint white dwarfs, through the many type of
pulsators located close to the main sequence, up to luminous giant variables. Many of
these objects are non-radial pulsators, with very small amplitudes, close to detection
limits of ground-based observations (milimagnitudes). However, large amplitude, ra-
dially pulsating Cepheids are still in the center of astrophysical interest, being not
only one of the most important distance indicators, but also extremely interesting
objects, still providing challenges for stellar pulsation and evolution theories. They
are the main subject of this thesis.

1.2 Challenges for radial stellar pulsation theory

Before describing the results obtained with the pulsation hydrocodes, it is worthwhile
to review the observational status of Cepheids, and challenges it presented and still
presents for stellar pulsation theory. Also, stellar evolution theory provides specific
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constraints and will be briefly reviewed here.

Problems to be solved and phenomena to be modeled and understood have re-
mained nearly the same for the last few decades. However, in recent years the
number of known pulsating variable stars has grown explosively. Massive surveys,
such as OGLE2, MACHO3, EROS4 or ASAS5, have provided long-term homoge-
neous photometric data for millions of stars in our Galaxy and in the Magellanic
Clouds. Thousands of them appeared to be Cepheids.

Cepheids are periodic variable stars, pulsating radially with periods ranging from
one day up to over hundred days for the most luminous variables. They obey an
empirical period-luminosity (P −L) relation, discovered 100 years ago by Leavitt
(1908). It was early realized (e.g.,Russell 1927) that they populate a rather
narrow strip in the HR diagram, being relatively cool, giant stars. This is illustrated
in Figure 1.1, in which theoretical H-R diagram is presented. Cepheids cluster
around red dotted line, location of which was computed from the formulae given in
Sandage, Tammann & Reindl (2004). This ridge line represents the fit to the
observed distribution of the LMC Cepheids transformed from the colour-magnitude
plane to the theoretical plane. Estimated values of the width of the instability strip
do not exceed 1000Kelvins. Pulsation calculations should reproduce the location
and width of the instability region, as well as should explain the observed period-
luminosity relation.

Solid black lines in Figure 1.1 are evolutionary tracks computed by Girardi et
al. (2000) for the stellar masses indicated in the Figure and chemical composition
corresponding to LMC. Depending on the mass, star can cross the instability region
up to three times. The first crossing occurs in the post-main sequence evolution, be-
fore helium ignites, while the star evolves very quickly toward the red giant branch.
After helium ignition, more massive stars enter the horizontal blue loop, crossing the
instability strip twice, during blue-ward and then, red-ward evolution. Correspond-
ing second and third crossings last roughly two orders of magnitude longer than the
first crossing. Hence, most of the observed Cepheids are expected to be the helium
burning objects. In the presented computations, the minimum mass for the blue
loop to enter the instability strip (schematically drawn with dotted blue lines in Fig-
ure 1.1), MBL, is around 4M⊙. Evolutionary tracks of the same authors for Galactic
chemical composition indicate MBL > 5M⊙. For less massive stars only first crossing
is possible. Thus, evolutionary computations put constraints on the Cepheid masses.
Most of the observed variables, should have M > MBL, being helium burning ob-
jects. It is also clear from the Figure 1.1, that Cepheids should obey an evolutionary
mass-luminosity (M − L) relation, depending on their evolutionary state, different
for post-main sequence and helium burning objects. Most of the Cepheids should
obey the latter one. Evolutionary computations at the helium burning phase are
difficult. Results depend not only on metallicity used, but also on the description
of macroscopic element mixing. Assumed amount of overshooting from the convec-
tive core affects not only MBL but also the M − L relation, models computed with
overshooting being brighter, than those computed without overshooting. However,

2Optical Gravitational Lensing Experiment, see e.g., Soszyński et al. (2008b)
3MAssive Compact Halo Objects, see e.g., Alcock et al. (1999)
4Expérience de Recherche d’Objets Sombres, see e.g., Beaulieu et al. (1995)
5All Sky Automated Survey, see e.g., Pojmański (1997)
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Figure 1.1: Theoretical HR diagram showing the ridge line for the LMC Cepheids, com-

puted from the formulae given by Sandage, Tammann & Reindl (2004) (red dotted

line). Edges of the instability region are schematically marked with dotted blue lines.

Solid black lines show the evolutionary tracks from Girardi et al. (2000), computed for

models with metallicity corresponding to LMC (Z = 0.008) and including overshooting

from the convective core. Dashed line shows the location of the zero-age main sequence

(ZAMS).

described scenario of Cepheid evolution remains qualitatively the same since the
early stellar evolution computations (see e.g., review article by Iben 1967).

In constructing envelope pulsation models we are not bound by evolutionary
tracks, and model masses and luminosities can be chosen independently to satisfy
various observational constraints. Emerging pulsational mass-luminosity relation
should agree reasonably with the evolutionary counterpart, significant differences
indicating possible problems of the underlying pulsation and/or evolution theories.

Singly periodic Cepheids pulsate either in the fundamental (F) mode, or in the
first overtone (1O). Few examples of second overtone (2O) pulsators are also known.
The most interesting objects however, are double-mode Cepheids. These pulsate
simultaneously in two modes, either in the fundamental mode and in the first over-
tone (F/1O), or in the first and second overtones (1O/2O). Two 1O/3O double-mode
Cepheids are known (Soszyński et al. 2008a). Some triple-mode F/1O/2O and
1O/2O/3O Cepheids are also observed in the LMC (Moskalik, Ko laczkowski &
Mizerski 2004, Soszyński et al. 2008a). Pulsation periods can be measured with
very high precision and are independent of interstellar absorption and photometric
system used. Hence, two or three observed periods provide excellent opportunity
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to constrain the physical parameters of the pulsator, such as mass or metallicity.
To this purpose a Petersen (1973) diagram is often used, in which the shorter
(PS) to longer (PL) period ratio is plotted against the longer period. In Figure 1.2,
Petersen diagram for the LMC double-mode pulsators from the OGLE-III database
is plotted. Both F/1O and 1O/2O pulsators are not distributed randomly, but form
a well defined sequences on the Petersen diagram. Modeling of this data represents
a challenging task for both pulsation and evolution theories (see Chapter 8). Spe-
cially hard and longstanding problem is the dynamical modeling of the double-mode
behaviour, which is also one of the main subjects of this thesis.

Figure 1.2: Petersen diagram for the LMC F/1O (red dots) and 1O/2O (blue dots) double-

mode Cepheids. Shorter to longer period ratio, PS/PL, is plotted versus the logarithm of

the longer period, PL. Data from Soszyński et al. (2008b).

Pulsation computations should also explain the observed light and radial ve-
locity curves, their shape and its variation with pulsation period. The shape of
the light/radial velocity curves can be quantitatively described by their Fourier de-
composition parameters, as originally suggested by Simon & Lee (1981). The
light/radial velocity curve is fitted with the Fourier series,

m(t) = A0 +

N∑

k=1

Ak sin(2πkft + ϕk), (1.1)

where f denotes the pulsation frequency. Fourier decomposition parameters are
defined as,

Rk1 =
Ak

A1

, ϕk1 = ϕk − kϕ1. (1.2)

Fourier parameters allow for objective comparison of model light/radial velocity
curves with observations. In Figures 1.3 and 1.4 low order Fourier decomposition
parameters of light and radial velocity curves for a sample of Galactic Cepheids
are presented. Blue and red circles correspond to fundamental and first overtone
pulsators, respectively.
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Figure 1.3: Fourier decomposition parameters of V -band light curves for Galactic

Cepheids. Blue and red dots correspond to fundamental mode and first overtone Cepheids,

respectively. Data from various sources; Antonello & Morelli (1996), Antonello &

Poretti (1986), Antonello, Poretti & Reduzzi (1990), Mantegazza & Poretti

(1992), Moffett & Barnes (1985), Poretti (1994), Simon & Kanbur (1995) and

Simon & Lee (1981).

Light and radial velocity curves change with pulsation period, which is reflected
in non-monotonic behaviour of Fourier decomposition parameters in the Figures.
On the light/radial velocity curves of fundamental mode Cepheids with pulsation
periods around ten days, a prominent bump is visible. Hertzsprung (1926)
described the relation between pulsation period and location of the bump on the light
curve. For short periods (around 5–6 days) bump appears first on the descending
branch and, as pulsation period gets longer, it moves toward ascending branch of the
light curve. Described behaviour manifests in the bell-shape of the ϕ21 progression
and in the drop of R21 values around 10 days. Similar structures are visible for first
overtone pulsators at periods around 3–4 days. The goal of pulsation computations is
not only to reproduce the observed run of the Fourier decomposition parameters, but
first of all, to explain the underlying physical processes shaping these progressions.
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Figure 1.4: Fourier decomposition parameters of radial velocity curves for Galactic

Cepheids. Blue and red dots correspond to fundamental mode and first overtone Cepheids,

respectively. Data from Moskalik, Gorynya & Samus, in prep. and from Baranowski

et al. (2009) (for V440 Persei).

1.3 Basic equations

In this Section, I describe the basic equations and concepts of radial pulsation the-
ory. Just as in almost all early hydrodynamical computations, convective energy
transfer is neglected in the following. Detailed derivations are not presented, as
these may be found in any textbook on stellar pulsation theory (e.g.,Cox 1980,
Unno et al. 1989) and in references cited. The purpose of this Section is to pro-
vide a background, for the discussion of convective pulsation models in the next
Chapters, where more extensive description of numerical techniques will be given.

Since the work of Epstein (1950), it is clear that for giant stars, such as
Cepheids, pulsation amplitude is very small in the interior, and these are the external
layers that determine the properties of the pulsation. Therefore, it is not necessary
to consider a complete stellar model, but only its external layers, the envelope.
Energy generation can be neglected and constant luminosity flux passing through
the lower boundary of the envelope can be assumed.

Time-dependent equations describing the radial pulsation of spherically symmet-
ric star are momentum equation,

du

dt
= −1

ρ

∂p

∂r
− GMr

r2
, (1.3)
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and the heat flow equation,

dq

dt
= T

ds

dt
=

dE

dt
+ p

dV

dt
= −1

ρ

∂(r2Fr)

r2∂r
. (1.4)

In the above equations, t is time, u is fluid velocity, which is time derivative of
radius,

dr

dt
= u, (1.5)

Mr is mass enclosed by the sphere of radius r, G is gravitational constant, p is
pressure, T is temperature, q is specific heat, s is specific entropy per gram, E is
internal energy per gram and V is specific volume, that is inverse of density, ρ. In the
radiative models, heat flow is usually assumed to be entirely through the radiation
diffusion, which yields the radiative flux at a given level (diffusion approximation),

Fr = −kr
∂T

∂r
, (1.6)

where kr is radiation diffusion coefficient,

kr =
4acT 3

3κρ
, (1.7)

and radiation constant is denoted by a, speed of light by c and opacity (per gram)
by κ. The remaining equation is continuity equation,

V =
1

ρ
= 4πr2 ∂r

∂Mr
. (1.8)

Pressure, internal energy and opacity are usually computed as functions of tem-
perature and volume, through the equation of state (EOS) and opacity tables.

To complete the problem, two boundary conditions are required for each of equa-
tions (1.3) and (1.4), at the top and at the bottom of the envelope. Different choices
were adopted for boundary conditions by different authors. Here, I adopt the sim-
plest choice, used in the earliest hydrocodes, as well as in the convective hydrocodes
to be described in Chapter 3. At the inner boundary, rigid core, with constant
luminosity passing through its boundary is assumed,

(
∂r

∂t

)

i

= 0, (1.9)

Li = L0, (1.10)

while at the surface, the pressure is assumed to vanish, and temperature of the
surface is assumed to satisfy the Eddington’s gray atmosphere approximation,

ps = 0, (1.11)

T 4
s =

1

2
T 4

eff . (1.12)

Direct solution of the above pulsation equations is a nonlinear problem, that
can be solved through direct nonlinear integration (see Section 1.3.2), or can be
tackled with the help of amplitude equations formalism (Section 1.3.4). However,
basic pulsation properties emerge from simple linear analysis (Section 1.3.1).
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1.3.1 Linear analysis

The simplest approach to the radial pulsation problem, first used by Eddington
(1918), assumes linear adiabatic oscillations. Such approach describes mechanical
aspects of the system and allows to predict pulsation periods in good agreement
with observations.

In the framework of linear theory, we consider small, spherically symmetric per-
turbation of the equilibrium model. Using Lagrangian perturbations, we write for
the radius,

r = r0(1 + ζ), (1.13)

where ζ = δr/r0 is relative displacement, and subscript “0” denotes the equilib-
rium value. Similarly, p = p0(1 + δp/p0) and ρ = ρ0(1 + δρ/ρ0). In the adiabatic
approximation, linearized energy equation, (1.4), reduces to,

δp

p
= Γ1

δρ

ρ
, (1.14)

where Γ1 is adiabatic exponent. Subscripts indicating equilibrium quantities are not
necessary and are dropped. Linearized versions of momentum (1.3) and continuity
(1.8) equations are,

d2δr

dt2
+

1

ρ

dδp

dr
− 4g

δr

r
= 0, (1.15)

dδr

dMr

= − dr

dMr

(

2
δr

r
+

δρ

ρ

)

. (1.16)

Above, g stands for gravitational acceleration. Assuming a standing wave solution
for relative displacement, δr/r = ξ(r)eiωt, and combining above three equations,
Linear Adiabatic Wave Equation (LAWE) is obtained,

d

dr

(

Γ1pr
4dξ

dr

)

+ ξ

{

ω2ρr4 + r3 d

dr

[
(3Γ1 − 4)p

]
}

= 0. (1.17)

Detailed derivation can be found e.g., in a book by J.P. Cox (1980). LAWE
is a second order, ordinary differential equation. With two boundary conditions
(resulting from the requirement that δr and δp/p should be finite at the center
and at the surface) it represents a Sturm-Liuville type problem. Consequently,
it has infinite number of solutions, called pulsation modes, labeled with integer
index n: ω2

n, ξn(r). Through this thesis, I use convention in which n = 0, 1, 2, . . ..
Eigenfunction, ξn(r), has n nodes along a stellar radius. It can be multiplied by
arbitrary constant, as LAWE is homogeneous and linear in ξ. It means that in linear
theory pulsation amplitude is arbitrary. Eigenvalues, ω2

n, are real, and corresponding
pulsation frequencies satisfy,

ωn > ωn−1.

Pulsation mode of lowest frequency, without nodes along a stellar radius (n = 0)
is called fundamental mode (F-mode). Consecutive modes of higher frequencies are
radial overtones, first (n = 1, 1O), second (n = 2, 2O), and so on.

It follows from LAWE, that for a sequence of homologous stars, having the same
value of Γ1, pulsation periods satisfy,

Pn =
2π

ωn
= Qn

√
ρ̄⊙

ρ̄
, (1.18)
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where ρ̄ and ρ̄⊙ are mean densities of the star and of the Sun, respectively, and
Qn are called pulsation constants. This is the famous period-mean density relation.
Real stars are not homologous, and their adiabatic exponents differ and are not
constant along the stellar radius. Thus, Qn depend on stellar parameters, however,
weakly (see also Section 1.4.1). Nonadiabaticity and nonlinear effects also do not
affect the pulsation periods strongly, and hence, reasonable period estimates can be
obtained through the period-mean density relation.

Adiabatic theory tells nothing about pulsation stability. To study the growth or
decay of the pulsations, nonadiabatic effects must be considered. Although these
are generally expected to be small, they are the source of the phase shifts between
pressure and density variations, crucial for the local heat balance. These phase shifts
arise from the time derivatives of the energy equation (Eq. 1.4). In case of local heat
gains, dq/ dt > 0, maximum pressure comes after maximum density, and hence, δp
lags behind δρ. Consideration of energy conservation during the pulsation cycle
leads to a straightforward conclusion, that the change of the kinetic energy of the
star is equal to ordinary pressure work, p dV , done by all the (local) mass elements
on their surroundings throughout a pulsation period. Thus, the work integral (see
Appendix A),

W =

∮

dt

∫

dM

(

p
dV

dt

)

(1.19)

integrated over the whole envelope, provides the stability information. Its linear
version is (e.g.,Castor 1971, Appendix A),

W = −π

∫

ℑ{(δp)∗(δV )} dM, (1.20)

Here ℑ denotes imaginary part, and ∗ stands for complex conjugate. In case of
W > 0 we have pulsational instability, while W < 0 corresponds to pulsational
stability. Locally, the region gaining heat at maximum compression is a driving
region, while a region losing heat at maximum compression is a damping region.

Linear nonadiabatic (LNA) problem is much more complicated than adiabatic
problem and various numerical methods were developed to solve it. Modern compu-
tations treat the LNA equations as eigenvalue problem (e.g.,Castor 1971). Again,
time dependence of variations is assumed to be eiωt, however, eigenvalues ω2

n are no
longer real. The real part of ωn determines the pulsation period, while its imaginary
part provides stability information, which is usually expressed as the mode growth
rate, γn,

γn = −4πℑ(ωn)/ℜ(ωn), (1.21)

here expressed as the fractional growth of the kinetic energy per pulsation period.
There are different numerical methods of solving the full LNA problem (see

e.g.,Cox 1980 or Unno et al. 1989). In the convective codes described in the
next Chapters, method proposed by Glasner & Buchler (1993) is adopted and
details will be given in Chapter 3.

1.3.2 Direct nonlinear integration

The limiting-amplitude pulsation, as is observed in variable stars, can only be stud-
ied using nonlinear methods. In direct nonlinear integration methods, stellar model
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is divided into several zones. Full set of nonlinear equations, (1.3)–(1.8), is written
in the finite-difference form, and calculations are treated as initial value problem.
The model is followed forward in time, step by step, till the limiting amplitude pul-
sation is achieved. The technique is time-consuming. As pulsation growth rates are
typically of order of 10−2 − 10−3 (Cepheids), many hundreds of pulsation cycles are
necessary to approach the final pulsation state.

Different numerical schemes were developed to conduct the nonlinear integra-
tions. Many codes use simple Lagrangian mesh, with fixed mass zones (e.g.,Christy
1964, Stobie 1969a, Stellingwerf 1975a). More sophisticated codes use differ-
ent variants of adaptive grid (e.g.,Aikawa & Simon 1983, Dorfi & Feuchtinger
(1991), Buchler, Kolláth & Marom 1997). Details of the Lagrangian scheme
for model including convective energy transfer will be presented in Chapter 3.

One of the main drawbacks and problems of purely radiative computations, is
the lack of physical viscosity. Consequently, special methods are needed to handle
the shocks, developing e.g., in the partial ionization regions. Heat gained during the
compression phase is converted into mechanical energy during expansion, pushing
the mass zones upward into the atmosphere. The most common method used to
deal with shocks, is the inclusion of artificial viscous dissipation into the model,
in the form proposed by von Neumann and Richtmyer (Richtmyer 1957), later
modified by Stellingwerf (1975a). In this technique artificial viscous pressure,
proportional to the square of the relative speed of the consecutive zones, (∆u)2,
is applied to each zone6, which makes the shock transition continuous and spread
over several mass zones. Unfortunately, numerical results, specially the pulsation
amplitudes depend of the artificial viscosity parameters.

1.3.3 Relaxation method

Direct time integration is numerically expensive technique. But its drawbacks are
more severe. Even if apparently stable, full amplitude pulsation is developed, the
question remains, whether the model will stay in a given state indefinitely. Possible
mode switching can be very slow, and it is hard to judge, whether the computed
pulsation state is the stable attractor of the model, or the possible switch is immi-
nent. To deal with these difficulties, alternative nonlinear approach was proposed
by Baker & von Sengbusch (1969), and later developed by Stellingwerf
(1974). The point was to search for strictly periodic solution of the full nonlinear
system given by Eqs. (1.3)–(1.8).

Baker & von Sengbusch proposed to solve iteratively for the four unknowns
(radius, velocity, temperature and volume) in all the model zones at each time
step. If the model is divided into N mass zones and period is divided into K time
steps, there are 4NK equations to be solved. The number of unknowns is larger
however, and equal to 4NK + 4N + 1, as the period and 4N initial values at the
beginning of the period are not known a priori. 4N periodic boundary conditions
allow to solve the full set of nonlinear equations through a sophisticated Newton-
Rhapson iterations. Unknown period is derived simultaneously as the eigenvalue of
the nonlinear equations.

6if this relative speed exceed some arbitrary limit, see Section 3.3.3 for details
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Instead of solving the large set of 4NK nonlinear equations, Stellingwerf
(1974) evolves the model for one period using standard direct time integration
hydrocode. Initial values of dependent variables are guessed, together with initial
value for the period (e.g., from LNA computations). The final values of variables at
the end of the period are different than the initial guess, and comparison allows to
correct both the initial values and the period. Procedure is repeated, till corrections
are sufficiently small and strict periodicity (limit cycle) is achieved. This method of
computing nonlinear stellar pulsations is called relaxation technique/scheme. Nu-
merical details can be found in Stellingwerf (1974). Relaxation scheme allows
to find limit cycles of different modes. In addition, it provides information about
limit cycle stability, through the Floquet stability analysis (e.g.,Chicone 1999,
Stellingwerf 1974). Stability of the limit cycle of mode j, against perturbation
in mode i, is described by the Floquet coefficient, ηi,j . If ηi,j > 0, mode j is unstable
against perturbation in mode i, and would tend to switch into this mode in direct
time integration. The value of the Floquet coefficient provides information about
rate of the mode switching. Hence, the other name of the Floquet coefficients – the
switching rates.

Relaxation technique proved to be a very powerful method allowing for fast
computations of extensive model surveys, studying the light/radial velocity curve
shapes, and modal selection, at once.

1.3.4 Amplitude equations formalism

Although direct time integration or relaxation scheme allow to model the full am-
plitude behaviour of real stars, the underlying physics remains hidden, and difficult
to extract from the hydrodynamical evolution of the model. Other way to study
the nonlinear pulsations is offered by the amplitude equations (AEs) formalism. In
this approach, partial differential equations, (1.3)–(1.8), are reduced to ordinary
differential equations for the amplitudes of the excited modes. The assumptions
underlying the formalism are weak nonadiabaticity and weak nonlinearity, which
allows to describe the nonlinear behaviour in terms of the modes. Both assump-
tions are rather well satisfied for pulsators populating the classical instability strip.
The form of the AEs depends on whether the resonances occur between the linear
modes of oscillation. Without resonances, non-resonant AEs describe the saturation
of the pulsation instability through the self- and cross-saturation of the pulsation
modes. The physics describing these nonlinear effects is contained in the nonlin-
ear saturation coefficients. Usually AEs are truncated at the cubic nonlinearities
(in amplitudes), which allows to capture the essential behaviour of the system. If
resonances are present between pulsation modes, additional terms, describing the
coupling between interacting modes are present in AEs.

Derivation and theory of the AEs formalism can be found e.g., in Takeuti &
Aikawa (1981), Dziembowski (1982), Buchler & Goupil (1984). Numer-
ous applications to radial stellar pulsations are by e.g.,Dziembowski & Kovács
(1984), Buchler & Kovács (1986a,b), Kovács & Buchler (1989), Moska-
lik & Buchler (1989). More detailed discussion is postponed to Chapter 6,
where AEs will be applied to the problem of non-resonant double-mode Cepheid
pulsations.
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1.4 Era of radiative computations

The first numerical computations of radial pulsation date to early sixties of the
twentieth century. Baker & Kippenhahn (1962) were the first to conduct a linear
survey of Cepheid models. The pioneering nonlinear computations were performed
by Christy (1964). These early computations suffered from poor spatial resolution
and long-lasting computations on the first computers. But soon they became one of
the most important tools for studying stellar interiors and physics underlying stellar
pulsation.

For many years computed models were purely radiative. Efficiency of convection
decrease toward the higher effective temperatures and it was expected that effects
of convection should be small, at least close to the blue edge of pulsation instability
strip. On the other hand, radiative models couldn’t predict the red edge of the
instability strip, as models were unstable even for very low effective temperatures.
Inclusion of mixing length convection in the structure of the models by Baker &
Kippenhahn (1965) led to reduced growth rates for low effective temperatures, and
two dimensional computations of Deupree (1977a) including dynamical convection
confirmed that indeed, convection is responsible for the stabilization of the modes
at the red edge. On the other hand, its overall effect on pulsation periods and
light/radial velocity curves was found to be small (Deupree 1977b).

Convection was disregarded not only because it was considered to be unimportant
across the significant part of the instability strip, but also because suitable time-
dependent convection models were not available. Early time-dependent models of
Gough (1965) and Unno (1967), although quite successfully applied to linear
pulsations, were difficult to implement in the nonlinear case. Suitable convection
models were developed in the early eighties (Stellingwerf 1982a), and had to
await several years when faster computers allowed for more extensive model surveys.

Below, I briefly describe the problems encountered in modeling of radial stellar
pulsation with radiative pulsation hydrocodes. I focus on classical Cepheids, as
these are the main subject of this thesis. For other types of radial pulsators, I refer
the reader to a review by Buchler (1998). The exciting problem of Cepheid mass
discrepancy (Section 1.4.1) was entirely solved within the framework of radiative
computations. Purely radiative models also satisfactorily reproduced the light and
radial velocity curves of fundamental mode Cepheids, although they failed to do
so, in case of the first overtone pulsators (Section 1.4.2). Radiative models didn’t
succeed in reproducing the observed modal selection. Particularly, modeling of
double-mode pulsations appeared to be impossible (Section 1.4.3), and motivated
the inclusion of time-dependent convection into pulsation hydrocodes (Chapter 2).
The problem of modeling the double-mode behaviour in classical Cepheids is still
very challenging, and is extensively tackled in this thesis (Chapters 6, 7 and 8).

1.4.1 Mass discrepancy problem

Pulsation theory allows for estimation of Cepheid masses, through several methods.
So-called pulsation masses, MQ, are computed through the period-mean density
relation, making use of the known period and radius of the star. Radius can be
derived from photometric estimation of luminosity and effective temperature (or
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directly from Baade-Wesselink method, which leads to Wesselink masses).

Other method, suitable for determination of double-mode Cepheid masses was
established by Petersen (1973). Period-mean density relation implies that pulsa-
tion period depends mostly on mass and radius of the pulsator. Linear computations
(e.g.,Cox, King & Stellingwerf 1972, Petersen & Jorgensen 1972) con-
firmed that indeed, for a given chemical composition and given mass and radius,
pulsation constant, Q, is practically independent of luminosity. Hence, a fitting for-
mulae for pulsation constants of fundamental and first overtone modes, QF and Q1O,
depending on mass and radius, can be obtained from linear computations. Formulae
of Cox, King & Stellingwerf (1972) were used by Petersen (1973) to plot
the lines of constant masses on the period ratio vs. period plot – nowadays known
as the Petersen diagram. Two periods observed for double-mode Cepheid precisely
determine its location on the Petersen diagram. So-called beat-mass can be derived
from comparison with theoretical lines.

The bump Cepheids also offer an opportunity to estimate the Cepheid masses.
As pointed out by Stobie (1969b), phase of the bump in theoretical light curves
depends mostly on the mass to luminosity ratio, M/L, and shows little sensitivity
to chemical composition. Thus, two observables, period, and phase of the bump
allow to derive the so-called bump-masses of fundamental mode Cepheids, through
comparison with nonlinear models. Since the suggestion of Simon & Schmidt
(1976) that the occurrence of bumps is connected with the P2/P0 = 0.5 resonance,
and observation that their location depend on the value of P2/P0 period ratio, bump-
masses could be derived based on linear theory, in a similar way as masses of double-
mode Cepheids were derived.

The mass-discrepancy problem can be summarized as follows: all masses being
somehow related to the pulsation theory are significantly smaller than evolutionary
masses, derived for the same luminosity through the evolutionary M − L relation.
Discrepancies were first noted by Cogan (1970) and Rodgers (1970) for pulsa-
tion masses, by Christy (1966c) and Stobie (1969b) for the bump masses, and by
Petersen (1973) for beat-masses. Revision of cluster distance scale and Cepheid
reddenings, led to reconciliation of pulsation masses by the end of 1980 (e.g.,A.N.
Cox 1980). Also Wesselink masses were reconciled (for extensive review on the
subject, I refer the reader to review article by A.N. Cox 1980), and only beat-
and bump-mass discrepancies remained. To reconcile these discrepancies, reduction
of period ratios, P1/P0 and P2/P0, for beat- and bump-masses, respectively, was
necessary. Hence, all the proposed mechanisms served to increase P0 more than P1

and P2.

One of the solutions considered, was the possibility that the linear period ratios
might differ from those corresponding to full amplitude pulsation. However, anal-
ysis of stable double-mode pulsations of RR Lyrae model (Stellingwerf 1975b)
and mode-switching pulsations of Cepheid models (Cox, Hodson & King 1978)
showed that linear and nonlinear period ratios agree very well.

Other models to reconcile the mass discrepancy assumed the changes in the en-
velope structure induced by convection, rotation, inhomogeneous composition or
magnetic fields. Cogan (1977) suggested that efficient convection deep in the
envelope, would produce less steep density gradient, reducing the P1/P0 ratio. How-
ever, as discussed by Cox et al. (1977), required amount of convection was very
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high, and in principle could stabilize the pulsations. Effects of rotation on period
ratios were studied e.g., by Carson & Stothers (1976) and Cox et al. (1977).
However, only very large rotation rates, not observed in Cepheid variables, might
have significant effect on period ratios. Cox et al. (1977) showed that the mass
discrepancies can be removed if helium enriched layer is present in the outer parts
of the envelope. Such layer lowers the envelope density gradient, and hence, the
linear period ratios. The helium enriched layer was presumed to be due to a he-
lium deficient wind blowing away more hydrogen than helium. Although numerical
results were very promising, the perspectives for observational validation of helium
enriched layers were poor (e.g.,Sonneborn, Kuzma & Collins 1979). Also,
inherent to this theory were problems of stability of such enhanced layer against
downward mixing.

Another promising, yet hard to verify theory, to reconcile the mass discrepancy,
was proposed by Stothers (1979). In his theory, lower density gradient, reducing
the relevant period ratios, is assured by the tangled magnetic field. The pressure
support is partly due to magnetic pressure, allowing for lower densities, and lower
density gradient. Nonlinear computations of Stothers (1982), including the ef-
fects of magnetic field showed that bump-mass discrepancy can be largely reduced.
Stothers showed however, that significantly different strengths of magnetic fields
were necessary to reconcile the beat-mass discrepancy, which was not satisfactory.

Almost all of the beginning pulsation computations used so-called Los Alamos or
Cox-Stewart opacities (Cox & Stewart 1965, Cox & Tabor 1976). Fricke,
Stobie & Strittmatter (1971) analysed the uncertainties in opacity data, and
concluded that opacity changes by reasonable factors strongly affect the inferred
masses. Independent opacity computations were done by Carson (1976). In com-
parison to Cox-Stewart opacities, Carson opacities are higher by factor ∼ 2 in the
second helium ionization zone. Using Carson opacities, Vermury & Stothers
(1978) computed several models of bump Cepheids and claimed that their models
reproduced the bumps at the correct periods and phases. Their conclusion however,
was disallowed by Simon & Davies (1983) who performed a quantitative compar-
ison of Vermury & Stothers models with observations, using Fourier decomposition
parameters. Also, Carson opacities were invalidated, as it was shown that unrealistic
approximations were made in the opacity codes used in their computation (Carson
et al. 1984).

Simon (1982) suggested that the opacities should be revised. He showed that
the increase of the opacity due to heavy elements by a factor ≈ 2 − 3, leads to
observed period ratios (for beat- and bump-Cepheids) for masses and luminosities
satisfying evolutionary constraints. Similar modification of opacity data was pro-
posed earlier by Stellingwerf (1978), to excite, otherwise stable, β Cephei stars.
Ideas of Simon, although initially criticized by atomic physicists claiming that sub-
stantial revision of opacities is not possible (Magee, Merts & Huebner 1984),
were not abandoned. Extensive parameter study by Andreasen (1988) corrobo-
rated the results of Simon. Stimulated research of the atomic physics underlying the
opacity computations (Iglesias, Rogers & Wilson 1990), soon confirmed that
indeed, contribution of the heavy elements to the opacity was underestimated in two
temperature domains (one of them, roughly between 105 − 106 K was advocated by
Simon). Linear and nonlinear computations of Moskalik, Buchler & Marom
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(1992), adopting new opacity tables (Iglesias & Rogers 1991) showed that beat-
and bump-mass discrepancies are largely resolved. Hence, all the mass discrepancies
were reconciled within the framework of purely radiative computations.

1.4.2 Modeling of light/radial velocity curves

Pioneering nonlinear models of radial pulsators were computed by Christy (1964).
He conducted a large survey of RR Lyrae models (Christy 1966a) and also per-
formed some computations for W Wirginis model (Christy 1966b) and for clas-
sical Cepheids (Christy 1966c). In this last paper, he constructed the models of
η Aquilae and δ Cephei. Taking their observed parameters (radii, effective tem-
peratures and luminosities), he adjusted the masses of the models to reproduce the
observed periods. As a result, he drew some conclusions about possible pulsation
modes excited in these stars. The first systematic survey of nonlinear Cepheid mod-
els was computed by Stobie (1969b). He constructed several sequences of models
running horizontally across the HR diagram, corresponding to the blue loop evo-
lution. Masses and luminosities were bound by evolutionary computations. Stobie
studied the effects of different chemical compositions, as well as impact of numer-
ical details, such us zoning or artificial viscosity on the model properties. Models
were initialized not only in the fundamental mode, but also in the first two over-
tones. In the light and velocity curves of many of his fundamental mode models, a
prominent secondary bump was visible. The presence of such bumps was expected,
as Hertzsprung bump progression was described already in 1926 (Hertzsprung
1926). However, only nonlinear computations could shade some light on the physical
nature of the bumps. Whitney (1956), and later Christy (1968), suggested that
the bumps are the result of an echo, caused by the pressure wave reflected from the
stellar core. Other explanation was proposed by Simon & Schmidt (1976). They
computed linear nonadiabatic periods corresponding to nonlinear models of Stobie
(1969b) and found that the location of the bump is strongly connected with the
ratio of the second overtone period to the fundamental mode period, P2/P0. Bump
on the ascending branch of the model curves was present when 0.48 ≥ P2/P0 ≥ 0.46,
and it was on the descending branch for 0.53 ≥ P2/P0 ≥ 0.50. When P2/P0 was
close to 0.5 or slightly less the bump was located close to the maximum. Hence,
Simon & Schmidt concluded that the presence of the bumps is connected with the
resonance between the fundamental and second overtone modes, P2/P0 = 0.5.

The bump visible in the computations of Christy and Stobie, although expected,
appeared at wrong phase (at a given pulsation period) as compared to observations.
Stobie (1969b) concluded that only reduction of model masses by factor ∼2, can
bring the phase of the bump into agreement with observations. This notification of
so-called bump-mass discrepancy (see previous Section) led him to construction of
models obeying pulsation mass-luminosity relation, with masses at given luminosity
equal to half of the evolutionary mass (Stobie 1969c). Stobie concluded that his
new models agree satisfactorily with observations. This conclusion was based on
qualitative comparison of such features like amplitudes, light curve asymmetries or
presence and phase of the bumps. Similar conclusions were reached by e.g.,Davis &
Davison (1978), Vermury & Stothers (1978) and Hodson & Cox (1980),
who constructed sequences of fundamental mode Cepheid models mostly to study
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the bump-mass discrepancy. That such “eyeball” comparisons can be misleading was
demonstrated by Simon & Davis (1983) who compared the model and observed
light and radial velocity curves in terms of the Fourier decomposition parameters,
as proposed by Simon & Lee (1981). They showed that theoretical models have
some serious defects, and do not reproduce quantitatively the characteristic runs of
Fourier parameters, ϕ21 and R21, in spite of apparent qualitative agreement with ob-
servations. They also showed that the model run of ϕ21 versus period ratio, P2/P0,
has characteristic bell shape centered at P2/P0 = 0.5, supporting the resonance hy-
pothesis of Simon & Schmidt (1976). The strongest evidence in favour of this
theory was provided by Buchler & Kovács (1986a), who studied the effects of a
2:1 resonance in nonlinear pulsation, using the amplitude equations formalism. On
purely theoretical grounds they showed that the characteristic shape of the Fourier
parameters progression is indeed caused by the 2:1 resonance between the fundamen-
tal and linearly damped second overtone. Further on, Kovács & Buchler (1989)
analysed the sequence of hydrodynamical Cepheid models of Buchler, Moskalik
& Kovács (1990) and showed that the nonlinear results are not only qualitatively,
but also quantitatively well captured by the amplitude equations, assuming the 2:1
resonance.

The Cepheid model survey of Buchler, Moskalik & Kovács was performed with
the codes originally written by Stellingwerf (1975a), with slight modifications
introduced by Kovács & Buchler (1988). These codes were extensively used
to model all types of pulsators exhibiting radial modes. Faster computers allowed
for large model surveys and finer mesh resolution, fully exploiting the possibilities
of radiative models. The results of Moskalik, Buchler & Marom (1992),
who used the revised opacities of Iglesias & Rogers (1991), finally solving the
mass discrepancies, showed the great success of radiative models in reproducing
the radial velocity curves and moderate success in modeling the light curves. In the
latter case, although qualitative agreement between theoretical and observed Fourier
parameters is remarkable, models display systematically higher values of low order
Fourier phases and amplitude ratios.

Overtone Cepheids didn’t attract as much theoretical attention as fundamental
mode ones. Their light and radial velocity curves, computed already by Christy
(1966c) and more extensively by Stobie (1969b,c), were quite regular and didn’t
display significant bumps, so important in their fundamental mode counterparts.
On the other hand, observational status of the overtone Cepheids was not clear
at the time of early nonlinear pulsation computations. Short period Cepheids with
nearly sinusoidal light curves (so-called s-Cepheids) were suspected to pulsate in the
first overtone. They were established as a separate class of first overtone pulsators
by Antonello, Poretti and Reduzzi (1990), who showed that the progres-
sion of their photometric Fourier phase, ϕ21, with pulsation period is distinct and
well separated from the corresponding fundamental mode progression. The run of
photometric ϕ21 values versus the period for s-Cepheids was studied earlier by An-
tonello & Poretti (1986). They noted the presence of two different trends
separated by discontinuity near period of 3 days (also referred as “Z”-shape in the
literature), and suggested that such behaviour may be caused by the 2:1 resonance
between the first and fourth overtones, centered around this period.

Many computations of nonlinear overtone Cepheid models were done with tgrid
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code of Aikawa & Simon (1983). Aikawa, Antonello & Simon (1987) per-
formed some computations to model the short period Cepheid SU Casiopeae, how-
ever, didn’t obtain satisfactory results. More extensive model surveys, intended to
check the resonance hypothesis of Antonello & Poretti (1986), were done by
Antonello & Aikawa (1993, 1995). At linear level, the authors demonstrated
that their models cross the resonance center, however, their nonlinear results were
far away from reproducing the observed progressions of photometric ϕ21 and R21.
First of all, the variation of model photometric ϕ21 was not as large and sharp as
observed. Similar results were obtained by Shaller & Buchler (1994, unpublished)
with different hydrocode. Another argument against the resonance operating in the
vicinity of 3 days was raised by Buchler et al. (1996) who showed that single
mass-luminosity relation cannot simultaneously reproduce the location of resonance
shaping the Hertzsprung progression at 10 days, and the hypothetical resonance at
3 days. The situation was clarified by Kienzle et al. (1999) who showed that in-
deed, the P4/P1 = 0.5 resonance is operational in overtone Cepheids, however, it
is centered at longer period, ≈ 4.6 days, and it manifests in radial velocity curves,
giving rise to a bell shape structure in ϕ21 progression, centered at period of 4 days.
In fact, the agreement between model and observed Fourier parameter progressions
for radial velocity curves is quite satisfactory, despite the fact that radiative hydro-
models completely fail to reproduce the observed overtone Cepheid light curves.

1.4.3 Modal selection and problem of modeling the double-
mode behaviour

The problem of mode selection in radial pulsators is longstanding. One of the ar-
guments against hypothesis that Cepheids pulsate, raised by the advocates of the
binary hypothesis (e.g.,Jeans 1925), was, that according to pulsation theory, many
modes, including higher order overtones, should be observed in a single variable. To
the contrary, in most of the Cepheid variables, only single periodicity was observed.
Already Edgar (1933) showed that overtone modes suffer from much greater dis-
sipation than the fundamental mode and hence, will not be observed. First numer-
ical stability computations (e.g.,King et al. 1973, Baker & Kippenhahn 1965)
showed that indeed, only fundamental mode and first and second overtones may be
unstable, higher order overtones being firmly stable.

The modal selection problem is simple, if only one mode is linearly unstable.
Full amplitude pulsation in this mode will develop. However, if two modes are
simultaneously linearly unstable, the question arises, which one (or maybe both)
of the modes will be present in the nonlinear regime, at large amplitude pulsation.
The problem under discussion is similar for two types of large amplitude pulsators
populating the classical instability strip, RR Lyrae stars and classical Cepheids.
Therefore, the results for both groups are complementary and will be discussed
below.

Large amplitude behaviour cannot be inferred from linear computations. King
et al. (1973) noted that for some of their models, in which both F and 1O were
simultaneously linearly unstable, stable finite amplitude pulsation in either mode
was possible, depending on the way nonlinear integrations were initialized (physi-
cally depending on the direction of evolution). First nonlinear computations also
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revealed mixed-mode states (e.g.,Stobie 1969b), however, limited computer re-
sources, didn’t allow for long-lasting computations and for a definite statements,
whether they could correspond to the observed double-mode pulsation or to a tran-
sient. From the very beginning the double-mode pulsators attracted much attention.
Pulsation period depends mostly on stellar mass and radius (period-mean density
relation). Hence, two periods of the simultaneously excited modes can be used to
derive the stellar parameters with high precision (e.g.,Petersen 1973). Clearly,
understanding of the double-mode pulsation (multimode in general) was and still is
one of the most interesting and outstanding problems of stellar pulsation theory.

Stellingwerf (1975a) was the first, who developed the phenomenological the-
ory of modal selection. Using relaxation technique (Stellingwerf 1974, see Sec-
tion 1.3.3) he analysed the stability of the fundamental and first overtone limit
cycles (FLC and OLC, respectively) with respect to the perturbation in the other
mode. He described four possible pulsation states. Depending on the stability of
the individual limit cycles these are: (a) fundamental mode only, if FLC is sta-
ble against perturbation in 1O, and OLC is unstable against perturbation in F,
η1,0 < 0, η0,1 > 0; (b) first overtone only, if the reverse is true, η1,0 > 0, η0,1 < 0; (c)
either-or (F/1O) pulsation domain, in which pulsation in either mode is possible, if
both FLC and OLC are stable, η1,0 < 0, η0,1 < 0; (d) double-mode pulsation (DM),
if both FLC and OLC are simultaneously unstable, η1,0 > 0, η0,1 > 0. King et
al. (1973) computations for classical Cepheids and Stellingwerf (1975a) com-
putations for RR Lyrae stars yielded essentially the same picture. As one crosses
the instability strip from its hot, blue side toward the cooler, red side, first, the
1O pulsation domain appears. Next, the either-or domain emerges, and finally at
the red side of the instability strip, fundamental mode pulsation domain is present.
In addition, the coolest RR Lyrae models of Stellingwerf (1975a) were found
to have both limit cycles simultaneously unstable. The direct numerical integra-
tion of particular models by Stellingwerf (1975b), led to the development of
stable double-mode pulsation. His results however, were not confirmed with other
hydrocodes (e.g.,Hodson & Cox 1976; Cox, Hodson & King 1978), and it
is believed that the first nonlinear double-mode models were numerical artifacts,
resulting from too shallow envelope.

The modal selection was also analysed in detail by Simon, Cox & Hodson
(1980), who used for this purpose the iterative theory of Simon (1972). They
arrived at the same four pulsation classes as established by Stellingwerf (1975a).
They also analysed the Simon’s (1979) hypothesis that double-mode pulsation is
a resonant phenomenon. Based on the observation that the period ratios found in
double-mode variables are confined to a very narrow range, Simon suggested that
the three-mode resonance, namely ω1 + ω0 = ω3 may be crucial in bringing up the
double-mode behaviour. He also pointed out that some role can be played by a 2:1
resonance, 2ω0 = ω2. Nonlinear computations of Simon, Cox & Hodson (1980)
however, failed to confirm the role of the three-mode resonance in promoting the
double-mode behaviour.

Physics underlying the double-mode pulsation can be studied with amplitude
equations formalism. As already discussed (see Section 1.3.4) the form of the AEs
differ for non-resonant and resonant cases. In the former case pulsation modes
compete with each other to saturate the linear pulsation instability of both modes.
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It was shown by Dziembowski & Kovács (1984) that the double-mode behaviour
arises, if the dominant role is played by self-saturation effects. In this case none of
the modes is able to stabilize the other, and simultaneous excitation of both modes
is possible. Essentially the same results were obtained by Buchler & Kovács
(1986b). Dziembowski & Kovács also analysed the resonant mode interaction and
found that the three-mode resonance, proposed by Simon as the cause of double-
mode pulsation, actually stabilizes the single-mode solution and shouldn’t play a
role in double-mode phenomenon (which explains the negative result of Simon,
Cox & Hodson 1980, concerning the three-mode resonance). To the contrary,
the 2:1 resonance between one of the two linearly unstable modes and a higher
order linearly damped overtone can cause a double-mode pulsation. The amplitude
of the unstable resonant mode is limited, allowing the growth of the second linearly
unstable mode.

Results of Dziembowski & Kovács (1984) were confirmed by the computa-
tions of Kovács & Buchler (1988). Using relaxation technique, they found a
double-mode RR Lyrae models caused by the resonance between the fundamental
mode and the third overtone, 2ω0 = ω3. Buchler, Moskalik & Kovács (1990)
found radiative, double-mode Cepheid models, connected with the 2:1 resonance
shaping the Hertzsprung progression, 2ω0 = ω2. The same resonance is operational
in radiative, double-mode Cepheid models found by the author (Smolec 2009, see
Chapter 7). All these models however, are not relevant from practical point of view,
because their periods are far from the observed ones.

Extensive computations of non-resonant RR Lyrae models with standard numer-
ical and physical parameters by Kovács & Buchler (1988) showed, that stable
double-mode pulsation is not possible. Very fast after crossing its linear blue edge,
fundamental mode limit cycle becomes stable against perturbation in the first over-
tone. Contrarily, stability of the first overtone limit cycle slowly varies with effective
temperature. First overtone limit cycle is firmly stable at high temperatures, and
becomes unstable at very low temperatures. Instead of double-mode domain, a rel-
atively wide either-or domain is present. Kovács & Buchler (1988) indicated
that double-mode, non-resonant pulsation can be obtained with purely radiative hy-
drocodes, however, only assuming non-standard model parameters (low M/L ratio)
or decreased artificial viscosity. An extensive survey of RR Lyrae models with re-
duced artificial dissipation was computed by Kovács & Buchler (1993). Modal
stability along a sequence of models was analysed with the help of the relaxation
technique. It was demonstrated that in less dissipative models, the double-mode pul-
sation with the observed periods is possible. However, models of Kovács & Buchler
had higher amplitudes as compered to observations (due to reduced dissipation)
and were sensitive to numerical details. In the conclusions of their paper, authors
stressed the need for development of less dissipative codes with physical source of
viscosity instead of artificial one. Indeed, it was inclusion of convection into pulsa-
tion hydrocodes that offered a solution to the problem of modeling the double-mode
phenomenon (see next Chapter).
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Chapter 2

Treatment of convection

Convection plays important role in almost all types of stars. Under stellar conditions,
convection is accompanied by strong turbulence and as such is impossible to model
in Earth’s laboratories. Convective zones affect the overall structure of the stars,
transporting energy, as well as being responsible for mixing of the atomic species.
Detailed computation of these effects is very difficult and for more than fifty years
a very simple mixing length prescription of Böhm-Vitense is used for this purpose
(Section 2.1). In case of pulsating variable stars problem becomes even more diffi-
cult. Pulsation induced, large-scale motion of the gas, interacts with smaller-scale
turbulent convective motions. Theories attempting to describe this interaction are
called time-dependent convection theories/models. Some general remarks concern-
ing assumptions underlying these models and basic idea of derivation are presented
in Section 2.2. For the purpose of nonlinear computations, which are the subject
of this thesis, simple one-equation, non-local models are best suited. Of these, two
models are most commonly used – the Stellingwerf model (Section 2.3) and the Kuh-
fuß model (Section 2.4). Kuhfuß model has several advantages over the Stellingwerf
one (Section 2.5) and hence, it was adopted in pulsation hydrocodes with which
the results of this thesis were obtained. Therefore, this model is described in more
detail. Finally, the results obtained up to date with convective pulsation hydrocodes
are summarized in Section 2.6.

2.1 Mixing Length Theory

The mixing length theory (MLT) was originally formulated by Vitense (1953) and
Böhm-Vitense (1958), based on the early work of Prandtl (see Prandtl 1952).
Modern reviews can be found in Hansen, Kawaler & Trimble (2004) and in
Cox & Giuli (1968), who provide extensive discussion and derivations. Here, I
summarize the theory focusing on the physical picture, particularly on convective
instability criterion.

In mixing length theory, the stellar fluid is assumed to be composed of identifi-
able gas elements, eddies, or blobs. The buoyant forces drive the motions of eddies
from regions of high heat content to the regions of lower heat content, thus leading
to convective heat transport through the fluid. After traveling the characteristic dis-
tance ℓ, the mixing length, eddies lose their identity and merge with the surrounding
fluid. Hotter eddies rise, while cooler eddies sink, leading to the net outward heat
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transport. It is assumed that the mixing length is much shorter than any length
scale associated with the structure of the star (e.g., pressure scale height). Char-
acteristic dimensions of the eddies are of the same order as ℓ. During the motion,
eddies maintain the pressure equilibrium with surrounding material and the fluid is
assumed to be incompressible. Hence, density variations can be neglected, except
those giving rise to buoyancy effects (Boussinesq approximation; see next Section).

There are different variations of the MLT, introducing different parametrization,
concerning e.g., the eddy shape. Here, I summarize the main results of a classic
version, detailed derivation of which can be found in Cox & Giuli (1968). Below,
the mixing length, ℓ, is assumed to be some fraction of the pressure scale height,
ℓ = αMLTHp.

Criterion for convective instability can be derived through considering the tem-
perature variations during the eddy motion, within the eddy, and in the surrounding
material. Let T ′, ρ′ and p′ denote the temperature, density and pressure within the
convective eddy. The temperature gradient in the surrounding material is,

dT

dr
= − T

Hp

∇ = −β, (2.1)

where Hp is a pressure scale height,

Hp = − dr

d ln p
, (2.2)

and ∇ is a temperature gradient,

∇ =
d ln T

d ln p
. (2.3)

Assuming that the eddy moves adiabatically, temperature variation within the eddy
is,

dT ′

dr
=

(
dT ′

dr

)

a

= − T

Hp

∇a = −βa, (2.4)

where ∇a is adiabatic temperature gradient,

∇a =

(
d ln T

d ln p

)

a

. (2.5)

Suppose now, that due to some perturbation the eddy starts to rise. If its temper-
ature drops adiabatically below the temperature of the surrounding material, the
eddy has negative buoyancy and tends to sink. To the contrary, if its temperature
decreases more slowly than the temperature of the surrounding material it will con-
tinue to rise due to buoyancy effects. In this case the fluid is convectively unstable.
Noting that β and βa are positive, criterion for convective instability (also known
as Schwarzschild criterion) can be expressed as

β > βa, (2.6)

or,
∇ > ∇a. (2.7)
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It is convenient to express the above criteria through the superadiabatic gradient
(dimensionless entropy gradient), Y ,

Y = ∇−∇a = −Hp

cp

ds

dr
. (2.8)

Stellar layers in which Y > 0 are convectively unstable.
The excess temperature of the rising element, ∆T , can now be easily determined.

It follows from Eqs. (2.1) and (2.4) that after traveling the distance ℓ, the excess
temperature is,

∆T (ℓ) = ℓ
T

Hp

Y = αMLTTY . (2.9)

The heat released by the eddy upon dissolution is, ρcp∆T (ℓ). Convective flux,
transported by the upward moving elements, Fc, is equal to the rate of heat release,

Fc =
1

2
ucρcp∆T (ℓ) =

1

2
αMLTucρcpTY , (2.10)

Detailed derivation of this and following formulae can be found in Cox & Giuli
(1968). Above, uc is the average speed of convective elements given by,

uc = αMLT

(
1

8
Tcp∇a

)1/2

Y1/2. (2.11)

Above formulae for convective flux and velocity are true, if convective eddies
move adiabatically. In reality, as temperatures of the convective eddy and its sur-
roundings differ, heat is exchanged. Allowing for radiative leakage, superadiabatic
gradient, Y , entering the above two formulae for convective flux and convective
velocity, should be replaced by ∇−∇′. Temperature gradients are then bound by,

∇−∇′

∇′ −∇a
=

2αMLTHpcpρuc

9kr
, (2.12)

where kr is radiation diffusion coefficient (Eq. 1.7).
In the framework of MLT, total energy flux, Ftot, is carried by radiative and

convective fluxes,

Ftot = Fc + Fr = kr
T

Hp
∇rad, (2.13)

where ∇rad is radiative temperature gradient, defined by the above equation, that
is the gradient which would exist if all the energy were transported by radiation.
Radiative flux is given by the diffusion law (cf. Eq. 1.6), with actual temperature
gradient, ∇,

Fr = kr
T

Hp
∇. (2.14)

Thus, in convectively unstable regions we have,

∇a < ∇ < ∇rad. (2.15)

For the purpose of further comparison with time-dependent models, it is useful
to write down the momentum equation governing the eddy motion. This equation
is,
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r̈ = −g − 1

ρ

∂p

∂r
= −g

∆ρ

ρ
, (2.16)

where ∆ρ = ρ′ − ρ is excess density of the rising element. The excess density can
be expressed through the excess temperature,

∆ρ

ρ
= −Q∆T

T
, (2.17)

where Q is the coefficient of thermal expansion,

−Q =

(
∂ ln ρ

∂ ln T

)

µ,p

+

(
∂ ln ρ

∂ lnµ

)

T,p

(
∂ ln µ

∂ ln T

)

p

. (2.18)

Using Eq. (2.17) and equation of hydrostatic equilibrium (to eliminate g), momen-
tum equation becomes,

r̈ = −1

ρ

∂p

∂r
Q∆T

T
=

pQ
ρHp

∆T

T
. (2.19)

Above equation can be used to estimate the eddy acceleration after traveling the
distance ℓ, aMLT. Using Eq. (2.9), this acceleration is,

aMLT = αMLT
pQ
ρHp

Y . (2.20)

2.2 Time-dependent models – introduction

mixing length theory, as well as all its time-dependent extensions, is based on the
Boussinesq approximation to the equations of motion. In this approximation, the
gas is taken to be incompressible, except for the essential buoyancy effects. Boussi-
nesq approximation is valid, if characteristic length scale of convection, ℓ, is much
smaller than the scale of pulsation motions. Although Boussinesq approximation
is well suited for describing the turbulent fluctuations, it cannot be used for pul-
sations, for which compressibility is essential. Therefore, physical variables as well
as hydrodynamical equations are decomposed into mean and fluctuating parts. For
example for temperature we have,

T (r, t) = T ′(r, t) +
〈
T (r, t)

〉
, (2.21)

and similarly for other variables. Mean quantities, enclosed in
〈〉

, are averages over a
spherical shells and depend on the radial coordinate only. Hydrodynamical equations
decouple into mean (pulsation) equations and fluctuating (turbulent) equations.
Equations are linearized in the fluctuating parts, retaining the nonlinear terms in
the velocities. This procedure is called anelastic approximation (e.g.,Gough 1968),
and implies that all fluid velocities are small compared with the speed of sound.
Mean and fluctuating equations are coupled by second order correlations, such as
Reynolds stress tensor or correlation entering the convective flux,

〈
u′T ′

〉
.

The above procedure is common for almost all the time-dependent convection
models. They differ in subsequent assumptions concerning the treatment of second
order correlations and fluctuating equations.



2.3 Stellingwerf models 35

The first time-dependent theories were developed by Gough (1965) and Unno
(1967). These models are time-dependent extensions of the MLT, adopting different
physical pictures, to justify the model equations and assumptions. Differences are
extensively discussed by Gough (1977). Both models are local, just as MLT,
which means that turbulent quantities at a given point are determined solely by the
conditions existing at that point. Local treatment is the source of serious problems
in numerical computations. If turbulent pressure is included in the mean equations,
singularities appear at the boundaries of the convective zone (Stellingwerf 1976,
Gough 1977). Another consequence of the local treatment are the oscillations
in the thermal variables, deep in the convective zone (Baker & Gough 1979,
Gonczi & Osaki 1980).

Despite the mentioned difficulties, both Gough and Unno models were success-
fully applied to the linear pulsations (Baker & Gough 1979, Gonczi & Osaki
1980). The local nature and complexity retained in fluctuating equations, makes
these models inapplicable for nonlinear pulsations, however. Nonlinear computa-
tions require relatively simple, numerically inexpensive models, to allow long-lasting
integrations, and numerically robust models, to avoid singularities during the model
evolution. Therefore, in the nonlinear hydrocodes, simple one-equation non-local
models are adopted. Fluctuating equations are reduced to one equation for turbu-
lent energy, et =

〈
(u′)2

〉
/2. In order to close the system, second order correlations

need to be modeled. The procedure introduces several dimensionless, order of unity,
free parameters. Their values are not determined by the theory, but should be
adjusted to match the observational constraints. Non-locality is achieved by the
presence of a diffusion terms for the turbulent energy in the equations. In non-local
models, turbulent quantities at a given point depend not only on the conditions
existing at that point, but also on the conditions at the neighboring points. Hence,
turbulent energies can be nonzero even in convectively stable regions, provided they
are close enough to the unstable regions. This is so-called overshooting.

Two one-equation models are in common use. These are the models based on
the work of Stellingwerf (1982a) and Kuhfuß (1986). Below, I describe both
models in more detail. Comparison is provided in Section 2.5, in which the argu-
ments in favour of Kuhfuß model, adopted in this thesis, are presented.

2.3 Stellingwerf models

Stellingwerf (1982a) proposed a simple one-equation model for time-dependent
turbulent convection, based on the work of Castor (1968, unpublished). Castor
derived fluctuating equations for u′ and T ′, and three moment equations for following
averages,

〈
(u′)2

〉
/2,

〈
u′T ′

〉
and

〈
(T ′)2

〉
/2. Although Stellingwerf’s derivation is

different, it is equivalent to truncating the three moment equations of Castor, into
one equation for turbulent energy, et =

〈
(u′)2

〉
/2, and applying closure relations for

other correlations.

The form of equations and quantities below, is based on the work of Bono &
Stellingwerf (1994) (with typos corrected), however, to assure a consistent no-
tation through this thesis, somewhat different variables are used. In the Stellingwerf
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model, turbulent energy equation is,

dω

dt
=

1

r2

∂

∂r

(

r2lovsω
1/2∂ω

∂r

)

+
ω1/2

l
ω0 −

ω1/2

l
ω − 2ω

r2

∂

∂r

(
ur2
)
, (2.22)

where ω =
〈
(u′)2

〉
= 2et. First term on the right-hand side of the above equation,

is diffusion term, responsible for the non-local character of the model (after slight
manipulation it can be represented as a divergence of the turbulent flux). The
second term describes the generation of the turbulent energy, and hence, is referred
as a source (or driving) function, S, in the following. This term is given by,

S =
ω1/2

l
ω0 =

ω1/2

l
2lQ pV

HpT

〈
u′T ′

〉

〈
(u′)2

〉 . (2.23)

The third term in Eq. (2.22) describes the decay of the turbulent energies and
the last term describes the coupling between turbulent field and mean, pulsation
induced gas motion. In the momentum equation, turbulent (pt) and eddy-viscous
(pν) pressures appear, while in the total energy equation, corresponding pressure
works and convective (Fc) and turbulent (Ft) fluxes are present,

du

dt
= −1

ρ

∂

∂r
(p + pt + pν) −

GMr

r2
, (2.24)

d

dt
(E + et) + (p + pt + pν)

dV

dt
= −1

ρ

∂
[
r2(Fr + Fc + Ft)

]

r2∂r
. (2.25)

Convective fluxes are defined as,

Fc = ρcp

〈
u′T ′

〉
, (2.26)

Ft =
1

2
ρ
〈
(u′)2u′

〉
. (2.27)

The Reynolds stress tensor, entering the equations,
〈
ρ
〉
u′

iu
′
j was truncated by Stelling-

werf to the diagonal part, yielding the turbulent pressure,

pt = ρ
〈
u′u′
〉
≈ ρ
〈
(u′)2

〉
= ρω. (2.28)

To model the small-scale turbulent dissipation, eddy-viscous pressure was introduced
in an ad hoc manner,

pν = −ρlevω
1/2∂u

∂r
. (2.29)

In the above formulae,
〈
u′T ′

〉
average, entering the source term and expression for

the convective flux, as well as
〈
(u′)2u′

〉
term, entering the turbulent flux, need to be

modeled. For the latter average, Stellingwerf adopted the diffusion approximation,

〈
(u′)2u′

〉
≈ −lovs

〈
u′
〉
∇
〈
(u′)2

〉
= −lovsω

1/2∇ω, (2.30)

while for the former average, MLT motivated closure relation was adopted,

〈
u′T ′

〉
= ω

(
T ′

u′

)

MLT

. (2.31)
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Resulting expressions for convective fluxes and the source term are following,

Ft = −1

2
ρlovsω

1/2∂ω

∂r
, (2.32)

Fc = ρcpω

(
2T 2

pV QY
)1/2

∼ etY1/2, (2.33)

S = 2ω

(
pV Q
H2

p

Y
)1/2

∼ etY1/2. (2.34)

In the presented equations, three model parameters are present. They are hidden in
the length-scales, the mixing length, l, the scale for eddy-viscous dissipation, lev, and
in the scale for turbulent diffusion, lovs. They are all assumed to be some fraction
of the local pressure scale height, Hp.

In the original Stellingwerf model (Stellingwerf 1982a),
〈
u′T ′

〉
∼ Y1/2

and hence, both S and Fc, are restricted to positive values only. In convectively
stable regions, S = Fc = 0. Potential problems, connected with such treatment,
concerning mostly the extent of overshooting, were pointed out by Kuhfuß (1986)
and Gehmeyr & Winkler (1992a,b) (see Section 2.5 for extensive discussion).
Correction to the model, overcoming the mentioned problem, was introduced by
Bono & Stellingwerf (1992, 1994), who adopted the following patch,

〈
u′T ′

〉
= sgn(Y)

〈
|u′T ′|

〉
. (2.35)

Hence, in this modified Stellingwerf model, as I will call it in the following, both
convective flux and source function are negative in convectively stable regions.

2.4 Kuhfuß model

Another one equation model for time-dependent convection was developed by Kuh-
fuß (1986). He also truncated fluctuating equations into one equation for tur-
bulent energy, however, consistently applying diffusion-type closure relations. His
model included composition changes due to nuclear reactions and effects of molecu-
lar viscosity. This effects are not important for stellar pulsation problems (molecu-
lar viscosity is negligible compared to turbulent viscosity and considered pulsation
time-scales are small, as compared to the nuclear reaction time scale for pulsators
populating the classical instability strip). On the other hand, much less attention
was payed to the treatment of radiation. Kuhfuß model was reformulated (and ex-
tended, see Sections 2.4.1 and 2.4.2) by Wuchterl & Feuchtinger (1998) and
Feuchtinger (1999a) specifically for the use in the stellar pulsation hydrocodes.
Much of the notation used below, comes from these two papers. In the following,
radiation is treated in the diffusion approximation.

The complete set of equations consists of turbulent energy equation,

det

dt
+ pt

dV

dt
= −1

ρ

∂
(
r2Ft

)

r2∂r
+ Eq + (S − D), (2.36)

and momentum and internal energy equations,

du

dt
= −1

ρ

∂

∂r
(p + pt) + Uq −

GMr

r2
, (2.37)
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dE

dt
+ p

dV

dt
= −1

ρ

∂
[
r2(Fr + Fc)

]

r2∂r
− (S − D). (2.38)

Turbulent and internal energy equations can be added to yield the total energy
equation,

d(E + et)

dt
+ (p + pt)

dV

dt
= −1

ρ

∂
[
r2(Fr + Fc + Ft)

]

r2∂r
+ Eq. (2.39)

Reynolds stress tensor is decoupled into trace part, corresponding to turbulent
pressure,

pt = αpρet, (2.40)

and trace-free part leading to turbulent viscosity terms, Uq and Eq, which are viscous
momentum and energy transfer rates, respectively. Explicit expressions for these
terms are following,

Uq =
1

ρr3

∂

∂r

[
4

3
µqr

3

(
∂u

∂r
− u

r

)]

, (2.41)

Eq =
4

3

1

ρ
µq

(
∂u

∂r
− u

r

)2

. (2.42)

Kinetic turbulent viscosity is denoted by µq,

µq = αmρΛe
1/2
t , (2.43)

and Λ stands for the mixing length, assumed to be some fraction of pressure scale
height, Λ = αHp.

Turbulent kinetic energy flux is modeled through the diffusion approximation,
just as was done by Stellingwerf, which leads to,

Ft = −αtρΛe
1/2
t

∂et

∂r
. (2.44)

Convective flux is physically enthalpy flux,

Fc =
〈
u′(ρh)′

〉
, (2.45)

where h is specific enthalpy, dh = T ds + V dp. Under anelastic approximation,
fluctuating enthalpy can be expressed as fluctuating entropy, h′ = Ts′. Similarly for
the source (driving) function, arising from the buoyant forces,

S = −
〈

u′

(
1

ρ
∇p

)′〉

= −
〈

u′∇p

ρ2
ρ′

〉

, (2.46)

anelastic approximation yields,

ρ′ = −ρ2∇aT

p
s′. (2.47)

Therefore, for both convective flux and source function, entropy flux,
〈
u′(ρs)′

〉
needs

to be modeled. Using diffusion approximation, Kuhfuß arrived at,

〈
u′(ρs)′

〉
= −αsΛe

1/2
t ρ

ds

dr
= ρΠ. (2.48)
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Correlation Π,

Π = −αsΛe
1/2
t

ds

dr
= ααse

1/2
t cpY , (2.49)

enters the expressions for both Fc and S, which become,

Fc =
αc

αs

ρTΠ ∼ e
1/2
t Y , (2.50)

S =
pQ

ρcpHp
Π ∼ e

1/2
t Y . (2.51)

The form of the turbulent dissipation term, D, is exactly the same as in Stellingwerf’s
model,

D = αd
e
3/2
t

Λ
. (2.52)

It is convenient to join the turbulent source and turbulent dissipation functions into
single term, C,

C = S − D, (2.53)

coupling the turbulent and internal energy equations.
Detailed description of the convective parameters (alphas) entering the model,

is presented in Section 2.4.3.
It is useful to provide a more physical insight into turbulent energy equation and

quantities entering it. This equation has a non-local character, due to the diffusive
term containing the turbulent flux. In the Kuhfuß model, this term is the sole
cause of the overshooting of the convective eddies into convectively stable regions.
Turbulent energies do not vanish at the boundaries of the convective zone, but are
diffused into convectively stable regions, carrying the negative convective flux. The
coupling term, C, appears in both turbulent and internal energy equations, however,
with reverted sign. Hence, the local gains of the turbulent energy correspond to the
local losses of the internal energy, and vice versa. Turbulent dissipation term, D, is
always positive and hence, brakes the turbulent energies, pumping up the internal
energy. In fact, this term is intended to model the turbulent cascade, that is the
continuous decay of the turbulent eddies into smaller scales, down to molecular scale,
were turbulent energy is dissipated. The turbulent source function, S, describes the
buoyant acceleration of the convective eddies. Comparison of the expression for the
turbulent source (Eq. 2.51) with the MLT expression for the buoyant acceleration
(Eq. 2.20), yields,

S = αse
1/2
t aMLT. (2.54)

Hence, the source function is proportional to the eddy acceleration caused by the
buoyant forces. Source function may drive, as well as damp the convective energies,
depending on the sign of the superadiabatic gradient. In convectively unstable
regions it drives the turbulent motions, while in convectively stable regions it is
responsible for slowing down the overshooted eddies, through negative buoyancy.
The interplay between turbulent field and mean gas motion is described by the
eddy-viscous terms. The viscous energy transfer rate, Eq, is always positive. Thus,
this term describes the generation of turbulence at the cost of mean, pulsation
induced gas motion. Resulting eddy-viscous dissipation is important factor limiting
the pulsation amplitude.
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2.4.1 Extensions of the model – radiative cooling

In the original Kuhfuß model, the radiative cooling of the convective elements was
not considered. This important effect, specially in the envelope convective zones, was
introduced into the model in two different ways by Wuchterl & Feuchtinger
(1998) and by Buchler & Kolláth (2000).

Buchler & Kolláth (2000) considered the run of the Péclet number, Pe,
across the Cepheid model. This number provides a measure of the radiative cool-
ing of the convective elements, being the ratio of convective to radiative diffusion
coefficients,

Pe =
Dc

Dr
. (2.55)

Buchler & Kolláth approximated these coefficients by,

Dc = Λe
1/2
t , (2.56)

Dr =
4

3

acT 3

κρ2cp

. (2.57)

Radiative cooling is unimportant in the regime of high Péclet numbers, that is
for efficient convection. However, close to the surface and in the second helium
ionization region, Péclet number was found to be small. To account for radiative
cooling and improve the description of inefficient convection, Buchler & Kolláth
proposed to limit both the convective flux and source term by a Péclet factor, fpec,

fpec =
1

1 + αrPe−1
. (2.58)

Order of unity, free parameter, αr, resulted from somewhat arbitrary definition of
the Péclet number. Proposed form of correction is equivalent to more sophisti-
cated interpolation scheme arising from 5-equation model of turbulent convection
by Canuto & Dubovikov (1998).

A simpler modification was proposed by Wuchterl & Feuchtinger (1998).
To account for the radiative energy exchange between the eddy and surrounding
material, they modified the energy equations by introducing additional dissipation
term for the turbulent energy, Dr, which entered the coupling term (Eq. 2.53),

C = S − D − Dr. (2.59)

Radiative cooling term was modeled through the relaxation approximation,

Dr =
et

τr

, (2.60)

with τr being radiation diffusion cooling time scale for the convective elements,

τr =
cpκρ2Λ2

acT 3γ2
r

. (2.61)

Hence, Dr can be expressed as,

Dr =
3

4

γ2
r

Λ
e
3/2
t Pe−1, (2.62)

and has the strongest contribution to the coupling term for small Péclet numbers.
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2.4.2 Extensions of the model – flux limiter

Computations of Wuchterl & Feuchtinger (1998) indicated the possible prob-
lem of the original Kuhfuß model connected with the violation of the diffusion ap-
proximation used to model the correlation between velocity and entropy fluctuations
(Π, Eq. 2.48). Their reasoning was following. As convective flux is physically en-
thalpy flux, one can write (Eq. 2.50),

Fc = ρTΠ = ρhuh, (2.63)

where uh is diffusion velocity for the enthalpy carried by convective eddies, and
dimensionless parameters entering the convective flux were dropped. Hence,

uh =
TΠ

h
. (2.64)

Wuchterl & Feuchtinger compared this velocity with the average speed of the con-
vective elements, uc,

uc =

(
2

3
et

)1/2

, (2.65)

and noted that the ratio uh/uc can exceed unity. In this case, enthalpy is transported
with velocities larger, than the speed of the convective elements, indicating that
the diffusion approximation is violated. To fix the problem they introduced the
convective enthalpy flux limiter, by modifying the correlation Π. Equation (2.64) is
reverted to yield,

Π =
h

T
uh, (2.66)

and uh is limited by uc through setting,

Π =
h

T
ucFL

(
uh

uc

)

. (2.67)

FL(x) is flux limiter function, linear for x < 1, and equal 1 for x > 1. Numeri-
cally, smooth connection in between is necessary. uh entering the above equation is
computed from Eq. (2.64) using original definition of Π (Eq. 2.49).

2.4.3 Model parameters

Described Kuhfuß model contains eight, order of unity, free parameters. These are α,
αm, αp, αs, αc, αd, αt and γr (or αr depending on the adopted model for radiative
cooling). Theory provides no guidance for their values, however, some standard
values are in use. In principle, all parameters should be adjusted to match as many
observational constraints as possible. This is however, a daunting task, and as was
shown by Yecko et al. (1998), resulting set of parameters may not be unique,
as the same numerical results can be obtained using different combinations of the
convective parameters.

Parameters αp and αc were introduced by Yecko et al. (1998), and are not
present in the original Kuhfuß (1986) paper, in which αp = 2/3 and αc ≡ αs.
Standard values for αs and αd can be derived through comparison of the local
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(αt = 0) static solution (u ≡ 0, d/ dt ≡ 0) of Eqs. (2.36)–(2.38), with MLT results.
Exact correspondence can be obtained if radiative losses are neglected. Local static
version of Eq. (2.36) is,

C = S − D = 0. (2.68)

Using relations (2.51) and (2.52) in the above equation, static value for convective
velocity (Eq. 2.65) is derived,

uc,0 =

(
2

3

)1/2

e
1/2
t,0 =

(
2

3

)1/2(
α2αs

αd

pQ
ρ

Y
)1/2

. (2.69)

Comparison with MLT value, given by Eq. (2.11) yields,

αs

αd
=

3

16
, (2.70)

where equivalence between α and αMLT was assumed. Comparing the static value
for the convective flux (Eq. 2.50),

Fc,0 = ααsρcpTe
1/2
t,0 Y = ααsρcpT

(
3

2

)1/2

uc,0Y , (2.71)

with the MLT value (Eq. 2.10), and again identifying α with αMLT, the standard
value for αs is obtained,

αs =
1

2

(
2

3

)1/2

. (2.72)

Use of the above value in Eq. (2.70), provides the standard value for αd,

αd =
8

3

(
2

3

)1/2

. (2.73)

If radiative losses are included in the model, exact MLT solution cannot be
reproduced. However, following three equation model of Kuhfuß (1987) (cf. also
Wuchterl & Feuchtinger 1998), standard value for γr is taken to be 2

√
3.

For further reference, convective parameters entering the described model, to-
gether with standard values for some of them are collected in Table 2.1.

2.5 Stellingwerf’s vs. Kuhfuß models

Detailed comparison of the Stellingwerf’s and Kuhfuß models was done by Gehmeyr
& Winkler (1992b). Some important points can also be found in a review article
by Baker (1987) and in the work of Kuhfuß (1986). Comparison of numerical
results obtained using different convective recipes was also performed by Buch-
ler & Kolláth (2000), however, these results should be treated with caution, as
Stellingwerf model was compared with modified Kuhfuß model, in which negative
buoyancy effects are neglected (see description of the Florida-Budapest code in Sec-
tion 2.6). Here, I summarize the crucial differences, clearly favouring the original
Kuhfuß model.
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quantity α standard value
mixing length α -
eddy viscosity αm -
turbulent pressure αp 2/3

turbulent source αs 1/2
√

2/3

turbulent dissipation αd 8/3
√

2/3

convective flux αc 1/2
√

2/3
turbulent flux αt -

radiative losses γr 2
√

3

Table 2.1: Summary of the convective parameters entering the Kuhfuß model. In the

third column standard values for the relevant parameters are given.

A comparison of derivation of equations of both models, shows two weak points
of the Stellingwerf model as compared to the Kuhfuß model. This concern the treat-
ment of the eddy-viscous terms, emerging from the Reynolds tensor, and modeling
of the second-order correlations, entering the turbulent source and convective flux.

Considering the Reynolds tensor, Stellingwerf neglects its trace-free part, and
puts the eddy-viscous pressure into the model in an ad hoc manner. To the contrary,
in the Kuhfuß model eddy-viscous terms result from first-order modeling of the
Reynolds tensor and are not represented by a single pressure term. Consequences
of these different forms of eddy viscosity were not studied up to date. However, as
I will show in Chapter 5 (see also Smolec & Moskalik 2008a), numerical results
are qualitatively the same when using both forms of eddy viscosity.

Considering the modeling of second-order correlations, differences between the
two discussed models are more severe. In the Stellingwerf model, closure relations
for the second-order correlations are motivated by the static and local MLT. Such
closure relations lead to not differentiable formulations for the source function and
convective flux. These are proportional to the square root of the superadiabatic
gradient (Eqs. 2.34, 2.33), which results in numerical problems at the edges of the
convective zone. What is more important, negative buoyancy effects have to be
neglected in the original Stellingwerf model. Convective eddies that overshoot into
convectively stable regions, or turbulent energies that remained in the zones that
became convectively stable during pulsation, cannot be effectively damped. This
was already noted by Kuhfuß (1986). As was shown by Gehmeyr & Win-
kler (1992b) characteristic time-scales for the growth and decay of turbulent ed-
dies cannot be reasonably defined in the Stellingwerf model. Time-scale for decay
is substantially longer than in the Kuhfuß model, in which negative buoyancy ef-
fectively brakes the convective motions in layers that became convectively stable.
Consequently, overshooting distance can be very large in the Stellingwerf model (al-
though the term overshooting can be misleading in this context, see discussion in
Chapter 5). The patch adopted in the modified Stellingwerf model (Eq. 2.35) over-
comes the mentioned problems. However, the origin of formula used to compute the
superadiabatic gradient in convectively stable regions (Eq. 2.35) is not clear.

In the Kuhfuß model, described problems do not appear. Diffusion motivated
closure relations lead to fully differentiable formulation. Source term and convective
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flux are proportional to the superadiabatic gradient (Eqs. 2.51, 2.50), which allow
to account for the negative buoyancy without difficulty. Consequently physical and
numerical behaviour of the model is robust.

2.6 Application of turbulent convection recipes

2.6.1 Convective pulsation hydrocodes

Several nonlinear convective hydrocodes, adopting different convective models, were
developed in recent years. However, only three were used extensively to compute
several sequences of both RR Lyrae and Cepheid models. These are Italian code
adopting the Stellingwerf’s convection model and Vienna and Florida-Budapest hy-
drocodes, adopting Kuhfuß-based convection recipes. Below, I briefly describe es-
sential features of these codes, to be compared later with the code described in this
thesis. It is also worth to mention that Kuhfuß model was implemented by Olivier
& Wood (2005) to study the pulsations of red giants.

Italian code

The original Stellingwerf model was implemented by Stellingwerf (1982a) to
study the pulsation stability at the red side of the instability strip and properties
of the convective RR Lyrae models (Stellingwerf 1982b, 1984a,b,c). These La-
grangian codes, with radiation treated in the diffusion approximation, were later
modified by Bono & Stellingwerf (1992, 1994), who implemented the modi-
fied Stellingwerf model, as described at the end of Section 2.3. Their code will be
called Italian code in the following. It was used extensively to study the convective
RR Lyrae and Cepheid models.

Vienna code

Kuhfuß model was reformulated for the use in stellar pulsation hydrocodes by
Wuchterl & Feuchtinger (1998) and implemented by Feuchtinger (1999a).
This code, called the Vienna code in the following, is based on the earlier radiative
codes of the Vienna group (e.g.,Dorfi & Feuchtinger 1991, 1995). In this very
sophisticated code, adaptive grid algorithm is implemented to resolve the sharp ion-
ization features and shocks. Time-dependent radiative transfer is computed in the
gray approximation, using two equation model (radiation energy and radiation mo-
mentum equations). For convective energy transfer, Kuhfuß model, as described in
Section 2.4 is implemented. Radiative cooling of the convective elements is treated
through the radiative cooling term, Dr (Section 2.4.1).

Florida-Budapest code

Starting from 1998, different convective recipes were tried by the Florida-Budapest
group. In the linear computations of Yecko et al. (1998) and nonlinear models
of Kolláth et al. (1998) a mixed Stellingwerf-Kuhfuß formulation was adopted.
Convective flux was proportional to superadiabatic gradient, as in Kuhfuß model
(Eq. 2.50), while for the turbulent source term, a Stellingwerf prescription, ∼ Y1/2
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(Eq. 2.34) was adopted. This mixed formulation was later on dropped (Kolláth
et al. 2002), and Kuhfuß description was consistently adopted for both convective
flux and turbulent source, however, with one important difference. Superadiabatic
gradient, entering these terms was truncated to positive values only,

Y =

(

− Hp

cp

∂s

∂r

)

+

(2.74)

Hence, Fc ∼ Y+ and Sc ∼ Y+ are equal to 0 in convectively stable zones. Such
treatment of turbulent source function accounts to neglecting the negative buoy-
ancy effects. Resulting convection model, although similar to the Kuhfuß model, is
substantially different. Therefore, the claim of Kolláth et al. (2002) that their
convection model is essentially that of Kuhfuß is not justified. This was not real-
ized and not discussed in the literature up to date. In the following, I will refer to
the convection model adopted by the Florida-Budapest group, as modified Kuhfuß
model. Consequences of truncating the superadiabatic gradient to positive values
only, were not discussed so far, and, as I show in this thesis (Chapters 5 and 6, see
also Smolec & Moskalik 2008a,b; Smolec 2008), are severe.

Another departure from the original Kuhfuß model, is in the treatment of eddy-
viscous terms. In the Florida-Budapest code, Eq and Uq terms are dropped, and
eddy-viscous pressure in the form similar to that of Stellingwerf (cf. Eq. 2.29),

pν = −4

3
αmρΛe

1/2
t r

∂

∂r

(
u

r

)

, (2.75)

appears in the model equations, (2.36)–(2.38), exactly as turbulent pressure, pt,
does.

For the radiative cooling of the convective elements Péclet correction is imple-
mented (Section 2.4.1). Radiation is treated in a simple diffusion approximation.
Although the code is supplemented with the adaptive grid algorithm, in most of the
computations of the group, simple Lagrangian mesh was used.

2.6.2 Results

The earliest application of convection recipes into pulsation hydrocodes was by
Baker & Kippenhahn (1965). They applied the MLT to compute the model
structure. In linear analysis, however, they ignored the perturbation of convective
quantities. This approach is called the frozen-in approximation and is often used
in pulsation computations, specially in pulsation codes coupled with evolutionary
codes, in which MLT is most commonly used. Considering the modal stability, lit-
tle progress was achieved, by including frozen-in mixing length convection. At the
red side of the instability strip models became more stable in comparison to purely
radiative models, however, were not stabilized.

Original Stellingwerf model, was applied by Stellingwerf (1982b,1984a,b,c)
to study the RR Lyrae models, using Lagrangian code, with radiation treated in the
diffusion approximation (predecessor of the Italian code). Stellingwerf concluded
that indeed, convection is responsible for quenching the pulsations at the red edge
(Stellingwerf 1982b). More interestingly, he found that convection also affects
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the stability of the hottest models, shifting the blue edges toward higher temper-
atures, as compared to radiative results (Stellingwerf 1984a). Concerning the
full amplitude behaviour, Stellingwerf (1984b,c) found that artificial viscosity
played no role in the convective models, and the main factor limiting the pulsation
amplitude was eddy-viscous damping.

Original Stellingwerf model was also adopted by Gehmeyr (1992a). His more
sophisticated code, using adaptive grid and two equation model for radiation hy-
drodynamics, was applied to RR Lyrae models close to the red edge (Gehmeyr
1992b, 1993). Besides producing smooth light and radial velocity curves, his results
confirmed the earlier Stellingwerf’s work.

Hundreds of nonlinear models of both Cepheids (e.g.,Bono, Marconi & Stel-
lingwerf 2000) and RR Lyrae (e.g.,Bono et al. 1997) stars were computed with
the Italian code implementing the modified Stellingwerf model. Although plenty of
light curves were displayed in the cited papers, quantitative comparison with obser-
vations, using for example Fourier decomposition parameters, was not performed.
Hence, based on their results, it is hard to judge, whether inclusion of convection
led to any substantial improvement in comparison to radiative models.

The Vienna code, implementing the Kuhfuß convection model, was successfully
used in nonlinear computations of RR Lyrae (Feuchtinger 1999b) and first over-
tone Cepheids (Feuchtinger, Buchler & Kolláth 2000). In case of the over-
tone Cepheids, observed Fourier decomposition parameters of the light curves, par-
ticularly the “Z” shape in the ϕ21 progression (cf. Sections 1.2 and 1.4.2), were repro-
duced. It is worth to notice that models presented in the paper of Feuchtinger et al.
were computed using both the Vienna and Florida-Budapest hydrocodes, yielding
consistent results.

Many convective models were computed by the Florida-Budapest group. Yecko
et al. (1998) studied in detail the linear properties of the convective Cepheid models.
They showed that the same topology of the instability strip can be obtained using
various combinations of the convective parameters. This important result indicates
that the absolute calibration of the convective parameters entering the model com-
putations may not be possible. Linear convective models were also applied to derive
the metallicity of the observed F/1O double-mode Cepheids. Convective models
allow to determine the domains of simultaneous instability of both modes in the
theoretical HR diagram, for different metallicities. As a result, allowed metallicity
range corresponding to each point at the Petersen diagram can be derived (Buch-
ler & Szabó 2007 and Buchler 2008). The method was successfully applied to
double-mode Cepheids observed in the M33 galaxy, allowing to determine metallicity
gradient in this galaxy (Beaulieu et al. 2006). Also, metallicities of double-mode
LMC Cepheids were derived using this method (Marquette et al. 2009). Many
nonlinear models were computed by the Florida-Budapest group. Their work how-
ever, focused on modeling the double-mode phenomenon and main results will be
presented in the next Section.

2.6.3 Double-mode phenomenon

Purely radiative hydrocodes failed to reproduce the double-mode phenomenon in
classical pulsators (Section 1.4.3). Since the works of Kovács & Buchler (1988,
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1993), a lot of hope was connected with inclusion of turbulent convection into
pulsation hydrocodes.

Already in 1993, an exciting result, concerning the nonlinear multimode be-
haviour, was reported by Bono & Stellingwerf (1993) in a conference pro-
ceedings. Using original Stellingwerf model, they demonstrated stable multimode
(three-mode) behaviour in one RR Lyrae model (possibly connected with the res-
onance). However, no further details appeared later on, in any paper of these au-
thors. Interestingly, hundreds of models, of both Cepheids and RR Lyrae stars,
were computed by the group led by Giuseppe Bono, using modified Stellingwerf
model implemented in the Italian code (e.g.,Bono et al. 1997, Bono, Marconi
& Stellingwerf 2000). No signs of double-mode behaviour were reported.

First robust, convective double-mode models were reported in 1998, indepen-
dently by the Vienna (Feuchtinger 1998) and the Florida-Budapest (Kolláth
et al. 1998) groups. Feuchtinger (1998) analysed the RR Lyrae model sequence
of constant mass and luminosity. In a very narrow temperature range (< 20K)
he found the F/1O double-mode behaviour. For one model, long term stability of
the pulsation amplitudes of both modes was demonstrated. This is a strong indica-
tion that indeed, computed double-mode behaviour is stable, however, in principle
long-lasting mode-switching cannot be excluded. Except the paper of Feuchtinger,
no other analysis of double-mode behaviour computed with the Vienna code was
published.

Results of the Florida-Budapest group leave no doubt that the computed double-
mode behaviour is stable. Kolláth et al. (1998) computed a sequence of Cepheid
models of constant luminosity and proved that in particular temperature range the
double-mode behaviour is the only stable solution (attractor) of the system. They
considered the modal amplitude phase-space and demonstrated that trajectories cor-
responding to nonlinear integrations started with different initial conditions converge
toward one double-mode attractor. Their conclusions were supported by the Flo-
quet stability analysis. In later publication, Kolláth et al. (2002) improved their
methods for analyzing the stability of nonlinear convective models by coupling the
hydrodynamical results with amplitude equation analysis. These methods are also
used in this thesis and will be extensively described in the next Chapters. Kolláth
et al. (2002) also found that stable double-mode solution can coexist with stable
single-mode solution (hysteresis), the case not discussed earlier in the literature and
demanding inclusion of quintic terms in the amplitude equations in order to capture
the hydrodynamical behaviour of the models (see discussion in Chapter 6). Szabó,
Kolláth & Buchler (2004) analysed in detail the modal selection across the
HR diagram for RR Lyrae models. Similar work was done for Cepheid models, and
presented by Buchler during the conference held in Paris1.

Although, as noted by Kolláth et al. (2002), double-mode solution appeared
quite naturally, once turbulent convection was included in the hydrocodes, the un-
derlying physics remained obscure. Already Kolláth et al. (1998) showed that
the double-mode behaviour they computed, arose due to non-resonant mode cou-
pling. In their models self-saturation exceeded the cross-saturation, thus, fulfilling
the necessary condition for double-mode behaviour (see Section 1.4.3; Dziembowski

1Nonlinear Stellar Hydrodynamics, Paris, July 2007; proceedings to be published in the EAS
Publication Series
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& Kovács 1984). The either-or domain computed with radiative hydrocodes, in
which cross-saturation effects dominated, was replaced by the double-mode domain,
with dominant self-saturation. However, the specific ingredient of turbulent convec-
tion model, responsible for such change, was not identified.

It is also worth to notice that detailed comparison of the light and radial velocity
curves of the computed double-mode models with observations was not performed.



Chapter 3

Convective code for radial stellar
pulsation

In this Chapter, I present the details of the convective codes for radial stellar pul-
sation, used in the computations presented in this thesis. Basic assumptions con-
cerning the numerical and physical foundations of these codes are presented in Sec-
tion 3.1. Model equations are summarized in Section 3.2, while details of numerical
implementation are provided in Section 3.3. Basic tests of the code will be de-
scribed in the following Chapter. More concise description of the codes is provided
in Smolec & Moskalik (2008a).

3.1 Basic assumptions

Three basic assumptions underlie every convective pulsation hydrocode. These con-
cern the treatment of energy transfer by convection and by radiation (physical as-
sumptions) and the treatment of numerical mesh (numerical assumption). They
determine the numerical methods to be used and largely, the computer time neces-
sary to perform nonlinear computations. In the described codes, simple solutions are
preferred to more sophisticated, whenever the latter strongly increase the numerical
costs, without providing substantially better results. This assures that the codes
contain the essence of the best physics available up to date and are fast enough to
perform the extensive model surveys.

For the convective energy transfer Kuhfuß model is adopted. Its advantages
over the Stellingwerf model, motivating the choice, were presented in Section 2.5.
Radiative losses are treated through the radiative dissipation term (Eq. 2.60), which
is arbitrary choice. As an option, eddy-viscous pressure, in the form used by the
Florida-Budapest group (Eq. 2.75) is implemented.

Radiative energy transfer is treated in a simple diffusion approximation. This
assumption works well through the significant, optically thick layers of the model.
In the outermost layers, a better description would be desirable and is offered by
the time-dependent radiation hydrodynamics. Such treatment however, gives es-
sentially the same results as simple diffusion approximation (Kovács & Kanbur
1998, Feuchtinger, Buchler & Kolláth 2000), being numerically much more
expensive. Therefore, instead of increasing numerical costs, simple diffusion approx-
imation is implemented here.
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To describe the model structure, fixed Lagrangian mass zones are used. No
doubt, adaptive mesh is a better solution, as it allows to resolve the sharp features,
such as partial ionization regions and allows to trace the ionization fronts and shocks,
as they move through the model, during the nonlinear evolution. Adaptive mesh
algorithms were described by many authors (e.g.,Dorfi & Feuchtinger 1995,
Buchler, Kolláth & Marom 1997), and in principle, their implementation is
not very difficult. However, simple Lagrangian description is adopted here, for the
same reasons that motivated the use of diffusion approximation for the radiative
energy transfer. Inclusion of adaptive mesh algorithms into pulsation hydrocodes
didn’t lead to any substantial improvement of the obtained results. Computed
light curves were smoother, which satisfied the eye, however, their overall shape, as
described by Fourier decomposition parameters, remained the same, as in case of the
simple Lagrangian mesh. This was shown for both radiative (Buchler 1998) and
convective (Feuchtinger et al. 2000) computations. Also, stability properties of
the models, do not depend on the treatment of numerical mesh. The drawback of
the adaptive hydrocodes is the necessity to solve the additional mesh equation. This
makes the computations slow, disallowing the extensive model surveys.

The codes described in this thesis are based on radiative, Lagrangian hydrocodes,
originally written by Stellingwerf (1975a), with some minor modifications (Ko-
vács & Buchler 1988). Inclusion of turbulent convection into the nonlinear code
is laborious, but straightforward, as numerical methods remain largely the same.
In case of model builder and linear code, the task in not so simple. The envelope
cannot be constructed by simple inward integration of the model equations, alone,
as is possible in the radiative case. Some iterative techniques are necessary. Hence,
model builder was, to a large extent, written anew (Section 3.3.1). Also, linear
nonadiabatic code was written anew, as completely different solution method to
the linear problem was implemented (Section 3.3.2). The new equation of state
procedures, allowing to compute the necessary second order derivatives, were written
(Section 3.3.4).

3.2 Physical formulation of the model

Below, I briefly summarize the model equations and expressions for particular terms
entering the model. These were already given and extensively discussed in the previ-
ous Chapter. Here, they are collected together at one place, for further, convenient
reference. They are also rewritten in the Lagrangian version, and particular expres-
sions are given in the form, in which they are implemented in the hydrodynamical
codes.

Momentum and energy equations are given by (Eqs. 2.37, 2.38, 2.36),

du

dt
= −4πr2 ∂

∂Mr

(p + pt) + Uq −
GMr

r2
, (3.1)

dE

dt
+ p

dV

dt
= −∂(Lr + Lc)

∂Mr
− C, (3.2)

det

dt
+ pt

dV

dt
= − ∂Lt

∂Mr
+ Eq + C. (3.3)
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Sum of the last two equations form the total energy equation (Eq. 2.39),

d(E + et)

dt
+ (p + pt)

dV

dt
= −∂(Lr + Lc + Lt)

∂Mr
+ Eq. (3.4)

Fluid velocity is time derivative of radius,

u =
dr

dt
. (3.5)

Turbulent pressure and eddy-viscous terms are (Eqs. 2.40, 2.41, 2.42),

pt = αpρet, (3.6)

Uq =
1

ρr3

∂

∂r

[
4

3
αmρΛe

1/2
t r3

(
∂u

∂r
− u

r

)]

=
4π

r

∂X
∂M

, (3.7)

Eq =
4

3
αmΛe

1/2
t

(
∂u

∂r
− u

r

)2

= 4πX ∂(u/r)

∂M
, (3.8)

where numerically convenient variable X is given by,

X =
16

3
παmΛe

1/2
t r6ρ2 ∂(u/r)

∂M
. (3.9)

Quantities entering the coupling term, C, are (Eqs. 2.51, 2.52, 2.62),

S =
TpQ

cpHp

Π, (3.10)

D = αd
e
3/2
t

Λ
, (3.11)

Dr =
4σγ2

r

α2

T 3V 2

cpκH2
p

et. (3.12)

Above, numerically convenient version of the thermal expansion coefficient, Q, was
used,

Q =

(
∂V

∂T

)

p

=
QV

T
. (3.13)

Correlation Π is given by (Eq. 2.49),

Π = ααse
1/2
t cpY . (3.14)

Finally for the fluxes, following expressions are used (Eqs. 2.50, 2.44, 1.6),

Fc =
αc

αs

ρTΠ = ααcρTcpe
1/2
t Y , (3.15)

Ft = −αt4πr2ρ2Λe
1/2
t

∂et

∂M
, (3.16)

Fr = −4σ

3
4πr2 1

κ

∂T 4

∂M
. (3.17)
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Corresponding luminosities are given by L = 4πr2F . The expression for the radia-
tive flux results from the diffusion approximation to the radiative energy transfer.
Radiation energy, Er, and radiation pressure, pr, are included in p and E together
with gas contribution,

p = pg + pr, (3.18)

E = Eg + Er, (3.19)

where,

pr =
1

3
aT 4, (3.20)

Er = aT 4V. (3.21)

3.3 Numerical implementation

In the following Sections, I describe the numerical schemes and methods imple-
mented in the hydrocodes, allowing to solve the full set of Eqs. (3.1)–(3.5). Model
builder, constructing the static envelope, is described in Section 3.3.1. Linear nona-
diabatic code is described in Section 3.3.2, and nonlinear direct time integration
hydrocode in Section 3.3.3. All three codes use the same equation of state and
opacity subroutines, briefly described in Section 3.3.4. Also, exactly the same nu-
merical mesh, as well as exactly the same numerical representation of all model
equations and quantities is used. This is very important, as it allows to interpret
the nonlinear results in terms of e.g., linear period ratios (see Section 4.1).

3.3.1 Static model builder

Static model builder constructs the static envelope, that is solves the full set of
Eqs. (3.1)–(3.5), with time derivatives and fluid velocity set to zero ( d/ dt ≡ 0, u ≡
0). The model to be constructed is specified by its mass, M , luminosity, L, effec-
tive temperature, Teff , and chemical composition, hydrogen mass fraction, X, and
heavy element mass fraction, Z. Also, the convective parameters entering the model
(Table 2.1) need to be specified. In principle, all parameters can be chosen inde-
pendently, particularly, we are not bound by the evolutionary tracks in choosing the
model mass and luminosity.

The structure of the mesh is the same as in case of the original radiative Stelling-
werf’s hydrocodes (see e.g.,Kovács & Buchler 1988). The total number of zones
is set to N . Of these, Na outer zones have equal masses, DMN , down to the anchor
zone, in which the temperature is fixed to Ta. Below anchor zone, masses of the
remaining N −Na zones increase geometrically inward, with common ratio, h. The
bottom boundary of the envelope is fixed by a given temperature, Tin. The anchor
temperature is chosen to be around 11000K, which assures that at least one zone
is located at the center of the hydrogen partial ionization region (PIR). Such mesh
structure was necessary in the early radiative computations with coarse mesh, to
assure the smooth variation of the mode growth rates along a sequence of models
(e.g., for models of constant L and varying Teff). Nowadays, linear computations
with much denser mesh are very fast. Also, convection smears the PIRs. However,
best (smooth) results are obtained with anchor preserved in the mesh.
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The model is divided into N mass zones, separated by the interfaces. All variables
are defined either at the zones (thermodynamic variables, T , p, V , κ) or at the
interfaces (luminosities, velocities, radii) and are labeled with integer indices, just
as is shown in Figure 3.1. Outermost zone, as well as outermost interface have index
N . Mass interior to interface i is denoted by Mi, mass of the zone i by DMi, and
mass associated with the interface i, DM2i, is defined as,

DM2i = 0.5(DMi + DMi+1).

————— i + 1
i + 1

————— i M, DM2, u, r, Hp, Y , Lr, Lc, Lt, Uq

i DM, T, V, Q, cp, κ, p, pt, Eq, S, D, Dr

————— i − 1

Figure 3.1: Notation used in the numerical scheme and summary of zone and interface

quantities.

For discrete numerical scheme, one has to define the spatial averages of model
quantities, denoted by curly brackets {}, as well as spatial differences, denoted by
∆, which are numerical representation of the derivatives. Spatial average (spatial
difference) of the zone quantity is defined at the interface and spatial average (spatial
difference) of the interface quantity is defined at the zone. Examples below illustrate
the notation,

{T}i = 0.5(Ti + Ti+1),

{r}i = 0.5(ri−1 + ri),

∆pi = pi+1 − pi,

∆Li = Li − Li−1.

In order to construct the envelope, momentum (Eq. 3.1), total energy (Eq. 3.4)
and turbulent energy (Eq. 3.3) equations need to be solved. Numerical representa-
tion of their static, equilibrium versions are following,

0 = Mi = −4πr2
i

∆pi + ∆pt,i

DM2i
− GMi

r2
i

, (3.22a)

0 = Ei =
Lr,i

L
+

Lc,i

L
+

Lt,i

L
− 1, (3.22b)

0 = Zi = −∆Lt,i

DMi
+ Ci. (3.22c)

Note that the total energy equation reduces to luminosity conservation condition,
and that eddy-viscous terms do not enter the static model computations. Above,
Mi, Ei and Zi denote the left-hand-sides of the momentum, total energy and turbu-
lent energy equations, respectively, which for static model should be equal to zero
for all model zones/interfaces.

Construction of the static envelope proceed in two steps. In the first step, initial
model is constructed, without turbulent pressure and without turbulent flux (αp =
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αt = 0), with turbulent energy (and coupling term) defined at the interfaces. This
can be done by direct integration of the static equilibrium equations (Eqs. 3.22)
from surface inward. In the second step, the final model, with turbulent pressure
and turbulent flux included and with turbulent energies redefined at the zones, is
constructed. This is done through the multivariate Newton-Rhapson iterations,
called the envelope relaxation in the following (see e.g.,Yecko et al. 1998). Below,
both steps are briefly described.

Inward integration. Turbulent pressure and turbulent flux are neglected in
Eqs. (3.22). Initial surface conditions for the inward integration are following. Outer
pressure is set equal to 0,

pout = 0, (3.23)

radius of the outermost interface, rN , is set to,

rN =

√

L

4πσT 4
eff

, (3.24)

and temperature of the outermost zone is equal,

T 4
N = fT 4

eff . (3.25)

For f value 1/2, resulting from the Eddington approximation is used by default.
With the guessed value for the mass of the outermost zone, DMN , and with

conditions (3.23) and (3.24), the value of pN is derived from the momentum equation
(Eq. 3.22a). Then, for a given pN and TN (Eq. 3.25), EOS yields the value of the
specific volume, VN . From continuity equation, the value of rN−1 (ri−1, in general)
is computed,

rN−1 =

(

r3
N − 3VNDMN

4π

)1/3

.

For the interior zones masses are set according to,

Mi−1 = Mi − DMi,

with DMi = DMN above the anchor and DMi−1 = hDMi, below. Momentum
equation immediately yields pN−1 (pi−1). For zone N − 1, and all interior zones,
energy equations need to be solved. TN−1 (Ti−1) is guessed. EOS and opacity tables
yield, VN−1 and κN−1 (Vi−1 and κi−1), which allow to compute the luminosities and
check the luminosity conservation condition (Eq. 3.22b). TN−1 (Ti−1) is changed
iteratively until this condition is fulfilled. Integrations continue till the anchor zone
is reached. With initial guess for the DMN , temperature in the anchor zone is
different than Ta. All computations are repeated, with DMN successively changed
to yield Ta in the anchor zone.

The whole procedure is repeated for integrations below the anchor, however, now
h is successively changed to yield the given inner boundary temperature, Tin.

Envelope relaxation. At this step, turbulent pressure and turbulent flux are
included in the model. Turbulent energies, as well as coupling terms, are redefined
at the zones. Below, numerical representation of all model quantities entering the
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equilibrium model is given. For the quantities entering the coupling term we have
(Eqs. 3.10, 3.11, 3.12),

Si =
TipiQi

cp,i

{
Π

Hp

}

i

e
1/2
t,i , (3.26)

Di =
αd

α

e
3/2
t,i

{Hp}i

, (3.27)

Dr,i =
4σγ2

r

α2

T 3
i V 2

i

cp,iκi{H2
p}i

et,i. (3.28)

Correlation Π is given by,

Πi = ααs{cp}iYi. (3.29)

Note that in comparison to Eq. (3.14), the term e
1/2
t was dropped above. Now, it

appears separately in the expression for turbulent source function, Si, and below,
in the expression for convective flux, where it is averaged at the interface. The
motivation for such treatment is to assure that all quantities entering the coupling
term in zone i, Ci, depend only on the turbulent energy in this zone, et,i. Hence,
the only non-local (in et) term in the turbulent energy equation is the diffusive term
containing the turbulent flux.

Numerical representations of the luminosities (Eqs. 3.15, 3.16, 3.17) are,

Lc,i = 4πr2
i

αc

αs

{
T

V

}

i

Πi{e1/2
t }i, (3.30)

Lt,i = −2

3
ααt(4πr2

i )
2Hp,i

{
1

V 2

}

i

e
3/2
t,i+1 − e

3/2
t,i

DM2i
, (3.31)

Lr,i = −4σ

3

(4πr2
i )

2

DM2i

T 4
i+1/κi+1 − T 4

i /κi

1 − log(κi+1/κi)

log(T 4
i+1/T 4

i )

. (3.32)

Averaging scheme in the expression for radiative luminosity comes from Stelling-
werf (1975a). Finally, turbulent pressure (Eq. 3.6) is given by,

pt,i =
αpet,i

Vi
. (3.33)

Pressure scale height and superadiabatic gradient entering above formulae are rep-
resented as,

Hp,i =
r2
i

GMi
{pV }i, (3.34)

Yi =
4πr2

i

DM2i

Hp,i

{V }i

({
Q

cp

}

i

(∆pi) − (log Ti+1 − log Ti)

)

. (3.35)

Expression for the superadiabatic gradient is based on the formula given by Stelling-
werf (1982a).

The whole system of Eqs. (3.22) is solved through the multivariate Newton-

Rhapson iterations. For the turbulent energy equation, ̟ = e
1/2
t is used as a basic



56 Convective code for radial stellar pulsation

variable. The correction equations form a linear, band system of bandwidth eleven,
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(3.36)

Initial values for iterations are taken from the first step of model construction
(inward integration). During iterations outer temperature is constrained to,

T 4
N =

fL

4πσr2
N

, (3.37)

and free adjustment of the outer radius, rN , is allowed. Iterations are treated as
converged, if relative corrections to the radii, temperatures and turbulent energies
are smaller than 10−10, in all model zones/interfaces. In a resulting model, temper-
ature in the anchor zone is not equal to Ta. Hence, to preserve the mesh structure,
iterations are repeated several times with DMN and h being successively changed.
DMN is adjusted to match the desired temperature in the anchor zone. Then, to
assure a smooth transition from the upper part (zones above the anchor) to the
lower part (zones below the anchor) of the envelope, h need to be changed. This
is done in such a way that the total mass of the envelope below the anchor is not
changed. As a result, the temperature of the innermost zone is slightly different
from Tin, but only by several Kelvins.

3.3.2 Linear analysis

In the linear nonadiabatic analysis (LNA), the full set of equations, (3.1)–(3.5), is
considered. Below they are rewritten in a convenient form, with time derivatives of
basic variables, for which we pick r, u, T and et, left alone on the left hand side,

dr

dt
= u,

du

dt
= −4πr2∂(p + pt)

∂Mr
− GMr

r2
+ Uq,

cV
dT

dt
= −

(

p +
(∂E

∂V

)

T

)
dV

dt
− ∂(Lr + Lc)

∂Mr
− C,

det

dt
= −pt

dV

dt
− ∂Lt

∂Mr

+ C.

(3.38)

In case of the internal energy equation, thermodynamic identity,

dE

dt
= cV

dT

dt
+

(
∂E

∂V

)

T

dV

dt
,

was used to yield the time derivative of the temperature. cV in a formulae above, is
specific heat at constant volume,

cV =

(
∂E

∂T

)

V

. (3.39)
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Numerical representations of the left-hand side derivatives, entering Eqs. (3.38), are,

V̄i =
dri

dt
= ui

M̄i =
dui

dt
= − 4πr2

i

DM2i
(∆pi + ∆pt,i) −

GMi

r2
i

+ Uq,i

cV,iĒi = cV,i
dTi

dt
= −

(

pi +
(dE

dV

)

T,i

)
4π

DMi

(
r2
i ui − r2

i−1ui−1

)
− ∆Lr,i + ∆Lc,i

DMi
− Ci

Z̄i =
det,i

dt
= −pt,i

4π

DMi

(
r2
i ui − r2

i−1ui−1

)
− ∆Lt,i

DMi
+ Ci

(3.40)

To express the time derivative of the specific volume, following identity was used,

dVi =
4π

3DMi
d(r3

i − r3
i−1).

V̄ , M̄, Ē and Z̄ denote the time derivatives of the basic variables, r, u, T and et,
respectively. Numerical representation of all model quantities is exactly the same as
provided in the previous section (Eqs. 3.26–3.35). In addition, eddy-viscous term,
Uq (Eq. 3.7), enters the linear analysis. Its numerical representation is given below,

Uq,i =
4π

ri

Xi+1 − Xi

DM2i
, (3.41)

where,

Xi =
16

3
πααm

1

V 2
i

e
1/2
t,i {Hp}i{r6}i

ui/ri − ui−1/ri−1

DMi
. (3.42)

Although the viscous energy transfer rate, Eq (Eq. 3.8), does not enter the LNA
computations (since it is ∼ u2), its numerical representation is also given below, for
completeness,

Eq,i = 4πXi
ui/ri − ui−1/ri−1

DMi
. (3.43)

The static, not perturbed model is constructed by the model builder. Very
small turbulent energies are filtered out, through setting et = ef if et < ef . This is
necessary to avoid numerical havoc in the computed work integrals in the deep model
zones, which appear, if very small turbulent energies (et < 10−4 erg/g) are retained.
With ef = 1 erg/g results are satisfactory and do not depend on the exact value
of ef (at least in a reasonable range, ef ∈ (10−4, 106) erg/g). The system (3.40)
is linearized around equilibrium, and time dependence of the form ∼ exp(σt) is
assumed for the perturbed quantities. The compact form of the resulting eigenvalue
problem is,
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where ki = c−1
V,i.

As suggested by Glasner & Buchler (1993), the system is solved using the
canned eigenvalue solver. Two numerical subroutines are implemented in the code,
namely rg from the eispack library (Dongarra & Moler 1983), and dgeev
from the lapack library (Anderson et al. 1999). By default eispack/rg is used.

Linear code allows to compute the mode periods, growth rates, as well as asso-
ciated linear eigenfunctions, mode energies and work integrals. Below, formulae for
these quantities are summarized.

Mode growth rates and frequencies. Growth rate of the mode, γ, is defined
as fractional growth of the kinetic energy per pulsation period,

γ = 4π
ℜ(σ)

ω
, (3.45)

where,
ω = ℑ(σ), (3.46)

is the mode frequency. In case of radiative computations the LNA system generates
N thermal (ℑ(σ) = 0) and N vibrational (σi = (σj)∗, for associated eigenvalues)
eigenmodes. In convective case, additional turbulent energy equation generates a
new family of N modes. Some of them are of vibrational character. These are
extremely damped, with typical growth rates, γ < −1, and hence, are not expected
to cause any troubles in nonlinear computations (see also, Yecko et al. 1998).

Linear eigenvectors. Radius, temperature and turbulent energy eigenvectors,
δri , δTi and δ̟i (i = 1, . . . , N), are simply returned by the eigenvalue solver. They
are normalized by,

K = rN/δrN ,

to yield following definitions of the complex, linear and normalized eigenvectors of
the radius and temperature,

fr,i =
δri

ri
K,

fT,i =
δTi

Ti

K,

For the luminosity eigenvector we write,

fL,i =

(
∂L

∂r∗
δr∗ +

∂L

∂T∗
δT∗ +

∂L

∂̟∗
δ̟∗

)

K/L0,

where L denotes the total luminosity, L0 its static value, and asterisks denotes all the
relevant indices (value of luminosity at a given zone, depends on physical conditions
in the neighboring zones). Amplitudes and phases are simply defined as in example
below,

abs
(
fr,i

)
= |fr,i|,

ph
(
fr,i

)
= atan

(ℑ(fr,i)

ℜ(fr,i)

)

.

Mode energies and work integrals. Kinetic energy of a pulsation mode is
defined as,

EK = 0.5

∫

ω2|δr|2 dM. (3.47)
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Numerically we have,

EK = 0.5
∑

i

DM2i

(

ℑ(σ)abs
(
δriK

))2

The ordinary gas pressure work done in particular zone i, Wg,i, can be expressed
as (e.g.,Castor 1971; Appendix A, Eq. A.14),

Wg,i = −πDMiℑ
(
(δpi)

∗δVi

)
.

Hence, the gas pressure work integral, Wg(Mr), is simply,

Wg(Mr) = −π

Mr∫

M0

ℑ{(δp)∗(δV )} dM, (3.48)

where integration is extended over the mass of the envelope. Specific volume and
gas pressure perturbations are computed as,

δVi =

(
∂Vi

∂r∗
δr∗

)

K

δpi =
∂pi

∂Vi

δVi +
∂pi

∂Ti

δTiK

Turbulent pressure work integral has exactly the same form as gas pressure work
integral, however, with p replaced by pt.

Expression for eddy-viscous work integral, WEV (Mr), is following (Eq. A.14),

WEV (Mr) = π

Mr∫

M0

ℑ
{

(δX)∗
[
δV

r3
− 3V

r3

δr

r

]}

dM. (3.49)

Derivation of the above formula (Smolec & Moskalik 2008a) is presented in
Appendix A.

3.3.3 Direct time integration nonlinear hydrocode

In nonlinear, direct time computations, full nonlinear set of equations, (3.1)–(3.5),
is solved as initial value problem. Static model, computed by the model builder, is
initialized (kicked) with the scaled linear velocity eigenvector, and evolved forward in
time, step by step. At a given instant of time (time step), the model is fully specified
by the values of velocities and radii of all model interfaces and temperatures and
turbulent energies in all model zones. In the following, the value of some quantity
Z, in the i-th zone/interface of the model, at a time step n, will be denoted by, Z

(n)
i .

Thus, the basic step of the nonlinear hydrocode is to perform the time evolution,
(

u
(n)
i , r

(n)
i , T

(n)
i , ̟

(n)
i

)

→
(

u
(n+1)
i , r

(n+1)
i , T

(n+1)
i , ̟

(n+1)
i

)

In the following, I will present the finite difference form of the full nonlinear model
equations. Then, I will discuss the time averages that appear in them. Finally, the
solution method will be given.
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Finite difference equations

Equations, (3.1), (3.4), (3.3) and (3.5) are written in a finite difference form, with

̟ = e
1/2
t , being the basic variable,

Dui

DT
+ 4π

〈
r2
i

〉∆
(〈

pi

〉
+
〈
pt,i

〉)

DM2i
+ GMi

〈
1

r2
i

〉

−
〈
Uq,i

〉
= 0, (3.50)
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(3.51)
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〉
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〉
− DT
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Eq,i

〉
− DT

〈
Ci

〉
= 0, (3.52)

r
(n+1)
i = r

(n)
i + DT

〈
ui

〉
. (3.53)

In the above equations,
〈〉

denote the time average over a time step, capital D is
used for the time difference, and DT stands for the value of the time step. Time
differences are calculated as in the following example,

Dui = u
(n+1)
i − u

(n)
i .

For the boundary conditions we use similar expressions as in radiative computations
discussed in Section 1.3. For the outer boundary, vanishing external pressure is
assumed,

pout = 0. (3.54)

Turbulent energy is set to zero in the outermost model zone,

̟N = 0, (3.55)

and for the outgoing luminosity we write (cf. Eq. 3.37),

LN = 4πr2
Nf−1σT 4

N . (3.56)

At the inner boundary a rigid core,

u0 = 0, (3.57)

of constant luminosity is assumed, and turbulent energy is set to zero in the inner-
most zone,

̟1 = 0, (3.58)

(and practically, also in several innermost zones, as deep interior of the models,
discussed in this thesis, is purely radiative).

Numerical representation of all model quantities is exactly the same as discussed
in the previous Sections, namely Eqs. (3.41)–(3.43) are used for eddy-viscous terms,
and Eqs. (3.26)–(3.35) for the remaining quantities. However, turbulent energy
dissipation term is slightly modified, to deal with a somewhat troubling nature of
the turbulent energy equation. Note that in this equation, all terms depend on et in
some power. Therefore, et = 0 is always a solution. Once et becomes zero in some
zone it will stay equal zero, even if convective instability arises. The problem was
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extensively discussed by Gehmeyr & Winkler (1992b), who proposed numerical
scheme to overcome the problem. Different scheme was adopted by Yecko et al.
(1998), and very similar scheme is used here. A small non-zero term is added in the
turbulent energy equation, by slight modification of the turbulent dissipation term
(Eqs. 3.11, 3.27),

Di =
αd

α

e
3/2
t,i − e

3/2
0

{Hp}i
, (3.59)

where e0 is a small, non-zero, constant turbulent energy, for which we set e0 =
104 erg/g. The way in which this correction works, will be described in Section 5.2.2,
based on numerical examples.

In the nonlinear scheme also artificial viscous pressure is included. Artificial
viscosity (AV) is necessary in radiative computations to handle shocks developing
mostly in the PIRs. It acts as ordinary pressure, spreading the shock through
several mass zones. Unfortunately, it is also main factor limiting the pulsation
amplitude of radiative models (see Section 1.3.2). In convective hydrocodes, artificial
viscosity is, in principle, not necessary. Eddy-viscous terms provide physical source
of dissipation, and numerical problems are usually not encountered. However, for
consistency AV is preserved in all convective hydrocodes (Bono & Stellingwerf
1994, Feuchtinger 1999a) and also in the code described here. Modified von
Neumann-Richtmyer formula for AV (Stellingwerf 1975a), containing two free
parameters, CQ and αcut, is used here. Additional AV pressure, pav, is computed in
the following way,

pav,i = CQpi

(
ui−1 − ui√

piVi

− αcut

)2

(3.60)

AV pressure turns on, only if relative speed of the consecutive approaching zones
exceeds a given fraction, αcut, of a local sound speed. By default, CQ = 4 is used, just
as in radiative computations. Cut-off parameter is set to very high value, αcut = 0.1.
This choice assures that AV turns on only exceptionally. It never plays a role in full
amplitude pulsation. Note also, that as AV pressure is proportional to the square
of the relative velocity, it does not enter the static model computation, nor LNA
analysis.

Time averages

To solve the finite difference equations (3.50)–(3.53), time averages over a time step,
of several quantities, need to be calculated. Usually time average of some quantity
Z is expressed as,

〈
Zi

〉
= ξZ

(n+1)
i + (1 − ξ)Z

(n)
i ,

with ξ = 1 corresponding to fully implicit treatment and ξ = 0 corresponding
to fully explicit treatment. The exact value of ξ results from energy conservation
considerations. In case of radiative hydrocodes appropriate averaging scheme was
given by Fraley (1968). In case of convective hydrocode described in this thesis,
averaging scheme is derived in Appendix B. Below, summary of resulting expressions
is provided.
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In order to preserve the total energy,
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〉
and
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〉
entering the momentum

equation, have to be calculated as (Eqs. B.10 and B.8),
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For the velocity average in Eq. (3.53), time-centered scheme is necessary (Eq. B.9),
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2
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(n)
i . (3.63)

These are exactly the same expressions as required in purely radiative hydrocodes.
In case of convective model adopted in the hydrocode under discussion, the way
time averages of eddy-viscous terms are calculated, is also determined by the energy
conservation, and is following (Eqs. B.16, B.17),
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i , (3.66)
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Values of θu and β are not restricted by energy conservation. For radius averaging,
〈
ri

〉
, it is natural to adopt the time-centered definition (β = 1/2), as it enters

the quotients with time centered velocity average. For
〈
Xi

〉
fully implicit scheme

(θu = 1) is used, which, as was checked experimentally, assures fast convergence in
nonlinear iterations.

The way pressures and luminosities are averaged, has no effect on the energy
conservation. Following definitions are adopted,
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i , (3.68)
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t,i , (3.72)

with θ = θt = 1/2 and wr = wc = wt = 2/3. The quoted values of θ and wr assure
greater numerical stability of radiative computations. The same values are adopted
for turbulent pressure and convective fluxes.

Turbulent energy equation alone, does not enter the energy conservation analysis
(see Appendix B). For the coupling term following average is used,

〈
Ci

〉
= γC

(n+1)
i + (1 − γ)C

(n)
i , (3.73)

and by default fully implicit treatment (γ = 1) is adopted, which assures fast con-
vergence in nonlinear iterations.
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Solution

Numerical scheme adopted to solve Eqs. (3.50)–(3.53), is based on the original ra-
diative version of the code (Stellingwerf 1975a). Multivariate Newton-Rhapson
method is used to solve Eqs. (3.50), (3.51) and (3.52). The concise form of the linear
iteration equations is following,
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where M̃, Ẽ and Z̃ are left hand sides of Eqs. (3.50), (3.51) and (3.52), respectively.
The matrix on the left hand side is band matrix of bandwidth 13 and dimension
3N + 1, as inner boundary condition is implemented in the first equation. The
system is solved using either lapack procedures (dgbtrf+dgbtrs, Anderson
et al. 1999), or linpack procedures (dgbfa+dgbsl, Dongarra et al. 1979).
The former are adopted by default, as they are significantly faster.

Temperatures, radii and turbulent energies at time step (n) (time t) provide
initial guess, and values at time step (n + 1) (t + DT ) are iterated. To avoid
convergence problems, emerging corrections need to be limited by undercorrection
factor, just as in radiative case (see e.g.,Stellingwerf 1975a). Velocities are
derived during the iterations through Eq. (3.53), rewritten in the following form
(Eq. 3.63 is also used),
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i

)

. (3.75)

At the beginning of the computations (t = 0) the static model, as computed by
the model builder, is initialized with arbitrary velocity profile. For this purpose a
scaled LNA radius eigenvector of a given mode, or a superposition of eigenvectors
corresponding to different modes, is used. Constant time step, corresponding to 600
steps per pulsation cycle, is adopted by default. Iterations are treated as converged
if relative corrections, δTi/Ti and δ̟i/̟i, are smaller than 10−6 in all model zones.
If convergence is not achieved in less than 60 iterations, computations are restarted
with halved time step. Model integration proceed for a given number of pulsation
cycles, and can be restarted later on from continuation file.

3.3.4 Material properties

All the codes described in this Chapter, model builder, LNA code and nonlinear
hydrocode, use exactly the same equation of state (EOS) and opacity subroutines.

By default, analytical EOS described in the Appendix of Stellingwerf (1982a)
is used. In this EOS, equilibrium mixture of H, H+, He, He+, He++, M and M+

is considered. M stands for fictional metal with ionization potential of 7.6eV, used
to model the ionization of heavier elements. The input variables for this EOS are
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temperature and specific volume, which is very convenient, as also opacities are
usually computed as a function of these variables. EOS returns the values of energy
and pressure (gas+radiation), as well as all thermodynamic derivatives (first and
second order) necessary in the described numerical schemes (cp, cV , Q, derivatives
of pressure and energy with respect to temperature and volume).

The analytical EOS is very simple and consequently very fast, which makes it
suitable in nonlinear computations. Still, it is sufficiently accurate and leads to qual-
itatively the same results, as obtained with more sophisticated tabular EOS of the
OPAL group (EOS2001, Rogers 2000). This was checked numerically. The tabular
OPAL EOS was implemented into the codes as an option. The original subroutines
from the OPAL web page, were slightly modified by the author. Original table in-
terpolation scheme was changed and made suitable for envelope computations (fixed
chemical composition). In the modified procedures, external code generates a single
table for given X and Z (instead of a table for given Z, only). This table is interpo-
lated by the modified OPAL procedures implemented directly into hydrodynamical
codes, and supplemented with driver subroutines yielding the relevant quantities and
derivatives as a function of T and V . The comparison between simple analytical
EOS and tabular OPAL EOS was performed for several sequences of models. Almost
the same results were obtained, concerning both linear and nonlinear results. Here,
just for example, results for one particular Cepheid model are briefly summarized.
The model is characterized by M = 4.5M⊙, L = 1143.40L⊙, T = 5793.6K, X = 0.7
and Z = 0.02. This model will be extensively described in the next Chapter, and
more details are given there. Table 3.1 provides the periods and linear growth rates
for three pulsation modes, computed with analytical and tabular EOS. Results are
almost the same. In Figure 4.3, in the next Chapter, thin blue lines correspond to
quantities (∇a, Y , Fc, Ft and et) computed with the tabular EOS (black lines are
computed with analytical EOS). Again, very similar results are obtained with both
EOS. Black and blue lines almost overlap, differences being barely visible. This fully
justifies the use of analytical EOS, which is by more than 40 per cent faster than
the tabular EOS in typical model computations.

Quantity analytical EOS tabular EOS
P0 [d] 3.6884 3.6981
P1 [d] 2.5724 2.5791
P2 [d] 1.9976 2.0011

γ0 0.505 · 10−2 0.513 · 10−2

γ1 0.144 · 10−1 0.131 · 10−1

γ2 −0.408 · 10−1 −0.429 · 10−1

Table 3.1: Linear periods and growth rates for the three consecutive pulsation modes,

computed with analytical and tabular EOS.

To compute the opacity and opacity derivatives, subroutines used in Warsaw-
New Jersey stellar evolutionary code (e.g.,Pamyatnykh 1999) are adopted1. The
external program is used to compute the opacity tables for a given composition,

1The codes are kept up-to-date by A.A. Pamyatnykh, who kindly provides the most recent
version to the author
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X and Z, and for a given chemical mixture. Then, numerical procedure incorpo-
rated in the hydrocodes, interpolates the opacity and opacity derivatives for a given
temperature and specific volume.
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Chapter 4

Tests of the Code

In this Chapter, I present some basic tests of the described convective hydrocodes.
They concern modeling of fundamental (Section 4.1), as well as first overtone (Sec-
tion 4.2) Cepheids. Described tests show how model builder, LNA code, and non-
linear hydrocode work. Results prove that the computed models are reliable and
numerically robust. The tests provide a background for further discussion concern-
ing the double-mode phenomenon, as the same sets of convective parameters as
adopted in this Chapter, will also be adopted in the following Chapters.

Considering the scientific results, in Section 4.1 I display the Fourier progres-
sion for radial velocity curves of fundamental mode Cepheid models and compare
them with observations. Although plenty of such models were computed by Italian
group (e.g.,Bono, Marconi & Stellingwerf 2000), no quantitative compari-
son with observations was done. In Section 4.2, I show the Fourier progression for
radial velocity curves of first overtone Cepheid models. The focus in these compu-
tations was to reproduce the longest observed period for overtone Galactic Cepheid,
7.57 d (V440 Persei). These models, computed by myself, are described in the paper
of Baranowski et al. (2009), and impose interesting constraints on convective
parameters entering the model.

Some convective models of β Cephei stars were also computed with the described
codes (Smolec & Moskalik 2007), however, details and results will not be given
in this thesis.

4.1 Fundamental mode Cepheid models

Computations presented in this Section were done for test purposes, and were not
intended for detailed modeling of real stars. In particular, convective parameters
entering the model, were not tuned to match all observational constraints. Two sets
of convective parameters discussed in this Section are given in Table 4.1. Set A
represents the simplest convective model, without turbulent pressure, turbulent flux
and radiative losses (αp = αt = γr = 0). In set B effects of turbulent pressure and
turbulent flux are turned on1. Table 4.1 provides also parameters of set C including
radiative losses, that will be discussed in the next Section.

1These two effects are usually studied together, for stability reasons. If turbulent pressure is
turned on without turbulent flux, convergence difficulties are encountered in nonlinear integrations.
This was also noted for red giant models by Olivier & Wood (2005).
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Set α αm αs αc αd αp αt γr

A 1.5 0.20 1.0 1.0 1.0 0.0 0.0 0.0
B 1.5 0.25 1.0 1.0 1.0 1.0 0.01 0.0
C 1.5 0.50 1.0 1.0 1.0 0.0 0.0 1.0

Table 4.1: Three sets of convective parameters considered in this and in following Chap-

ters. Parameters αs, αc, αd, αp and γr are given in the units of standard values (see

Table 2.1).

All models described in this Section are characterized by Galactic chemical com-
position, X = 0.7, Z = 0.02. OPAL opacities are used (Iglesias & Rogers 1996),
at the low temperatures supplemented with the Alexander & Fergusson (1994)
opacity data. Opacities were generated for the solar mixture of Grevesse & Noels
(1993). Model parameters are constrained by the M − L relation given by Szabó
et al. (2007), log(L/L⊙) = 3.56 log(M/M⊙) + 0.7328.

The mesh parameters are, total number of zones, N = 150, anchor location,
Na = 50, inner boundary temperature, Tin = 2.5 · 106 K. For the temperature in the
anchor zone different values were used for models of set A and B. For models of set A,
Ta = 11000K was adopted, just as in radiative computations. However, for models
of set B, higher temperature is necessary, Ta = 15000K, to assure smooth behaviour
of mode growth rates along a sequence of models. With lower temperature in the
anchor zone, growth rates are not smooth, which is numerical effect, resulting from
poor spatial resolution. In test computations with dense mesh (N = 300), growth
rates are smooth independently of Ta value (provided it is reasonable). The problem
appears for models in which turbulent pressure is included, and hence, for all such
models considered later on in this thesis, higher anchor temperature is adopted.

Instability strips computed for models of both sets of convective parameters are
depicted in Figure 4.1, in which the theoretical HR diagrams are presented. The
overall structure of the instability strips computed for sets A and B is very similar.
In case of set A, instability strips (both F and 1O) are slightly narrower than in
case of set B, and are shifted by ≈ 200K toward higher temperatures. For the
fundamental mode, width of the IS at log(L/L⊙) = 3.0 is equal to ≈ 830K for set
A, and ≈ 1020K for set B. In case of set A instability strip for the first overtone
extends toward slightly higher luminosities. In both cases, the 2:1 resonance between
the fundamental and second overtone crosses the instability strip at periods slightly
lower than 10 days indicated by observations (see later on in this Section).

For detailed discussion of static and full amplitude model properties, one model
of set B was picked. Its mass is 4.5M⊙, and it lays 300K away from blue edge of
the fundamental mode IS. Its location is shown with black circle in the right panel
of Figure 4.1. The model is unstable in the fundamental and in the first overtone.
Higher order overtones are stable. Linear nonadiabatic period of the fundamental
mode is ≈ 3.69d (see second column of Table 3.1 for exact values of LNA periods
and growth rates for this model).

Static model structure is depicted in Figures 4.2 and 4.3. Upper panel of Fig-
ure 4.2 demonstrates the envelope mesh structure. The outermost part of the en-
velope, above the anchor, consists of 50 zones of equal mass. It contains very little



4.1 Fundamental mode Cepheid models 69

Figure 4.1: Instability strips in the theoretical HR diagram, computed for convective

parameters of set A (left panel) and B (right). Solid and dotted black lines limit the

fundamental mode and first overtone instability strips, respectively. Dashed black lines

correspond to constant fundamental mode periods indicated in the Figures. Dash-dotted

lines show the center of the 2:1 resonance shaping the Hertzsprung bump progression

(2ω0 = ω2). Coloured lines show the location of nonlinear model sequences described in

this Section and displayed in Figures 4.10 and 4.11.

mass, as compared to total stellar mass (≈ 5 · 10−5M), and extends over slightly
less than 1 per cent of the stellar radius. Cepheids are giant stars, characterized
by high central mass concentration. Indeed, the whole envelope under discussion
contains ≈ 23 per cent of the total mass extending along 86 per cent of the total ra-
dius. The run of basic thermodynamic variables, temperature, pressure and specific
volume (density), is plotted in the lower panel of Figure 4.2 Temperature decrease
monotonically toward the outer model layers. Pressure decreases in the inner most
layers, then, just above the anchor is stays roughly constant for more than 20 mass
zones, and drops off fast close to the surface. Specific volume increase outward the
model, except the hydrogen partial ionization region (above the anchor zone), where
density inversion is observed.

In Figure 4.3 the crucial variables determining the convective structure of the
model and model stability, are plotted versus the zone temperatures. Zone scale is
provided at the top axis for reference. Upper panel shows the run of opacity, log κ,
and opacity derivative, κT = (∂ log κ/∂ log T )V . Three opacity bumps are clearly
visible. The innermost bump (Z bump, iron bump) is produced by fine-structure
transitions in iron-group elements. It is located at log T ≈ 5.3. Helium (He) and
hydrogen (H) opacity bumps are connected with partial ionization regions. They are
located closer to the surface, at log T ≈ 4.65 and log T ≈ 4.05, respectively. Each
opacity bump is connected with the bump in the run of opacity derivative, which is
crucial for determining the driving properties of the model zones (see discussion of
the work integrals in the following). Convective zones of the model develop in the
outermost regions of the envelope, in the hydrogen-helium partial ionization regions.
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Figure 4.2: Structure of the static mesh for 4.5M⊙ model of set B, discussed in the text. In

the upper panel the fractional mass (blue line), fractional radius (red line) and logarithm

of the zone mass (black line) are plotted versus the zone number. In the lower panel,

logarithms of basic thermodynamic variables, temperature, specific volume and pressure

(solid, dotted and dashed lines, respectively) are plotted.

These are best visible in the plot of the adiabatic gradient presented in the middle
panel of Figure 4.3. PIRs are accompanied by minima of the adiabatic gradient.
Red vertical bars, close to the minima of ∇a, show the locations at which ionization
fraction of the relevant element is equal to 0.5. Hydrogen and both helium PIRs are
clearly resolved with the described mesh. Convective stability of a particular zone
is determined by the value of superadiabatic gradient, Y = ∇ − ∇a, which is also
displayed in the middle panel of Figure 4.3. Zones in which Y > 0 are convectively
unstable. The lower panel of the discussed Figure displays the profiles of turbulent
energy and convective and turbulent fluxes. Two convective zones, separated by
small radiative region, are clearly visible. The outer convective zone is connected
with the combined hydrogen and first helium ionization zones (hydrogen-helium
convective zone in the following). At the center of this zone more than 90 per cent
of the total flux is carried by convection. Slightly below, less pronounced second
convective zone, is visible (helium convective zone in the following). Only up to
20 per cent of the total flux is carried by convection in this zone. Also turbulent
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energies are smaller than in the hydrogen-helium zone. Turbulent flux is always very
small. In the discussed model, it carries less than 0.3 per cent of the total flux. It
is negative if turbulent energy increases outward, and positive in the reverse case.
Physically, turbulent flux smears the turbulent energy profile, and in the discussed
convection model it is the sole cause of the overshooting of the convective eddies into
convectively stable zones. Indeed, turbulent energy does not vanish in convectively
stable regions, although the extent of overshooting is very small, and the effect is
barely visible in Figure 4.3. Note also, that thin blue lines in this Figure correspond
to model computations with sophisticated tabular EOS instead of simple analytical
EOS used by default. As already discussed in Section 3.3.4, lines corresponding to
different EOS almost overlap, justifying the choice of fast analytical EOS.

In Figure 4.4 linear differential work integral (or work per zone) and linear work
integral for the fundamental mode of the discussed model are presented. Work inte-
grals are plotted versus the zone number to allow further comparison with nonlinear
work integrals. In the upper frame of this Figure, the run of opacity and opac-
ity derivatives, copied from Figure 4.3, is plotted for reference. Computed work
integrals are normalized by the kinetic energy of the fundamental mode. Hence,
the total work at the surface is equal to the growth rate of the mode, and is posi-
tive in the discussed case. Cepheid pulsations are driven through the κ mechanism
(Section 1.1), which is purely radiative. The envelope region in which specific com-
bination of opacity derivatives, of which κT plays a decisive role, increases outward,
contributes to the driving of pulsations (see e.g.,Dziembowski 1994 or Pamy-
atnykh 1999 for the detailed discussion of the κ mechanism). Hence, with each
opacity bump, the driving region is connected. In the innermost zones of the dis-
cussed model, a small driving region connected with the Z bump is visible (around
zone 42, log T ≈ 5.25). However, through the most of the inner parts of the envelope
pulsations are damped. The main driving regions are connected with the hydrogen-
helium opacity bumps, located close to the surface. Driving in these regions exceed
the internal radiative damping (lower panel of Figure 4.4), and hence, the model
is pulsationaly unstable. In comparison to radiative models (see work integrals in
e.g.,Buchler 1990), the local driving connected with the hydrogen opacity bump
(around zone 100, log T ≈ 4.15) is much less pronounced. In this region most of the
flux is carried by convection (Figure 4.3) and consequently, κ mechanism is not effec-
tive. Close to the red edge, when almost whole energy transfer is due to convection,
κ mechanism is quenched and so are pulsations. Considering eddy-viscous work,
it always contributes to the damping of pulsations. As discussed in Section 2.4,
eddy-viscous terms build up the turbulent energies at the cost of kinetic energy of
pulsations. Turbulent pressure work can contribute to driving as well as to damping
of pulsations, depending on the relative phase between the turbulent energy and
density perturbations. For the discussed model its overall contribution is neutral.

Linear computations tell nothing about final pulsation state, its amplitude,
light/radial velocity curves and mode selected (if more than one are linearly un-
stable). To study these problems, nonlinear computations have to be conducted.
However, linear properties of the model, particularly period ratios indicating the
possible proximity to the resonances, are useful in interpreting the nonlinear results.
Therefore, it is important to assure that linear and nonlinear codes are consistent
with each other. For this reason, all the codes described in the previous Chapter use
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Figure 4.3: Static structure for 4.5M⊙ model of set B, discussed in the text. All variables

are plotted against the zone temperatures (the zone number scale is also provided at the

top axis). In the upper panel logarithm of the opacity (solid line, left scale) and opacity

derivative, κT (dashed line, right scale) are plotted. In the middle panel adiabatic, ∇a,

and superadiabatic, Y = ∇ − ∇a, gradients are plotted. Minima of ∇a connected with

PIRs are labeled. In addition, red vertical lines mark the locations at which ionization

fraction of the relevant element is equal to 0.5. In the bottom panel, relative convective and

turbulent fluxes are plotted, together with scaled turbulent energy profile. Thin blue lines

correspond to model computed with tabular OPAL EOS (see Section 3.3.4 for details).
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Figure 4.4: Linear differential work integral (middle panel) and linear work integral

(bottom panel) versus the zone number, for the fundamental mode of 4.5M⊙ model of set

B, discussed in the text. In the upper panel variation of opacity and opacity derivative

copied from Figure 4.3 is presented.

the same numerical mesh, EOS/opacity subroutines and numerical representation
of all the quantities entering the model. In practice, consistency can be checked,
by comparing nonlinear periods and nonlinear growth rates, computed at small am-
plitude pulsations, with linear periods and linear growth rates. Such comparison
was conducted for the fundamental mode models of sets A and B, running parallel
to the fundamental mode blue edge. Nonlinear computations were initialized with
linear velocity eigenvector scaled to surface velocity equal to 0.1 km/s. Nonlinear
periods were derived through the simple Fourier transform. Relative difference be-
tween nonlinear and linear periods is always smaller than 10−4. Nonlinear growth
rates, γn, were computed, as the average total envelope work over several initial pul-
sation cycles. Such determination suffers from unclean initialization – in addition
to the desired mode, also high order, strongly damped parasite modes are present
at the initial phase of model integration. Nevertheless, for both sequences of mod-
els adopting convective parameters of set A and B, the agreement between linear
and nonlinear growth rates is satisfactory as is presented in Figure 4.5. Relative
difference between the growth rates is usually smaller than 5 per cent.
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Figure 4.5: Relative difference between nonlinear, γn, and linear, γl, growth rates of the

fundamental mode for the sequence of convective models of set A (left panel) and B (right

panel). Models run parallel to the blue edge of the fundamental mode instability strip,

300 K apart from it.

Before discussing the overall properties of the nonlinear model sequences, I pro-
vide more detailed discussion of the 4.5M⊙ model under discussion in this Section.
Its full amplitude light and radial velocity curves are plotted in blue in Figure 4.9.

In Figure 4.6 nonlinear work integrals are plotted (see Appendix A). This Figure
should be compared with the linear counterpart, Figure 4.4. Note, that the total
work at the surface is equal to zero. This indicates that the model approached the
limit cycle, and that pulsation instability is saturated. In comparison to linear work
integrals two differences are clearly visible. First, the sharp features visible in the
linear work integrals are widened, being smeared by the motion of ionization fronts
through the Lagrangian zones of the model. Second, the eddy-viscous damping
is much stronger in the nonlinear case. In fact, eddy-viscous terms can be used
to control the model amplitude, through the adjustment of αm parameter. Eddy
viscosity provides physical source of dissipation in the model, which is lacking in
radiative models, were artificial viscosity has to be used.

Time-dependent convective structure of the model during one cycle of full ampli-
tude pulsation is presented in Figures 4.7 and 4.8. In Figure 4.7 profiles of turbulent
energy are plotted. The two panels highlight internal and external parts of the
model. Internal parts of the model, below zone 70, are convectively stable. Tur-
bulent energies are extremely small, smaller than 10−10 erg/g. They are nonzero
because of the correction term described in Section 3.3.3 (Eq. 3.59). Such small
energies are completely negligible from physical point of view, however, they are
numerically necessary, as they allow to built up convective zone if convective insta-
bility arises. At the center of convective zones, turbulent energies are of order of
1013 erg/g and span from 30 to more than 70 model zones (during the compression
phase). Displayed profiles are smooth. Subtle differences in the level of turbulent
energy in the hydrogen-helium and helium convective zones are clearly visible. These
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Figure 4.6: Nonlinear differential work integral (upper panel) and work integral (lower

panel) versus the zone number, for the fundamental mode, full amplitude pulsation of

4.5M⊙ model of set B, discussed in the text.

two zones merge at pulsation phase ≈ 0.5.

In Figures 4.8 the profiles of convective, radiative and turbulent fluxes are plotted
as two dimensional maps, with the relative contribution of a particular flux coded
with colours. Structure and time evolution of convective zones are clearly visible.
Two convective zones are present in the model. In the deeper, helium convective
zone, up to 40 per cent of the total flux (during compression phase) is carried
by convection. This zone is thin and almost merges with the hydrogen-helium
zone at the maximum compression (phase 0.5). In hydrogen-helium convective zone
almost entire energy transport is due to convection. This zone sweeps through
the Lagrangian zones of the model, entering the sub-surface zones at the phase of
maximum compression, and extending over more than 50 model zones at that time.
During the expansion phase, convective zone shrinks, moving inward the model. At
pulsation phases between 0.6 and 0.8, the outer convective zone is barely resolved.
The picture for radiative flux (middle panel of Figure 4.8) is reversed. Turbulent flux
plays a minor role in the energy transfer. Numerically, its computation requires high
spatial resolution as it contains the gradient of rapidly varying turbulent energy. As
is well visible in the bottom panel and in the whole Figure 4.8, adopted mesh and
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Figure 4.7: Turbulent energy profiles during one pulsation cycle, for the fundamental

mode, full amplitude pulsation of 4.5M⊙ model of set B discussed in the text. Two panels

highlight the internal (left) and external (right) parts of the model.

time step assure smooth spatial and temporal variation of the model quantities.

Now, I will briefly describe the overall properties of nonlinear model sequences.
Fundamental mode light and radial velocity curves were computed for all mod-
els marked with crosses in Figure 4.1, located at constant distance, ∆T , from the
blue edge of the fundamental mode instability strip. For set A one sequence of
models with ∆T = 300K was computed, while for set B four sequences located
at ∆T = 300K, 400K, 500K and 600K were computed. In Figure 4.9 individual
light and radial velocity curves for model sequence of set B and ∆T = 300K are
plotted. Curves are labeled with fundamental mode period and P2/P0 period ratio,
characterizing the proximity to the 2ω0 = ω2 resonance center. As described in
Section 1.4.2, this resonance shapes the Hertzsprung bump progression. The pro-
gression is best visible for radial velocity curves. Starting from short periods, the
bump first appears on the descending branch, and then, as period ratio decreases, it
moves toward the ascending branch. At periods around 10 days the bump appears
as a double-peaked maximum in the velocity curves, and single more or less sym-
metric maximum in the bolometric light curves. Displayed radial velocity curves
are smooth. In case of bolometric light curves, a series of wiggles appears on the
descending branch. This is connected with the just described poor spatial resolution
in the thin hydrogen-helium convective zone moving inward the model at the end
of the expansion phase.

Quantitative comparison between computed radial velocity curves and observa-
tions is provided in Figures 4.10 and 4.11, in which low order Fourier decomposition
parameters of radial velocity curves are plotted. In Figure 4.10 the run of am-
plitude, A1 (scaled by constant projection factor, 1.4), amplitude ratio, R21, and
Fourier phase, ϕ21, is shown for four model sequences of set B, located at different
distances from the fundamental mode blue edge. The Fourier bump progression is
clearly reflected by theoretical models. At around 10 days, amplitudes are signif-
icantly lower, as parasite second overtone is resonantly excited at the cost of the



4.1 Fundamental mode Cepheid models 77

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

Ft / F

Fr / F

Fc / F

 0  0.2  0.4  0.6  0.8  1

phase

 10

 30

 50

 70

 90

 110

 130

 150

zo
ne

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Ft / F

Fr / F

Fc / F

 0  0.2  0.4  0.6  0.8  1

phase

 10

 30

 50

 70

 90

 110

 130

 150

zo
ne

-0.005
-0.004
-0.003
-0.002
-0.001
 0
 0.001
 0.002
 0.003
 0.004

Ft / F

Fr / F

Fc / F

 0  0.2  0.4  0.6  0.8  1

phase

 10

 30

 50

 70

 90

 110

 130

 150

zo
ne

Figure 4.8: Convective, radiative and turbulent flux profiles during one pulsation cycle,

for the fundamental mode, full amplitude pulsation of 4.5M⊙ model of set B discussed in

the text. Relative contribution of the fluxes to the total energy transfer is colour coded.
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Figure 4.9: Individual bolometric light (right panel) and radial velocity (left panel) curves

for models of set B, running parallel to the fundamental mode blue edge (∆T = 300 K).

Model masses increase from 4M⊙, at the bottom of the Figure, up to 9M⊙ at the top

with 0.5M⊙ step. Consecutive radial velocity curves are shifted by 25 km/s to allow

comparison. Curves are labeled with linear fundamental mode period, P0, and linear

period ratio, P2/P0.

fundamental mode. Connected drop in the amplitude ratio is well visible. Models
also reproduce the characteristic bell-shape progression of ϕ21 also caused by the
2ω0 = ω2 resonance.

Despite the fact that the convective parameters entering the model were not ad-
justed to match the observational constraints, the overall agreement between models
and observations is satisfactory. Probably the most severe problem concerns the R21

ratio. Models do not reproduce the sharp increase of R21 for periods below 10 days.
The ϕ21 progression is reproduced very well. Model curves are shifted toward slightly
shorter periods as compared to observations, which can be easily explained. The
characteristic run of ϕ21 is connected with the location of the 2ω0 = ω2 resonance
center, which falls at around 10 days, as indicated by observations. Numerically,
location of the resonance center depends mostly on the adopted mass-luminosity
relation, metallicity and, to a lesser extend, on the adopted convective parameters.
As is visible in Figure 4.1, for the adopted M−L relation and convective parameters
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Figure 4.10: Fourier decomposition parameters of radial velocity curves for fundamental
mode Cepheid models of set B, running parallel to the fundamental mode blue edge at
distances, ∆T = 300 K, 400 K, 500 K and 600 K. Model locations in the HR diagram are
shown in the right panel of Figure 4.1 with dashed lines of the same colours. Amplitudes
are scaled by constant projection factor equal 1.4. Individual curves for model sequence
located at ∆T = 300 K are plotted in Figure 4.9. Dots represent observational data (see
Figure 1.4 for references).

of set B, resonance center crosses the fundamental mode instability strip for periods
lower than 10 days, which explains the shift.

In Figure 4.11 Fourier decomposition parameters of radial velocity curves for
models of sets A and B (and also C, see Section 4.3) are compared. Despite rather
dramatic change in the convective parameters (cf. Table 4.1), overall progressions
are very similar for both sets. Model progressions computed for set A are shifted
toward slightly lower periods, which is again connected with the resonance location.
Although the M − L relation is the same for models of sets A and B, displayed in
the Figure, instability strip computed with convective parameters of set A is shifted
toward higher temperatures. Consequently, in case of set A, the resonance crosses
the fundamental mode instability strip for periods shorter, than in case of set B,
which is clearly visible in Figure 4.1.
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Figure 4.11: Fourier decomposition parameters of radial velocity curves for fundamental

mode Cepheid models of sets A, B and C, running parallel to the fundamental mode blue

edge at distance, ∆T = 300 K. Model locations in the HR diagram are shown in Figures 4.1

(sets A and B) and 4.12 (set C) with dashed lines of the same colours. Amplitudes are

scaled by constant projection factor equal 1.4. Dots represent observational data (see

Figure 1.4 for references).
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4.2 First overtone Cepheid models

Models to be described in this Section were presented in the paper of Baranowski
et al. (2009), reporting the observations of V440 Persei. Hydromodels presented
therein, supported the hypothesis that V440 Per is an overtone Galactic Cepheid
(P1 = 7.57 d).

Parameters of the first overtone Cepheid models described below, are similar to
those of fundamental mode Cepheids, discussed in the previous Section. Envelope
is deeper (Tin = 4 · 106 K), which allows for better determination of overtone modes
periods (which penetrate deeper into the envelope than the fundamental mode).
Different M − L relation, resulting from Schaller et al. (1992) evolutionary cal-
culations, log(L/L⊙) = 3.56 log(M/M⊙) + 0.79, is used. This relation has slightly
higher zero point, as compared to M − L relation used in the previous Section.
For the convective parameters set C of Table 4.1 is adopted. In this set, turbu-
lent flux and turbulent pressure are neglected, just as in set A, and radiative losses
are turned on. As I show in the paper of Baranowski et al. (2009), inclusion
of radiative losses is necessary in order to model such long overtone periods (see
general comment on convective parameters in the next Section). Here, I focus on
the comparison between the computed and observed Fourier parameters of radial
velocity curves, showing that model computations reproduce basic properties of the
observed Fourier progressions.

The theoretical HR diagram computed with set C of convective parameters is
presented in Figure 4.12, while in Figure 4.13 comparison between the model and
observed Fourier parameters is provided. Nonlinear model sequences were computed
at constant distances from the first overtone blue edge, ∆T = 25K, 75K, 125K and
175K. Their location is showed with dashed coloured lines in Figure 4.12. For
all these models fundamental mode is stable. The most luminous models entering
the fundamental mode instability strip (not shown in Figure 4.12) switched into
fundamental mode pulsation.

The characteristic progression connected with the 2:1 resonance between the first
overtone, and linearly damped fourth overtone (Section 1.4.2) is clearly visible in
both models and observations. The overall agreement between model and observed
progressions is satisfactory, although some problems are apparent. Part of the visible
discrepancies can be attributed, just as in case of the fundamental mode Cepheid
models, to the location of the 2:1 resonance. As was shown by Kienzle et al.
(1999), the resonance center falls around 4.6 days. In the presented computations
it crosses the overtone instability strip for periods around 4 days (Figure 4.13). The
change in the zero point of the M −L relation can shift the resonance center toward
longer periods. However, the problem is more complicated. As is visible in the model
run of ϕ21, the computed width of the characteristic bell shape is too high. The
width is affected by both zero point and slope of the adopted M−L relation. Hence,
to match the observations, both zero point and slope should be adjusted. This is
not an easy task, requiring much numerical work, and was not performed within
this thesis. Nevertheless, amplitudes and amplitude ratios agree satisfactorily with
observations. The most severe problem concerns the Fourier phase, ϕ21, at short
period range. Model values are too high as compared to observations.
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Figure 4.12: Instability strips in the theoretical HR diagram, computed for convective

parameters of set C. Solid and dotted black lines limit the fundamental mode and first

overtone instability strips, respectively. Dashed black lines are lines of constant, first

overtone period indicated in the Figure. Dash-dotted line shows the center of the 2:1

resonance, 2ω1 = ω4. Coloured lines show the location of nonlinear model sequences

described in this and in the next Section and displayed in Figures 4.11 and 4.13.

4.3 Note on convective parameters

In the previous Sections, different sets of convective parameters were used to model
fundamental and first overtone Cepheids. It is important to check, whether with
convective parameters of set C, adopted to model the first overtone Cepheids, fun-
damental mode Cepheid models still agree satisfactorily with observations. The
answer is provided in Figure 4.11, where Fourier progression for fundamental mode
Cepheid models adopting convective parameters of set C, are plotted with orange,
dashed lines. Despite rather dramatic differences between convective parameters of
sets A, B and C, computed Fourier progressions for fundamental mode Cepheids are
very similar. Hence, among convective parameters a kind of degeneracy is present
– different sets of convective parameters lead to roughly the same results. This was
first observed by Yecko et al. (1998) in their linear Cepheid model survey. How-
ever, a caution is necessary. Similar results, concerning e.g., Fourier decomposition
coefficients, obtained with different sets of convective parameters, do not indicate
that results concerning the modal selection will be similar, too. This is the case
with three parameter sets discussed here. Inclusion of radiative losses is necessary
to model such long period as observed for an overtone pulsator V440 Persei.

Then, other question is, which parameters are the best. The most desired set
should satisfy all constraints implied by observations of Cepheids pulsating in dif-
ferent modes and in stellar systems of different metallicities. Such calibration of the
convective model, even if possible, would be a daunting task, as number of model
parameters and observational constraints is enormous. But most likely, such calibra-
tion is simply not possible. It is hard to expect that such simple convective model,
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Figure 4.13: Fourier decomposition parameters of radial velocity curves for first overtone
Cepheid models of set C, running parallel to the first overtone blue edge at distances, ∆T =
25 K, 75 K, 125 K and 175 K. Model locations in the HR diagram are shown in Figure 4.12
with dashed lines of the same colours. Amplitudes are scaled by constant projection factor
equal 1.4. Dots represent observational data (see Figure 1.4 for references).

as discussed here, can do the thing. Hence, the choice of convective parameters is
always somewhat arbitrary.

In this thesis, simple sets are our first choice. In these sets, some effects are sim-
ply neglected (e.g., turbulent flux and turbulent pressure in sets B and C, radiative
losses in sets A and B), which speeds up the computations. Then, the effects are
turned on, separately, to see their effect on model computations. Such approach will
be adopted in Chapter 6, where model surveys with many sets of convective param-
eters will be conducted. This is not always possible. In Chapter 8, concerning the
modeling of double-overtone (1O/2O) Cepheids, only one set of convective param-
eters is adopted. In this case, growth rates of low mass models considered are very
small, and computed models have dense numerical mesh, making the computations
extremely slow. Therefore, the one adopted set was carefully chosen. It is set C
of Table 4.1, which, as was shown in this Chapter, leads to reliable models of both
fundamental and first overtone Cepheids.
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Chapter 5

Comparison with other
hydrocodes

In this Chapter, I discuss the approximations adopted in different convective pul-
sation hydrocodes, and their effect on the computed single-mode Cepheid models.
These approximations concern the treatment of eddy-viscous terms (Section 5.1)
and the treatment of turbulent source function in convectively stable regions (Sec-
tion 5.2). Hydrocodes adopting different formulation, than the default discussed in
Chapter 3, are not publicly available. However, some of the approximations and
formulations adopted in these codes, can be easily implemented in the codes de-
scribed in this thesis (as an option), allowing for detailed comparison. Discussion in
this Chapter is limited to the codes adopting the Kuhfuß-based convection models,
mainly to the Florida-Budapest hydrocode.

It turns out that the treatment of eddy viscosity has only a minor effect on the
computed models. However, different assumptions concerning the turbulent source
function, lead to qualitatively different results, which has severe consequences for
the double-mode models (Chapter 6).

5.1 Treatment of eddy viscosity

In this Section, I compare the results computed adopting different treatments of
eddy-viscous terms. In the default formulation adopted in the codes described in
this thesis, eddy-viscous terms result from first order modeling of the Reynolds
stress tensor (Section 2.4). As a result, viscous momentum (Uq) and energy (Eq)
transfer rates are present in the momentum and energy equations (Eqs. 3.1, 3.3–3.4).
This formulation, called Kuhfuß eddy viscosity in the following, is also adopted in
the Vienna code (Section 2.6.1). However, in other codes (Italian code, Florida-
Budapest code, see Section 2.6.1), the eddy-viscous pressure, introduced in an ad
hoc way, is used. In the formulation used in the Florida-Budapest code, eddy-viscous
pressure is given by (Eq. 2.75),

pν = −4

3
αmρΛe

1/2
t r

∂

∂r

(
u

r

)

,

and enters the model equations in the same way turbulent pressure does. This
formulation, called Kolláth eddy viscosity in the following, was adopted in the codes
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presented in Chapter 3 as an option. In this formulation, model equations are
following,

du

dt
= −4πr2 ∂

∂Mr
(p + pt + pν) −

GMr

r2
,

dE

dt
+ p

dV

dt
= −∂(Lr + Lc)

∂Mr
− C,

det

dt
+ (pt + pν)

dV

dt
= − ∂Lt

∂Mr
+ C.

In comparison to momentum and turbulent energy equations adopting the default
formulation (Eqs. 3.1 and 3.3), terms, −(3V/r)pν, and, (3V/r)pνu, were dropped
above, respectively.

The effects of using different forms of eddy viscosity were checked for linear and
nonlinear fundamental mode Cepheid models, adopting convective parameters of
sets A and B (Table 4.1). Models adopting the Kuhfuß eddy viscosity are exactly
the same as discussed in Section 4.1.

In Figure 5.1 instability strips computed with different forms of eddy viscosity are
compared. Models adopt convective parameters of set A (left panel) and set B (right
panel). Instability strips computed with the Kolláth eddy viscosity (green lines)
are slightly narrower than those computed with the Kuhfuß eddy viscosity (black
lines). This reflects the general property of individual models – those computed
with Kolláth eddy viscosity are slightly less unstable (have smaller growth rates).
The described effect can be compensated, by lowering αm in the models adopting
Kolláth eddy viscosity, while keeping other alphas fixed. Considering the periods,
or loci of the resonances, they are almost identical for both forms of eddy viscosity
(hence, separate lines of constant period are not plotted in Figure 5.1, as they would
overlap). This is because periods are mostly determined by the static structure of
the model, and this is entirely independent of eddy viscosity.

Figure 5.1: Instability strips in the theoretical HR diagram, computed for convective

parameters of set A (left panel) and B (right panel). Black and green lines correspond to

models computed with Kuhfuß and Kolláth forms of eddy viscosity, respectively.
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Comparison of nonlinear models can be done in several ways. Here, computa-
tions were conducted for model sequences running parallel to the fundamental mode
blue edges (∆T = 300K), computed adopting two eddy viscosity forms discussed.
Therefore, effective temperatures of models of the same mass slightly differ. Results
for convective parameters of set B are presented in Figure 5.2, in which Fourier
decomposition parameters of radial velocity curves are plotted. In agreement with
linear expectations, amplitudes, and consequently R21 ratios are slightly smaller
for models computed with Kolláth eddy viscosity. Considering the Fourier phase,
ϕ21, results are almost identical. Again, small decrease of αm in models adopting the
Kolláth eddy viscosity, should bring the results for both treatments of eddy viscosity
into perfect agreement.

Figure 5.2: Fourier decomposition parameters of radial velocity curves for fundamental
mode Cepheid models of set B, running parallel to the fundamental mode blue edge, at
distance, ∆T = 300 K. Amplitudes are scaled by constant projection factor equal 1.4.
Solid lines for models adopting Kuhfuß eddy viscosity, dotted lines for models computed
with Kolláth eddy viscosity.
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5.2 Treatment of the turbulent source function

Many of the convective Cepheid and RR Lyrae models, particularly almost all
double-mode models, were published by the Florida-Budapest group. Their code
adopts a convective model based on the work of Kuhfuß, however, with different
treatment of the convectively stable regions. As already discussed in Section 2.6.1,
in Florida-Budapest codes superadiabatic gradient is restricted to positive values
only (Eq. 2.74),

Y =

(

− Hp

cp

∂s

∂r

)

+

(5.1)

Consequently, turbulent source function and also convective flux are equal to zero
in convectively stable regions. Resulting convective model is different from Kuhfuß
model and was called modified Kuhfuß model in Section 2.6.1. Reasons motivat-
ing approximation expressed by Eq. (5.1), were never discussed by the Florida-
Budapest group. Possible consequences were not studied, neither, and these can be
significant as may be inferred from the papers by Buchler & Kolláth (2000)
and Gehmeyr & Winkler (1992b). Buchler & Kolláth compared the results of
model computations (both linear and nonlinear) adopting different expressions for
the turbulent source function and convective flux. These expressions were (S ∼

√
Y ,

Fc ∼
√
Y), which corresponded to the original Stellingwerf model (see Section 2.3),

(S ∼
√
Y, Fc ∼ Y+), which was formulation adopted in the initial papers of the

Florida-Budapest group (Yecko et al. 1998, Kolláth et al. 1998) and, (S ∼ Y+,
Fc ∼ Y+), which was the default formulation adopted in the Florida-Budapest hy-
drocodes. Let me note that the last formulation is called Kuhfuß model by the
Florida-Budapest group, which is not justified. Buchler & Kolláth (2000)
showed that if convective parameters entering the three mentioned models were
recalibrated accordingly, computed models, both linear and nonlinear were qualita-
tively the same. In particular, it means that the Stellingwerf and Florida-Budapest
models lead to essentially the same results. If indeed, the Florida-Budapest for-
mulation is equivalent to Kuhfuß formulation, this result would be in contradiction
to the analytical studies by Gehmeyr & Winkler (1992a,b), described in Sec-
tion 2.5. These authors compared the Stellingwerf and original Kuhfuß model, in
which (S ∼ Y , Fc ∼ Y), and found significantly different model behaviour, as
discussed in Section 2.5.

Therefore, it seems useful and necessary to compare the full hydrodynamical
models adopting different formulations. This is the goal of the following Sections.
Models in which superadiabatic gradient is restricted to positive values (Florida-
Budapest formulation, modified Kuhfuß model, or simply PP model in the follow-
ing), will be compared with models computed using original Kuhfuß formulation,
adopted by default in the codes described in this thesis (NN model in the follow-
ing). To this aim, PP convection model was implemented into the codes described
in Chapter 3 as an option. This is very easy and straightforward modification.
I stress that the models described in this and following Chapters were computed
with hydrocodes described in Chapter 3, however, adopting different treatment of
convectively stable regions (PP model instead of NN model).

In the following Sections, linear as well as nonlinear model sequences are com-
puted adopting the two described formulations (Section 5.2.1). Explanation for the
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observed differences is provided in Section 5.2.2, based on the detailed comparison
of individual models. In Section 5.2.3 it is shown that it is the different treatment of
turbulent source function, being responsible for the observed differences between NN
and PP models, treatment of convective flux playing a minor role. In Section 5.2.4
short remark concerning the numerical behaviour of NN and PP models is made,
and finally, in Section 5.2.5, the criticism of the PP formulation is done.

5.2.1 PP versus NN models – linear and nonlinear model
surveys

The models to be compared adopt convective parameters of sets A and B, from
the previous Chapter (Table 4.1). Models are constructed exactly as described in
Section 4.1, and all the results computed with NN convection model were described
in the previous Chapter. Here, I conduct their comparison with the PP models.

Linear results (periods, growth rates, model structure) are almost identical for
both PP and NN convection models. Respective edges of the instability domains in
Figure 4.1, for NN and PP models would overlap, as they are shifted with respect
to each other by less than 1K. The same is true for lines of constant period, or lines
showing the loci of the resonances. Qualitatively and quantitatively, linear results
computed with NN and PP convection models are the same. Nevertheless, nonlinear
results differ significantly.

Full nonlinear computations were conducted for the fundamental mode Cepheid
models running parallel to the fundamental mode blue edge (∆T = 300K). Models
to be compared have exactly the same physical parameters (masses, luminosities,
chemical compositions) as well as numerical (mesh structure) and convective param-
eters (alphas). The only difference is in the treatment of convectively stable regions
(NN versus PP models). Figures 5.3 and 5.4 display the Fourier decomposition pa-
rameters of radial velocity curves, for models adopting convective parameters of sets
A and B, respectively. In each Figure NN and PP models are compared. Model pro-
gressions for NN models are exactly the same as displayed in Figure 4.11 (although
some additional models are present in Figures 5.3 and 5.4). The striking differences
between NN and PP models are visible in the run of amplitudes and amplitude ra-
tios. Amplitudes of the models computed with PP convection are significantly lower,
than amplitudes of the same models computed with NN convection. Consequently,
also R21 ratios are smaller for PP models. Differences are largest at short periods.
To the contrary, the run of Fourier phase, ϕ21, is almost the same for both NN and
PP models. Results are qualitatively the same for sets A and B. In the following
Section, I explain the described differences between NN and PP models.

5.2.2 Explanation of the differences between PP and NN
models

To explain the differences between NN and PP nonlinear model sequences, we focus
our attention on one particular model of set A, with the mass of 4.5M⊙. Its location
is shown with arrows in Figure 5.3. The model is the simplest possible convection
model, without turbulent pressure, turbulent flux and without radiative losses (cf.
Table 4.1). Discrepancies between NN and PP models, noted in the previous Section,
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Figure 5.3: Fourier decomposition parameters of radial velocity curves for fundamental
mode Cepheid models of set A, running parallel to the fundamental mode blue edge
(∆T = 300 K). Amplitudes are scaled by constant projection factor equal 1.4. Solid
lines for NN models, dotted lines for PP models and dashed lines for NP models (see
Section 5.2.3). Arrow marks the location of the model discussed in Section 5.2.2.

are very similar for set A and set B which includes more complicated effects (pt, Ft).
Therefore, it is natural to focus attention on set A first, as additional effects due to
turbulent pressure and turbulent flux, are not expected to play significant role in
rising up the discrepancies.

Figures 5.5 and 5.6 are crucial to understand the differences between NN and PP
models. In Figure 5.5, profiles of superadiabatic gradient, Y = ∇−∇a, together with
profiles of turbulent energy, et, during one pulsation cycle are plotted, for both NN
and PP models. In case of turbulent energy profiles, two viewpoints are provided
for each model, highlighting internal and external zones. In Figure 5.6 nonlinear
differential work integrals of these two models are plotted (NN model in the upper,
PP model in the lower panel).

Comparing the turbulent energy profiles (Figure 5.5), striking differences are
visible in convectively stable regions, in which Y is negative (NN model) or set equal
to zero (PP model). In both the discussed models, main convective zone extends
down to zone ≈ 70 (upper panels of Figure 5.5). Interior zones are convectively
stable. In NN model, turbulent energies are extremely small in these zones, of
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Figure 5.4: Fourier decomposition parameters of radial velocity curves for fundamental
mode Cepheid models of set B, running parallel to the fundamental mode blue edge (∆T =
300 K). Amplitudes are scaled by constant projection factor equal 1.4. Solid lines for NN
models, dotted lines for PP models and dashed lines for NP models (see Section 5.2.3).

order of 10−14erg/g. To the contrary, in PP model, turbulent energies are by many
orders of magnitude higher. In zones 40–70, they are of order of 109 − 1010erg/g,
which is only three orders of magnitude smaller than in the center of the convective
zone. In these zones, the whole energy transfer is due to radiation, as convective
flux in convectively stable regions of PP model is equal to zero, by definition (Fc ∼
Y+). Also turbulent flux is turned off in set A, and significant turbulent energies
cannot arise due to overshooting. Whatever is the source of such high turbulent
energies in PP model, they cause the significant eddy-viscous dissipation in the
internal, convectively stable zones of the model, clearly visible in the differential
work integral displayed in the lower panel of Figure 5.6. Negative contribution to
the work integral is present below zone 70 and extends down to zone ≈ 30. In
NN model, eddy viscosity does not contribute to the work integral in convectively
stable regions, as turbulent energies are extremely small there. As a consequence
of internal eddy-viscous damping, amplitude is lower for the PP model, which is
clearly visible in Figure 5.3. Described mechanism is qualitatively the same for all
the models presented in Figures 5.3 and 5.4.

Now, I will explain the reasons behind very different turbulent energy profiles
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Figure 5.5: Profiles of superadiabatic gradient (top panels) and turbulent energy profiles

(middle and bottom panels) during one pulsation cycle for NN (left panels) and PP models

(right panels), adopting convective parameters of set A. For the turbulent energy profiles,

middle panels highlight the internal, while bottom panels the external parts of the model.

Note different scale on vertical, logarithmic axes for NN and PP models.

in NN and PP models. To achieve this goal, turbulent energy equation has to be
analysed. In case of set A considered at the moment (turbulent flux and turbulent
pressure neglected) it can be written as (Eqs. 3.3, 3.59),

det

dt
= S
︸︷︷︸

S−term

−αd
e
3/2
t

Λ
︸ ︷︷ ︸

D−term

+αd
e
3/2
0

Λ
︸ ︷︷ ︸

e0−term

+Eq
︸︷︷︸

Eq−term

. (5.2)
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Figure 5.6: Nonlinear, differential work integrals plotted versus the zone number for

4.5M⊙ model discussed in the text. Upper panel for NN model, lower panel for PP model.

Several terms contribute to the generation/decay of turbulent energies. These are
the turbulent source term (S-term), turbulent dissipation term (D-term), correction
term (e0-term) and eddy-viscous energy transfer rate (Eq-term). The last two terms
are always positive and contribute to the driving of turbulent energies. Turbulent
dissipation term is always negative and thus, always contributes to the decay of
turbulent energy. The source term may drive as well as damp the turbulent energies,
depending on the sign of the superadiabatic gradient in NN model, and can only
drive the turbulent energies in PP model, in which it is restricted to non-negative
values. For the further discussion, it is important to note how do these terms depend
on turbulent energy. S and Eq terms depend on et like ∼ e

1/2
t , while D-term depends

like ∼ e
3/2
t . The whole picture is summarized in the scheme below, in which red

terms are positive and contribute to the driving of turbulent energies and blue terms
are negative, contributing to the decay of turbulent energies. It is useful to consult
this scheme during the following discussion.
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It is clearly visible that the model equations differ in convectively stable regions,
only.

Now we focus our attention around zone ≈70, at which superadiabatic gradient
changes its sign (Figure 5.5). Here, the crucial and drastic discrepancy in turbulent
energy profiles of NN and PP models arises. Below, I describe the processes shaping
these profiles, first in NN and then, in PP models.

• NN model. As superadiabatic gradient, Y , changes its sign, S-term becomes
negative. Together with turbulent dissipation term, they damp the turbulent
energies very effectively. Around zone ≈ 70 turbulent energies fall by roughly
25 orders of magnitude, to a very small level. This rapid damping is caused
mostly by the source term and its ∼ e

1/2
t dependence on et. It easily overcomes

the turbulent energy driving due to Eq-term. In a physical description, tur-
bulent eddies are effectively braked by the negative buoyancy represented in
the source term. The effect is much stronger than the generation of turbulent
energy at the cost of pulsation, through the eddy-viscous forces, represented
in the Eq-term. Turbulent energies fall very fast, however, not to zero, but to
a very small level which is assured by the e0-term. This term is not a physical
ingredient of the Kuhfuß model, but was introduced for numerical reasons (see
Section 3.3.3). As all the terms entering the turbulent energy equation depend
on et in some power, et = 0 erg/g is a solution to this equation. Once turbulent
energy is equal to zero in some zone, it will stay zero, even if convective insta-
bility arises. Therefore, e0-term is necessary and acts as a seed for turbulent
energies at the onset of convective instability.

In all the interior zones of the NN model, turbulent energies are extremely
small. They are set by the balance between the S, Eq and e0 terms. Turbulent

dissipation term (D-term) is not significant with its ∼ e
3/2
t dependence on

et. The relative distribution of turbulent energies is shaped by the physics,
represented in the S-term. Hence, a small bump in the turbulent energy profile
around zone 40 – result of the iron opacity bump. However, the overall level
of turbulent energies, of order of 10−12 − 10−14 erg/g, makes them entirely not
significant from physical point of view. This small level is set mainly by the
value of e0 constant (e0 = 104 erg/g). Still, these small turbulent energies are
sufficient to rebuilt the convective zone, if convective instability arises. This is
clearly visible in the bottom-left panel of Figure 5.5, highlighting the external
zones of the model. Here, convective zone sweeps through several Lagrangian
zones of the model, during the pulsation cycle.

It is important to stress that e0-term plays only a numerical role and does not
affect the physical behaviour of the model. It is not responsible for the steep
fall of turbulent energies at the base of the convective zone, as it always drives
the turbulent energies. It only prevents the turbulent energies from falling to
zero.

• PP model. The restriction of superadiabatic gradient to positive values in
PP model, is responsible for completely different distribution of turbulent en-
ergies in convectively stable regions. As Y becomes negative, the turbulent
source function is set equal to zero. This is equivalent to the neglect of neg-
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ative buoyancy effects. The only term that contributes to the decay of tur-
bulent energies is the turbulent dissipation term, which models the decay of
the turbulent eddies through the turbulent cascade. This term is responsible
for the fall of turbulent energies at the base of the convective zone, but only
by three orders of magnitude, from 1013 erg/g in the center of the convective
zone, to 1010 erg/g just below it (middle-right panel of Figure 5.5). Further
fall is prevented by the eddy-viscous energy transfer (Eq-term), which pumps
up the turbulent energies at the cost of kinetic energy of pulsations. Eq-term

depends on turbulent energy like ∼ e
1/2
t , while the D-term like ∼ e

3/2
t . As

turbulent energies fall, the damping strength of the D-term falls more rapidly
than the driving strength of the Eq-term. In the absence of the damping tur-

bulent source term (∼ e
1/2
t ), the balance between the D and Eq terms sets the

turbulent energies at relatively high level. In more than thirty zones below the
base of the convective zone (zones 40 − 70), turbulent energies are of order of
109 − 1010 erg/g. In the innermost zones (below zone 40), turbulent energies
gently decrease, which reflects the vanishing amplitude of the fundamental
mode, as one moves inward the model. In fact close to the inner boundary,
et ≈ e0 = 104 erg/g, as only D and e0 terms are significant there. However,
through the almost whole envelope, e0-term is small and insignificant as com-
pared to Eq-term. It has no effect on the turbulent energy distribution below
the convective zone. Even more, no numerical problems are encountered if
e0-term is dropped during the full amplitude pulsation. Non-zero turbulent
energies are maintained by the eddy-viscous driving (Eq-term).

Although below the convective zone turbulent energies are smaller than in the
center of the convective zone, they are high enough to produce a significant
eddy-viscous damping, clearly visible in the differential work integrals dis-
played in the lower panel of Figure 5.6, in between zones ≈ 40 and ≈ 70. This
range corresponds to more than 6 local pressure scale heights. Eddy-viscous
damping in such a large region is responsible for the lower amplitudes of the
PP models visible in Figure 5.3.

Significant turbulent energies can be present in convectively stable zones of the
model due to the overshooting. However, in the discussed models, turbulent flux, the
sole cause of the overshooting in the discussed convective recipes (see Section 2.4)
is turned off. In convectively stable regions of the NN model, turbulent energies are
rapidly damped by the negative buoyancy. As expected, no traces of overshooting
are visible in this model. To the contrary, high turbulent energies are present in
convectively stable regions of the PP model. They are driven at the cost of pulsations
through the eddy-viscous forces and cannot be damped by the negative buoyancy,
which is neglected. Hence, the effect has nothing to do with the overshooting. Note
also, that the region with significant turbulent energies is very large, as it covers
more than 6 local pressure scale heights.

As described above, viscous energy transfer is crucial in bringing up the high
turbulent energies in convectively stable zones of the PP model. It can be easily
checked numerically by computing the models neglecting the eddy viscosity (param-
eter αm set equal to zero). In this case, nonlinear models adopting NN and PP
formulation are almost the same, particularly have equal amplitudes. This is be-
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cause now, in both NN and PP models turbulent energies are small in convectively
stable regions. In case of NN model, situation does not change much. Turbulent
energies are extremely small, being effectively damped through the negative source
term. In case of PP model, turbulent energies are constant and equal to e0, which
is a solution of Eq. (5.2), when turbulent source and eddy-viscous terms are equal
to zero. Turbulent energies equal 104 erg/g are negligible as compared to the values
present in the center of the convective zone (1013 erg/g). Of course no eddy-viscous
damping is present in the models. If eddy viscosity is neglected, results are the same
for both NN and PP models.

Above considerations also explain why linear results computed with NN and
PP convective models are the same. This is simply because eddy-viscous terms do
not enter the static model computations at all. Static structure of the models is
almost the same for both NN and PP convection models. Also, eddy-viscous terms
that appear in the energy equations do not enter the linear nonadiabatic analysis.
Described effect is purely nonlinear.

The form of the eddy viscosity used (Kuhfuß or Kolláth, see Section 5.1) is not
important in the above considerations. If Kolláth form is used instead of Kuhfuß,
Eq-term is replaced by, −pν( dV/ dt). This term plays exactly the same role – it
generates the turbulent energies at the cost of pulsation.

Presented results do not depend on the exact values of convective parameters
(alphas) and effects included/neglected in the model. Particularly, inclusion of tur-
bulent flux into the model, does not change the presented discussion. As already
discussed (compare Figures 5.3 and 5.4) qualitatively the same differences are ob-
served between NN and PP model sequences, computed with convective parameters
of sets A and B. In the latter set, effects of turbulent pressure and turbulent flux
are turned on. Figure 5.7 shows the profiles of turbulent energy during one cycle of
full amplitude pulsation for 4.5M⊙ model of set B computed with NN and PP con-
vection. Profiles are qualitatively the same as displayed in the middle and bottom
panels of Figure 5.5. They are just more smooth, as sharp features are diffused by
the gradient of turbulent flux. In the PP model the whole envelope is turbulent and
physical overshooting, as a cause of turbulent energies in convectively stable regions,
is not important anyway. In the NN model, on the other hand, the range of phys-
ical overshooting is always very small (much less than one pressure scale height),
as negative buoyancy effectively damps the turbulent energies in convectively stable
regions of the model.

5.2.3 The crucial role of the turbulent source function

Discussion presented in the previous Section clearly shows the crucial role played by
the neglect of turbulent source function in convectively stable regions. The exact
form of the source function is not important. This was checked by Buchler &
Kolláth (2000), as discussed at the beginning of Section 5.2. They compared the
models adopting the original Stellingwerf prescription, in which S ∼

√
Y , with PP

models, obtaining qualitatively the same results. In both models, negative buoyancy
is absent, and does not damp the turbulent energies in convectively stable regions.
Hence, in both models strong eddy-viscous damping, extending over few pressure
scale heights below the convective zone is present. This is clearly visible in the lower
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Figure 5.7: Turbulent energy profiles during one pulsation cycle for NN model (left

panels) and PP model (right panels), adopting convective parameters of set B (including

overshooting). Top panels highlight the internal, while bottom panels the external parts

of the model. Note different scale on vertical, logarithmic axes for PP and NN models.

panel of Figure 5.6, and in the work integrals published in the paper of Buchler &
Kolláth.

If negative buoyancy is included in the model, internal eddy-viscous dissipation
is not present. This is true, again, independently of the form of the source func-
tion. In the work integrals published by the Italian group (e.g.,Bono, Marconi &
Stellingwerf 1999), eddy-viscous damping is not present in the internal model
zones, just as in case of our NN model (upper panel of Figure 5.6). In their compu-
tations the modified Stellingwerf model is adopted in which S ∼ sgn(Y)

√

|Y| (see
Section 2.3). Hence, in convectively stable regions turbulent energies are effectively
damped, just as in NN model.

Restriction of superadiabatic gradient to positive values, affects not only the
source function, but also the convective flux, which is always positive in PP model.
However, almost the whole difference between the NN and PP models can be at-
tributed to the different treatment of the source function. Convective flux plays
only a minor role, which is easy to understand. In convectively stable regions of the
PP model, convective flux is equal to zero by definition. In NN model, on the other
hand, turbulent energies are negligible in convectively stable regions, or very small
and extending over a very limited range if overshooting is turned on in the model.
Hence, also negative convective flux (Fc ∼ e

1/2
t Y) is always very small as compared
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to the total flux. These considerations are fully supported by model computations
in which convective flux is restricted to positive values only (Fc ∼ Y+), but negative
buoyancy effects are included in the model (S ∼ Y). Nonlinear results for such NP
convective model are presented in Figures 5.3 (set A) and 5.4 (set B). As expected,
model curves for NP model almost overlap the corresponding curves for NN model.
Slightly larger differences are visible in case of models adopting convective param-
eters of set B. In these models overshooting leads to higher turbulent energies in
convectively stable zones, and consequently, effects of negative convective flux are
stronger.

5.2.4 Numerical behaviour of the PP and NN models

Besides the physical differences in the properties of the computed models adopting
NN and PP convection, there are also strictly numerical consequences of choosing
one of these two treatments. Model computations adopting the PP convection are
much faster. Nonlinear iterations converge fast and without problems. Price to pay
for the inclusion of negative buoyancy effects is greater numerical cost. Compari-
son of turbulent energy profiles in PP and NN models displayed in Figures 5.5 and
5.7 tells why. In PP model, turbulent energy is slowly varying function of both
time and spatial coordinate. During the integration of PP model, turbulent energy
vary only by few orders of magnitude, and no sharp falls or increases are visible.
To the contrary, in NN model we deal with changes in turbulent energy by sev-
eral orders of magnitude. These are caused by the negative buoyancy, leading to
steep fall of turbulent energies at the boundaries of the convective zone. Also, as
convective instability arises, turbulent energies have to be rebuilt from a low level.
Consequently, nonlinear iterations converge slower than in PP models, particularly,
during the compression phase, when convective zone sweeps through the outer layers
of the model. Sometimes it is necessary to change the time step into smaller value.
In case off PP model, constant time step can be used through the whole model
integration, without any problems.

5.2.5 Criticism of the PP formulation

The PP formulation, in which superadiabatic gradient, and consequently turbulent
source function and convective flux, are restricted to positive values, was not derived
within any convective model. It was introduced, without any explanation, in the
code of the Florida-Budapest group (Kolláth et al. 2002). Although it is claimed
that their convection model is essentialy that of Kuhfuß, it is not.

At any point of derivation of the Kuhfuß model, there is no need to truncate the
superadiabatic gradient to non-negative values. The whole Kuhfuß formulation is
differentiable, and in principle, no serious numerical problems were encountered in
implementing it into pulsation hydrocodes. As discussed by Kuhfuß (1986), and
later on by Gehmeyr & Winkler (1992b), the advantage of the Kuhfuß model over
original Stellingwerf model results from the more correct treatment of convectively
stable regions, namely from the inclusion of negative buoyancy effects. Both negative
source function and negative convective flux have clear physical interpretation, which
I briefly recall below (see also Sections 2.4, 2.5)
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Physical interpretation of turbulent source function was given in Section 2.4. A
simple comparison with MLT theory, shows that the source function is proportional
to buoyant acceleration of the convective eddies (Eq. 2.54). In convectively stable
regions, this acceleration does not vanish, it becomes negative. Buoyant force is now
a restoring force, and slows down the motion of the overshooted eddies, leading to
convective stability. By restricting the turbulent source function to positive values
only, negative buoyancy is neglected. This is unphysical, and, as shown in this
Chapter, has a serious consequences. At the absence of negative buoyancy, turbulent
energies are driven through the eddy-viscous forces to significant values, and extend
over few pressure scale heights below the main convective zone. Resulting eddy-
viscous dissipation, cannot be regarded as physical effect.

Convective eddies that overshoot into convectively stable zones carry both kinetic
and thermal energy. Convective eddy overshooted downward from the convective
zone is hotter than the surrounding medium. Eddy that overshoots up is cooler. In
both cases, the net convective flux is directed downward and hence, is negative. By
setting the convective flux to zero, the heat transfer by the overshooted eddies is
neglected, too.
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Chapter 6

Modeling of double-mode F/1O
Cepheid pulsation

In this Chapter, I describe the results concerning the modeling of double-mode
F/1O Cepheid pulsation. Search for stable double-mode models is not an easy task,
and method of mode selection analysis, adopted in this thesis, will be described in
Section 6.1. Then, interesting new results will be presented in Sections 6.2 and 6.3.
These results indicate that the success of convective hydrocodes in solving the long-
standing problem of modeling the double-mode phenomenon was superficial and the
problem remains still open.

6.1 Mode selection analysis

To search for stable double-mode solution, some mode selection analysis method
needs to be employed. Such method must be based on nonlinear computations, as
linear results can only indicate which full amplitude pulsation states are possible.
For many years, a very powerful relaxation technique was used for this purpose
(Section 1.3.3). It allows for fast computation of single-mode limit cycles and their
stability, in terms of the Floquet stability coefficients. In particular, double-mode
pulsation is unavoidable, if two single-mode limit cycles of interest, are simultane-
ously unstable to perturbation in the other mode. Relaxation technique, working
well for radiative computations, fails to predict all the possible solutions that can
be found with convective computations. Nonlinear computations of e.g.,Kolláth
et al. (2002) show that stable double-mode solution can coexist with stable single-
mode solution (DM/F hysteresis in their computations). In this case, one of the
Floquet coefficients is negative, and existence of the double-mode solution cannot
be inferred from the stability analysis of single-mode limit cycles. Hence, another
method of mode selection analysis, not restricted to study of single-mode solutions,
has to be adopted. Such method was proposed by the Florida-Budapest group
(e.g.,Kolláth et al. 2002), and is also adopted in this thesis. It is based on the
coupling of direct nonlinear integrations, analysed with analytical signal method,
with amplitude equation formalism. This procedure allows to find all the possible
pulsation states and allows to determine their stability. Here, the method is briefly
described, based on numerical examples.

Single, direct time integration of the model doesn’t tell a lot about modal selec-
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tion for two reasons. First, the apparently stable full amplitude pulsation can be a
transient state. Mode switching time scales can be extremely long, and even long-
lasting, seemingly steady pulsations, emerging from the hydrocode, do not prove
that the pulsation is indeed stable. Second, there can be more than one stable full
amplitude solution, a situation called hysteresis. This is illustrated in Figure 6.1, in
which time variation of the surface velocity of the same model, integrated with two
different initial conditions, is presented. This model is unstable in both fundamen-
tal and first overtone modes, higher order overtones being stable. Integrations were
initialized with scaled mixture of the linear velocity eigenvectors, as described in
the Figure. Initial phases of model integration are shown in the left panels. Beating
between the two initialized modes is clearly visible. After computing of several thou-
sands of pulsation cycles, single-mode pulsation is observed for both integrations,
however, with different periods, amplitudes and radial velocity curves. Shorter pe-
riod, lower amplitude pulsation in the upper panel of Figure 6.1, corresponds to
first overtone pulsation, while in the lower panel of that Figure, fundamental mode
pulsation is visible. Hence, a hysteresis is present – final pulsation state differs,
depending on the initial conditions. Physically, pulsation state depends e.g., on the
direction of stellar evolution across the instability strip. Still, one cannot be sure,
whether computed single-mode pulsations are the only solutions, and even whether
they are stable.

To search for other possible solutions and to determine their stability, one can run
the pulsation hydrocode with several initial conditions. Results of such integrations
can be represented best in amplitude-amplitude phase-space, in which time evolu-
tion of the mode amplitudes is plotted. There are many techniques to extract the
time variation of the amplitudes of the individual modes from the hydrodynamical
computations. One of them is time dependent Fourier analysis adopted by Kovács,
Buchler & Davis (1987) in their analysis of radiative models. However, much
better results are obtained with analytical signal method. This rather old numerical
technique (Gabor 1946) was reformulated and applied to stellar pulsation prob-
lems by the Florida-Budapest group (see e.g.,Kolláth et al. 2002). Here, a brief
summary of the method, focused on the numerical aspects, is provided. The multi-
periodic time series to be analysed, is the relative radius variation, h(t) = r(t)/r,
computed with the pulsation hydrocode. We are interested in one particular com-
ponent of frequency ωk, which is represented as the product of long-term variation
and fast oscillation, Ak(t)e

iωkt. The long-term variation is extracted by following
transformation of the input signal, h(t),

Ak(t) =
1

π

∞∫

0

dωG(ω − ωk)e
iωt

∞∫

−∞

dt′h(t′)e−iωt′ (6.1)

First, the Fourier transform of h(t) is computed, then, a desired frequency compo-
nent is filtered, through a Gaussian window centered on the frequency ωk, G(ω−ωk).
Finally, long term variation of the desired component is extracted through the one-
sided reverse Fourier transform.

Analytical signal method extracts smooth time dependence of the pulsation am-
plitudes of the modes considered, A0(t) and A1(t). With such data, results of
hydrodynamical direct time integration can be represented as a trajectory in the



6.1 Mode selection analysis 103

Figure 6.1: Time evolution of the radial velocity of the same model initialized with two

different initial conditions (scaled mixtures of the fundamental and first overtone linear

velocity eigenvectors) indicated in the Figure (top and bottom panels). Initial phases of

integration are shown (left panels), as well as seemingly steady pulsations after computing

many thousands of pulsation cycles (right panels).

amplitude-amplitude phase-space. This is illustrated in Figure 6.2 in which several
trajectories, corresponding to integrations of the same model with different initial
conditions, are plotted. This is the same model, for which time variation of radial
velocity is plotted in Figure 6.1. All trajectories run away from the origin (A0 = 0,
A1 = 0), as both fundamental and first overtone modes are linearly unstable for the
discussed model. After initial fast evolution, trajectories slowly evolve along an arc.
Four leftmost trajectories evolve toward first overtone attractor (A0 = 0, A1 6= 0),
remaining three, evolve toward fundamental mode attractor (A0 6= 0, A1 = 0). Fig-
ure 6.2 indicates that two stable single-mode solutions are possible. However, one
may still doubt, whether a double-mode solution was not missed in between the
fourth and fifth trajectory in this Figure.

To disperse these doubts, and to extract more quantitative information from
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Figure 6.2, amplitude equations (AEs) can be employed to describe the hydrody-
namical results. As discussed in Section 1.3.4, AEs describe the time evolution of
the mode amplitudes through the set of ordinary differential equations. Their form
depends on whether resonances between pulsation modes are present or not. As in
the period range occupied by the double-mode F/1O Cepheids no resonances be-
tween pulsation modes are found, non-resonant AEs are considered in this Chapter.
Truncated at the quintic terms, they are following,

Ȧ0 =
(
γ0 + q00A

2
0 + q01A

2
1 + r00A

4
0 + r01A

4
1 + s0A

2
0A

2
1

)
A0,

Ȧ1 =
(
γ1 + q10A

2
0 + q11A

2
1 + r10A

4
0 + r11A

4
1 + s1A

2
0A

2
1

)
A1.

(6.2)

These equations are part of the general complex amplitude equations system, which,
in non-resonant case, can be decoupled into real part for amplitudes (above equa-
tions) and imaginary part yielding equations for phases (not relevant in these consid-
erations). In the above equations, Ȧ0 and Ȧ1 are time derivatives of the amplitudes
of the fundamental and first overtone modes, A0 and A1. Linear growth rates of the
modes are denoted by γi, qii and qij are cubic self- and cross-saturation coefficients,
rij and si are quintic saturation coefficients.

The use of quintic AEs in necessary to capture the reach topology of solutions
found with convective hydrocodes, particularly the coexistence of stable double-
mode solution with stable single-mode solution. However, it is not necessary to
retain all the quintic coefficients. In the analysis of Buchler et al. (1999), r-terms
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were retained, while Kolláth et al. (2002) retained s-terms only, claiming that
they allow for better representation of hydrodynamical results. We follow the latter
choice here.

Linear growth rates and saturation coefficients are functions of model parameters;
mass, luminosity, effective temperature, chemical composition and depend on the
physics put into the model (convective parameters and opacities). Linear growth
rates can be computed using linear hydrocode. Situation is much worse for the
saturation coefficients. In principle, they can be computed using the static structure
of the model and linear eigenvectors. In practise, this is too complicated and cannot
be done quantitatively, without invoking some simplifying assumptions. However,
hydrodynamical computations allow to determine all the coefficients entering the
AEs in a simple and straightforward way. Analytical signal method provides time
dependence of mode amplitudes, A0(t) and A1(t), from which their time derivatives,
Ȧ0 and Ȧ1, can be computed at any time of the model evolution. These data can be
used to derive the saturation coefficients (and linear growth rates) through a simple
linear fitting of amplitudes and their derivatives with Eqs. (6.2). Once saturation
coefficients are known, AEs can be analysed, providing the complete mode selection
information.

Time independent, constant amplitude solutions of the AEs are called fixed
points. They can be easily found numerically (or analytically for the case discussed
here) and their stability can be checked through the Hurwitz criteria (Hurwitz
1964). In particular, for a single-mode solutions we have,

A0 =
√

−γ0/q00, A1 = 0,

A1 =
√

−γ1/q11, A0 = 0,
(6.3)

for the fundamental and first overtone fixed points, respectively. Linear stability of
these solutions (with respect to perturbation in the other mode) is determined by
the values of stability coefficients,

γ1,0 = γ1 + q10A
2
0 = γ1 − γ0

q10

q00
,

γ0,1 = γ0 + q01A
2
1 = γ0 − γ1

q01

q11
,

(6.4)

for the fundamental and first overtone fixed points, respectively. Negative value
of the above coefficients means that respective fixed points are stable. In case of
quintic AEs consider here (with s-terms only), analytical expressions for the two
possible double-mode solutions can be given, too. Stable fixed points are attractors
of the system, and trajectories evolve toward them. Unstable fixed points repel the
trajectories.

Fixed points correspond to steady nonlinear pulsations. Stable, single-mode
fixed points correspond to stable limit cycle pulsations. Stability coefficients given
in Eqs. (6.4), are directly related to the Floquet coefficients of the limit cycles. Red
filled squares in Figure 6.2 correspond to stable fixed points, while open squares to
unstable fixed points. Their location was computed based on the values of saturation
coefficients derived from fitting the AEs to the seven visible trajectories. No doubt
is left that only two stable, single-mode solutions are possible for the model under
discussion. The only double-mode solution is unstable and repels the trajectories.
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Blue, short lines in Figure 6.2, visualize the normalized flow field (Ȧ0, Ȧ1) computed
through the AEs. At each point these lines show the expected direction of evolution.
A close inspection of Figure 6.2 shows that AEs provide a very good description of
the hydrodynamical results.

Described methods can be used for detailed study of the modal selection along
a sequence of models, e.g., of constant mass/luminosity and varying effective tem-
perature. To this purpose, hydrodynamical computations are performed for several
models of different Teff along the sequence. Next, amplitude equations are fitted
to the hydrodynamical trajectories computed through the analytical signal method,
yielding the values of saturation coefficients and linear growth rates for these models.
Then, simple interpolation can be used to obtain the values of saturation coefficients
and linear growth rates, and consequently to establish the modal selection at any
temperature along a sequence. The numerical pipeline to perform this analysis
was written by the author. To compute the Fourier transforms entering Eq. (6.1),
subroutines from the fftpack5 library (Swarztrauber 1984) are used.

6.2 Double-Mode F/1O Cepheid Models – Revis-

ited

In this Section, I present the revision of the current knowledge concerning the mod-
eling of the double-mode F/1O Cepheids. The new results indicate that the great
success of convective hydrocodes in modeling the double-mode behaviour (see Sec-
tion 2.6.3) was superficial, and resulted form incorrect assumptions made in PP
model. Short motivation behind the computations presented in this Chapter is given
in Section 6.2.1. Detailed comparison of modal selection along a sequences of NN
and PP models is provided in Section 6.2.2. Resulting explanation of the double-
mode behaviour computed with PP convection is given in Section 6.2.3. Short
discussion of these new and unexpected results, putting the problem of modeling
the double-mode behaviour in new light is contained in Section 6.4.

6.2.1 Motivation

Several papers were published concerning convective double-mode Cepheid and
RR Lyrae models. All these models are non-resonant. Except of a single RR Lyrae
model computed with the Vienna code (Feuchtinger 1998), they were all com-
puted with the Florida-Budapest code. Published surveys of double-mode pulsation
focused on dynamical aspects of the phenomenon. Except more detailed analysis of
RR Lyrae models (Szabó et al. 2004), no detailed comparison of the theoretical
models with observations was done. In case of Cepheid models, even the theoreti-
cal Petersen diagram was not published for the nonlinear models. Light and radial
velocity curves were not compared, neither, although the amplitudes of the models
are claimed to be smaller than observed (Kolláth & Buchler 2001). Exten-
sive model surveys computed by the Florida-Budapest group indicated that stable
double-mode solutions appeared quite naturally as soon as turbulent convection was
included in the model. Also, the presence of such solutions did not depend strongly
on the exact values of convective parameters and specific effects included in the



6.2 Double-Mode F/1O Cepheid Models – Revisited 107

model. Location of the double-mode domain in the HR diagram depended on these
factors, but not its existence (Kolláth et al. 2002). The modal selection was
found to depend on the strength of the eddy viscosity. For the lowest values of the
eddy-viscous parameter, double-mode domain didn’t exist. For higher values of eddy
viscosity it appeared first coexisting with stable fundamental mode solution (DM/F
hysteresis), and then, being the only stable solution in some particular domain in
the HR diagram (Kolláth et al. 1998, Kolláth & Buchler 2001).

Despite extensive work of the Florida-Budapest group, still many questions re-
mained unanswered. Probably the most important is, how turbulent convection
brings up stable double-mode solutions. Turbulent convection has to be crucial, as
purely radiative models fail to reproduce the double-mode behaviour. However, it
was not analysed which factor of turbulent convection is essential. Kolláth et al.
(2002) pointed out that turbulent convection brings up the double-mode solutions,
through modification of the stellar structure, in such a way, that self-saturation
exceeds the cross-saturation. This is however, only observation that necessary con-
dition for the double-mode behaviour to arise, is fulfilled (see Section 1.4.3, and
later in this Chapter), and cannot be regarded as satisfactory explanation of the
phenomenon.

To study the nature of the double-mode behaviour and to test the convective
codes described in this thesis, extensive search for the double-mode solutions was
conducted. Despite the claim of Kolláth et al. 2002 that double-mode models are
easily found, no sign of double-mode behaviour was noticed. The obvious conclu-
sion was, that differences between convective models adopted in our code and in the
Florida-Budapest code can be crucial. Different treatment of radiative losses (Sec-
tion 2.4.1) seems unimportant, as in many double-mode models published, radiative
losses were neglected (e.g.,Kolláth et al. 1998, 2002). Analysis presented in
Section 5.1 indicates that also different treatment of eddy-viscous terms should play
a minor role. However, to minimize the differences between Florida-Budapest codes
and ours, all the model sequences were computed once again with eddy viscosity in
the form of Kolláth (this form of eddy viscosity is used consistently in all the models
presented in this Chapter). As expected, double-mode behaviour was still missing.
The only remaining difference between the two discussed codes was the different
treatment of convectively stable regions (NN convection in our and PP convection
in Florida-Budapest codes). Indeed, this difference turned out to be crucial as is
shown in the forthcoming Sections.

6.2.2 NN versus PP model sequence

The search for stable double-mode behaviour was conducted along a specific se-
quence of models characterized by constant mass, M = 4.5M⊙, constant luminosity,
L = 1143.5L⊙ (Szabó et al. 2007 M − L relation) and Galactic chemical com-
position, X = 0.7, Z = 0.02. In all computations OPAL opacities (Iglesias &
Rogers 1996) computed for the solar mixture of Grevesse & Noels (1993) were
used. Such choice of parameters is motivated by the model survey of Kolláth &
Buchler (2001). According to their survey, in Cepheid model sequence of 4.5M⊙,
double-mode domain extends over relatively large range of effective temperatures.
For the basic analysis two sets of convective parameters were adopted, namely sets
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Figure 6.3: Results of hydrodynamical integrations for nine consecutive Cepheid models

along a sequence of constant luminosity. Effective temperatures of the models are indicated

in each panel. Trajectories were extracted through the analytical signal method. Solid

and open squares mark the location of stable and unstable solutions, respectively. These

were computed using the saturation coefficients and linear growth rates derived from the

fit of the amplitude equations to the hydrodynamical trajectories. Computations for NN

convection model adopting convective parameters of set A.

A and B of Table 4.1. In the following, most attention is payed to the simplest con-
vective model, characterized by the parameters of set A, that is without radiative
losses, turbulent flux and turbulent pressure. Models are computed either with our
standard treatment of convection (NN models) or with turbulent source function
and convective flux restricted to non-negative values (PP formulation, adopted in
the Florida-Budapest code). To avoid confusion, NN/PP prefix is put in front of
the set name, in the following (e.g., we compare model sequences NN-A and PP-A).

Mode selection is analysed along a sequence of models for which both fundamen-
tal and first overtone modes are simultaneously unstable. Consecutive models differ
in effective temperature by 25K. For each model in the sequence, several hydrody-
namical computations are performed. Results for nine consecutive models of sets
NN-A and PP-A are presented in Figures 6.3 and 6.4, respectively.

Modal selection analysis proceed as described in Section 6.1. For each model
of Figures 6.3 and 6.4, quintic amplitude equations are fitted to the hydrodynami-
cal trajectories, yielding the values of saturation coefficients and linear growth rates.
Values of the former are presented in the upper and in the lower panels of Figure 6.5,
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Figure 6.4: Results of hydrodynamical integrations for nine consecutive Cepheid models

along a sequence of constant luminosity. Effective temperatures of the models are indicated

in each panel. Trajectories were extracted through the analytical signal method. Solid

and open squares mark the location of stable and unstable solutions, respectively. These

were computed using the saturation coefficients and linear growth rates derived from the

fit of the amplitude equations to the hydrodynamical trajectories. Computations for PP

convection model adopting convective parameters of set A.

for sets NN-A and PP-A, respectively. All the saturation coefficients vary smoothly
along a model sequence. Once the saturation coefficients and linear growth rates are
known, all the possible solutions and their stability can be computed. In Figures 6.3
and 6.4 stable solutions are marked with solid squares, while unstable with open
squares. Modal selection can be established not only for the computed hydrody-
namical models, but also at any temperature along a model sequence. This is done
through the linear interpolation of the saturation coefficients and linear growth rates.
This allows to find a possibly very narrow (in effective temperature) double-mode
domain, e.g., between the models for which direct hydrodynamical computations
were done.

Before discussing the modal selection along sequences NN-A and PP-A, a remark
concerning the linear growth rates has to be done. Linear growth rates can be derived
using above fitting procedure (fitted growth rates, in the following), or they can be
computed using linear code (computed growth rates). Comparison of fitted and
computed growth rates revealed significant differences, depending on the convection
model used (PP or NN) and the order of the amplitude equations considered. In
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Figure 6.5: Cubic saturation coefficients along a sequence of Cepheid models of constant

luminosity. Computations either for NN (upper panel) or PP convection (lower panel).

In both cases convective parameters of set A were adopted. Coefficients were derived

through fitting the amplitude equations to the hydrodynamical trajectories presented in

Figures 6.3 (NN models) and 6.4 (PP models).

case of NN convection, and quintic amplitude equations, as described in Section 6.1,
computed and fitted growth rates of the first overtone mode agree very well (±5%),
which is not the case for the fundamental mode. Here a systematic difference is noted
– fitted growth rates are on average higher by 15 per cent than the computed ones.
Such difference is not unexpected. Fitted growth rates result from the description of
hydrodynamical computations through the truncated series of amplitude equations.
Consequently, use of the higher order terms in the amplitude equations, should
reduce the discrepancy. Indeed, with seventh order aplitude equations, agreement
between the fitted and computed growth rates is satisfactory also for fundamental
mode of NN models (±3%). Situation is much worse in case of PP models. Even with
seventh order amplitude equations, fitted growth rates are systematically smaller (by
≈ 15%) for both fundamental and first overtone modes. This is likely caused by the
not differentiable nature of the PP model. To study the modal selection, either fitted
or computed growth rates can be used. In case of NN models either choice is equally
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good. However, in case of PP models, fitted growth rates allow for better description
of hydrodynamical trajectories. Therefore, in the following, linear growth rates are
fitted. This is the same choice as adopted by the Florida-Budapest group (Kolláth
et al. 2002, Szabó et al. 2004).

Now, I will discuss the modal selection along model sequences of sets NN-A and
PP-A. Detailed results are displayed in Figures 6.6 and 6.7 for sets NN-A and PP-A,
respectively. In the upper panels of these Figures stability coefficients of the single-
mode solutions (Eqs. 6.4) are plotted. In the lower panels, amplitudes of all the
solutions (stable and unstable) are displayed.

• NN-A model sequence. Individual hydrodynamical models for this se-
quence are displayed in Figure 6.3, while results of detailed mode selection
analysis in Figure 6.6. In this model sequence no stable double-mode solution
is found. At the highest temperatures, only pulsation in the first overtone is
possible. Fundamental mode limit cycle is unstable, however, only in a narrow
temperature range to the red of the linear fundamental mode blue edge. Soon
after amplitude of the fundamental mode exceeds the amplitude of the first
overtone and at temperature ≈ 6290K, fundamental mode limit cycle becomes
stable. As first overtone limit cycle is still stable, unstable double-mode solu-
tion must appear. It extends in the temperature range, ≈ 6290 − 6165K. At
the cool edge of this either-or domain, first overtone limit cycle loses stability.
Double-mode solution disappears and the only stable solution is fundamental
mode pulsation. Through the either-or domain amplitude of the fundamental
mode solution is significantly higher than the amplitude of the first overtone
solution. Qualitatively, described mode selection is exactly the same as in
case of radiative models (Section 1.4.3), and can be inferred from the stability
coefficients of the single-mode solutions.

• PP-A model sequence. Individual hydrodynamical models for this sequence
are displayed in Figure 6.4, while results of detailed mode selection analysis in
Figure 6.7. In this model sequence, stable double-mode solutions are visible
already in hydrodynamical models (Figure 6.4). In three consecutive models
(Teff = 6150K, 6125K and 6100K) double-mode attractors are clearly visible.
For these models, they are the only attractors of the system, single-mode
solutions being unstable. Double-mode domain extends in the temperature
range slightly larger than 50K (≈ 6150 − 6100K). At higher temperatures
only pulsation in the first overtone is possible, while at lower temperatures
fundamental mode pulsation domain extends. At each temperature only one
solution is stable, no hysteresis is possible. Across the double-mode domain
amplitudes of the unstable single-mode limit cycles (fundamental and first
overtone modes) are comparable.

Described modal selection scenarios for NN and PP models are typical. In Sec-
tion 6.3 an extensive survey of NN models with various convective parameters and
various physical properties will be presented. In all these model sequences either-or
domain is present instead of the double-mode domain.

Considering the PP models, double-mode solutions are easily found, independent
of the exact values of convective parameters. For set PP-B (including effects of



112 Modeling of double-mode F/1O Cepheid pulsation

Figure 6.6: Stability coefficients of the single-mode limit cycles (upper panel) and am-

plitudes of all the possible solutions (lower panel) for a sequence of Cepheid models of

constant luminosity. In the lower panel stable solutions are plotted with solid, while

unstable solutions with dashed lines. Amplitudes of the fundamental and first overtone

modes are plotted with red and blue lines, respectively. Computations for NN convection

model adopting convective parameters of set A.

turbulent pressure and turbulent flux), double-mode domain, extending over more
than 50K, is also found. Other sets of convective parameters were examined too, and
stable double-mode solutions were a rule, rather than an exception. Detailed results
of PP model surveys and their properties, will not be presented here. Qualitatively
the same results are found as in the works of the Florida-Budapest group.

Hysteresis models, for which stable double-mode solution coexists with stable
fundamental mode solution, are also found. As these solutions are qualitatively dif-
ferent from those presented for sets NN-A and PP-A, it is worth to present these
curious models in more detail. They also demonstrate that consideration of the
quintic amplitude equations is a must, as such solutions cannot be captured with
cubic amplitude equations. Models under consideration adopt convective parame-
ters essentially of set B, however, with lower value of the eddy-viscous parameter
(αm = 0.15 instead of αm = 0.25), set H in the following. Hysteresis is clearly visible
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Figure 6.7: Stability coefficients of the single-mode limit cycles (upper panel) and am-

plitudes of all the possible solutions (lower panel) for a sequence of Cepheid models of

constant luminosity. In the lower panel stable solutions are plotted with solid, while

unstable solutions with dashed lines. Amplitudes of the fundamental and first overtone

modes are plotted with red and blue lines, respectively. Computations for PP convection

model adopting convective parameters of set A.

for model of temperature 5775K, and results of hydrodynamical integrations for this
model are presented in Figure 6.8. Two leftmost trajectories evolve toward stable
double-mode attractor, one of them from the left and other from the right. The
third trajectory evolves toward fundamental mode solution. Necessarily, second un-
stable double-mode solution must be present between the two stable attractors. In
Figure 6.9 amplitudes of all stable and unstable solutions are plotted, together with
stability coefficients of the single-mode solutions, for the entire sequence of models.
Moving from high temperatures toward lower ones, first, only pulsation in the first
overtone is possible. As fundamental mode limit cycle becomes stable (≈ 5785K),
unstable double-mode solution appears. A narrow either-or F/1O domain is present
in a temperature range ≈ 5785−5778K. At the cool edge of this domain (≈ 5778K)
first overtone limit cycle loses its stability. First overtone still can saturate the pulsa-
tion instability, however, not alone. Extremely narrow double-mode domain appears
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in a temperature range ≈ 5778−5769K. At the same temperatures stable fundamen-
tal mode solution is also possible. At the temperature ≈ 5769K, both double-mode
solutions (stable and unstable) meet and disappear. For lower temperatures only
fundamental mode pulsation is possible. For the discussed case, the presence of the
double-mode domain cannot be inferred from the values of stability coefficients of
single-mode solutions (upper panel of Figure 6.9). At no temperature, both single-
mode limit cycles are simultaneously unstable. However, it is worth to notice that
across the DM/F hysteresis domain, fundamental mode limit cycle is only weakly
stable (it was unstable just 10K to the blue).
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Figure 6.8: Results of hydrodynamical integrations, illustrating the DM/F hysteresis.

Symbols and lines as in Figure 6.2. Computations for PP convection model adopting

convective parameters of set H.

6.2.3 Explanation for the double-mode behaviour observed

in PP models

There are two physical mechanisms that can be responsible for the double-mode
pulsation, resonant and non-resonant. In case of the double-mode F/1O Cepheids,
the latter mechanism has to be responsible for most of the observed double-mode
variables, as no low order resonances are found in the period range occupied by the
double-mode variables. All the models discussed in this Chapter are non-resonant.
In non-resonant scenario double-mode pulsation arises due to feed-back effect of
pulsation on mean radial structure of the star. In the language of saturation coeffi-
cients, the effects of mode self-saturation must exceed the effects of cross-saturation,
so neither of the modes can saturate the pulsation instability alone. Some useful
conditions can be derived through considering the amplitude equations. Using cu-
bic amplitude equations, Dziembowski & Kovács (1984) (see also Buchler &
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Figure 6.9: The same as Figure 6.7, but for models computed with convective parameters

of set H.

Kovács 1986b) showed that necessary condition for the F/1O double-mode pulsa-
tion to occur, is the positive value of the following discriminant,

D = q00q11 − q01q10. (6.5)

Here, we consider quintic amplitude equations, however, the physical picture behind
the above condition remains unchanged. Detailed inspection of the values of satu-
ration coefficients displayed in Figure 6.5 shows that indeed, D > 0 for PP model
sequence, while D < 0 for NN models. This was noticed already by Kolláth et
al. (1998). Later, Kolláth et al. (2002) gave two reasons for the occurrence
of double-mode pulsation in convective model computations. First reason was the
increase of self-saturation coefficients relative to cross-saturation coefficients, which
leads to D > 0. However, this is just the claim that necessary condition for the
double-mode behaviour to occur is fulfilled in the convective models. Second reason
was the necessity to include the quintic terms in amplitude equations to describe the
hydrodynamical results. This prevents overlooking double-mode solution coexisting
with stable single-mode solution. Again, this is not an explanation, but claim of the
fact that topology of solutions computed with convective hydrocodes can be richer,
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than in case of radiative computations.

The surveys of double-mode models computed with PP convection published by
the Florida-Budapest group, as well as test computations described in this Chap-
ter indicate that neither ingredient of the turbulent convection model is crucial in
bringing up the stable double-mode solutions. They appear quite naturally in the
expected period range, independent of the exact values of the convective parameters
and specific effects included in model computation (Kolláth et al. 2002). Hence,
the existence of stable double-mode solutions is inherent property of PP convection
model.

The analysis how PP convection increases the self-saturation effects relative to
cross-saturation effects was never done. In practise, it is difficult to perform such
analysis, as saturation coefficients are very complicated functions of the model struc-
ture. Therefore, it is hard to uncover the cause of the double-mode pulsation, based
on PP model sequence, alone. However, comparison with NN model sequence leads
to a simple, but disappointing explanation. Double-mode behaviour in PP models
results from the neglect of negative buoyancy effects, and hence, its cause is artificial.

Double-mode F/1O Cepheid pulsations are found only in PP models. They are
not found in NN models, which have exactly the same model parameters (masses,
luminosities, chemical composition, convective parameters, mesh parameters) as PP
models, but include the effects of negative buoyancy. As this is the only difference
between NN and PP models, it is natural to assume that the neglect of negative
buoyancy effects in PP models is crucial for the double-mode behaviour to arise.
Indeed, more detailed comparison of NN and PP models presented below, confirms
this hypothesis.

In Chapter 5, the differences in fundamental mode Cepheid models computed
with NN and PP convection were described and explained. Models computed adopt-
ing PP convection have lower amplitudes. Comparison of Figures 6.6 and 6.7, as
well as comparison of corresponding models displayed in Figures 6.3 and 6.4 shows
that indeed, amplitudes of both fundamental and first overtone modes in PP models
are reduced as compared to NN models, however, not by the same factor. Ampli-
tude of the fundamental mode is reduced much more than the amplitude of the first
overtone mode. This is clearly visible in Figure 6.10, in which results of hydro-
dynamical integrations conducted with NN and PP convection, for one particular
model (Teff = 6125K) of set A, are compared. Amplitudes of both single-mode so-
lutions are much smaller in case of PP model. Amplitude of the fundamental mode
fixed point is reduced by a factor of ≈ 3.3, while amplitude of the first overtone
fixed point by factor twice as small, ≈ 1.5.

The reasons behind amplitude reduction in PP models were explained in Sec-
tion 5.2.2 of the previous Chapter. Due to neglect of negative buoyancy effects,
turbulent energies are not damped effectively in convectively stable regions of the
model. To the contrary, they are driven to relatively high level through the eddy-
viscous forces. This driving occurs at the cost of pulsation, which is reflected in
the strong eddy-viscous damping in the internal convectively stable layers of the
model. Just described results show that the internal eddy-viscous damping in PP
models, acts differentially on pulsation modes, having stronger effect on the funda-
mental mode. This is clearly visible in the nonlinear eddy-viscous work integrals
of the fundamental and first overtone modes. They are displayed in Figure 6.11.
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Figure 6.10: Comparison of hydrodynamical trajectories computed with NN (green lines)

and PP (red lines) convection models for the same Cepheid model of set A (Teff = 6125 K).

Solid and open squares mark the location of the computed stable and unstable fixed points,

respectively.

For the discussed PP-A model sequence, two stable single-mode solutions cannot
coexist. The domain of stable fundamental mode pulsation is separated from the
domain of first overtone pulsation by the double-mode domain, in which both single-
mode solutions are unstable. Therefore, work integrals are plotted for two models
of different effective temperatures, lying on both sides of the double-mode region
(see Figure 6.4). Fundamental mode work integrals are plotted for model with
Teff = 6075K, while first overtone mode work integrals for model hotter by 100K
(Teff = 6175K). Work integrals for a single-mode solutions do not vary strongly in
such narrow temperature range, and hence, such comparison is justified. In Fig-
ure 6.11 internal eddy-viscous damping below the envelope convective zone (below
zone ≈ 70) is clearly visible. The range of this damping is different for both modes,
however. For the fundamental mode, eddy-viscous damping extends down to zone
≈ 20, while for the first overtone it becomes negligible already at zone ≈ 40, slightly
below the first overtone pulsation node. The run of work integrals (lower panel
of Figure 6.11) indicate that the different range of eddy-viscous dissipation in the
internal zones, for fundamental and first overtone modes, is responsible for differ-
ential reduction of their amplitudes, as compared to NN models, in which internal
eddy-viscous dissipation is not present, at all.

The different range of the internal eddy-viscous dissipation for the fundamental
and first overtone modes is a consequence of different properties of these modes in
the deep interior of the model. For the first overtone, pulsation node is located
there, which leads to different turbulent energy profile in the internal zones as com-
pared to the model pulsating in the fundamental mode. Turbulent energy profiles
for both discussed models are presented in Figure 6.12. Significant turbulent ener-
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Figure 6.11: Nonlinear eddy-viscous differential work integral (upper panel) and work

integral (lower panel), for the fundamental mode and first overtone models discussed in

the text. Work integrals are normalized by the same factor, W0, equal to the surface value

of eddy-viscous work integral for the fundamental mode.

gies below envelope convection zone are clearly visible. Turbulent energy profile for
the fundamental mode is qualitatively the same as discussed in the previous Chap-
ter. For the first overtone, a drop in the turbulent energies is visible in a region
slightly below zone 40. Pulsation node of the first overtone is located few zones
above. Reasons behind the fall of turbulent energies below the pulsation node are
easy to understand. As described in the previous Chapter, turbulent energies in
convectively stable, internal zones of the model, are built up by the eddy-viscous
forces. In case of Kolláth eddy viscosity adopted through this Chapter, turbulent
energies are driven by the −pν( dV/ dt) term. Eddy-viscous pressure, pν , changes
its sign below the pulsation node, at the local maximum of first overtone velocity
(see Eq. 2.75). As pν and ( dV/ dt) change their sign in opposite direction, the prod-
uct −pν( dV/ dt) is non-negative, and approaches to zero below the location of the
pulsation node1. Consequently, eddy-viscous driving is not effective below the node

1Described picture is qualitatively the same if Kuhfuß form of eddy viscosity is used. This is
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location, and the overall level of turbulent energy in the internal zones is smaller
for the model pulsating in the first overtone. This is best visible in Figure 6.13, in
which snapshots of turbulent energy profiles for both fundamental and first over-
tone modes at arbitrary pulsation phase (φ ≈ 0.5) are presented (as is well visible
in Figure 6.12, turbulent energy profile in the internal zones is almost independent
of the pulsation phase). Of course below the envelope convective zone of the PP
model, turbulent energy profile and eddy-viscous damping are directly related to
each other (as this damping reflects the driving of turbulent energies at the cost of
pulsation). Hence, the different turbulent energy profiles for fundamental and first
overtone modes, displayed in Figure 6.13, allow to understand the different ranges of
the internal eddy-viscous damping for these modes, visible in Figure 6.11. As tur-
bulent energies become lower than ≈ 108 erg/g, eddy-viscous dissipation becomes
negligible. Also the drop in the turbulent energy profile of the first overtone model
is accompanied by the zero in the differential eddy-viscous work integral (which is
however, barely visible in the upper panel of Figure 6.11).
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Figure 6.12: Turbulent energy profiles for the fundamental mode (left panel) and first

overtone (right panel) models adopting PP convection, discussed in the text.

Reduction of the amplitudes of the fundamental and first overtone modes in the
PP models, as compared to NN models, is crucial in bringing up the double-mode
behaviour in the former models. As is visible in Eq. (6.4) amplitude of the mode
is the main factor related to its stability. Lower the amplitude of the mode, more
unstable it is against perturbations in the other modes. Comparison of the NN and
PP model sequences shows that the amplitudes of the PP models are reduced, how-
ever, by different amount for each pulsation mode. As amplitude of the fundamental
mode is reduced much stronger than the amplitude of the first overtone, we expect
that fundamental mode would be more unstable in the PP model sequence. This
is clearly visible in the upper panel of Figure 6.14, in which stability coefficients
of both single-mode limit cycles (or fixed points) are plotted along a sequence of
PP-A (black lines) and NN-A models (red lines). It is useful to analyse this Figure
together with Figures 6.6 and 6.7, in which amplitudes of all possible solutions are

because Eq term, Eq. (3.8), contains the square of the same velocity derivative as pν , and hence,
Eq also approaches zero below the first overtone pulsation node.
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Figure 6.13: Snapshots of turbulent energy profiles displayed in Figure 6.12, at pulsation

phase, φ ≈ 0.5.

plotted, for NN and PP models, respectively.

Moving across the instability strip from blue to the red, stability of the funda-
mental mode limit cycle increases (γ1,0 decreases), while stability of the first overtone
limit cycle decreases (γ0,1 increases). This is a common property of the discussed
stability coefficients, well visible in Figure 6.14 for both NN and PP models. The
run of stability coefficient of the first overtone mode, γ0,1, is very similar for both NN
and PP models. First overtone limit cycle becomes stable at temperature ≈ 6150K.
To the contrary, considering the stability of the fundamental mode limit cycle, dra-
matic difference between NN and PP models is visible. In NN model sequence
fundamental mode becomes stable at relatively high temperature (6280K), soon as
its amplitude becomes higher than the amplitude of the first overtone limit cycle
(Figure 6.6). For lower temperatures its amplitude is much higher than the ampli-
tude of the first overtone and consequently, it is firmly stable against perturbation in
the first overtone. At no temperature along NN model sequence both modes are si-
multaneously unstable. Nor one of the modes is close to being unstable, while other
already is, which would give some hope for stable double-mode solution coexisting
with stable single-mode solution (hysteresis, cf. Figure 6.9, particularly the run of
stability coefficients across the double-mode domain). Stable double-mode pulsation
is not possible for NN sequence. Situation is very different for PP sequence. Moving
across the instability strip to the red, fundamental mode limit cycle becomes less
unstable, that is γ1,0 decreases, however, much slower than in case of NN sequence.
It becomes stable at temperature ≈ 6100K, cooler by ≈ 200K as compared to NN
models. For higher temperatures amplitude of the fundamental mode is lower or
comparable to the amplitude of the first overtone. As first overtone limit cycle be-
comes unstable at temperature ≈ 6150K, in a temperature range from ≈ 6150K
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Figure 6.14: The run of stability coefficients of single-mode fixed points, along a sequence

of models adopting convective parameters of set A (upper panel) and B (lower panel). In

each panel, results obtained with PP (black lines) and NN convection (red lines) are shown.

to ≈ 6100K, both fundamental and first overtone limit cycles are simultaneously
unstable, giving rise to double-mode domain. Existence of stable double-mode solu-
tion is possible, because amplitude of the fundamental mode is reduced significantly
enough, so it remains unstable in a temperature range in which first overtone is
already also unstable.

The above discussion was based on model computations for the simplest possible
convective model, with parameters of set A. However, presented results are general
and valid independent on exact values of convective parameters. In Chapter 5
it was shown that the internal eddy-viscous damping in convectively stable zones
is present independent of model parameters. This damping is the crucial factor
giving rise to stable double-mode pulsation. Test computations with different sets
of convective parameters fully confirm the results presented for set A. In particular,
in the lower panel of Figure 6.14, the run of stability coefficients for NN and PP
model sequences, adopting convective parameters of set B (Table 4.1) are presented.
Results are qualitatively the same as for set A.
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Considerations presented in this Chapter clearly identify the cause of stable
double-mode behaviour computed with PP convection by the Florida-Budapest
group. The neglect of negative buoyancy effects leads to significant turbulent en-
ergies in deep convectively stable layers of the model. These energies are driven at
the cost of pulsation through eddy-viscous forces. These forces depend on the pul-
sation properties of the model, particularly on the pulsation induced velocity field,
which is different for the fundamental and first overtone modes. Therefore, turbu-
lent energy profiles and connected eddy-viscous damping are different for the two
pulsation modes. Eddy-viscous damping is stronger for the fundamental mode, and
consequently its amplitude, as compared to NN models, is reduced much more than
the amplitude of the first overtone. Otherwise stable and dominant (in NN models),
fundamental mode becomes unstable in PP models, that is it cannot saturate the
pulsation instability alone, allowing for simultaneous excitation of the first overtone.

Described explanation is disappointing. Crucial assumption of the PP convection
model – the neglect of negative buoyancy effects – is physically not correct, and so
are the double-mode F/1O Cepheid models published up to date.

Described mechanism is somewhat similar to the mechanism causing the 2:1 res-
onant doubly-periodic pulsation. In the resonant mechanism, amplitude of one of
the two linearly unstable modes is reduced through the resonant coupling to a lin-
early damped parasite mode, which acts as an energy sink. Otherwise dominant,
resonantly coupled mode, is no longer able to saturate the other linearly unstable
mode, allowing its growth. In PP models internal eddy-viscous damping acts sim-
ilarly to the parasite mode. Although it reduces amplitudes of both of the modes,
the effect is much stronger for the fundamental mode.

6.3 Search for stable double-mode behaviour with

NN convection

The mechanism leading to stable double-mode pulsation in case of PP models,
described in the previous Section, cannot be operational in NN models. In NN
treatment, turbulent energies are effectively damped in convectively stable regions
through the negative buoyancy effects, and internal eddy-viscous damping is not
present. For the discussed two sets of convective parameters, A and B, stable double-
mode solution was not found with physically correct NN convection model.

Existence of the double-mode F/1O Cepheids is an observational fact. Physi-
cally correct pulsation hydrocode, should reproduce the observed modal selection.
Failure to do so, indicates that some important physics is still missing in the code.
Therefore, it is extremely important to conduct more extensive search for stable
double-mode behaviour with correct NN description. Such model survey, focused
on F/1O Cepheids, will be described in this Section.

As already described, search for the stable double-mode phenomenon is not an
easy task. First, convective model we use has several free parameters. Stable double-
mode solutions can exist only for some specific combination of these parameters.
Hence, extensive parameter study is necessary. Second, the domain of physical pa-
rameters for which stable double-mode solution may exist, is expected to be narrow,
as double-mode pulsators are rather rare as compared to their single-mode coun-
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terparts. Therefore, sets with various physical parameters should be considered,
too. To avoid overlooking the stable double-mode solution restricted to a narrow
temperature range, or coexisting with stable single-mode solution, modal selection
analysis, as described in Section 6.1, should be carefully applied. As such computa-
tions are extremely time consuming, some special strategy must be used, which is
briefly described below.

We consider two sets of model parameters which will be called basic in the fol-
lowing. For convective parameters of these sets we adopt sets A and B of Table 4.1,
repeated in Table 6.1 to allow comparison with other sets considered in this Section.
I recall, that set A represents the simplest possible convective model, without turbu-
lent pressure, turbulent flux (overshooting) and radiative losses, while in set B, the
former two effects are turned on. In all sets considered in this Section, flux limiter
is not included, and eddy viscosity in the form of Kolláth (see Section 5.1) is used.
All model sequences considered here run horizontally across the HR diagram, that
is models have constant mass and luminosity and varying effective temperature. For
the two basic sets, physical parameters are, M = 4.5M⊙, L = 1143.5L⊙ (Szabó et
al. 2007 M − L relation), and chemical composition corresponding to the Galaxy,
X = 0.7 and Z = 0.02. Such parameters assure that pulsation periods and period
ratios fall within the ranges for the observed double-mode variables. By default
OPAL opacities (Iglesias & Rogers 1996) computed for the solar mixture of
Grevesse & Noels (1993) are adopted.

Our search for stable double-mode solution proceed in two directions. First, we
fix the physical parameters of the models and vary the convective parameters, only.
Second, we keep convective parameters frozen to the values of sets A and B, and
vary the physical parameters of the models. All considered sets of model parameters
are collected in Table 6.1. For each model sequence several models, differing in
effective temperature by 25K, are considered. These models have both fundamental
and first overtone modes simultaneously linearly unstable. Models lying close to
the boundaries of such double-mode instability domain are not computed, except
if it is necessary to infer the modal selection. This is because of low growth rates
of such models, implying long-lasting computations. In most cases however, the
modal selection along the whole instability strip can be inferred without doubt
from the computations limited to models occupying its central parts. For each
considered sequence, modal selection is established. We analyse not only whether
the stable double-mode solution exists for a given model sequence or not, but try to
select the most promising set of model parameters. This is done through comparing
the stability results (stability coefficients of the single-mode limit cycles, γ0,1 and
γ1,0) for a given sequence, with results for a corresponding basic set (A or B).
Such comparison can be qualitative only, as differences in the convective or physical
parameters of the model sequences, lead to the shift of the computed instability
domains. Results of the previous Section indicate that sets in which fundamental
mode limit cycle is less stable at the hot side of the instability strip are promising.
Also model sequences in which one of the limit cycles in unstable, while the other
is only marginally stable are wanted, as they give hope for the hysteresis solution.

The described model survey yielded null result. No stable double-mode solution
could be found. Below, the results are briefly summarized, first for the model se-
quences in which convective parameters of the models were varied (Section 6.3.1),
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Set α αm αs αc αd αp αt γr M L X Z
Basic sets:

A 1.5 0.20 1.0 1.0 1.0 0.0 0.00 0.0 4.5 1143.5 0.700 0.020
B 1.5 0.25 1.0 1.0 1.0 1.0 0.01 0.0 . . .

Other sets considered:
A1 1.3 0.20 1.0 1.0 1.0 0.0 0.00 0.0 . . .
A2 1.7 0.20 1.0 1.0 1.0 0.0 0.00 0.0 . . .
A3 1.5 0.25 1.0 1.0 1.0 0.0 0.00 0.0 . . .
A4 1.5 0.25 0.8 1.0 1.0 0.0 0.00 0.0 . . .
A5 1.5 0.25 1.0 0.8 1.0 0.0 0.00 0.0 . . .
A6 1.5 0.25 1.0 1.0 1.2 0.0 0.00 0.0 . . .
A7 1.5 0.25 0.8 0.8 1.2 0.0 0.00 0.0 . . .
A8 1.5 0.30 1.0 1.0 1.0 0.0 0.00 1.0 . . .
B1 1.5 0.20 1.0 1.0 1.0 1.0 0.10 0.0 . . .
B2 1.5 0.20 1.0 1.0 1.0 1.0 0.50 0.0 . . .
AC1 1.5 0.20 1.0 1.0 1.0 0.0 0.00 0.0 4.5 1143.5 0.716 0.010
AC2 . . . 4.5 1143.5 0.756 0.004
AC3 . . . 4.5 1143.5 0.726 0.004
AC4 . . . 4.5 1143.5 0.700 0.012
AL1 . . . 4.5 902.5 0.700 0.020
AL2 . . . 4.5 404.4 0.700 0.020
AM . . . 4.0 751.9 0.700 0.020
BC1 1.5 0.25 1.0 1.0 1.0 1.0 0.01 0.0 4.5 1143.5 0.716 0.010
BC2 . . . 4.5 1143.5 0.756 0.004
BL1 . . . 4.5 902.5 0.700 0.020
BL2 . . . 4.5 404.4 0.700 0.020
BM . . . 4.0 751.9 0.700 0.020
AZ 1.5 0.20 1.0 1.0 1.0 0.0 0.00 0.0 4.5 1143.5 0.700 0.030

Table 6.1: All sets of convective and physical model parameters that were examined in

search for stable double-mode pulsation with NN convection model. Convective parame-

ters, αs, αc, αd, αp and γr, are given in the units of standard values (Table 2.1).

and next, for the model sequences with varying physical parameters (Section 6.3.2).
The plots of stability coefficients of the single-mode limit cycles for each model
sequence under discussion are displayed in Appendix C.

6.3.1 Effects of varying convective parameters

In the upper part of Table 6.1, parameters of the models in which convective pa-
rameters were varied, are given. Physical parameters of all the models are the same.
Sets A1–A8 neglect the effects of turbulent pressure and turbulent flux, and thus,
computed modal stability should be compared with modal stability for basic set A.
Turbulent pressure and turbulent flux are included in sets B1–B2, and results of
model computations for these sets should be compared to those of set B. In none of
the discussed sets stable double-mode solution was found. Trends among stability
coefficients of the single-mode solutions are briefly discussed below, and graphically
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presented in Figures C.1–C.10 of Appendix C.

• Effects of varying the mixing length, α. Effects of varying the mixing
length parameter, while keeping other alphas fixed are studied in sets A1
(decreased value of α, α = 1.3) and A2 (increased value of α, α = 1.7). The
comparison of single-mode stability coefficients with those of set A is presented
in Figures C.1 and C.2.

The change in the mixing length parameter shifts the instability strip toward
lower (decreased α, set A1) or higher (increased α, set A2) effective tempera-
tures. However, the overall modal selection remains qualitatively the same as
for set A. Fundamental mode limit cycle becomes stable at high temperatures,
when first overtone limit cycle is still firmly stable.

• Effects of varying the strength of eddy viscosity, αm. In set A3 eddy-
viscous parameters is slightly higher than in set A (αm = 0.25 instead of
αm = 0.2. Eddy viscosity plays a special role in the discussed models. It
can be used to adjust the pulsation amplitude, as it is the main source of
dissipation in the model. As discussed (Section 6.2.1), it plays a crucial role
in bringing up the stable double-mode behaviour in PP models, having also
an effect on the modal selection.

The comparison of single-mode stability coefficients of set A3 with those of
set A is presented in Figure C.3. In comparison to set A, with increased value
of αm we observe that first overtone limit cycle is more unstable. Stability of
the fundamental mode limit cycle is very similar as in case of set A. Hence,
with further increase of αm the F/1O either-or domain would shrink, giving
some hope for the appearance of stable double-mode solution. However, by
increasing the strength of eddy viscosity, models become linearly more stable
and stronger increase of αm would stabilize the first overtone.

• Effects of varying the αs, αc and αd. In basic sets A and B, these
parameters are set to their standard values (Section 2.4.3), resulting from the
comparison of the static, time independent Kuhfuß model with the mixing
length theory. In sets A4–A6 values of each of these parameters are varied.
The αs and αc parameters are decreased by 20 per cent (sets A4 and A5) as
compared to set A, while value of αd is increased by 20 per cent (set A6).
These changes imply that convection is less vigorous as compared to models
of set A, which is assured through decreased strength of buoyant driving of
turbulent energies (set A4), decreased efficiency of the convective heat transfer
(set A5) and increased rate of turbulent energy decay through the turbulent
cascade (set A6).

The comparison of single-mode stability coefficients of the discussed sets with
those of set A is presented in Figures C.4, C.5 and C.6 for sets A4, A5 and A6,
respectively. Qualitatively the same picture is observed for all these sets. Sta-
bility of the first overtone limit cycle remains almost unchanged as compared
to set A, while fundamental mode limit cycle is more unstable, particularly,
it becomes stable at lower temperatures. Described results are promising.
Therefore, additional computations were done for set A7, corresponding to



126 Modeling of double-mode F/1O Cepheid pulsation

the merged sets A4–A6 (αs = 0.8, αc = 0.8 and αd = 1.2). Unfortunately,
stability results for this set (Figure C.7) are qualitatively the same as for set
A.

• Effects of radiative losses, γr. In basic sets A and B effects of radiative
cooling of the convective elements are neglected. In set A8 they are turned
on. Parameter γr is set to its standard value as discussed in Section 2.4.3.
Inclusion of radiative losses results in significantly higher model amplitudes,
as convection is less efficient. To compensate the effect and to assure reliable
model amplitudes, eddy viscosity parameter is increased in set A8 (αm = 0.3).

The comparison of single-mode stability coefficients of set A8 with those of
set A is presented in Figure C.8. The change in convective parameters leads
to shift of the instability strip toward lower temperatures for set A8. Qualita-
tively the same modal selection is observed as for set A, however, first overtone
is even more stable, making the double-mode solution more distant.

• Effects of turbulent pressure and turbulent flux, αp and αt. Effects
of turbulent pressure and turbulent flux are studied in sets B, B1 and B2. In
all these sets turbulent pressure is turned on at its full strength (αp = 2/3),
while effects of turbulent flux are gradually increased (αt = 0.01 in set B, 0.1
in set B1 and 0.5 in set B2). Also, eddy viscosity is slightly lower in sets B1
and B2 as compared to set B.

Inclusion of turbulent pressure in the models leads to significant shift of the
computed instability strips, making the comparison of the models with and
without turbulent pressure difficult. However, as already discussed in Sec-
tion 6.2.3 (Figure 6.14), qualitatively the same modal selection is observed for
sets A and B.

The comparison of single-mode stability coefficients of the sets B1 and B2 with
those of set B is presented in Figures C.9 and C.10. Comparing results for
sets B and B1, qualitatively and quantitatively the same results are obtained.
Stronger increase of the turbulent flux (set B2) leads to more unstable first
overtone limit cycle and more stable fundamental mode limit cycle, particu-
larly at higher temperatures, making the appearance of stable double-mode
solution less probable.

6.3.2 Effects of varying physical parameters

In the lower part of Table 6.1, parameters of the models in which physical parameters
were varied, are given. Convective parameters of all the models remain frozen to the
values adopted for sets A or B. In sets AC1–AC4 and BC1–BC2 effects of varying
metallicity and opacity data are studied. In sets AL1, AL2, BL1 and BL2, different
luminosities are adopted, while keeping the mass of the models fixed. In sets AM
and BM mass is changed (and luminosity, according to the adopted M−L relation).
In none of the discussed sets stable double-mode solution was found. Trends among
stability coefficients of the single-mode solutions are briefly discussed below, and
graphically presented in Figures C.11–C.22 of Appendix C.
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• Effects of varying chemical composition. In sets AC1–AC3, BC1 and
BC2, chemical compositions corresponding to stellar systems of lower metal-
licity are adopted. Metallicity is slightly lower, while hydrogen abundance
slightly higher than in the basic sets. In sets AC1 and BC1 we set X = 0.716
and Z = 0.01, which corresponds to LMC, while in sets AC2 and BC2 we set
X = 0.756 and Z = 0.004 (∼ SMC). Additionally, higher helium abundance
is adopted in set AC3, in which X = 0.726 and Z is the same as in set AC2
(Z = 0.004).

The comparison of single-mode stability coefficients for the discussed sets with
those of sets A and B is presented in Figures C.11–C.13, C.18 and C.19. Emerg-
ing picture is the same for all the sets considered. Lower the metallicity, more
stable the fundamental mode limit cycle is. At the hot side of the instability
strip, where fundamental mode limit cycle is expected to be unstable, first
overtone limit cycle would be firmly stable, thus, prohibiting the occurrence
of stable double-mode pulsation.

In set AC4 the effects of adopting new solar mixture of Asplund et al. (2004)
were checked. The new solar metallicity (Z = 0.012) was also adopted for this
set. Stability of the first overtone limit cycle is the same as in case of basic
set A. Fundamental mode limit cycle is more stable, particularly at higher
temperatures, making the stable double-mode solution more distant.

• Effects of varying model mass. In sets AM and BM, lower model masses,
M = 4M⊙ are adopted. Luminosity is also lower according to the adopted
M − L relation of Szabó et al. (2007).

The comparison of single-mode stability coefficients for sets AM and BM with
those of sets A and B is presented in Figures C.17 and C.22. As expected,
instability strips are shifted toward higher temperatures. Qualitatively the
same modal selection is observed as in case of sets A and B. No tendency
toward double-mode solution is visible.

• Effects of varying the mass/luminosity ratio. In sets AL1, AL2, BL1
and BL2, luminosity is set to lower values, while keeping the model masses
unchanged. In sets AL1 and BL1 luminosity is decreased by 0.1 in log L, while
luminosities for sets AL2 and BL2, result from Alibert et al. (1999) M −L
relation for the first crossing of the instability strip.

Considering the sets with slightly decreased luminosity (AL1 and BL1), stabil-
ity of the first overtone limit cycle is very similar as for sets A and B. However,
fundamental mode limit cycle is more stable at higher temperatures, which is
not promising in the context of double-mode pulsation. Situation is much
worse for the models obeying the mass-luminosity relation for the first cross-
ing. Here, comparison with sets A and B is rather not possible, due to strong
shift of the instability strips. However, it is clearly visible that first overtone
limit cycle becomes unstable at low temperatures, far from the blue edge of
the instability domain. At these temperatures fundamental mode limit cycle
is firmly stable, and stable double-mode pulsation is not possible.
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6.4 Discussion of results

Results presented in this Chapter are rather disappointing. We considered the mod-
eling of the F/1O double-mode Cepheids. The origin of the double-mode F/1O
Cepheid pulsation, computed with the Florida-Budapest hydrocode (PP convection)
was explained. Double-mode pulsation in these models, arose due to unphysical as-
sumption concerning the convectively stable regions, namely from the neglect of
negative buoyancy effects. Consequently, the cause of the double-mode pulsation
is artificial. We cannot claim that with negative buoyancy effects included in the
model (NN convection), non-resonant F/1O double-mode Cepheid pulsation is not
possible at all. However, results of extensive parameter study presented in the pre-
vious Section, leave little hope for the final success. Thus, the problem of modeling
the double-mode F/1O Cepheid pulsation remains open.

Florida-Budapest hydrocode was used to model not only F/1O double-mode
Cepheids, but also F/1O double-mode RR Lyrae stars (e.g.,Szabó et al. 2004). It
was also claimed that double-mode 1O/2O Cepheid models were computed (Kolláth
& Buchler 2001), but no details of these models were published since. Results pre-
sented in this Chapter concern F/1O double-mode Cepheids. However, the described
mechanism leading to stable double-mode pulsation should be operational also in
F/1O double-mode RR Lyrae models computed with PP convection. In fact, all such
models, except one, were published by the Florida-Budapest group, adopting this
unphysical treatment of convectively stable layers. The only double-mode RR Lyrae
model computed with other hydrocode, was published by Feuchtinger (1998) us-
ing the Vienna code. This code adopts the Kuhfuß convection model. In the descrip-
tion of this code (Wuchterl & Feuchtinger 1998, Feuchtinger 1999a), no
special remarks concerning the treatment of convectively stable regions were made.
Therefore, it is natural to assume that the original Kuhfuß prescription (NN convec-
tion) was adopted. However, the very good agreement of the first overtone Cepheid
models computed with the Vienna and Florida-Budapest hydrocodes, claimed by
Feuchtinger, Buchler & Kolláth (2000), leave some doubt whether indeed,
NN convection is adopted in the Vienna code. On the other hand, only one double-
mode F/1O RR Lyrae model was published. In fact it was not proved beyond
doubt, that the computed double-mode state is stable. It was only demonstrated
that the fundamental and first overtone amplitudes do not change significantly for
few thousands of pulsation cycles. In principle, this is possible for a transient.

It is also worthy to notice that to the best knowledge of the author no double-
mode model was published by the Italian group, despite enormous number of com-
puted convective Cepheid and RR Lyrae models. In their code (Bono & Stelling-
werf 1992, 1994; Section 2.6.1), negative buoyancy effects are included, and the
described mechanism, bringing up the stable double-mode behaviour in PP models,
cannot work. The lack of double-mode models in the computations with the Italian
code is not surprising, in the light of results presented in this Chapter.

Situation can be more complicated in case of 1O/2O double-mode Cepheid mod-
els. It was claimed that such models were computed with the Florida-Budapest code
(Kolláth & Buchler 2001), although no details had been given. First and sec-
ond overtones have pulsation nodes in convectively stable regions of the Cepheid
models, and hence, the driving of turbulent energies by the eddy-viscous forces is
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not as effective for these modes as it is for the fundamental mode. Consequently,
we expect smaller amplitude reduction in comparison to NN models. As a result,
stability properties of the overtone modes should not differ significantly between
NN and PP treatment. This is exactly what we see for the first overtone mode in
Figure 6.14. The search for stable double-mode 1O/2O Cepheid models with NN
convection model will be described in Chapter 8.

Although the results presented in this Chapter are rather disappointing – in-
correct assumption was identified as a cause of the published double-mode F/1O
Cepheid models, and no double-mode models were found with the corrected treat-
ment – they show the direction in which the correct solution has to be searched for.
We need a mechanism that would strongly decrease the amplitude of the fundamen-
tal mode. However, it is hard to identify such mechanism. Internal eddy-viscous
damping, as is observed in PP models is not probable. It requires significant turbu-
lent energies in the internal model zones, below the envelope convection zone. But
in these regions, negative buoyancy damps the turbulent motions very effectively.
Turbulent motions in the horizontal direction are not affected by the buoyant forces.
However, generation of such turbulence through the mean gas motion, is not likely
to be strong in slowly rotating, radially pulsating Cepheids and RR Lyrae stars.

Turbulence can be generated in the internal parts of the model in convective
zone associated with the iron opacity bump. In this zone, eddy-viscous damping,
having strong effect on the fundamental mode might arise. In the discussed models
however, the iron opacity bump is too weak to produce a significant convective
zone. Possible revision of opacity data can in principle change the situation. To
check whether the iron bump induced convective zone can be helpful in bringing
up the stable double-mode solution, some models adopting parameters of set AZ
(Table 6.1) were computed. This set has the same parameters as set A, except the
metallicity which is enhanced (Z = 0.03). Indeed, stronger convective zone and
associated significant turbulent energies develop in the internal parts of the models.
However, they are restricted to a very narrow region, spanning no more than 4
zones of the model. Eddy-viscous damping associated with this layer is present,
however, much weaker than the damping in other parts of the model. What is most
important, this damping is too weak to affect the mode amplitudes significantly.

The difficulty of modeling the double-mode F/1O Cepheid pulsation can also
originate from oversimplified treatment of convection. More sophisticated models
are needed. Improvements are necessary not only in the modeling of turbulent
correlations entering the model. Also, three dimensional models are needed, as
turbulent convection is essentially three dimensional phenomenon. Some attempts
to develop more elaborate models were recently made (e.g.,Stökl 2008), however,
their numerical implementation is still at its infancy.

As more advanced convective models are not yet available, the best thing to do
is to check the possibilities of the best model available – the original Kuhfuß model
implemented in the described codes. In Chapter 8 the search for stable double-mode
1O/2O Cepheid pulsation will be conducted. As resonances can play a significant
role in these models, first, some interesting resonant multi-mode models will be
discussed in the following Chapter.
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Chapter 7

Resonant excitation of the
doubly-periodic pulsation

In this Chapter, I discuss the resonant mechanism of bringing up stable multi-mode
pulsation. Presented models are mainly of theoretical interest, as they either dis-
agree with observations, or their agreement is not satisfactory. Discussed models
are radiative, except Cepheid models presented in Section 7.3. This allows to study
the modal selection and underlying physical processes with the relaxation scheme,
with the help of the Floquet stability coefficients (see Sections 1.3.3, 1.4.3). Such
analysis is hard to conduct for convective models that are described in Section 7.3
and in the following Chapter. Methods of mode selection analysis presented in Sec-
tion 6.1 are difficult to implement for the resonant case, as appropriate amplitude
equations are much more complex than non-resonant ones. Also, relaxation scheme
was not implemented in the convective hydrocodes. Therefore, discussion of reso-
nant radiative models provides a necessary background to understand the resonant
convective models. Additionally, radiative models that will be described, represent a
very curious cases, not discussed earlier in the literature (spiral attractors, resonant
double-mode domain coexisting with non-resonant one).

Two types of resonances will be analysed in this Chapter. In Section 7.1 the 2:1
resonance will be discussed, while in Sections 7.2 and 7.3, some results concerning
higher order parametric resonance will be given. Both these resonances can be
conductive in bringing up stable 1O/2O multi-mode Cepheid pulsation (Chapter 8).

7.1 Excitation of the multi-mode pulsation through

the 2:1 resonance

The effects of the 2:1 resonance on radial stellar pulsation were extensively studied
in the literature (see Sections 1.4.2, 1.4.3 and references therein). The resonances
between the fundamental and the second overtone, 2ω0 = ω2, and between the
first and fourth overtones, 2ω1 = ω4, are crucial in shaping the light and radial
velocity curves of fundamental mode and first overtone Cepheids, respectively. The
former resonance is responsible for the Hertzsprung bump progression observed in
the fundamental mode Cepheids, while the latter for characteristic progression of
the Fourier decomposition parameters visible in the first overtone Cepheids (see
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Section 1.4.2).

In the 2:1 resonant models, linearly damped, higher frequency parasite mode, is
excited at the cost of a resonantly coupled linearly unstable lower frequency mode.
Due to nonlinear phase lock phenomenon (e.g.,Dziembowski & Kovács 1984),
nonlinear frequencies fulfill the resonance condition exactly, and parasite mode is not
visible as a separate frequency, but manifests in the distortion of the singly-periodic
light/radial velocity curve. Hence, bump Cepheids are in fact, double-mode but
singly-periodic pulsators.

In this Chapter, we consider the effects of resonances on modal selection. The 2:1
resonance can be conductive in exciting the doubly-periodic pulsation, which is of
particular interest in this thesis. The relevant mechanism was described in detail by
Dziembowski & Kovács (1984). Here, we focus on exciting the doubly-periodic
F/1O pulsation, but the discussion is general, and applies to double-overtone pul-
sation (Chapter 8) as well. In the most interesting case, both fundamental and
first overtone modes are linearly unstable, while second overtone is linearly damped.
At the absence of the resonance, each of the two linearly excited modes (or only
one of them) is able to saturate the pulsation instability alone, leading to either-or
domain (or single-mode pulsation domain). This is the usual case in the radia-
tive computations, as well as in convective computations with turbulent convection
model including the negative buoyancy effects (NN model, Sections 1.4.3 and 6.3).
In the resonant scenario, linearly unstable fundamental mode is coupled to the lin-
early damped second overtone. Due to resonant energy transfer, second overtone
is excited at the cost of the fundamental mode. Amplitude of the fundamental
mode becomes lower. Consequently, it is no longer able to saturate the pulsation
instability alone, allowing for the simultaneous growth of the first overtone. Due
to nonlinear phase-lock phenomenon, emerging triple-mode pulsation is apparently
doubly-periodic (second overtone is not visible as a separate frequency). Consider-
ing the Floquet coefficients (or stability coefficients of the amplitude equation’s fixed
points), the resonance is responsible for the increase in η1,0 (γ1,0), as the fundamental
mode limit cycle becomes less stable (and eventually unstable) against perturbation
in the first overtone. If the fundamental mode is destabilized in a parameter range
at which first overtone limit cycle is also unstable, multi-mode state is unavoidable.

Hydrodynamical models corresponding to the described situation were com-
puted by Kovács & Buchler (1988) and by Buchler, Moskalik & Kovács
(1990). These are purely radiative models. Kovács & Buchler found doubly-
periodic RR Lyrae models excited through the 2ω0 = ω3 resonance (see Section 1.4.3).
Buchler, Moskalik & Kovács found a doubly-periodic Cepheid model connected with
the resonance shaping the Hertzsprung bump progression, 2ω0 = ω2. In most cases,
however, this resonance does not induce the doubly-periodic pulsation. Typically,
the resonance center, and thus, the decreased stability of the fundamental mode,
occurs in a temperature range in which first overtone limit cycle is firmly stable.
Thus, if fundamental mode limit cycle is destabilized, this will lead to the first over-
tone pulsation, as was demonstrated by Buchler, Goupil & Piciullo (1997).
Schematic run of the Floquet coefficients corresponding to this case is presented in
the upper panel of Figure 7.1. To excite the simultaneous pulsation in the funda-
mental and in the first overtone, destabilization of the fundamental mode should
occur at lower temperatures, at which first overtone limit cycle is also unstable.
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Schematically this is illustrated in the bottom panel of Figure 7.1. Such models
were found by the author (Smolec 2009) accidentally, while testing the described
nonlinear convective hydrocode in the radiative limit (all convective parameters set
to zero). The shift of the instability domain of the fundamental mode was caused by
the use of nonstandard M−L relation. Apart from direct time integrations, Floquet
stability analysis of the limit cycles was conducted, using purely radiative relaxation
hydrocode. Computed models are not relevant from observational point of view, as
they occur at much longer periods, than are observed in the F/1O double-mode
Cepheids. Nevertheless, these models are very interesting from dynamical point of
view (spiral triple-mode attractor) and well illustrate the resonant mechanism of
exciting the doubly-periodic pulsations. Thus, it is worth to present them in more
detail.
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Figure 7.1: Schematic illustration of the effects of the 2:1 resonance on fundamental mode

limit cycle stability. In the top panel, situation corresponding to model computations of

Buchler, Goupil & Piciullo (1997) is presented , while the bottom panel illustrates

the situation for the multi-mode case discussed in the text.

The models to be discussed have all equal masses, M = 5.5M⊙, and luminosities,
L = 2068.7L⊙. Chemical composition corresponding to our Galaxy was adopted,
X = 0.7, Z = 0.018. OPAL opacities (Iglesias & Rogers 1996) supplemented
with the Alexander & Fergusson (1994) opacity data at the lower tempera-
tures, were used in all model computations. Opacities were generated for the solar
mixture of Grevesse & Noels (1993). Structure of the models is similar as de-
scribed in Section 4.1. Models have 160 zones, 40 outermost zones have equal mass
down to the the anchor zone in which temperature is set to Ta = 11000K. The
temperature at the inner boundary is, Tin = 4 · 106 K. Nonlinear computations were
conducted using both relaxation scheme and direct time integration.

In the left panel of Figure 7.2 the Floquet stability coefficients of the fundamental
and first overtone limit cycles, η1,0 and η0,1, are plotted versus the effective tempera-
ture of the models. Arrow shows the location of the resonance center, inferred from
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Figure 7.2: The run of the Floquet stability coefficients versus the effective temperature

of the models, close to the center of the 2:1 resonance, 2ω0 = ω2, marked with arrow

(left panel). Shaded bar shows the modal selection inferred from the Floquet stability

analysis and from the results of hydrodynamical direct time model integration. TM stands

for triple-mode (doubly-periodic) pulsation. Correlation between the amplitude of the

fundamental mode limit cycle (FLC) and its stability coefficient is demonstrated in the

right panel.

the linear computations. Qualitatively the same picture, as is schematically drawn
in the bottom panel of Figure 7.1 is visible. Around temperature Teff = 4680K, a
prominent peak in the stability coefficient of the fundamental mode limit cycle, η1,0,
is present. As is visible in the right panel of Figure 7.2, the destabilization of the
fundamental mode limit cycle is connected with the resonant decrease of its pulsa-
tion amplitude. Destabilization occurs far from the blue edge of the instability strip,
in a temperature range at which first overtone limit cycle is already unstable. Con-
sequently, triple-mode (F/1O/2O) domain, manifesting in doubly-periodic (F/1O)
pulsation, emerges in the middle of the fundamental mode pulsation domain. Stable,
triple-mode solution exists also to the blue of this domain, in a narrow temperature
range, at which fundamental mode limit cycle is stable (η1,0 < 0). In this domain,
triple-mode solution coexists with stable fundamental mode solution. Existence of
such domain cannot be inferred from the Floquet analysis. It was found through
direct time integration of individual models across the temperature sequence.

Several nonlinear direct time integrations were conducted to approach the triple-
mode solution. Hydrodynamical results were analysed through the analytical signal
method, as described in Section 6.1. The extracted amplitude, S1, corresponding
to signal at linear frequency of the first overtone, ω1, is directly related to the
amplitude of this mode, S1 = A1. However, this is not the case for amplitude S0,
which corresponds to signal at linear frequency of the fundamental mode, ω0. Due to
resonant coupling between the fundamental and second overtone modes, S0 contains
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the contribution from the latter mode too (see e.g.,Kovács & Buchler 1989),

S0 = ℜ(a0 + h21a
∗
0a2). (7.1)

Above, a0 and a2 are complex amplitudes corresponding to fundamental and second
overtone modes, respectively, and h21 is a complex coefficient. Computed trajectories
are presented in Figures 7.3 and 7.4 in S0 − S1 plane. Note, that the topology of
the solutions in this plane, is exactly the same as in amplitude-amplitude, A0 −A1,
plane.

In Figure 7.3 hydrodynamical trajectories corresponding to models of different
effective temperatures are plotted. For each model one trajectory is displayed. How-
ever, to probe the whole phase-space, model of each temperature was integrated with
several initial conditions. Results for two models of temperatures 4690K and 4720K,
are presented in Figures 7.4.

Figure 7.3: Hydrodynamical trajectories in S0 − S1 plane, for five Cepheid models of

different effective temperatures, located close to the 2ω0 = ω2 resonance center.

Trajectories visible in the Figures are qualitatively different from those displayed
in Figures 6.3 and 6.4, which is caused by the resonant mode interaction. Trajectory
for the hottest model in Figure 7.3 evolves toward fundamental mode solution. For
slightly cooler model (Teff = 4720K) triple-mode resonant solution appears. Already
for this model, the curious character of the attractor is apparent. It is spiral at-
tractor, which is best visible for model of Teff = 4690K. Solutions of such character
were not encountered in hydrodynamical pulsation modeling, up to date. For cooler
models, the spiral becomes less pronounced, and finally disappears. Also triple-mode
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Figure 7.4: Results of hydrodynamical model integrations for two Cepheid models with

Teff = 4690 K (left panel) and Teff = 4720 K (right panel). For each model, several

trajectories are plotted, corresponding to integrations with different initial conditions.

Note that trajectories can cross, as S0 − S1 is not a full phase-space.

solution is not present for temperatures lower than 4660K. The doubly-periodic do-
main extends over more than 60K in the middle of the fundamental mode pulsation
domain. It is also worthy to notice that at the hot side of this domain, triple-mode
solution coexist with stable fundamental mode solution. Hysteresis is clearly visible
for model with Teff = 4720K displayed in the right panel of Figure 7.4. Note also,
that trajectories in this Figure intersect themselves. This is because S0 − S1 (or
A0 − A1) plane is not a full phase-space, as three modes are involved in the pul-
sations (phase-space is 4-dimensional, see e.g.,Dziembowski & Kovács 1984).
The domain in which hysteresis is possible is narrow, its width is smaller than 20K.
Across this domain fundamental mode limit cycle is stable (η1,0 < 0) and first over-
tone limit cycle is unstable (η0,1 > 0). For lower temperatures, triple-mode state
is the only attractor of the system, and all trajectories evolve toward it, which is
clearly visible for model with Teff = 4690K (left panel of Figure 7.4). In this case
both single-mode limit cycles are simultaneously unstable.

Modal selection, as depicted in the left panel of Figure 7.2, was inferred through
the Floquet analysis and direct numerical model integration. The more robust
method would be to apply the mode selection analysis, as described in Section 6.1. In
this case however, resonant amplitude equations should be fitted to hydrodynamical
trajectories. For the discussed case, relevant amplitude equations are following,

da0

dt
=
(
γ0 + Q00a

2
0 + Q01a

2
1 + Q02a

2
2

)
a0 + Π0a

∗
0a2

da1
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2
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2
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2
2
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(7.2)
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Above, a0, a1 and a2 are complex amplitudes of the fundamental, first and second
overtone modes, respectively. Qij are complex cubic saturation coefficients and Π0

and Π2 are complex coupling coefficients. Non-resonant saturation terms were trun-
cated at cubic nonlinearities. Complex resonant coupling terms are present in the
equations for the fundamental and second overtone complex amplitudes. Decoupling
of these equations into separate equations for amplitudes and phases, which is possi-
ble in non-resonant case, cannot be done here. Linear fitting to the hydrodynamical
trajectories is not possible, neither. Also, the parameter space is significantly larger
than in non-resonant case (25 parameters instead of 8 in Section 6.1). Therefore,
the mode selection analysis as described in Section 6.1 is hard to conduct.

An attempt was made to derive all the parameters entering the resonant AEs,
through minimization of the residuals between amplitudes computed from hydro-
dynamical trajectories and those computed from AEs (Eqs. 7.2), assuming some
trial values for saturation and coupling coefficients. To this purpose, genetic al-
gorithm pikaia was used (Charbonneau 1995). Unfortunately, no satisfactory
solution was found, probably because of complicated properties of the minimized
residual function, which appears to have many local minima. Also, extremely large
parameter space made the computations very slow.

7.2 Excitation of the multi-mode pulsation through

the three-mode resonance – β Cephei models

In the resonance to be discussed in this Section, three consecutive radial modes
are involved. Frequency of the middle mode is close to the mean of the remaining
two modes: 2ω1 = ω0 + ω2. The resonance was shortly discussed by Kovács &
Buchler (1993) in the context of multi-mode RR Lyrae models. It was found to
be conductive in bringing up the stable multi-mode behaviour in radiative models
of β Cephei stars (Smolec & Moskalik 2007). These results will be shortly
described in this Section. Surprisingly, the same resonance is operational in multi-
mode convective Cepheid models that were found accidentally by the author. These
results will be described in Section 7.3.

β Cephei stars are main sequence, early B-type pulsators. They are driven
through the κ-mechanism acting in the iron opacity bump. Pulsation in non-radial
modes is dominant, although in several stars, radial modes had been detected (see
e.g.,Dziembowski 2007, Pigulski 2007 for recent reviews). Smolec & Moska-
lik (2007) studied the amplitude saturation in β Cephei models by computing the
properties of the radial modes with radiative pulsation hydrocode. These models
are robust, and independent of artificial viscosity parameters. The use of radiative
codes in modeling these stars is fully justified. External hydrogen-helium (H–HeI)
convective zone is not present, simply because of high effective temperatures. He-
lium (HeII) convective zone is located close to the surface and is not important
for driving. Convection associated with the iron opacity bump is weak, as in the
computed static convective models only up to three per cent of the total flux can
be carried by convection (see Smolec & Moskalik 2007). Because of very small
growth rates for β Cephei models (γ ≈ 10−5), only relaxation method can be used
to conduct extensive model survey. Analysis of the Floquet stability coefficients
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of the computed models, revealed two domains in which both fundamental mode
and first overtone limit cycles are simultaneously unstable, thus, leading to multi-
mode pulsation. These results will be presented in this Section (see also Smolec
& Moskalik 2007, Smolec 2009).

Models under consideration were computed along the evolutionary tracks ob-
tained with the Warsaw-New Jersey stellar evolutionary codes (e.g.,Pamyatnykh
1999). In these computations Galactic chemical composition (X = 0.7, Z = 0.02)
was adopted. Here, we will discuss the most interesting models computed with the
OPAL opacities. Several envelope models, characterized by masses, luminosities and
effective temperatures given by the evolutionary code, were constructed. All models
consist of 120 mass shells, extending down to Tin = 3 · 107 K. Anchor is located
close to the iron opacity bump at temperature, Ta = 2.5 · 105 K, 70 zones below the
surface. Instability strips emerging from linear stability analysis are shown in the
theoretical HR diagram plotted in Figure 7.5. Several models were selected for non-
linear computations. They are shown with solid hexagons in Figure 7.5. For each
model, fundamental and first overtone limit cycles were computed through the re-
laxation technique. Values of the Floquet coefficients were used to derive the modal
selection coded with colours in Figure 7.5. Except the models located along 10M⊙

evolutionary track, modal selection is qualitatively the same as observed in radia-
tive models of classical pulsators (Section 1.4.3) – fundamental and first overtone
domains are separated by the F/1O either-or domain, in which pulsation in either
mode is possible. For models of lowest mass (8M⊙, 9M⊙), as well as for highest
mass models (20M⊙), only pulsation in the fundamental mode is possible.

The most interesting results are obtained along 10M⊙ evolutionary track. Here,
a double-mode model is found in between the first overtone and fundamental mode
pulsation domains. Such location suggests that non-resonant mechanism is opera-
tional in bringing up the double-mode behaviour. Analysis of linear periods revealed
however, that the center of the 2ω1 = ω0 + ω2 resonance is also located nearby. The
loci of this resonance is drawn with dashed brown line in Figure 7.5. To check the
possible effects of this resonance on modal selection, a much denser grid of models
was computed along 10M⊙ evolutionary track. Obtained results are very interest-
ing. Two multi-mode domains are located along this evolutionary track. One of
them is resonant, and falls exactly at the resonance center, between the two first
overtone models plotted in Figure 7.5. The second domain, in which the single
double-mode model plotted in Figure 7.5 is located, has nothing to do with the res-
onances. This scenario was inferred from values of the Floquet stability coefficients
along the discussed sequence of 10M⊙ models, which are presented in Figure 7.6.
Stability coefficients are plotted versus the ∆ parameter, defined as,

∆ =
2ω1

ω0 + ω2
, (7.3)

thus, characterizing the proximity to the resonance center.

At the highest temperatures, only pulsation in the first overtone is possible.
First overtone limit cycle is stable (η0,1 < 0), while fundamental mode limit cycle
is unstable (η1,0 > 0). Then, exactly at the resonance center (∆ = 1), a prominent
peak of the switching rate toward fundamental mode, η0,1, is visible. No doubt,
discussed resonance destabilizes the first overtone. Otherwise stable, first overtone
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Figure 7.5: Location and modal stability information for the computed nonlinear β Cephei

models. Models were computed along evolutionary tracks (black lines) for stars of masses

indicated in the Figure. Locations of the zero-age main-sequence (ZAMS) and terminal-

age main-sequence (TAMS) are also shown. Solid and dotted violet lines enclose the

fundamental and first overtone instability strips, respectively. Dashed line shows the loci

of the 2ω1 = ω0 + ω2 resonance.

becomes unstable (η0,1 > 0) at the resonance center. As fundamental mode is
also unstable, resonant triple-mode (damped second overtone is resonantly excited)
domain emerges in the middle of the first overtone pulsation domain. The sharp
peak of η0,1 indicates that resonant effects are important only very close to its
center. For lower temperatures a monotonic increase of η0,1 and monotonic decrease
of η1,0 are clearly visible. Both switching rates cross at around ∆ ≈ 1.01 and are
simultaneously positive at the crossing point. Thus, a second double-mode domain
emerges, separating the first overtone and fundamental mode pulsation domains.
This is exactly what we expect in case of non-resonant mode coupling. It is also
worth to mention, that in agreement with theoretical analysis of amplitude equations
(Kovács & Buchler 1993), discussed resonance has no effect on the stability of
the fundamental mode (η1,0).

Direct nonlinear integrations were not conducted for the resonant models. Due
to a very small growth rates, convergence to stable attractors is extremely slow
and requires the computations of more than 105 pulsation cycles. Four trajectories
were computed for the non-resonant case (see Smolec 2009), however, they just
confirm the existence of the stable double-mode attractor, which cannot be reached
in reasonable time, even on very fast computers.
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Figure 7.6: Linear growth rates (blue lines) and Floquet stability coefficients (switching

rates) plotted against proximity parameter ∆, for β Cephei models along 10M⊙ evolution-

ary track. Shaded bar shows the emerging modal selection. TM stands for triple-mode

(doubly-periodic) pulsation.

Described models are mainly of theoretical interest. In none of the observed
β Cephei stars, two radial modes alone are simultaneously observed. In these stars
non-radial modes usually dominate, and these were not taken into account in the
presented computations. However, computed models clearly illustrate the resonant
and non-resonant mechanisms of bringing up stable multi-mode pulsation – at a
single evolutionary track.

7.3 Excitation of the multi-mode pulsation through

the three-mode resonance – δ Cephei models

Multi-mode models that will be described in this Section were found accidentally
during test computations, intended to model the Hertzsprung bump progression. All
computations were done with convective hydrocodes described in this thesis, includ-
ing negative buoyancy effects (NN model). Static models were constructed using the
same mesh structure and opacity data as described in Section 4.1. Models were com-
puted along a sequence of constant luminosity and varying effective temperature.
Masses and luminosities of the models satisfy the mass-luminosity relation resulting
from Schaller et al. (1992) evolutionary computations. Convective parameters
and masses of the models to be discussed, are collected in Table 7.1. Convective
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Figure 7.7: Hydrodynamical trajectories for six consecutive Cepheid models of set R2,

lying close to the 2ω1 = ω0+ω2 resonance center. Model properties are given in each panel.

Solid and open squares mark the location of stable and unstable fixed points computed

through fitting the hydrodynamical trajectories with non-resonant amplitude equations.

parameters of set R3 are exactly the same as for set C discussed in Chapter 4
(Table 4.1).

Set α αm αs αc αd αp αt γr M[M⊙] T [K] ∆ P0[d] P1/P0

R1 1.5 0.3 1 1 1 1.0 0 0.75 4.50 5755 1.00064 4.21 0.6964
R2 1.5 0.3 1 1 1 0.5 0 1.00 4.75 see Figure 7.7
R3 1.5 0.5 1 1 1 0.0 0 1.00 5.00 5965 1.00009 4.77 0.6929

Table 7.1: Parameters and properties of the multi-mode convective Cepheid models dis-

cussed in the text. Convective parameters, αs, αc, αd, αp and γr, are given in the units of

standard values (see Table 2.1). In the last four columns effective temperature, proximity

parameter, fundamental mode period and P1/P0 period ratio are given for models for

which doubly-periodic solution exists.

The double-mode solution was first found for one model of set R1. Detailed linear
analysis revealed that the 2ω1 = ω0+ω2 resonance can be involved in the pulsations,
as the model was located almost exactly at the resonance center (Table 7.1). This
finding motivated the search for doubly-periodic F/1O Cepheid pulsation connected
with the discussed three-mode resonance. Such models are hard to find as special
conditions are necessary for their occurrence (see later in this Section). Multi-mode
models were found for sets R2 and R3 of Table 7.1. The widest domain with doubly-
periodic solutions exists for set R2. In Figure 7.7 results of hydrodynamical model
integrations for six consecutive models of this set are presented.

Modal selection and properties of the models are very similar for all three pa-
rameter sets of Table 7.1, and are briefly discussed below.

Modal selection. Mode selection scenario is evident from the hydrodynamical
trajectories alone, and is the same for all three parameter sets under discussion.
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Doubly-periodic attractor always coexists with stable fundamental mode attractor
(see Figure 7.7). Hysteresis domain is always very narrow. Close to the resonance
center consecutive models were computed in 5K steps in effective temperature. For
sets R1 and R3, doubly-periodic solution was found in only one model (see Table 7.1
for its properties), indicating that the interesting domain is narrower than 10K.
Only for models adopting parameters of set R2, doubly-periodic domain is wider,
and extends over more than 40K. For all three model sequences, this domain is
located between the F/1O either-or domain (hotter models) and fundamental mode
pulsation domain (cooler models). Therefore, from astrophysical point of view,
doubly-periodic solution can be reached only during red-ward evolution, by models
previously pulsating in the first overtone. During the blue-ward evolution, models
pulsate in the fundamental mode, which remains stable.

Origin of multi-periodic pulsation. At first glance, the non-resonant mecha-
nism seems to be the most likely cause of the doubly-periodic (and double-mode, in
non-resonant case) pulsation. Doubly-periodic solutions are always located between
the fundamental and F/1O either-or domains, which is rather natural for the non-
resonant mechanism. In case of typical resonant excitation, doubly-periodic domain
emerges in the middle of the single-mode domain – fundamental mode domain, as
for the 2:1 resonance discussed in Section 7.1, or first overtone domain, as for the
three-mode resonance acting in β Cephei pulsators (Section 7.2). This is because
of resonant destabilization of one of the limit cycles. Also, non-resonant amplitude
equations seem to capture hydrodynamical results. Solid and open squares in Fig-
ure 7.7 correspond to stable and unstable fixed points, computed as described in
Section 6.1, through fitting the non-resonant amplitude equations to the hydrody-
namical trajectories. Except one model of Teff = 5840K, location of the fixed points
seems consistent with the hydrodynamical data.

Nevertheless, other arguments point toward resonant explanation of the com-
puted doubly-periodic models. First, all the computed doubly-periodic models are
very close to the resonance center. Proximity parameters, ∆ (Eq. 7.3), are given
in Table 7.1 for the two relevant models of sets R1 and R3 and in Figure 7.7 for
models of set R2. This is not likely to happen by accident, particularly, for three
model sequences of different convective parameters as well as masses and luminosi-
ties. Second, extensive survey of models presented in Section 6.3 hasn’t revealed
any doubly-periodic solutions, particularly, close to the transition line between fun-
damental and F/1O either-or domains. In all models of Section 6.3, 2ω1 = ω0 + ω2

resonance was far from the transition line. Also, doubly-periodic models were not
found close to the resonance center, if transition line was distant. This indicates
that special condition is required to bring up the stable doubly-periodic pulsation
– proximity of the models to both the resonance center and discussed transition
line. Consequently, doubly-periodic domain is always restricted to a very narrow
region in the HR diagram. Also, existence of the doubly-periodic solution depends
on the values of convective parameters entering the model computations (see next
paragraph).

General properties of the models. Periods and period ratios for the com-
puted doubly-periodic models are collected in Table 7.1 (sets R1 and R3) and in
Figure 7.7 (set R2). Models occupy a narrow period range. As compared to ob-
servations (see Petersen diagram in e.g.,Moskalik & Ko laczkowski 2009), pe-
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riod ratios are slightly smaller. This can be compensated through the decrease of
model’s metallicity. However, the main drawback of the computed models is their
high amplitude. Except for set R3, amplitudes of the single-mode solutions along
the computed model sequences, are always higher than are observed for Cepheids.
Particularly, amplitudes of the fundamental mode are higher at least by 30 per cent.
Similar discrepancy is observed for the first overtone models. Attempt to decrease
the model amplitudes by increasing the eddy-viscous dissipation (parameter αm)
were unsuccessful. Doubly-periodic solution simply disappeared. In all three pa-
rameter sets of Table 7.1, effects of radiative cooling of the convective elements are
turned on. In such models convection is always less vigorous. However, more exten-
sive parameter study is necessary to judge, whether this effect is crucial in bringing
up doubly-periodic solutions.

Despite described difficulties, presented models are promising, as they are com-
puted with convective hydrocode including negative buoyancy effects. Certainly,
more work is necessary to understand the mechanism bringing up the doubly-
periodic behaviour, and to check whether better agreement with observations can
be achieved. Such work is planned.
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Chapter 8

Hydrodynamical modeling of
double-overtone Cepheid pulsation

In this Chapter, search for nonlinear 1O/2O double-overtone Cepheid behaviour is
described. Physical parameters of the models are chosen to reproduce the double-
overtone Cepheids in the Large Magellanic Clouds. Recently, their number was
significantly enlarged by the OGLE team. Observational data are briefly described
in Section 8.1. Linear model survey, intended to reproduce the observed Petersen
diagram and period-luminosity relation, is conducted in Section 8.2. Finally, in
Section 8.3 results of nonlinear model survey are presented and discussed.

8.1 Observational data

A large sample of new Cepheid variables in the Large Magellanic Cloud was discov-
ered in the OGLE data (OGLE-II – Udalski et al. 1999, OGLE-III – Soszyński
et al. 2008b). Many of these objects are multi-periodic pulsators, including pre-
viously unknown double-mode 1O/3O Cepheids, and three new cases of very rare
triple-mode Cepheids (Soszyński et al. 2008a). Also, a new classes of double-
mode pulsators were found in the OGLE data, with period ratios either close to
unity, or in a range 0.60 − 0.64 (Moskalik, Ko laczkowski & Mizerski 2004,
Moskalik & Ko laczkowski 2008, 2009; Soszyński et al. 2008b). Non-radial
modes must be involved in the pulsations of the former class (with period ratio close
to unity), and are also suggested as likely explanation for the latter group (period
ratios around 0.60 − 0.64) – see Moskalik & Ko laczkowski (2009). These
exciting variables lack satisfactory theoretical interpretation.

In this Chapter, we focus on 1O/2O double-overtone Cepheids. They are most
frequent class of multi-periodic Cepheids in the LMC. 206 such variables were found
in OGLE-III data, to be compared with only 61 F/1O double-mode Cepheids. There
are many more single-mode first overtone Cepheids (1238), however, in a period
range 0.5 d < P1 < 0.9 d double-overtone Cepheids are most common type of pul-
sators among the LMC Cepheids. Surprisingly only 14 variables are confirmed single-
mode second overtone pulsators. Hence, second overtone is excited predominantly
together with the first overtone.

Observational data for the LMC double-overtone Cepheids are plotted in Fig-
ure 8.1. In the upper panel of that Figure, Petersen diagram is plotted. Double-
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overtone Cepheids seem to fall into two overlapping groups in this diagram. The first,
less numerous group, extends from the shortest periods to periods slightly longer
than P1 ≈ 0.6 days (log P1 ≈ −0.2). Within this group, one can observe a weak
increasing trend in the P2/P1 period ratio. Members of the second, more numerous
group, extending for longer periods (P1 > 0.6 days) form a well defined sequence
with decreasing period ratio. In the lower panel of Figure 8.1, the period-luminosity
relation is plotted. On vertical axis, reddening-free Wesenheit index, defined as,

WI = I − 1.55(V − I), (8.1)

is plotted. Tight, linear relation between Wesenheit index and logarithm of the first
overtone period is clearly visible.

Figure 8.1: Petersen diagram (top panel) and period luminosity relation, log P1 − WI

(bottom panel), for the double-overtone Cepheids in the LMC. Data from Soszyński et

al. (2008b).

Data on double-overtone pulsators represent a challenge for stellar evolution
and pulsation theories. As was shown by Dziembowski & Smolec (2009) stan-
dard evolutionary computations fail to reproduce the majority of double-overtone
Cepheids. In the next Section their conclusions, based on linear pulsation modeling
will be briefly summarized.
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8.2 Linear modeling of the double-overtone LMC

Cepheids

In this Section, we focus on modeling the data visible in Figure 8.1. To this purpose
evolutionary computations coupled with linear pulsation modeling were used. Evo-
lutionary tracks were computed with the Warsaw-New Jersey stellar evolutionary
code (see e.g.,Pamyatnykh 1999), which allows to compute evolutionary phases
before core helium ignition. Computations were conducted for two values of metal-
licity characteristic to LMC, namely Z = 0.006 and Z = 0.008. For the hydrogen
abundance, X = 0.72 was adopted. Asplund et al. (2004) solar mixture was used
in opacity computations. Rotation, as well as overshooting from the convective core,
were neglected. Mixing length parameter was set to αMLT = 1.5. Computed tracks
for stars of masses 2.5M⊙, 3.0M⊙ and 3.5M⊙, are plotted with solid (Z = 0.006)
and with dot-dashed lines (Z = 0.008) in the theoretical HR diagram displayed in
Figure 8.2.

Figure 8.2: Evolutionary tracks for the 2.5M⊙, 3.0M⊙ and 3.5M⊙ models (red, blue and

green lines, respectively), computed assuming no overshooting from the convective core.

Solid and dot-dashed lines correspond to computations with metallicities of Z = 0.006

and Z = 0.008, respectively. Thick line segments along each evolutionary track refer to

domains of simultaneous instability of the first and second overtones.

Along each evolutionary track, instability domains, in which both first and second
overtones are simultaneously unstable (γ1 > 0, γ2 > 0), were determined with linear
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convective pulsation code described in this thesis. They are marked with thick lines
along each evolutionary track. Below, some details of linear pulsation models are
given.

Modeling of double-overtone pulsation and, more generally, pulsation involving
higher order overtones, is not an easy task. Higher the order of pulsation mode,
deeper into envelope it penetrates. Hence, to obtain reliable periods and period
ratios, model envelopes should be deep and computed with higher resolution in
the internal layers, as compared to fundamental mode Cepheid models. The best
solution, would be to use the full evolutionary models, including the zones of nuclear
burning and regions of non-homogeneous chemical composition. Such models can be
computed with the linear code of Dziembowski (1977), which is coupled with the
Warsaw-New Jersey stellar evolutionary code. However, treatment of convection in
this code is very simple (frozen-in MLT). Consequently, it does not allow to compute
the red edges of the instability strips. Therefore, the envelope convective code with
Kuhfuß convection model (Chapter 3) was used in pulsation modeling. The model
structure, zoning and depth of the envelope, were chosen to reproduce the results
obtained with the Dziembowski’s code as closely as possible. Comparison of model
periods and period ratios was conducted either for purely radiative models, or with
convection in the frozen-in approximation in both of the codes. In the envelope
code, radiative losses, turbulent pressure and turbulent flux were neglected, and
other parameters were set to their standard values, which makes static convective
Kuhfuß model equivalent to MLT (see Section 2.4.3). Resulting mesh structure
for the envelope models is following (see Section 3.3.1): number of zones is, N =
200, of which Na = 50 outer zones have equal mass down to the anchor zone, in
which temperature is set to Ta = 11000K. Envelope extends down to temperature
Tin = 8 · 106 K. It has to be stressed, that arising periods of the pulsation modes,
and period ratios, can be compared with observational data only qualitatively. For
detailed asteroseismic modeling, as e.g., conducted by Moskalik & Dziembowski
(2005) for the triple-mode 1O/2O/3O Cepheids, only full evolutionary models are
suitable.

In the final model computations convective parameters of set C of Table 4.1 were
adopted. Of course, linear model surveys adopting other sets of convective parame-
ters can be conducted relatively fast, however, only this particular set will be consid-
ered here, for several reasons. First, in Sections 4.2 and 4.3, it was shown that with
parameters of set C reliable models of both fundamental and first overtone single-
mode Cepheids are obtained. Second, this set includes effects of radiative cooling of
the convective elements. It was claimed that inclusion of this effect was necessary
to obtain 1O/2O nonlinear double-mode models with the Florida-Budapest code
(Buchler & Kolláth 2000). Although the treatment of convection in Florida-
Budapest code is significantly different from ours (Chapters 5 and 6), differences
may not be as significant in case of 1O/2O models (see Section 6.4). Third, the
constructed linear models will serve as initial models for nonlinear computations de-
scribed in the next Section. As we consider low mass models characterized by small
growth rates, nonlinear computations are extremely time-consuming and extensive
model survey with different convective parameters is hard to conduct. Also, as dis-
cussed models are hot, convection is not expected to be very strong, and results
should not be very sensitive to the exact values of the convective parameters.
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Pulsation models were computed along each evolutionary track visible in the HR
diagram displayed in Figure 8.2. Emerging instability domains, in which necessary
condition for the double-overtone pulsation is fulfilled (γ1 > 0, γ2 > 0), are marked
with thick lines in Figure 8.2. In Figures 8.3 and 8.4 location of relevant models in
the Petersen diagram and in period-luminosity diagram is shown with solid lines,
for both metallicities considered. Wesenheit index for the theoretical models was
computed using Kurucz (2004) colour indices and bolometric corrections, and
adopting 18.5mag for the distance modulus to the LMC (Schaefer 2008).

Figure 8.3: Petersen diagram (top panel) and period-luminosity relation (bottom panel)

for the computed linear models with first and second overtones simultaneously linearly

unstable. Red, blue and green lines correspond to 2.5M⊙, 3.0M⊙ and 3.5M⊙ models,

respectively. Solid lines refer to models computed along evolutionary tracks. In models

plotted with dotted and dashed lines luminosity is constant and artificially increased by

∆ log L ≈ 0.2 and ∆ log L ≈ 0.4, relative to evolutionary models. Asterisks and filled

pentagons show the location of the 2ω1 = ω5 and 2ω2 = ω1 + ω3 resonance centers,

respectively. All computations for Z = 0.006. Data are shown with dots.

In addition to models computed along evolutionary tracks corresponding to first
crossing of the instability strip, other models crossing the HR diagram horizontally
(constant luminosity) were computed. Masses of the models are the same as in
evolutionary computations, 2.5M⊙, 3,0M⊙ and 3.5M⊙, however, luminosities are ar-
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Figure 8.4: The same as Figure 8.3, but for models with metallicity Z = 0.008.

tificially increased by ∆ log L ≈ 0.2 and ∆ log L ≈ 0.4 relative to average luminosity
for the first crossing models. Models along these horizontal paths, and within the
instability strip (γ1 > 0, γ2 > 0), are plotted with dotted (∆ log L ≈ 0.2) and
dashed (∆ log L ≈ 0.4) lines in Figures 8.3 and 8.4. Adopted luminosity increases
can model large convective core overshooting during the main sequence phase or
later phases of evolution, second and third crossings of the instability strip, dur-
ing the core helium burning. Both possibilities disagree with modern evolutionary
computations. However, the respective models agree with the observational data.
Analysis of results, presented in Figures 8.3 and 8.4, led Dziembowski & Smolec
(2009) to several interesting conclusions, briefly summarized below1.

(i) Models of constant mass cluster around straight lines in the plot of log P1−WI

relation. Majority of double-overtone Cepheids have masses 3.0 ± 0.5M⊙.

(ii) Double-overtone Cepheids of shorter periods (log P1 . −0.2) are well ex-
plained with evolutionary models corresponding to first crossing of the instability
strip, computed without overshooting (solid lines in Figures 8.3 and 8.4), or with
moderate overshooting during the main sequence evolution (in between solid and

1All linear computations, presented in Figures 8.3 and 8.4 were done by the author with the
convective code described in this thesis. Conclusions regarding evolutionary status of the double-
overtone Cepheids, summarized in this Section are due to prof. Dziembowski.
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dotted lines in Figures 8.3 and 8.4).

(iii) At longer periods, evolutionary models corresponding to first crossing are
too luminous as compared to the observational data. At some particular period
range, better agreement with the data is obtained for non-evolutionary models of
lower mass with highest luminosity excess (∆ log L ≈ 0.4, dashed lines in Figures 8.3
and 8.4). If these are the models crossing the instability strip for the first time,
the excess luminosity may be caused by the over-large overshooting during main
sequence evolution. If these are objects during the blue loop evolution, inferred
masses are lower than necessary to enter this evolution phase according to modern
evolutionary computations (e.g., 4.0M⊙ in Girardi et al. 2000 computations in-
cluding overshooting from the convective core, as well as in Pietrinferni et al.
2004 computations without overshooting; see also Section 1.2).

For more details, I refer the reader to Dziembowski & Smolec (2009). Here,
we focus on challenges for pulsation theory, particularly on modeling the double-
overtone pulsations.

Detailed analysis of linear periods revealed that two resonances occur within the
linear models displayed in Figures 8.3 and 8.4. These are the same resonances as
discussed in the previous Chapter, however, involving higher order overtones. The
2:1 resonance between the first and fifth overtones, 2ω1 = ω5, was suggested by
Dziembowski (see Soszyński et al. 2008b, Dziembowski & Smolec 2009) as
a possible cause shaping the structures visible in Fourier decomposition parameters
for short period first overtone Cepheids. Other resonance, 2ω2 = ω1 + ω3 was not
previously discussed in the context of overtone Cepheids. Resonance centers along
sequences of computed models are indicated with asterisks (2:1 resonance) and filled
pentagons (three-mode resonance) in Figures 8.3 and 8.4. The 2:1 resonance occurs
at shorter periods, log P1 . −0.2, while three-mode resonance only in intermediate
period range around log P1 ≈ −0.25. As was shown in the previous Chapter, both
these resonances can be conductive in bringing up stable doubly-periodic pulsations.
Results displayed in Figures 8.3 and 8.4 indicate that for shorter periods, double-
overtone pulsation can be a resonant phenomenon. At longer periods however,
non-resonant mechanism must be operational. Only nonlinear modeling can give
more insight into the double-overtone pulsations. This is the subject of the next
Section.

8.3 Search for nonlinear models of the double-

overtone LMC Cepheids

Extensive nonlinear model survey was conducted for models with metallicity Z =
0.006. Similar survey was computed for metallicity Z = 0.008, yielding qualitatively
the same results. Presented model computations are not yet published.

For metallicity Z = 0.006, six nonlinear model sequences were computed. They
were chosen to cover the significant part of the Petersen diagram. Three sequences
are located within instability domains (γ1 > 0, γ2 > 0) along evolutionary tracks
for stars of masses 2.5M⊙, 3.0M⊙ and 3.5M⊙ (solid lines in Figure 8.3). Other three
are located along horizontal paths with artificially increased luminosity (2.5M⊙,
∆ log L = 0.4; 3.0M⊙, ∆ log L = 0.4; 3.5M⊙, ∆ log L = 0.2). Location of all the
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computed models is shown with brown symbols in Figure 8.5.

Figure 8.5: Petersen diagram showing the location and stability information for the com-

puted nonlinear convective models. Lines showing the location of linear model sequences

are the same as in Figure 8.3. Arrow marks the location of the 2ω1 = ω5 resonance center

along 2.5M⊙ evolutionary path. All computations for metallicity parameter Z = 0.006.

For each model five hydrodynamical integrations were conducted, each initialized
with different mixture of first and second overtone’s velocity eigenvectors. For most
of the models integrations were carried over 8000 pulsation cycles. In case of the
least massive models located along evolutionary track (2.5M⊙, ∆ log L = 0.0), inte-
grations were twice as long, as growth rates are very small for this model sequence.
Individual trajectories are presented in Figures 8.6 (2.5M⊙, ∆ log L = 0.0) and 8.7
(3.5M⊙, ∆ log L = 0.4). Results are particularly interesting for model sequence of
2.5M⊙ (Figure 8.6). For other five model sequences results are qualitatively the
same as presented in Figure 8.7.

Modal selection information for the computed models is presented in Figure 8.5.
It was derived through the analysis of the computed trajectories, visible e.g., in Fig-
ures 8.6 and 8.7. Hydrodynamical computations were not analysed with amplitude
equations (as it was done in Chapter 6) for following reasons. First, in most of the
models, more than two modes are linearly excited and should be taken into account
in the amplitude equations. Along each of the paths displayed in Figures 8.3 or
8.5, fundamental mode is linearly unstable at the cool side (higher log P1). At the
hot side, third overtone is unstable in all model paths with overtone period shorter
than 0.62 days (log P1 < −0.2). Although in all the models except one (see fol-
lowing paragraph), both fundamental and third overtone modes are not present in
full amplitude pulsation (which was checked through the analytical signal method),
they are present during the transient evolution. Hence, they have to be taken into
account in amplitude equations analysis, in order to derive the modal selection cor-
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rectly. Second, in short period range, resonances occur between pulsation modes.
Hence, amplitude equations should be supplemented with resonant terms, which
makes them much more complex. Their fitting to hydrodynamical results is even
more difficult than in case of models discussed in Section 7.1, because of more modes
being involved. Nevertheless, interesting and robust results are obtained from the
analysis of hydrodynamical trajectories alone, and are described below.
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Figure 8.6: Results of direct nonlinear integrations for eleven consecutive models along

evolutionary track of 2.5M⊙ (Z = 0.006). Hydrodynamical trajectories are plotted in

A1 − A2 amplitude-amplitude plane. For the last model, trajectories are plotted also in

A2 − A3 plane. Crosses mark the beginning of each trajectory. Effective temperatures of

the models, as well as linear P5/P1 period ratios are given in each panel.

The most interesting modal selection scenario is visible within the instability
strip along 2.5M⊙ evolutionary track (Figures 8.5 and 8.6). For the hottest model
in this sequence, 2O/3O hysteresis is possible. Depending on the initial conditions,
trajectories evolve either toward second overtone attractor or toward the third over-
tone attractor. For this particular model, trajectories are displayed in both A1 −A2
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and A2 − A3 planes (last two panels in Figure 8.6). In five consecutive cooler mod-
els, only single-mode pulsation in the second overtone is possible. Then, a double-
overtone domain emerges. Multimode attractor is clearly visible for models with
log Teff = 3.83492, 3.83162, and 3.82838 (Figure 8.6). The only model to the red
of this domain pulsates in the first overtone. Double-overtone domain appears in
between the first and second overtone pulsation domains. Although this is typical
scenario for non-resonant mechanism, resonant one cannot be excluded a priori.
Arrow in Figure 8.5 shows the location of the 2:1, 2ω1 = ω5 resonance center. It is
located quite close to the double-overtone domain. The resonant destabilization of
the first overtone limit cycle, if located at a correct position along discussed path,
can in principle lead to double-overtone domain, instead of either-or 1O/2O domain.
It is worth to notice that the 2:1 resonances affect the pulsations in a rather wide
range of period ratios, and that destabilization not necessarily occurs exactly at the
resonance center (see Figure 7.2). Without more detailed analysis, strict statements
about the nature of discovered doubly-periodic domain cannot be made.

Remaining five nonlinear model sequences of Z = 0.006 display qualitatively the
same mode selection scenario, which however, is different from scenario described for
2.5M⊙ sequence. Double-mode domain is not present. Instead, the either-or 1O/2O
domain is located in between the single-mode first and second overtone pulsation
domains (Figure 8.7). Discussed resonances, seem to have no visible effect on the
modal selection along these sequences.

Five nonlinear model sequences were computed for higher metallicity, Z = 0.008.
Three sequences correspond to first crossing evolutionary models of masses, 2.5M⊙,
3.0M⊙ and 3.5M⊙. The remaining two sequences correspond to horizontal paths with
artificially increased luminosity (3.0M⊙, ∆ log L = 0.4 and 3.5M⊙, ∆ log L = 0.4).
In the Petersen diagram, they cover the whole period range occupied by double-
overtone Cepheids. Their location, as well as modal selection inferred from the
hydrodynamical trajectories is shown in Figure 8.8. Individual hydrodynamical
trajectories for models along 2.5M⊙ sequence are displayed in Figure 8.9.

The overall modal selection is very similar as in case of lower metallicity mod-
els (compare Figures 8.8 and 8.5). Again, most interesting results are obtained
for models of the shortest periods, with masses of 2.5M⊙. For the two hottest
models in this sequence, pulsation either in the third or in the second overtone is
possible (hysteresis). Trajectories for these models are displayed in A2 − A3 plane
at the bottom of Figure 8.9. For the four consecutive cooler models, single-mode
pulsation in the second overtone is possible. Then, a multi-mode domain emerges.
Simultaneous pulsation in the first and second overtones is possible for models with
log Teff = 3.84029, 3.83701, and 3.83377 (Figure 8.9). The center of the 2:1 res-
onance between first and fifth overtones, marked with arrow in Figure 8.8, falls
exactly in the middle of discussed domain. This indicates that the resonance can be
crucial in bringing up stable doubly-periodic behaviour. Models of longest periods
along the discussed sequence pulsate in the first overtone.

For the remaining four model sequences with metallicity Z = 0.008 no traces
of multimode behaviour are found. For models along evolutionary tracks (3.0M⊙

and 3.5M⊙) either-or domain, in which pulsation in either second or first overtone
is possible, separates the single-mode second overtone domain (shorter periods) and
single-mode first overtone domain (longer periods). For models with luminosity
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Figure 8.7: Results of direct nonlinear integrations for twelve consecutive models of

3.0M⊙ and constant luminosity, increased by ∆ log L ≈ 0.4 relative to average luminosity

along evolutionary track of the same mass. Metallicity of the models is Z = 0.006.

Hydrodynamical trajectories are plotted in A1 − A2 amplitude-amplitude plane. Crosses

mark the beginning of each trajectory. Effective temperatures of the models are given in

each panel.

increase (3.0M⊙, ∆ log L = 0.4 and 3.5M⊙, ∆ log L = 0.4) first overtone pulsation
dominates. Only for 3.0M⊙ sequence (∆ log L = 0.4) either-or domain exists at
shortest periods, in which second overtone pulsation is also possible. Again, as in
case of Z = 0.006 models, it seems that resonances do not affect the modal selection
along model sequences of higher masses (longer periods).

Although some double-overtone models were found, overall results are not sat-
isfactory. Double-overtone domain exists at shortest overtone periods, only. No
double-overtone models are found at longer periods, particularly in a period range,
0.5 d < P1 < 0.9 d, at which double-overtone pulsation is the most common form of
pulsation in the LMC. Surprisingly, in many models only pulsation in the second



156 Hydrodynamical modeling of double-overtone Cepheid pulsation

Figure 8.8: Petersen diagram showing the location and stability information for the com-

puted nonlinear convective models. Lines showing the location of linear model sequences

are the same as in Figure 8.4. Arrow marks the location of the 2ω1 = ω5 resonance center

along 2.5M⊙ evolutionary path. All computations for metallicity parameter Z = 0.008.

overtone is possible. Observationally, this form of pulsation is very rare, as only
14 such objects are found in LMC (Soszyński et al. 2008b). Therefore, also in
case of 1O/2O double-mode Cepheids, convective hydrocode fails to reproduce the
modal selection. This conclusion is not so strict as in case of F/1O Cepheids, as only
one set of convective parameters was analysed. On the other hand, for hot overtone
models, convection is not expected to play a crucial role, and results should not
depend strongly on the values of convective parameters and/or effects included in
the model. Certainly, more work is necessary to solve the puzzle of double-overtone
pulsations.
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Figure 8.9: Results of direct nonlinear integrations for eleven consecutive models along

evolutionary track of 2.5M⊙ (Z = 0.008). Hydrodynamical trajectories are plotted in

A1 −A2 amplitude-amplitude plane for the first nine models and in A2 −A3 plane for the

last two models. Crosses mark the beginning of each trajectory. Red arrows at the end

of some trajectories indicate the direction in which trajectory bend, which is sometimes

not visible due to the scale adopted in the plots. Effective temperatures of the models, as

well as linear P5/P1 period ratios are given in each panel.



158 Hydrodynamical modeling of double-overtone Cepheid pulsation



Chapter 9

Summary and Conclusions

Through the last fifty years, numerical modeling of radial stellar pulsation allowed
to understand many properties of the observed variables. Particularly, the great suc-
cess was achieved in modeling of the single-mode pulsators. Already with radiative
hydrocodes single-mode light and radial velocity curves were modeled quite suc-
cessfully, allowing to understand the nature of e.g., Hertzsprung bump progression
observed in classical Cepheids (Chapter 1).

From the beginning of numerical computations, modeling of the double-mode
pulsation was one of the major objectives. Two pulsation periods simultaneously
observed, allow to put stringent constraints on stellar model. However, computation
of stable double-mode pulsation appeared a difficult and challenging task. Despite
extensive efforts, the problem remained unsolved for many years. This disturbing
situation has changed with the inclusion of turbulent convection into the model
equations. Robust double-mode behaviour, involving fundamental and first overtone
modes, was computed for both RR Lyrae and Cepheid models (Feuchtinger 1998,
Kolláth et al. 1998; Chapter 2). The success was partial, however. Besides
the simple claim that convection is necessary to obtain the double-mode behaviour
and that its origin is non-resonant, our knowledge of underlying physical processes
remained obscure. Particularly the specific effect of turbulent convection responsible
for the occurrence of double-mode behaviour was not identified.

In this thesis, I describe the results of nonlinear modeling of Cepheid pulsation.
The basic tools I used in this research, were convective pulsation hydrocodes; static
model builder, linear nonadiabatic code, and nonlinear, direct time integration hy-
drocode. The first two codes were written by myself, while in the third case, I
have modified the existing radiative hydrocode of Stellingwerf (1975a). The
codes are Lagrangian and treat the radiation in the diffusion approximation. For
the convective energy transfer, I adopted the best currently available model suitable
for nonlinear integrations – the Kuhfuß (1986) model. This is non-local time-
dependent model, in which generation of turbulent energy is described through the
one additional equation. Construction of static convective envelope is much more
difficult than in the radiative case. Simple integration of model equations, allowing
to construct the full static model in radiative case, now can be used to compute
only initial model, which neglects the effects of turbulent pressure and overshooting.
To include these effects, I implemented the relaxation scheme in which full model
equations are solved iteratively. Similar scheme was implemented in the Florida-
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Budapest codes (Yecko et al. 1998), but no details had been given. Linear nona-
diabatic code was also written entirely by myself. To solve the linear eigenvalue
problem, I adopted the method suggested by Glasner & Buchler (1993). Non-
linear direct time integration hydrocode was based on the radiative hydrocode of
Stellingwerf (1975a), in which full nonlinear model equations are solved with
the implicit Fraley (1968) method. Inclusion of turbulent convection into non-
linear scheme is a significant modification. Not only one additional equation for
turbulent energy has to be implemented, but also remaining momentum and total
energy equations must be supplemented with several convection-related terms. In
order to preserve the total energy of the envelope during the model integrations,
special averaging scheme has to be adopted. All codes require second derivatives
of the thermodynamic quantities. To compute them, I implemented the analytical
equation of state in the form of Stellingwerf (1982a).

The codes were tested by computing the sequences of single-mode Cepheid mod-
els, pulsating either in the fundamental or in the first overtone modes. I discussed
extensively the structure and properties of some particular static and full amplitude
models, to show how turbulent convection works in Cepheids. Computed radial
velocity curves reproduce qualitatively the observed properties of these variables,
particularly the progression of low order Fourier decomposition parameters with pul-
sation period (Chapter 4). Other test was the computation of stable double-mode
F/1O behaviour. Search for such behaviour is not easy, as double-mode domain can
be restricted to a narrow parameter range. It can also coexist with other stable
single-mode solutions. Hence, some special techniques are necessary to establish the
modal selection along model sequences. To this aim, I implemented the methods
described by the Florida-Budapest group (e.g.,Kolláth et al. 2002), in which hy-
drodynamical computations are analysed with the help of the amplitude equation
formalism. Unfortunately, no stable double-mode F/1O Cepheid model was found.
This negative result motivated the research constituting the main part of this thesis.

Except single RR Lyrae model (Feuchtinger 1998), all other double-mode
Cepheid and RR Lyrae models were computed with the use of the Florida-Budapest
hydrocodes (e.g.,Kolláth et al. 1998, 2002, Szabó, Kolláth & Buchler
2004). These codes implement convection model very similar to that of Kuhfuß,
however, with one important difference: negative buoyancy effects are neglected.
Physical interpretation of this approximation, as well as its consequences for the
computed models, were not studied by the Florida-Budapest group. These are
severe, as I extensively analysed in Chapters 5 and 6 of this thesis. I implemented
the Florida-Budapest approach (neglect of negative buoyancy) into the codes as an
option. Then, a detailed comparison of models computed with negative buoyancy
(default treatment) with those computed without negative buoyancy effects (Florida-
Budapest), yielded the results and conclusions, I briefly summarize below.

i. Neglect of negative buoyancy effects leads to significant turbulent energies
in convectively stable regions of the model. These energies are driven at the cost
of pulsation energy through the eddy-viscous forces and are not damped effectively
due to the lack of buoyant forces.

ii. The driving of turbulent energies by the eddy-viscous forces is associated with
the eddy-viscous damping of the pulsations. Hence, amplitude of the single-mode
models computed without negative buoyancy is smaller than the amplitude of the
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models computed with negative buoyancy effects included.

iii. Amplitude of the fundamental mode is reduced much more than the am-
plitude of the first overtone. This is caused by the different spatial structure of
the modes, particularly, by the different profiles of radial velocity within the model,
powering the eddy-viscous damping.

iv. Reduction of amplitudes of models neglecting the negative buoyancy (Florida-
Budapest), as compared to models including this effect (default in this thesis) is
responsible for the double-mode behaviour found in the former models. Particularly,
fundamental mode with its strongly reduced amplitude is no longer able to saturate
the pulsation instability alone, allowing the growth of the first overtone. In terms of
limit cycle stability, amplitude of the fundamental mode is reduced strongly enough
to cause its destabilization in a parameter range in which first overtone is also
unstable, thus, leading to stable double-mode pulsation.

v. As the neglect of negative buoyancy is physically not justified, double-mode
F/1O Cepheid models computed with the Florida-Budapest hydrocode are incorrect.

vi. Despite extensive parameter study, no stable non-resonant double-mode pul-
sation was found with hydrocodes including negative buoyancy effects.

Non-resonant mechanism of exciting the double-mode pulsation is one of the two
possibilities. The other is resonant excitation. In Chapter 7, I demonstrated the role
of resonances in exciting the multi-periodic pulsation, based on radiative models of
classical Cepheids and β Cephei stars. In the Cepheid models, the 2:1 resonance
between the fundamental mode and the second overtone, 2ω0 = ω2, was found to be
responsible for the doubly-periodic F/1O Cepheid pulsation. This doubly-periodic
behaviour manifests in prominent spiral attractors in amplitudes phase-space. It is
the first case of such attractor found in hydrodynamical pulsation modeling. The
three-mode resonance, 2ω1 = ω0 + ω2, was found to be responsible for the F/1O
doubly-periodic pulsation in β Cephei models. Interestingly, the resonant multimode
domain is located on the same evolutionary track at which also non-resonant double-
mode domain exists. Unfortunately, these δ Cephei and β Cephei models do not
correspond to any real stars. The resonant doubly-periodic Cepheid models have
much longer periods, than are observed. In real β Cephei stars, two radial modes
alone are not observed. Non-radial pulsation dominates in these stars. Nevertheless,
these models are of great value. As they are radiative, Floquet analysis of the
stability of the single-mode limit cycles can be performed, allowing to understand
how the resonant mechanism works.

In the period range occupied by F/1O double-mode Cepheids no low-order res-
onances among radial modes are found. However, I found several models in which
higher-order three mode resonance, 2ω1 = ω0 + ω2, can be conductive in bring-
ing up stable doubly-periodic F/1O pulsation (Chapter 7). These are convective
models, computed including negative buoyancy effects. Unfortunately, computed
doubly-periodic behaviour is restricted to a narrow parameter range.

Analysis of the OGLE-III data from the Large Magellanic Cloud, lead to discov-
ery of plenty of new double-overtone Cepheids, pulsating simultaneously in the first
and second overtones. In some particular period range, 0.5 d < P1 < 0.9 d, this is
the most common form of Cepheid pulsation in the LMC. These data motivated the
search for stable double-mode 1O/2O Cepheid behaviour (Chapter 8). Linear anal-
ysis indicated that two types of resonances can be conductive in bringing up stable
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double-mode pulsation in these stars. In objects with first overtone period shorter
than ≈ 0.8 days, the 2:1 resonance between first and fifth overtones, 2ω1 = ω5 can
be operational. In intermediate period range, 0.45 days < P1 < 0.70 days, high-
order three-mode resonance involving consecutive three overtones, 2ω2 = ω1 + ω3,
is present. At longer periods, P1 > 0.80 days, no resonances had been found and
thus, a non-resonant mechanism must be operational. Conducted survey of nonlin-
ear convective models revealed stable double-mode 1O/2O models, however, only at
the shortest overtone periods, P1 < 0.30 days. The 2:1 resonance, 2ω1 = ω5, is most
likely responsible for the double-mode behaviour observed in these models, however,
more analysis is necessary to confirm this conclusion. In a period range occupied by
majority of LMC double-overtone Cepheids no stable double-mode behaviour was
found. Instead, either-or 1O/2O domain was found separating the single-mode first
and second overtone domains.

The results presented in this thesis are rather disappointing. It was shown that
double-mode F/1O Cepheid models published so far are incorrect, as they result from
unphysical neglect of negative buoyancy effects. When these effects are included,
attempts to model the double-mode phenomenon are mostly unsuccessful. Although
some stable doubly-periodic models were found, involving both fundamental mode
and first overtone and first and second overtones, in both cases they are restricted
to very narrow period ranges. Resonant mechanism is the most likely cause of
double-mode pulsation observed in these models. No double-mode models in which
non-resonant mechanism would be operational were found. This is particularly
disappointing, as linear analysis indicates that such mechanism should be responsible
for most of the observed double-mode Cepheids. The problem of modeling the
double-mode Cepheid pulsation remains open.

Double-mode Cepheids exist, and correct hydrocode should reproduce the ob-
served double-mode behaviour. Presented results indicate that something is still
missing in our hydrocodes. Most probably, the overall description of convection is
too simplified. One-equation model, although suitable for nonlinear computations,
may lack the important features of real three-dimensional turbulent convection, es-
sential for the double-mode pulsation. Certainly, further work on modal selection
requires new, more sophisticated treatment of convection.

Studying of double-mode phenomenon was the main subject of this thesis. How-
ever, it is also worth to mention some other results. Approximations adopted in
different hydrocodes were analyzed in detail. This concerns not only the treatment
of convectively stable layers, but also e.g., the eddy-viscous terms (Chapter 5). Two
forms of eddy-viscous terms are commonly adopted in pulsation hydrocodes. These
are either eddy-viscous pressure or eddy-viscous momentum and energy transfer
rates. It was found that the differences in models computed using these two ap-
proaches are quantitative only, models computed using eddy-viscous pressure being
linearly less unstable and consequently having smaller amplitudes.

Fourier decomposition parameters for radial velocity curves of convective funda-
mental mode Cepheid models were computed and compared with observations. No
such comparison was done earlier for convective models. Computed models agree
quite satisfactorily with observations (Chapter 4). Significant discrepancy was noted
only for amplitude ratio, R21, for models with period shorter than 10 days. Increase
of model R21 with pulsation period is not so steep as is observed. Similarly model-
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ing of single-mode first overtone Cepheids is quite satisfactory. Here, a problem was
noted for the Fourier phase, ϕ21, at short overtone periods, where model values are
slightly too high.

Still many interesting results concerning single-mode variables can be obtained
with the described convective hydrocodes. Modeling of simultaneous pulsation in
two or more modes, awaits a breakthrough.
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Appendix A

Work integrals

In this Appendix, the derivation of work integrals, both nonlinear and linear, is pre-
sented. We consider the Kuhfuß convection model, described in Section 2.4. Model
equations are summarized in Section 3.2. Focus is put on the eddy-viscous terms in
the Kuhfuß form (see Section 5.1). Derivation of corresponding work integrals was
first published by Smolec & Moskalik (2008a).

We follow the derivation method presented in the book of Unno et al. (1989).
Viscous momentum and energy transfer rates are written using Eqs. (3.7) and (3.8).
Momentum and energy equations, (2.37) and (2.39), are,

d~u

dt
= −1

ρ
∇ptot −∇Φ + 4π

1

r

∂X
∂M

êr, (A.1)

d(E + et)

dt
+ ptot

dV

dt
= −1

ρ
∇~F + 4πX ∂(ur/r)

∂M
, (A.2)

Momentum equation was rewritten in the vector form. Above, êr is unit vector in
the radial direction, Φ is gravitational potential, ∇Φ = GMr/r

2, ur is radial (only)
component of the velocity vector ~u. Total pressure is denoted as, ptot = p + pt, and
~F is the total flux, ~F = ~Fr + ~Fc + ~Ft.

To obtain the equation of conservation of mechanical energy, momentum equa-
tion is multiplied by ρ~u,

ρ
d( ~u2/2)

dt
= −~u∇ptot − ρ~u∇Φ + 4πρ

ur

r

∂X
∂M

. (A.3)

Dividing above equation by ρ, and adding it to the energy equation we get,

d(E + et + ~u2/2)

dt
= −~u∇Φ − 1

ρ
∇(~F + ptot~u) + 4π

∂(Xur/r)

∂M
, (A.4)

where we made use of continuity equation,

ρ
dV

dt
= ∇~u. (A.5)

Integrating over the mass of the envelope we get,

dEtot

dt
= −

M∫

Mi

1

ρ
∇(ptot~u + ~F ) dM + 4π

M∫

Mi

∂

∂M

(

X ur

r

)

dM, (A.6)
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where Etot is equal to the total energy of the envelope,

Etot =

M∫

Mi

(E + et + ~u2/2 + Φ/2) dM, (A.7)

Mi is mass enclosed at the inner boundary of the envelope, and we made use of the
following relation (see Eq. 25.5 of Unno et al. 1989),

M∫

Mi

~u∇Φ =
1

2

d

dt

M∫

Mi

Φ dM. (A.8)

Note that the last integral in Eq. (A.6) vanish due to adopted boundary conditions;
at the inner boundary ur = 0 (Eq. 3.57) and at the outer boundary X = 0 (Eq. 3.55).
The remaining integral in Eq. (A.6) is rewritten in the following form

dEtot

dt
= −

M∫

Mi

1

ρ
∇(~F ) dM −

∫

r=R

ptot~u d~s, (A.9)

where R is radius of the star. The last surface integral vanish due to our outer
boundary condition (ptot = 0, Eq. 3.54). Using energy equation (A.2) again, we
obtain

dEtot

dt
=

M∫

Mi

[
d(E + et)

dt
+ ptot

dV

dt
− 4πX ∂(ur/r)

∂M

]

dM. (A.10)

Nonlinear work integral is obtained through integrating over the whole pulsation
cycle, which yields

W =

P∮

0

dt

M∫

Mi

dM

[

ptot
dV

dt
− 4πX ∂(ur/r)

∂M

]

(A.11)

W =

P∮

0

dt

M∫

Mi

dM

[

ptot
dV

dt
− Eq

]

. (A.12)

First term in the above integral corresponds to ordinary pressure work, while the
second term to eddy-viscous work.

Linear work integrals are obtained through considering above nonlinear work
integrals in the linear approximation,

W =

P∮

0

dt

M∫

Mi

dM

[

(δptot)
d(δV )

dt
− 4π(δX )

∂(ur/r)

∂M

]

. (A.13)

Using relation, ur = d(δr)/ dt, and assuming δz = ℜ(δzeiωt) for the perturbed
quantities, after laborious but straightforward algebra we arrive at

W = −π

M∫

Mi

ℑ
[
(δptot)

∗(δV )
]
dM + π

M∫

Mi

ℑ
[

(δX )∗
(

δV

r3
− 3V

r3

δr

r

)]

dM. (A.14)
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The first integral corresponds to ordinary pressure work integral, and the second
term is eddy-viscous work integral, for the Kuhfuß form of eddy viscosity. In case
of the Kolláth form, eddy viscosity has a form of ordinary pressure, and is simply
included in ptot.
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Appendix B

Energy conservation

The form of the time averages that appear in finite difference nonlinear equations, is
determined by the energy conservation considerations. Below, I present the deriva-
tion of appropriate averaging scheme for convective hydrocode. Derivation is a
simple extension of the purely radiative case (Fraley 1968), which will presented
first.

B.1 Radiative case

We consider basic equations of radiation hydrodynamics, (1.3), (1.4) and (1.5). Their
Lagrangian versions are following,

du

dt
= −4πr2 ∂p

∂M
− GMr

r2
, (B.1a)

dE

dt
= −p

dV

dt
− ∂Lr

∂M
, (B.1b)

dr

dt
= u (B.1c)

Finite difference form of the above equations is,

Dui

DT
= −4π

〈
r2
i

〉∆
〈
pi

〉

DM2i
− GMi

〈
1

r2
i

〉

, (B.2a)

DEi

DT
= −

〈
pi

〉DVi

DT
− ∆

〈
Lr,i

〉

DMi

, (B.2b)

Dri

DT
=
〈
ui

〉
. (B.2c)

For the time averages we write,

〈
ui

〉
= ζu

(n+1)
i + (1 − ζ)u

(n)
i (B.3)

〈
pi

〉
= θp

(n+1)
i + (1 − θ)p

(n)
i (B.4)

〈
Lr,i

〉
= wrL

(n+1)
r,i + (1 − wr)L

(n)
r,i (B.5)
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In the following we will use the below relation,

DVi =
4π

3DMi

(

r
3 (n+1)
i − r

3 (n+1)
i−1 − r

3 (n)
i + r

3 (n)
i−1

)

=
4π

DMi

DT
(〈

ui

〉
Gi −

〈
ui−1

〉
Gi−1

) (B.6)

where we made use of Eq. (B.2c), and denoted,

Gi =
1

3

(

r
2 (n+1)
i + r

(n+1)
i r

(n)
i + r

2 (n)
i

)

. (B.7)

The total energy of the envelope is,

Etot =

N∑

i=1

[

DMiEi + 0.5DM2iu
2
i −

GMiDM2i

ri

]

,

where the summation is extended over all model zones/interfaces. In order to pre-
serve the total energy, its change during one time step, ∆Etot/DT , should equal to
zero. We have,

∆Etot

DT
=

∑N
i=1

[

DMi

→(B.2b)
︷︸︸︷

DEi

DT
+0.5DM2i
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2 (n)
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− DMi
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.

The last term vanishes, if following time averaging is adopted,

1

r
(n)
i r

(n+1)
i

=

〈
1

r2
i

〉

. (B.8)
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Note also, that the term denoted by A in above calculations, namely,

u
(n+1)
i + u

(n)
i − 2

〈
ui

〉
,

equals to zero if time centered definition for velocity averaging is adopted,

ζ =
1

2
. (B.9)

Expanding ∆
〈
pi

〉
into

〈
pi+1

〉
−
〈
pi

〉
we get,
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.

The last term in square braces vanishes, if following time averaging is adopted,

〈
r2
i

〉
= Gi. (B.10)

The sum reduces to boundary terms,

∆Etot

4πDT
=
〈
pN+1

〉〈
uN

〉
GN −

〈
p1

〉〈
u0

〉
G0 = 0, (B.11)

and vanish. Thus if ζ = 1/2 and time averages (B.8) and (B.10) are adopted,
total energy is preserved. Pressure has to be averaged in the same manner in both
momentum and energy equations. The way we average the luminosity has no effect
on the energy conservation.

B.2 Convective case

We consider equations (3.50) and (3.51). After following substitutions, p̃ = p + pt,
Ẽ = E + et, L̃ = Lr + Lc + Lt, their form is following,

Dui

DT
= −4π

〈
r2
i

〉∆
〈
p̃i

〉

DM2i

− GMi

〈
1

r2
i

〉

+
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〉
, (B.12)

DẼi

DT
+
〈
p̃i

〉DVi

DT
= −∆

〈
L̃i

〉

DMi

+
〈
Eq,i

〉
. (B.13)

Now the total energy is,

Etot =

N∑

i=1

[

DMiẼi + 0.5DM2iu
2
i −

GMiDM2i

ri

]

. (B.14)

Except the eddy-viscous terms, the form of the above equations is exactly the same as
in radiative case (cf. Eqs. B.2a, B.2b). Hence, adopting exactly the same averagings
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(Eqs. B.8, B.9 and B.10), the expression for total energy change during one time
step reduces to,

∆Etot

DT
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N∑

i=1

[

DMi

〈
Eq,i
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+ 0.5DM2i
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〉
2
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(B.15)

For
〈
Uq,i

〉
and

〈
Eq,i

〉
we adopt following averagings, which guarantee energy conser-

vation,
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Indeed,

∆Etot

4πDT
=

N∑

i=1

[

〈
Xi

〉
(〈

ui

〉

〈
ri

〉 −
〈
ui−1

〉

〈
ri−1

〉

)

+

〈
ui

〉

〈
ri

〉

(〈
Xi+1

〉
−
〈
Xi

〉)
]

=

N∑

i=1

[

〈
Xi+1

〉
〈
ui

〉

〈
ri

〉 −
〈
Xi

〉
〈
ui−1

〉

〈
ri−1

〉

]

=
〈
XN+1

〉
〈
uN

〉

〈
rN

〉 −
〈
X1

〉
〈
u0

〉

〈
r0

〉

= 0

(B.18)

as u0 = 0 (bottom boundary condition, Eq. 3.57) and XN+1 = 0 (upper boundary
condition for turbulent energy, Eq. 3.55). The way in which

〈
Xi

〉
,
〈
ui

〉
,
〈
ri

〉
are

calculated, has no effect on energy conservation. One may set,

〈
Xi

〉
= θuX (n+1)

i + (1 − θu)X (n)
i , (B.19)

〈
ri

〉
= βr

(n+1)
i + (1 − β)r

(n)
i . (B.20)

For
〈
ui

〉
and consequently for

〈
ri

〉
it is natural to adopt the time-centered definition

(Eq. B.9), just as in momentum equation.
Note also that in above considerations, the turbulent energy equation alone, was

not used at all. Hence, the way in which the coupling term in this equation is
averaged, has no effect on energy conservation.

The whole averaging scheme is much simpler if eddy-viscous pressure, pν (Eq. 2.75)
is used instead of eddy-viscous terms. Then pν is treated as additional term in p̃
and model equations reduce to exactly the same form as in case of radiative com-
putations. Hence, averaging scheme is the same as described in Section B.1.



Appendix C

Stability coefficients for models of
Section 6.3

Figure C.1: Comparison of stability coefficients of single-mode fixed points along se-

quence of Cepheid models adopting parameters of set A1 (Table 6.1; blue lines), with

corresponding coefficients of basic set A.

Figure C.2: The same as Figure C.1, but for set A2.
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Figure C.3: The same as Figure C.1, but for set A3.

Figure C.4: The same as Figure C.1, but for set A4.

Figure C.5: The same as Figure C.1, but for set A5.
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Figure C.6: The same as Figure C.1, but for set A6.

Figure C.7: The same as Figure C.1, but for set A7.

Figure C.8: The same as Figure C.1, but for set A8.
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Figure C.9: The same as Figure C.1, but for set B1.

Figure C.10: The same as Figure C.1, but for set B2.

Figure C.11: The same as Figure C.1, but for set AC1.
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Figure C.12: The same as Figure C.1, but for set AC2.

Figure C.13: The same as Figure C.1, but for set AC3.

Figure C.14: The same as Figure C.1, but for set AC4.
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Figure C.15: The same as Figure C.1, but for set AL1.

Figure C.16: The same as Figure C.1, but for set AL2.

Figure C.17: The same as Figure C.1, but for set AM.
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Figure C.18: The same as Figure C.1, but for set BC1.

Figure C.19: The same as Figure C.1, but for set BC2.

Figure C.20: The same as Figure C.1, but for set BL1.
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Figure C.21: The same as Figure C.1, but for set BL2.

Figure C.22: The same as Figure C.1, but for set BM.
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vektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkrfte

Buchler, J.R. (1990), in the proceedings of the NATO Advanced Research Work-
shop on The Numerical Modelling of Nonlinear Stellar Pulsations Problems
and Prospects, Ed. Buchler, J.R.; p.1; The Modelling of Nonlinear Stellar
Pulsations

Buchler, J.R. (1998), ASP Conf. Ser., 135, 220; Nonlinear Pulsations

Buchler, J.R. (2008), Astrophysical Journal, 680, 1412; Beat Cepheids as Probes
of Stellar and Galactic Metallicity: The New AGS Abundances

Buchler, J.R. & Goupil, M.-J. (1984), Astrophysical Journal, 279, 394; Am-
plitude Equations for Nonadiabatic Nonlinear Stellar Pulsators. I. The Formalism
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