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Chapter 1

Introduction

This lecture is to discuss physics of stars, that is, the physics involved in
understanding stellar structure and evolution. At first, we shall discuss some
observational properties of stars in Section 1.1. It can serve as a brief review
of stellar astronomy at an introductory level. Since stellar mass is a key
property of a star, in Section 1.2 we will discuss an important approach for
stellar mass determination, that is, using the mass function of a binary sys-
tem. This approach is also extensively employed in the search of exoplanets.
In Section 1.3 we will discuss some examples of order-of-magnitude estimates,
which may be useful for a rough understanding of certain phenomena.

1.1 Observation of stars

1.1.1 Distance

To convert the observed flux into the luminosity of a star, which is an intrin-
sic property of the star and independent of the observers, the distance to the
star from the observer needs to be known. Distance determination is a diffi-
cult issue in astronomy. Readers are referred to textbooks used for courses of
introductory astronomy and astrophysics for various methods employed by
astronomers. The most commonly used unit for distance is parsec, abbrevi-
ated as pc, and its relatives, kpc, Mpc and Gpc. The definition of a parsec
is based on the parallax measurement:

tan θp =
1AU

d
, (1.1)
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where θp is the parallax angle, d is the distance, and 1 AU = 1.496× 1013

cm is the mean distance between the Sun and the Earth, one astronomical
unit.

Since θp is usually extremely small, the distance d can be expressed in
terms of pc as

d ≈ 1AU

θp/radian
=

206264.8AU

θp/arcsec
≡ 1 pc

θp/arcsec
. (1.2)

In terms of Gaussian units, we have 1 pc ≈ 1018.5 cm.

1.1.2 Magnitude

The apparent magnitude m is defined as

m−m0 = −2.5 log(f/f0) , (1.3)

where f0 is the reference flux corresponding to the magnitude m0. The
absolute magnitude M is defined as the apparent magnitude would-be if
the star is placed at a distance of 10 pc. Equivalently, we have

m−M = 5 log(d/pc)− 5 . (1.4)

In practice the magnitude of a star is measured in different wave bands,
mainly due to the different responses of detectors to light at different wave-
lenghths. So the apparent magnitude in a certain band X is actually

mX = −2.5 log

∫∞
0 RXfν dν/

∫∞
0 RXdν

f0,X
, (1.5)

where RX is the detector response (including filter transmission) and f0,X is
the flux of magnitude zero in this particular band.

There are various photometry systems with different conventions, nota-
tions, and calibration standards. A simple, commonly used one is the UBV
system, in which mU (or simply U) denotes the apparent magnitude in the
ultraviolet band, covering wavelength of about 3000Å– 4000Å, mB (or B) the
blue band, covering wavelength of about 3500Å– 5500Å, and mV (or V) the
visual band, covering wavelength of about 4800Å– 6500Å. For further de-
tails in photometry, readers are referred to Allen (1973), Jaschek & Jaschek
(1990), Budding (1993), and Léna et al (2012).
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The difference between magnitudes in two bands is often used to define
the color index, for example, the U-B color index and the B-V color index.
The color index is closely related to the stellar spectral types and the surface
temperature.

The quantity which is most directly associated with the intrinsic lumi-
nosity of a star is the absolute bolometric magnitude. The bolometric
magnitude is the magnitude so defined that the electromagnetic radiation
from a star at all wavelengths is taken into account. It is often represented
by its difference from the V-band magnitude, that is, the bolometric cor-
rection, BC:

mbol = mV + BC . (1.6)

The bolometric magnitude is obviously not measurable. The absolute bolo-
metric magnitude and BC may be determined by model computations. They
depends on the spectral type of a star, but not on the distance.

Star lights, travelling through space, also suffer from the effect of inter-
stellar extinction and reddening. The degree of extinction varies with
wavelengths and the star light is reddened. Typical values are △U ≈ 1.2△B
and △B ≈ 1.3△V .

1.1.3 Temperature

The concept of temperature is related to the concept of thermal equilib-
rium. When thermal equlibrium is reached in a system, the distribution
of particles in the system obeys a certain kind of statistics – Fermi-Dirac
statistics or Bose-Einstein statistics, depending on whether the particles are
fermions or bosons –, which is characterized by the temperature. Strictly
speaking, the concept of temperature is only valid when the system is in
thermal equilibrium. In nature, however, perfect thermal equilibrium does
not exist. Particularly, inside stars, the subject of this lecture, or at stellar
surfaces, thermal equilibrium is obviously absent: the thermodynamic states
change with time and space. Nonetheless, one can still define, based on some
observed properties, various surface temperatures to characterize the system
that we want to understand:

• Effective temperature
The effective temperature of a star with a certain luminosity is the
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temperature of that star if its surface is a perfect blackbody that would
shine with the same lumionosity. That is,

L = 4πR2σT 4
e , (1.7)

where σ is the Stefan-Boltzman constant. The effective temperature
can be determined only when the luminosity L and the stellar radius
R are known, which are usually not directly measurable.

• Color temperature
The color temperature is the temperature of a blackbody spectrum
which fits best the observed spectrum.

• Excitation temperature
The excitation temperature of a stellar surface for a certain species is
determined by the population ratio of different excited states of that
species, which can be obtained from the strength of spectral lines due
to transitions between different excited states of that species.

• Ionization temperature
The ionization temperature of a stellar surface for a certain species is
determined by the population ratio of different ionization states of that
species.

These surface temperatures are generally not equal to one another, because
the observable ‘surface’ layer, or the so-called ‘atmosphere’, of a star is not
in thermodynamic equilibrium. They can, on the other hand, be understood
with a detailed model atmosphere.

1.1.4 The Hertzsprung-Russel (H-R) diagram

Rich information of stellar structure and evolution can be learned from the
H-R diagram, which plots absolute V-band magnitude versus stellar spectral
types (or color indices approximately). This diagram may be converted,
based on stellar atmosphere models, into a plot of the luminosity versus
effective temperatures. Readers should review the concepts of spectral types,
luminosity classes, and the general picture of stellar evolution in the H-R
diagram from introductory textbooks.
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1.1.5 Stellar populations

Stars are also classified into different populations according to their metal
abundance:

• Population I – metal-rich (Z ∼ 0.02), young, mainly in the galactic
disk, e.g. OB associations and open clusters

• Population II – metal-poor (Z ∼ 0.001), old, in the galactic halo and
central bulge, e.g. globular clusters

There could also be extremely metal-poor stars, which are thought to form
very early in the univserse’s history. These are called population III stars.
Definite evidence of their existence is still lacking. They may be progenitors
of high redshift Gamma Ray Bursts (GRBs).

1.1.6 The mass-luminosity relation

The mass and luminosity of main sequence stars show a power-law like rela-
tion, with L ∝ M4 for M < 2M⊙ and L ∝ M3 for M > 2M⊙ (Popper 1980;
Carroll & Ostlie 1996, page 212). The data points to infer this relation have a
noticeable spread, and at both higher (M > 10M⊙) and lower (M < 0.5M⊙)
mass end the power indices 3 and 4 are no longer good. We will try to derive,
or understand, this mass-luminosity function in Section 4.3.

1.2 Mass functions of spectroscopic binaries

The mass of a star is a very crucial parameter in determining various prop-
erties of a star. It is also quite intriguing that there exists a mass-luminosity
relation for main sequence stars, whose establishment relies on estimates of
stellar masses. It is usually difficult to accurately determine the mass of a
star observationally. The most reliable information is obtained by observing
the orbital motion of binary systems. It is, however, very often that binaries
are not spatially resolved. Spectroscopic binaries are therefore the major
systems that can provide mass information. The mass function of a binary
system with orbital eccentricity ε = 0 reads

m3
2 sin

3 θi
(m1 +m2)2

=
P

2πG
v31r , (1.8)
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where v1r = v1 sin θi is the observed maximal velocity along the line of sight,
with the center-of-mass velocity removed, and θi is the inclination angle be-
tween the line of sight and the orbital plane normal. In general, the binary
orbit is elliptical, instead of circular. In the following we will derive the mass
function of a binary system with an arbitrary eccentricity. To do that, Ke-
pler’s laws will be derived first. We will then achieve our goal with Kepler’s
third law, which links the orbital period (observable) with stellar masses
and the orbital semi-major axis, and a relation describing stellar line-of-sight
velocity (observable) in terms of stellar masses and orbital parameters.

1.2.1 Kepler’s laws

The Lagrangian in the center-of-mass frame for a two-body system is

L =
1

2
m(ṙ2 + r2φ̇2)− V (r) , (1.9)

where m = m1m2/(m1 +m2) is the reduced mass, r is the distance between
the two bodies, and φ is the phase angle with respect to a chosen direction
of φ = 0. The equation of motion is then

d

dt
(
∂L
∂q̇i

)− ∂L
∂qi

= 0 , (1.10)

with q1 = r, q2 = φ. We can see that

d

dt
(
∂L
∂φ̇

) = 0 ,

that is,

∂L
∂φ̇

= mr2φ̇ ≡ ℓ (1.11)

is a constant. This is just a statement of angular momentum conservation,
from which we can have Kepler’s second law: consider dA = 1

2
× r × rdφ

and

dA

dt
=

r2φ̇

2
=

ℓ

2m
,

which is obviously a constant.
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Now let’s turn to Kepler’s first law. The energy as formulated in the
center-of-mass frame is

E =
1

2
m(ṙ2 + r2φ̇2) + V (r) , (1.12)

and then we have

ṙ =

√

2

m
(E − V (r))− ℓ2

m2r2
(1.13)

from

φ̇ =
ℓ

mr2
. (1.14)

Taking the ratio of the above two equations, we may find the orbital phase,
φ, as a function of the distance, r, which is a description of the orbit and
reads as the following:

dφ

dr
=

ℓ

r2
√

2m(E − V (r))− ℓ2

r2

. (1.15)

With the potential form of

V (r) = −Gm1m2

r
,

we can integrate over r to get (e.g. Gradshteyn et al. 1994, page 101, item
2.266)

φ(r) = cos−1





ℓ
r
− Gmm1m2

ℓ
√

2mE + (Gmm1m2

ℓ
)2



+ φ0

and find that

1

r
=

√

2mE + (Gmm1m2

ℓ
)2

ℓ
cos(φ− φ0) +

Gmm1m2

ℓ2
,

that is,

1

r
=

Gmm1m2

ℓ2
(1 + ε cos(φ− φ0)) ,
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where

ε =

√

√

√

√1 +
2Eℓ2

m(Gm1m2)2
(1.16)

is the eccentricity expressed in terms of energy, angular momentum and mass.
One can show that the eccentricity in the above form is always real, that is,
it is always true that

E ≥ −G2mm2
1m

2
2

2ℓ2

(see Exercises of this chapter).
The trajectory can now be written as

r =
ℓ2

Gmm1m2

1

1 + ε cos(φ− φ0)
. (1.17)

This is the trajectory of a conic curve with the coordinate origin defined at

one focus. For a bound system, E < 0, so ε < 1. The trajectory is an ellipse.
This is Kepler’s first law.

The orbit certainly can be described with the semi-major axis and eccen-
tricity. The semi-major axis a of an ellipse is

a =
rp + ra

2

=
1

2

ℓ2

Gmm1m2

(
1

1 + ε
+

1

1− ε
)

=
ℓ2

Gmm1m2

1

1− ε2
(1.18)

= −Gm1m2

2E
, (1.19)

where rp is the distance at periastron (c.f. perigee, perihelion) and ra is that
at apastron (c.f. apogee, aphelion). In terms of the semi-major axis and
eccentricity, the orbit has the function form

r =
a(1 − ε2)

1 + ε cos(φ− φ0)
. (1.20)
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Now come to the 3rd law. Recall that dA
dt

= r2φ̇
2

= ℓ
2m

, and then we have

∫

dA

dt
dt = A =

ℓ

2m
P ,

where P is the orbital period. With A = πab, where b = a
√
1− ε2 is the

semi-minor axis, the period can be written as, with the help of Eq.(1.18),

P =
2mπab

ℓ
=

2mπa2
√
1− ε2

√

aGmm1m2(1− ε2)
,

that is,

P 2 =
4mπ2a3

Gm1m2

=
4π2

G(m1 +m2)
a3 . (1.21)

This is Kepler’s third law. We note that the semi-major axis a here is
that of the relative orbit, not of each individual orbits, which we denote as
a1 and a2.

1.2.2 Velocity curves

In Eq.(1.8) we have the mass function of a binary system with a circular
orbit. Now we would like to find the mass function for binaries with arbitrary
eccentricities. For spectroscopic binaries, the observables are its period P
and the line-of-sight velocity vr, inferred from the measured Doppler shift of
spectral lines, of one or both members in the binary system. At first we note
that the trajectory keeps the same form for the case of describing the relative
distance r as a function of position angle φ and the case of r1 , or r2, versus
φ, where r1 and r2 are the distance of star 1 and 2 to the center of mass. In
the former case the coordinate origin is set at one of the two stars, while in
the latter it is at the center of mass.

For one of the two stars, say, star 1, we have always r1 =
m2

m1+m2
r, that is,

r1 =
a1(1− ε2)

1 + ε cosφ
, (1.22)

where a1 = m2

m1+m2
a, a1 + a2 = a, and the position angle is set zero at

periastron. Consider the geometry depicted in Figure 1.1. The line-of-sight
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θ i

Figure 1.1: The geometry of a star in a binary system. The line of nodes,
defined as the X-axis direction, is the intersection of the orbital plane and
the plane of sky. The line of sight is in the Z’ direction, which is parallel to
the Y-Z plane.

velocity can be found as the following. At first, the projection onto the line
of sight of the distance from star 1 to the center of mass of the system is

z′1 = r1 sin(φ+ ω) sin θi ,

where θi is the inclination angle, the angle between the line of sight and the
orbital normal, and ω is the angle between line of nodes and the direction
from the center of mass to the periastron. To find the line-of-sight velocity
ż′1, noting that

φ̇ =
ℓ

mr2
=

2mA

mr2P
=

2π

P

(1 + ε cosφ)2

(1− ε2)3/2

and

ṙ1 =
a1(1− ε2)

(1 + ε cosφ)2
ε sinφ φ̇ =

2π

P

a1ε sinφ√
1− ε2

,

we have

ż′1 =
2πa1 sin θi

P
√
1− ε2

(cos(φ+ ω) + ε cosω)

= K1(cos(φ+ ω) + ε cosω) , (1.23)
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where

K1 ≡
2πa1 sin θi

P
√
1− ε2

. (1.24)

In the special case of a circular orbit, K1 reduces to the v1r in Eq.(1.8), the
maximal line-of-sight velocity.

From Kepler’s third law, P 2 = 4π2

G(m1+m2)
a3, and Eq.(1.24) one can see

that if K1 and the eccentricity ε can be deduced from observations, with the
measured period P , the value of the mass function, a combination of m1, m2,
and sin θi, can be obtained.

The line-of-sight velocity as a function of time is

Vr(t) = Vc +K(cos(φ(t) + ω) + ε cosω) , (1.25)

where we have dropped the subscript of K since these formalisms apply to
both stars and Vc is the line-of-sight component of the center-of-mass velocity
(relative to the observer). With well measured velocity curves, one may hope
to pin down those parameters appearing in Eq.(1.25). However, φ(t) does
not have a simple form for an elliptical orbit (see, e.g., Goldstein, Poole &
Safko (2000), Section 3-8). On the other hand, to determine the values of
K and ε, we may pick out some particular values from the observed velocity
curve, for example, the largest and smallest velocities, which occur when the
star is passing the nodes, and that at the periastron. They are

Vr,l = Vc +K(1 + ε cosω) , (1.26)

Vr,s = Vc +K(−1 + ε cosω) , (1.27)

and

Vr,p = Vc +K cosω(1 + ε) , (1.28)

Vr,a = Vc +K cosω(−1 + ε) . (1.29)

Vr,l and Vr,s are directly measurable. By noting that

Vr,p + Vr,a

2
= Vc +Kε cosω =

Vr,l + Vr,s

2
, (1.30)
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one can identify Vr,p and Vr,a, since these two velocities occur at times sep-
arated by one half of the period. This condition (φ(t2) = φ(t1) + π and
t2 − t1 = P

2
) is met only at periastron and apastron, but due to observa-

tional uncertainty, the determination may not be unique. Only three among
Eq.(1.26)–(1.29) are independent, as one can see from Eq.(1.30). In fact all
the unknowns appear in three combinations: K, K cosω, and Vc +Kε cosω.
These equations are then solvable. Unfortunately, ε does not stand alone in
these combinations. In order to determine ε – remember that we want to
know K and ε, the center-of-mass velocity Vc must be determined indepen-
dently from the observed velocity curve. Vc is obviously the average velocity
in the velocity curve. Then, with Eq.(1.26)–(1.28), the three unknowns – K,
ε, and cosω – can be easily solved.

The ambiguity of properly identifying Vr,p versus Vr,a can be resolved by
requiring the eccentricity ε to be positive. Without loss of generality, we may
consider the case of Vc = 0 (therefore Vr,s < 0). From Eq.(1.26)–(1.29), we
have

K =
1

2
(Vr,l − Vr,s) , (1.31)

Kε cosω =
1

2
(Vr,l + Vr,s) , (1.32)

ε =
1
2
(Vr,l + Vr,s)

Vr,p − 1
2
(Vr,l + Vr,s)

(1.33)

and

ε =
1
2
(Vr,l + Vr,s)

1
2
(Vr,l + Vr,s)− Vr,a

. (1.34)

Vr,p and Vr,a should, therefore, be so identified that Vr,p > 1
2
(Vr,l + Vr,s) and

Vr,a < 1
2
(Vr,l + Vr,s) if (Vr,l + Vr,s) > 0, and Vr,p < 1

2
(Vr,l + Vr,s) and Vr,a >

1
2
(Vr,l + Vr,s) if (Vr,l + Vr,s) < 0. There are two possibilities if (Vr,l + Vr,s) = 0.

One is that ε = 0, i.e., a circular orbit. In such a case, the velocity curve
is purely sinusoidal and periastron and apastron are not defined. The other
is cosω = 0, for which Vr,p = Vr,a = 0. The latter case should be very rare,
since the orbital major axis needs to be in the plane spanned by the orbital
plane normal and the line of sight. Alternatively, one may also easily identify
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Vr,p and Vr,a with the condition that |Vr,p| > |Vr,a| (with Vc removed). This
can be understood since the orbital speed at periastron is larger than that
at apastron (Kepler’s 2nd law), or, from Eq.(1.28) and Eq.(1.29).

1.2.3 Mass functions

We are now ready to write down the mass functions. At first we consider a
double-line spectroscopic binary. Noting that

K1 =
2πa1 sin θi

P
√
1− ε2

,

K2 =
2πa2 sin θi

P
√
1− ε2

and

K1 +K2 =
2πa sin θi

P
√
1− ε2

,

and from Kepler’s third law, we have

P 2 =
4π2

(

(K1+K2)P
√
1−ε2

2π sin θi

)3

G(m1 +m2)
,

that is,

(m1 +m2) sin
3 θi =

P

2πG
(1− ε2)

3
2 (K1 +K2)

3 . (1.35)

Since m1/m2 = K2/K1, we can separate m1 and m2, and write explicitly

m1 sin
3 θi =

P

2πG
(1− ε2)

3
2K2(K1 +K2)

2 (1.36)

and

m2 sin
3 θi =

P

2πG
(1− ε2)

3
2K1(K1 +K2)

2 . (1.37)

For a single-line spectroscopic binary, the mass function can be derived
in a similar way, which gives

m3
2 sin

3 θi
(m1 +m2)2

=
P

2πG
(1− ε2)

3
2K3

1 . (1.38)
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Eqs.(1.36)–(1.38) are the mass functions of binaries with elliptical
orbits. The orbital inclination, θi, is usually not known. It may be inferred
from other observations, e.g., light curves, with some assumptions. When it
is unknown, one can only obtain lower limit estimates from the mass function.
For single-line spectroscopic binaries, one very often can estimate the mass
of the observable star, i.e., m1, from its spectral information. Therefore, the
lower limit to m2, the mass of the unobservable star, can be derived.

1.3 Understanding stars: estimate, analytic

models, numerical computations

To understand a phenomenon, or activities and structures of celestial bod-
ies, some order-of-magnitude estimates are very often useful and instructive.
These estimates may help in identifying the nature of a phenomenon and
point out a direction for further analysis – to construct analytic models.
From these analytic models one can verify, with observations, whether their
predictions are correct or not. Various approximations are often adopted
in constructing analytic models. It is very common, particularly with the
rapid development of computing power, that a more realistic model, or a
complicated model prediction, can be realized by numerical computations.
Results of numerical computations are compared with data of observations
to improve our understanding of the universe. In this section we will discuss
some examples of order-of-magnitude estimates.

1.3.1 Time scales

The free-fall time scale

The time scale of gravitational free-fall of a star can be estimated by dimen-
tional analysis:

tff =

√

R3

GM
. (1.39)

This expression can also be obtained by considering

r̈ = −GM

r2
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〈r̈〉 ≈ R

t2
≈ MG

R2

⇒ t ≈
√

R3

GM
.

For a star like the Sun, the free-fall time scale is

tff = 1.6× 103 (M/M⊙)
− 1

2 (R/R⊙)
3
2 sec . (1.40)

This time scale is much less than the evolution time scale of the Sun. It
implies that the Sun possesses other mechanisms to maintain a hydrostatic
equilibrium, so that its physical configuration is not significantly changed in
such a free-fall time scale. The orbital time scale of planets around the Sun
is of the order of the free-fall time scale of such a Sun-planet system, as is
shown in Kepler’s third law, Eq.(1.21).

The time scale of stellar pulsation due to structural instability is also of
the order of the free-fall time scale, which, when expressed in terms of the
average density ρ̄ ≈ M/R3, is

tpulsation ∼ 1√
Gρ̄

. (1.41)

Pulsation periods are shorter for denser stars.

The Kelvin-Helmholtz time scale

The time scale of sustaining a certain luminosity with gravitational potential
energy is called the Kelvin-Helmholtz time scale. For the Sun, we have

U⊙ ≈ GM2
⊙

R⊙
≈ 4× 1048 erg ,

and the corresponding time scale is

tK = U⊙/L⊙ ≈ 1015 sec ≈ 3× 107 yr .

This time scale is much shorter than Sun’s life time. It indicates that the
energy source of the solar luminosity is not gravitational.
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The Einstein time scale

Another time scale similar to the previous one is the Einstein time scale,
which involves the total energy available from mass conversion, instead of
the gravitational potential energy. For the Sun, we have

E⊙ = M⊙c
2 = 1.8× 1054 erg ,

and its Einstein time scale is

tE = E⊙/L⊙ = 4.5× 1020 sec = 1.4× 1013 yr .

Considering a typical conversion efficiency of 0.007 (see Chapter 6), this is
consistent with the understanding of nuclear energy being the major energy
source of the Sun.

1.3.2 The Jeans radius and the Jeans mass

Consider a proton and a cloud of mass M and radius R. For the proton to
be bound, it requires

1

2
v2 <

GM

R
.

Assuming the cloud has a constant density ρ ≈ M/R3 and temperature
T ≈ mpv

2/k, the above requirement can be written as

R2 >
k

Gmp

T

ρ
.

So, for given T and ρ, there is a required minimum radius for the system to
be gravitationally bound, that is, possible for gravitational collapse to occur
to form stars. This minimum radius is called the Jeans radius, RJ. A more
careful analysis shows

RJ =

√

√

√

√

πk

Gmp

T

ρ
≈ 0.6× 108T

1
2ρ−

1
2 cm (1.42)

(c.f. Rose 1998, page 16). Correspondingly, the Jeans mass is

MJ =
4π

3
R3

Jρ ≈ 5× 10−10T
3
2ρ−

1
2 M⊙ . (1.43)
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For a typical interstellar medium with T = 100 K and ρ = 10−22 g/cm3, we
have RJ ≈ 0.6× 1020 cm ≈ 20 pc, and MJ ≈ 5× 104M⊙. Stars are therefore
formed in a large group with a complicated process involving fragmentation,
momentum and mass transportation, and so on.

1.3.3 Pressure of gas and radiation in stars

Typical pressure inside a star of mass M and radius R can be estimated as
roughly

P ≈ GM2

R4
. (1.44)

For the Sun, the above estimate gives 1.1 × 1016 dyne cm−2. In usual solar
models, the pressure is about 2.5× 1017 dyne cm−2 at the solar center, 7.5×
1014 dyne cm−2 at half radius, and 1.7 × 1013 dyne cm−2 at 0.8 times the
radius. The pressure estimated above occurs at about 0.3 radius from the
center (e.g. Cox, Livinston & Matthews 1991, page 1242–1247).

Pressure usually comes from two components: gas and radiation. Treat-
ing the gas as an ideal gas and the radiation field as characterized by the
same temperature, the pressure is

P =
ρkT

µmp
+

1

3
aT 4 , (1.45)

where µ is the mean molecular weight (Section 2.2) and a = 4σ/c with
σ = 5.67 × 10−5 erg cm−2 sec−1 K−4 being the Stefan-Boltzman constant
(Section 2.3.1). Roughly speaking, temperature in more massive stars tends
to be higher, due to stronger graviational binding. From the temperature
dependence in the above equation, one may infer that radiation pressure will
dominate in massive stars. As for how massive a star should be in order
to have radiation pressure dominating, detailed modelling is needed. In the
following we try to estimate in an approximate way the stellar mass beyond
which radiation pressure dominates. At first, in the case of gas pressure
being the dominant one, taking ρ ≈ M/R3, the temperature behaves like (cf.
Eq.(1.44)

Tg ≈
µmpG

k

M

R
, (1.46)
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while for the case of radiation pressure dominating, the temperature is

Tr ≈
(

3G

a

)

1
4 M

1
2

R
. (1.47)

The above expressions of Tg and Tr are the typical interior temperature of
the star for the two different cases. The wanted mass can be estimated by
considering these two temperatures being comparable. This is left to readers
in the Exercises.

1.3.4 Mass limits of stars

Now we have the sense that in very massive stars the radiation pressure will
dominate. On the other hand, radiation can also blow off the outer-layer
material of a star, making a star unstable. The maximum luminosity of a
stable star with a given mass M can be estimated as

L

4πR2

σT

c
≈ GmpM

R2
,

where σT = 8π
3
( e2

mc2
)2 is the Thomson cross section. For electrons, it is

0.665 ×10−24 cm2. Then we have

L ≈ 1.3× 1038(M/M⊙) erg/sec . (1.48)

This luminosity is called the Eddington luminosity. For a given luminos-
ity, the above expression gives the mass lower limit of that star. For a given
mass, it gives the upper limit of the luminosity.

Comparing the mass-luminosity relation of the main sequence stars as
described in Section 1.1.6 with the Eddington luminosity, one can see that
there is a mass upper limit at about 130M⊙, beyond which a stable star is
impossible. Most model computations, involving different assumptions, set
the upper limit at about 100M⊙ ∼ 200M⊙. The mass lower limit of a star is
constrained by the ignition of nuclear reactions inside stars. Most of model
computations give a value of this lower limit at about 0.08M⊙.
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Exercises

1. From the velocity curve of a single-line spectroscopic binary containing
a G2V star, one finds K = 3 km/s, ε = 0.2 and P = 100 days. Assum-
ing this is an edge-on system, find the mass of the unseen companion
and the average separation between the two members of this binary.

2. From Kepler’s third law verify Eq.(1.38).

3. If the luminosity of a star is about 1040 erg/sec, what would you say
about its mass?

4. Consider a spherical gas cloud of temperature 50 K and radius 1018 cm.
Find the density, assuming homogeneous, so that its total mass is just
the Jeans mass. How large is this Jeans mass?

5. Estimate how fast the Sun can rotate without breaking itself. How
about a white dwarf? A neutron star? Express your answers with
rotation periods.

6. As a star evolves and changes radius, its angular momentum should stay
constant. Will contraction or expansion of a star cause it to become
unstable if it is initially close to rotational instability?

7. Show that the expression within the square root sign in Eq.(1.16) for
the eccentricity of a binary orbit is never negative. (Hint: Consider
Eq.(1.12) and Eq.(1.17).)

8. From Eqs.(1.46) and (1.47) make a quick estimate of the mass beyond
which radiation pressure dominates.

9. Derive the mass upper limit at about 130M⊙ mentioned at the end of
this chapter.
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Chapter 2

Thermal and Statistical
Properties of Matter

Before getting into the topic of stellar structures, a brief review on relevant
thermal and statistical properties of matter is in order. We will very often
assume the matter to be an ideal gas, which is in principle never true. Such
an approximation greatly simplifies the problem to deal with and in many
cases offers the essential ingredients of a proper model.

2.1 The ideal gas

2.1.1 Pressure and heat capacity

An ideal gas is an idealized non-interacting Boltzmann gas, whose equation
of state is

P =
N

V
kT = nkT =

ρ

m
kT , (2.1)

which can be derived from the Maxwell-Boltzmann distribution (Section
2.4.1). Sometimes the word ‘ideal’ is loosely used to refer to ‘non-interacting’
only. In such a case, the equation of state can be different from the above
when the quantum statistical property is taken into account.

The heat capacity at constant volume is defined as

CV ≡
(

∂Q

∂T

)

V

= T

(

∂S

∂T

)

V

, (2.2)
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then from the first law of thermodynamics,

dU = dQ− PdV , (2.3)

we have

CV =

(

∂U

∂T

)

V

. (2.4)

For an ideal gas, whose internal energy U depends on temperature T only,

U =
∫ T

0
CV dT ′ . (2.5)

For a monatomic ideal gas, U = 3
2
NkT = 3

2
PV . So, CV = 3

2
Nk is a constant.

The heat capacity at constant pressure is defined similarly as

CP ≡
(

∂Q

∂T

)

P

= T

(

∂S

∂T

)

P

. (2.6)

For an ideal gas

dU = CV dT = dQ− PdV ,

one can see that

CV =

(

∂Q

∂T

)

P

− P

(

∂V

∂T

)

P

, (2.7)

that is,

CP = CV +Nk . (2.8)

2.1.2 Polytropic processes

A polytropic process is a thermodynamic process in which

dQ

dT
= c , (2.9)

where c is a constant. For an ideal gas undergoing such a process, we have
c dT − CV dT = dQ− dU = PdV = NkT

V
dV = (CP − CV )T

dV
V
, that is,

dT

T
(c− CV )−

dV

V
(CP − CV ) = 0 .
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If we now define a polytropic exponent Γ as

Γ ≡ CP − c

CV − c
, (2.10)

then we have

dT

T
+ (Γ− 1)

dV

V
= 0 . (2.11)

This is equivalent to

TV Γ−1 = constant . (2.12)

Recalling that PV = NkT , we can reformulate Eq.(2.11) as

d(PV )

PV
+ (Γ− 1)

dV

V
= 0 ,

which is just

dP

P
+ Γ

dV

V
= 0 . (2.13)

This is again equivalent to

PV Γ = constant . (2.14)

Similarly, we have

dP

P
+

Γ

1− Γ

dT

T
= 0 , (2.15)

and equivalently,

P 1−ΓT Γ = constant . (2.16)

For adiabatic processes, which are polytropic processes with c = 0, we
have the polytropic exponent Γ = CP/CV = γ, the adiabatic index. For
isothermal processes, c = ∞ and Γ = 1. Instead of defining the polytropic
exponent with Eq.(2.10), one may take Eqs.(2.11), (2.13) and (2.15) as defini-
tions to discuss thermal properties of a system. In such a case, the polytropic
exponents in those three equations are different in general, if the gas is not
ideal, or the system considered has a mixture of radiation and gas, which is
apparently an important case in stellar astrophysics and will be discussed in
later sections.
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2.2 The mean molecular weight

When the system is composed of different species of particles, the concept of
the mean molecular weight is often useful. The mean molecular weight µ
is the average particle mass in units of a.m.u., i.e., defined as

µ ≡ ρ

nmu
, (2.17)

where ρ is the mass density, n the number density, and mu is one a.m.u.,
which is about 1.66×10−24 g. The number density n includes all the different
species, that is, n =

∑

ni, where ni is the number density for a certain species
of particles. The gas pressure is the combination of partial pressures from
all the different components. When the equation of state of an ideal gas is
written in terms of the mass density instead of the number density, the mean
molecular weight comes into play:

P =
ρ

µmu
kT . (2.18)

The mean molecular weight of a gas depends on its composition and
ionization degree. Consider a gas consisting of various elements with atomic
number Z and mass fraction XZ , i.e., XZ = ρZ/ρ and

∑

Z=1XZ = 1. The
number density nZ of element Z is

nz =
ρZ

AZmu

=
XZ

AZ

ρ

mu

,

where AZ is the atomic weight (e.g. A1 ≈ 1.008, A2 ≈ 4.003). Denote the
average number of free particles contributed by one atom of element Z with
N̄Z , which depends on the ionization degree of the element. For example,
N̄Z is equal to 1+Z for the case of complete ionization. The particle number
density n of the gas, including ions and electrons, is

n =
∑

Z=1

nZN̄Z =
∑

Z=1

ρ

mu

XZ

AZ

N̄Z ,

and then we have

1

µ
=
∑

Z=1

XZ

AZ
N̄Z . (2.19)
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The most abundant elements in the Universe are hydrogen and helium.
All other elements are called ‘metal’ in astronomical terms. Conventionally
the mass fraction of hydrogen is denoted as X , that of helium as Y , and the
metallic mass fraction as Z. (The notation Z can be confusing, unfortunately.
We will try to avoid its use, with Z = 1−X − Y , when the atomic number
Z is around.) The metallic abundance, although very low, about 0.02 for
population I, and 0.001 for population II, affects the opacity significantly, and
therefore plays an important role in determining the outer-layer structure of
a star and its emergent spectrum.

In terms of X and Y , the mean molecular weight can be written as

µ =

(

XN̄1

1.008
+

Y N̄2

4.003
+ (1−X − Y )〈N̄Z

AZ
〉
)−1

. (2.20)

For the case of complete ionization, we have N̄1 = 2, N̄2 = 3, and N̄Z = 1+Z.
Taking AZ ≈ 2Z + 2, the mean molecular weight is then

µ ≈ (2X +
3

4
Y +

1

2
(1−X − Y ))−1

=
2

1 + 3X + 0.5Y
. (2.21)

We can see that under the approximations taken here, the mean molecular
weight falls in the range of

0.5 ≤ µ ≤ 2 . (2.22)

The lower end occurs when X = 1 and the higher end at X = Y = 0.
Electrons deserve a special treatment, particularly for systems in which

electrons dominate in contributing pressure. The mean molecular weight
per electron, or simply the electron molecular weight, of a gas is defined
in a similar way:

µe ≡
ρ

nemu

. (2.23)

With

ne =
∑

Z=1

nZ(N̄Z − 1) =
ρ

mu

∑

Z=1

XZ

AZ
(N̄Z − 1)
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the electron molecular weight can be expressed as

µe =

(

∑

Z=1

XZ

AZ
(N̄Z − 1)

)−1

. (2.24)

Consider again the case of complete ionization,

µe =

(

∑

Z=1

XZZ

AZ

)−1

≈ 1

X + 0.5Y + 0.5(1−X − Y )

=
2

1 +X
. (2.25)

Note that

1 ≤ µe ≤ 2 . (2.26)

2.3 Radiation and matter

In previous sections gas pressure was discussed. The gas was assumed to
be ideal, which is often a good approximation for stellar matter. Radiation,
however, may also play an important role in determining stellar structure, in
particular for more massive stars. A system consisting of an ideal gas and a
radiation field is no longer ’ideal’, as we can see that the ideal gas law does
not apply any more. Radiation pressure has a dependence on temperature
different from that of an ideal gas. In the following we will discuss radiation
pressure first, and then introduce three adiabatic exponents which character-
ize thermodynamic properties of a system, including the system consisting
of an ideal gas and a radiation field that we discuss in this section. En-
tropy, which is important when considering evolution, is introduced for such
a system at the end of this section.

2.3.1 Pressure of radiation

When a system is in thermal equilibrium, the photon field is isotropic and
follows the Planck function:

Bν =
2ν2

c2
hν

e
hν
kT − 1

, (2.27)
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where Bν is the specific intensity, whose unit is erg cm−2 sec−1 Hz−1 str−1

in Gaussian units. Bνdν is the intensity in the frequency range of dν. The
approximation of using such an isotropic Planck function to describe the pho-
ton field is usually fine in the deep stellar interior, but not really applicable
in stellar atmospheres, in which anisotropy prevails and the photon field is
obtained by solving the radiation transfer problem in a model atmosphere.

The specific energy density uν is the specific intensity integrated over all
solid angles (called ‘specific flux’ or ‘flux density’) divided by the speed of
light:

uν =
4π

c
Bν (2.28)

and the energy density is its integration over all frequencies:

u =
∫ ∞

0
uνdν = aT 4 =

4σ

c
T 4 , (2.29)

where σ = 5.67 × 10−5 erg cm−2 sec−1 K−4 is the Stefan-Boltzman con-
stant. It is also useful to note that the number density of photons is

nγ =
∫ ∞

0

uν

hν
dν ≈ 20(T/K)3 cm−3 . (2.30)

The radiation pressure in such an isotropic field is simply one third of the
energy density,

P =
1

3
u =

1

3
aT 4 . (2.31)

This can be understood by considering that the energy flux divided by the
speed of light is the momentum flux (E = pc for photons; we also note that
energy density, momentum flux and pressure have the same dimension). To
get the pressure, because of isotropy, a factor of one third should be included
when taking all directions into account and considering a total-reflecting
imaginary plane, that is,

Pν =
1

3

∫

Bν

c
dΩ =

4π

3

Bν

c
=

1

3
uν ,

and P =
∫

Pνdν = 1
3
u. Alternatively, Pν can also be understood as

Pν = 2×
∫

Bν

c
cos2 θdΩ =

4π

3

Bν

c
,
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by considering a unit area in an imaginary plane bouncing back photons,
with θ being the angle from the surface normal and integration over half a
hemisphere.

The pressure in a system can be attributed to contributions from gas and
radiation, respectively, that is,

P = Pg + Pr = nkT +
1

3
aT 4 , (2.32)

where Pg is the gas pressure and Pr is the radiation pressure. An ideal gas
is assumed when we use Pg = nkT . Defining the gas pressure fraction β as

β ≡ Pg

P
, (2.33)

the total pressure can be written as

P =
Pg

β
=

ρkT

βµmu
, (2.34)

which expresses the total pressure of a system in an ideal-gas formalism with
a modified mean molecular weight βµ.

2.3.2 Adiabatic exponents

In Section 2.1.2 the polytropic exponent of an ideal gas was introduced and
shown to link the variation of two thermodynamic variables in a certain way
for any polytropic processes; see Eqs.(2.11)–(2.16). Since the system we study
may not always be ideal, Eqs.(2.11)–(2.16) may not hold in general. On the
other hand, adiabatic processes, depending on the time scales involved, are
often good approximation to describe thermodynamical change in a system
which is not necessarily ideal. Under the adiabatic assumption, variation of
any two thermodynamic variables can still be related to each other in a form
similar to Eqs.(2.11)–(2.16), but with different ’exponents’, called adiabatic
exponents now, for each set of two variables. These three adiabatic expo-
nents, of which only two are independent, describe thermodynamic properties
of the system.

Considering the three variables, P , ρ and T , and their variation expressed
in terms of variation in entropy and in one of the other two variables, that
is,

dP (ρ, S) =

(

∂P

∂ρ

)

S

dρ+

(

∂P

∂S

)

ρ

dS , (2.35)
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dP (T, S) =

(

∂P

∂T

)

S

dT +

(

∂P

∂S

)

T

dS (2.36)

and

dT (ρ, S) =

(

∂T

∂ρ

)

S

dρ+

(

∂T

∂S

)

ρ

dS , (2.37)

one may see that by defining

Γ1 ≡
(

∂ lnP

∂ ln ρ

)

S

(2.38)

Γ2

Γ2 − 1
≡

(

∂ lnP

∂ lnT

)

S

(2.39)

Γ3 − 1 ≡
(

∂ lnT

∂ ln ρ

)

S

, (2.40)

we have, for adiabatic processes (dS = 0),

dP

P
+ Γ1

dV

V
= 0 , (2.41)

dP

P
+

Γ2

1− Γ2

dT

T
= 0 , (2.42)

and

dT

T
+ (Γ3 − 1)

dV

V
= 0 , (2.43)

or equivalently,

PV Γ1 = C1 , (2.44)

P 1−Γ2T Γ2 = C2 , (2.45)

and

TV Γ3−1 = C3 . (2.46)

These adiabatic exponents are in general different from one another, unless
the system is simply an ideal gas. Recall in Section 2.1.2 these exponents are
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all the same for an ideal gas and in such a case these relations hold not only
for adiabatic processes but also for all the polytropic ones : they are called
‘polytropic exponents’ there. Note that we have used terms like ‘polytropic
processes’, ‘polytropic exponents’, ‘adiabatic indices’, and ‘adiabatic expo-
nents’. Among these adiabatic exponents, we note that only two of them are
independent:

Γ3 − 1 =
Γ2 − 1

Γ2
Γ1 . (2.47)

The values of these three exponents, Γ1, Γ2, and Γ3, are related to dynamic,
convective, and pulsational instabilities respectively.

Adiabatic exponents in terms of β and γ of the ideal gas in a gas-
radiation system

The adiabatic process is often a good approximation for describing processes
subject to a finite time scale. We shall now consider a system consisting of an
ideal gas and radiation (photons) and derive the form of adiabatic exponents
as a function of the parameter β introduced in Section 2.3.1 and the adiabatic
index γ of the ideal gas, i.e., CP/CV (here referred to the gas only, not the
whole system). Considering

dQ = 0

= dU + PdV

= CV dT + d(aT 4V ) + PdV

= CV dT + (4aT 3V dT + aT 4dV ) + PdV

and

CV dT = CV
βPV

NkT
dT =

CV

CP − CV
βPV d lnT =

β

γ − 1
PV d lnT ,

4aT 3V dT = 12
aT 4

3
V d lnT = 12(1− β)PV d lnT ,

and

aT 4dV = 3(1− β)PdV ,

33



we have

(
β

γ − 1
+ 12(1− β))d lnT + (3(1− β) + 1)d lnV = 0 .

Therefore, comparing this relation with Eq.(2.43), we can get

Γ3 − 1 =
3(1− β) + 1
β

γ−1
+ 12(1− β)

=
(4− 3β)(γ − 1)

β + 12(1− β)(γ − 1)
. (2.48)

In a similar manner we can also obtain

Γ2 = 1 +
(4− 3β)(γ − 1)

β2 + 3(1− β)(4 + β)(γ − 1)
(2.49)

and

Γ1 = β +
(4− 3β)2(γ − 1)

β + 12(1− β)(γ − 1)
. (2.50)

For γ = 5
3
, the case of monatomic molecules, the above expressions turn

into

Γ1 =
32− 24β − 3β2

24− 21β
, (2.51)

Γ2 =
32− 24β − 3β2

24− 18β − 3β2
, (2.52)

and

Γ3 =
32− 27β

24− 21β
. (2.53)

In the extreme case of β = 1, that is, the pressure comes only from gas
particles, ideal and monatomic for the current case, we have Γ1 = Γ2 =
Γ3 = 5

3
= γ, just as expected. On the other hand, for the case of β = 0,

we have Γ1 = Γ2 = Γ3 = 4
3
for a photon field in equilibrium. The latter

result actually does not depend on the value of γ. It indicates that when the
adiabatic exponents approach 4

3
, stars cannot exist, since they would not be

gravitationally bound any more.
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Adiabatic exponents in terms of thermodynamic variables

More generally, we may express these adiabatic exponents in terms of ther-
modynamic variables of the whole system, no matter whether the gas is ideal
or not. Considering that

dQ = dU + PdV

=

(

∂U

∂T

)

V

dT +

((

∂U

∂V

)

T

+ P

)

dV

and then

CP =

(

∂Q

∂T

)

P

= CV +

((

∂U

∂V

)

T

+ P

)(

∂V

∂T

)

P

,

we have
((

∂U

∂V

)

T

+ P

)

= (CP − CV )

(

∂T

∂V

)

P

and

dQ = CV dT + (CP − CV )

(

∂T

∂V

)

P

dV . (2.54)

For adiabatic processes, dQ = 0, so,

dT

T
+

CP − CV

CV

V

T

(

∂T

∂V

)

P

dV

V
= 0 ,

and therefore

Γ3 − 1 =
CP − CV

CV

V

T

(

∂T

∂V

)

P

. (2.55)

Similarly one can reach the following two equations:

Γ1 = −CP

CV

V

P

(

∂P

∂V

)

T

(2.56)

and

Γ2

Γ2 − 1
=

CPT

(CP − CV )
(

∂T
∂P

)

V
P

. (2.57)
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One should note that the CP and CV here are that of the whole system, which
is not necessarily ideal. These expressions are consistent with Eq.(2.47) and,
in the case of an ideal gas, reduce to Γ1 = Γ2 = Γ3 = CP/CV = γ. One can
also obtain Eq.(2.55)-(2.57) directly from definitions of heat capacities and
adiabatic exponents, i.e., Eq.(2.2), (2.6) and Eq.(2.38)-(2.40).

2.3.3 Entropy

Another important thermodynamic function is entropy, whose change plays
an essential role in the equations of stellar structures for describing the evo-
lution. We would like to write it down as a function of another two thermo-
dynamic variables, the temperature T and the volume V .

For an ideal gas, we have

TdS = dU + PdV

= CV dT +
NkT

V
dV .

Then,

dS = CV d lnT +Nk d lnV ,

and

S = CV lnT +Nk lnV + constant

= Nk ln
(

V T
1

γ−1

)

+ constant . (2.58)

For the entropy of radiation, one can see that

TdS = d(aT 4V ) +
1

3
aT 4dV ,

dS = 4aT 2V dT +
4

3
aT 3dV ,

and

S =
4

3
aT 3V . (2.59)

The entropy of the system is the sum of these two,

S = Nk ln
(

V T
1

γ−1

)

+
4

3
aT 3V + constant . (2.60)
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It can also be expressed in terms of other variables. If we consider the volume
V to be the volume of a unit mass, it can be turned into 1

ρ
, where ρ is the

mass density, and the entropy S is then entropy per unit mass sm:

sm =
k

µmu
ln





T
1

γ−1

ρ



+
4

3
a
T 3

ρ
+ constant , (2.61)

where µ is the mean molecular weight andmu is one amu. Entropy is additive.
It is easy to turn sm into the entropy of the whole system. For all the
processes that occur in the universe, in particular to our interest here the
evolution of stars, the entropy always increases, that is, △S > 0. When we
assume, or approximate, a process as an adaibatic one, we have △S = 0.

2.4 Statistical distribution functions

We very often assume the stellar materials, in particular in the stellar interior,
to be in a thermal equilibrium state, at least locally, so that the concept of
temperature still applies. In thermal equilibrium, particles are distributed in
the energy space in a way depending on particles’ nature. From the distribu-
tion function, one may easily compute the corresponding pressure. Fermions
follow the Fermi-Dirac distribution and bosons follow the Bose-Einstein dis-
tribution. In the classical regime, that is, low density and high temperature,
they both follow the Maxwell-Boltzmann distribution, which we will discuss
first in the following.

2.4.1 The Maxwell-Boltzmann distribution

We may describe the distribution of particles in the momentum space as

n =
∫

fp(p)d
3p , (2.62)

with n being the number density. For classical particles, the distribution
function fp(p) is the Maxwell-Boltzmann distribution,

fp(p) =
n

(2πmkT )3/2
exp(− p2

2mkT
) . (2.63)
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The pressure of such a distribution is

P =
1

3

∫

vpfp(p)d
3p (2.64)

=
1

3

∫ ∞

0

p2

m

n

(2πmkT )3/2
exp(− p2

2mkT
) 4πp2dp

= nkT .

The last equality is reached with
∫∞
0 p4 exp(−ap2)dp = 3

8

√

π
a5
. Here we see

that the equation of state of the ideal gas actually can be derived from the
Maxwell-Boltzmann distribution. The energy density can also be obtained
as

u =
∫

ǫfp(p)d
3p =

3

2
nkT , (2.65)

where ǫ = p2/2m is the kinetic energy.
The Maxwell-Boltzmann distribution is also often expressed in the speed

space. Let fv(v)dv be the probability of finding a particle in the speed range
of v to v + dv, so that

∫ ∞

0
fv(v)dv = 1 . (2.66)

Then the distribution function is

fv(v) = 4π
(

m

2πkT

) 3
2

v2 exp(−mv2

2kT
) . (2.67)

With this distribution, we have the average speed 〈v〉, average speed square
〈v2〉, and the most probable speed vmp as

〈v〉 =
∫ ∞

0
fvvdv =

√

8kT

πm
, (2.68)

〈v2〉 =
∫ ∞

0
fvv

2dv =
3kT

m
, (2.69)

and

vmp =

√

2kT

m
. (2.70)

The so-called root-mean-square (rms) speed, vrms, is

vrms =
√

〈v2〉 =
√

3kT

m
. (2.71)
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2.4.2 Quantum statistics

The Maxwell-Boltzmann distribution is only valid for classical particles. In
quantum statistics the distribution function f is such that

dN

d3xd3p
=

g

h3
f , (2.72)

where the left hand side is the particle number density in the phase space,
that is, the number density n in the usual space is

n =
∫

dN

d3xd3p
d3p =

∫

g

h3
f d3p .

The g at the right-hand side is the statistical weight, or the number of
states in that phase-space differential volume, which is

g = 2s+ 1 , (2.73)

where s is the spin quantum number. For fermions, s is a positive half integer,
like 1/2, 3/2, etc., while for bosons, it’s a non-negative integer. Note that
for photons, g = 2, although they are spin 1 particles.

The distribution function for fermions is

f(ǫ) =
1

exp( ǫ−µ
kT

) + 1
(Fermi-Dirac distribution) , (2.74)

and for bosons is

f(ǫ) =
1

exp( ǫ−µ
kT

)− 1
(Bose-Einstein distribution) . (2.75)

The µ in the above equations is the chemical potential. For photons, µ = 0.
For classical particles, −µ/kT ≫ 1, the distribution reduces to the Maxwell-
Boltzman distribution, and we have the Boltzmann relation:

ni

nj
=

gi
gj

exp(−ǫi − ǫj
kT

) . (2.76)
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2.4.3 The Fermi-Dirac distribution and degeneracy

In this section we take electrons as a typical case for fermions. Electrons are
fermions with spin 1

2
. The electron number density ne is

ne =
∫ ge

h3

d3p

exp( ǫ−µ
kT

) + 1
=
∫ ∞

0

8π

h3

p2dp

exp( ǫ−µ
kT

) + 1
, (2.77)

and its pressure is

Pe =
∫ ∞

0

8π

3h3

vpp2dp

exp( ǫ−µ
kT

) + 1
. (2.78)

This is the equation of state for an electron Fermi gas.
Defining u ≡ p2/2mkT and α ≡ −µ/kT , Eq.(2.77) and Eq.(2.78) can be

written as

ne =
4π

h3
(2mkT )

3
2

∫ ∞

0

u
1
2du

exp(α+ u) + 1
(2.79)

and

Pe =
8πkT

3h3
(2mkT )

3
2

∫ ∞

0

u
3
2du

exp(α + u) + 1
. (2.80)

The equation of state is then parameterized by α and T . We can see that
α depends on µ (the chemical potential) and T , so given µ and T , Pe and
ne are determined. On the other hand, actually if two among the four quan-
tities (µ, T , Pe and ne) are given, the other two can be determined. The
chemical potential µ can therefore be regarded as a function of ne and T .
Conventionally the above two integrals are denoted by

F 1
2
=
∫ ∞

0

u
1
2du

exp(α + u) + 1
(2.81)

and

F 3
2
=
∫ ∞

0

u
3
2du

exp(α + u) + 1
. (2.82)

The equation of state then reads

Pe = nekT





2

3

F 3
2

F 1
2



 . (2.83)
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The ratio (2F 3
2
/3F 1

2
) describes the extent to which the gas differs from an

ideal Boltzmann gas. A plot depicting its behavior as a function of α can be
found in Clayton (1983, page 98). That ratio approaches unity for α ≫ 1.

For the limiting case of µ/kT → ∞, we have a completely degenerate
gas. The distribution function is only non-zero, and equal to unity, when
the energy is lower than its chemical potential, ǫ < µ . In such a case, the
electron number density and pressure are

ne =
∫ pF

0

8π

h3
p2dp =

8π

3h3
p3F (2.84)

and

Pe =
∫ pF

0

8π

3h3
vpp2dp , (2.85)

where pF is the Fermi momentum, above which no particles are populated.
The corresponding energy is called the Fermi energy ǫF, which is the chem-
ical potential of the system at the extreme case of T = 0.

Since in some circumstances the Fermi momentum can be quite high and
the particles can no longer be treated as non-relativistic ones, the expression
of pressure can be complicated. For the two extreme cases, non-relativistic
(p = mv) and ultra-relativistic (v = c), we have

Pe =
8π

3h3

∫ pF

0

p4

m
dp (non-relativistic) (2.86)

=
8π

15h3me
p5F (2.87)

= (
3

8π
)2/3

h2

5me
n5/3
e (2.88)

and

Pe =
8π

3h3

∫ pF

0
cp3dp (ultra-relativistic) (2.89)

=
2πc

3h3
p4F (2.90)

= (
3

π
)1/3

hc

8
n4/3
e . (2.91)

Readers should also check the energy density in these cases.
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Corrections due to the effect of a finite temperature, that is, T 6= 0 but
still µ ≫ kT , can be found in some other textbooks. For the pressure, the
next order correction is

Pe(T ) = Pe(0) +
π

4
nekT

kT

ǫF
. (2.92)

One can usually compare the typical thermal energy kT with the Fermi
energy ǫF, which depends on the number density only, to check the degree of
degeneracy. For readers’ convenience, numerical values of the Fermi energy
are shown below (all in cgs units):

ǫF =
p2F
2me

= 5.8×10−27n
2
3
e = 4.2×10−11

(

ρ

µe

) 2
3

(non-relativistic)(2.93)

and

ǫF = pFc = 9.8×10−17n
1
3
e = 8.3×10−9

(

ρ

µe

) 1
3

(ultra-relativistic)(2.94)

2.4.4 The Bose-Einstein distribution and the Planck
function

Bosons are particles with integer spin numbers. They obey the Bose-Einstein
statistics. In this section we will show that the Planck funtcion is actually the
Bose-Einstein distribution of photons. Photons are bosons with zero chemical
potential, i.e., µ = 0. The number density of photons with momentum in
the range of p to p+ dp is

npdp =
2

h3

4πp2dp

exp(ǫ/kT )− 1
. (2.95)

Since ǫ = hν = pc and nνdν = npdp, we have

nνdν =
8π

c3
ν2dν

exp(hν/kT )− 1
. (2.96)

With nνdν · hν · c = Iνdν · 4π, the specific intensity of such a photon field is

Iν =
2ν2

c2
hν

exp(hν/kT )− 1
, (2.97)

which is the Planck function Bν mentioned in Eq.(2.27).
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Exercises

1. What are the mean molecular weight and electron molecular weight
of the following gases: (1) a completely ionized hydrogen gas (2) a
gas composed of completely ionized hydrogen (mass fraction 0.75) and
neutral helium (mass fraction 0.25) (3) a gas composed of hydrogen
(mass fraction 0.75) and helium (mass fraction 0.25), both completely
ionized.

2. Verify Eqs.(2.49) and (2.50).

3. Find the velocity mean square fluctuation, 〈(v−〈v〉)2〉, of the Maxwell-
Boltzmann distribution.

4. Show that the electron pressure Pe and the electron energy density
ue of a completely degenerate electron gas are, for the non-relativistic
case, Pe = 2

5
neǫF and ue = 3

5
neǫF, and for the ultra-relativistic case,

Pe =
1
4
neǫF and ue =

3
4
neǫF.

5. From Eqs.(2.81) and (2.82) show that when α → ∞, one has F 3
2
/F 1

2
→

3
2
and Pe = nekT , the pressure of a Maxwellian electron gas, and when

α → −∞, one has F 3
2
/F 1

2
→ −3

5
α and one can, from Eq.(2.83), reach

Eq.(2.88), the pressure of a completely degenerate non-relativistic elec-
tron gas.

6. With the equation of state of a completely degenerate electron gas
expressed as

Pe = Knr(ρ/µe)
5
3 (2.98)

and

Pe = Kur(ρ/µe)
4
3 (2.99)

for the non-relativistic and ultra-relativistic case respectively, find the
numerical values, in gaussian units, of Knr and Kur.
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7. F 1
2
(α = 0) = 0.678094 (a table of Fermi-Dirac functions may be found

in Clayton (1983, page 95); you may also get this value with a simple
numerical integration of Eq.(2.81)). Find the electron number density
for temperature T = 106 K and α = 0. For a completely ionized
hydrogen gas, what is the corresponding mass density? What is the
ratio of thermal energy kT to the electron Fermi energy of such a system
with a fixed volume?
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Chapter 3

Static Stellar Structure

3.1 Equations of stellar structure and evolu-

tion

In this section we first summarize the basic equations governing the construc-
tion of models for stellar structure and evolution. With only the first two,
that is, equations for pressure and for mass, it suffices to reveal many general
properties of stellar structure. That is what we shall do in the other sections
of this chapter. Note that with the approximation of spherical symmetry,
stellar structure is a one-dimensional problem.

• pressure – hydrostatic equilibrium

dP

dr
= −ρ

GM

r2
(3.1)

M is the total mass within the radius r. This equation describes the
balance of the gravitational force and that due to pressure gradient
when the hydrostatic equilibrium assumption is made. In fact, the
equation of motion for a mass element is

ρ
d2rρ
dt2

= −ρ
GM

r2
− dP

dr
, (3.2)

if only forces of gravity and that due to pressure gradient are considered.
rρ in the term at the left hand side of this equation is the distance from
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the stellar center to some mass element. This term is usually dropped
when the hydrostatic equilibrium is assumed. It is valid if the evolution
time scale (referred to the change of the configuration) is much longer
than the free-fall time scale or, equivalently, the speed of mass-element
motion is much lower than the local sound speed. The former can be
seen from that if we have

T 2
evo ≫

R3

GM
= t2ff ,

where Tevo is the evolution time scale, then

|ρr̈| ∼ ρ
R

T 2
evo

≪ ρ
GM

R2
.

The latter can be seen from

v2s = (
∂P

∂ρ
)S ∼ P

ρ
,

|ρr̈| ∼ 1

2
ρ|dv

2

dr
| ∼ ρ

v2

R
,

and

dP

dr
∼ P

R
.

So, if we have v2 ≪ v2s ∼ P
ρ
, it follows that |ρr̈| ≪ |dP

dr
|.

• mass – mass conservation

dM

dr
= 4πr2ρ (3.3)

• luminosity – energy conservation

dL

dr
= 4πr2ρ (ε− T

dsm
dt

) (3.4)
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ε is the energy produced (by nuclear fusions) per unit time per unit
mass and sm is the entropy per unit mass. The last term, which de-
scribes the evolution, may not be negligible in many circumstances.
The presence of this term implies that the structure of a star does
not only depend on the boundary conditions but also on its history of
evolution.

• temperature – energy transportation

dT

dr
= − 3

4ac

κρ

T 3

L

4πr2
(3.5)

for radiative equilibrium or

dT

dr
=

Γ2 − 1

Γ2

T

P

dP

dr
(3.6)

for convective equilibrium.
κ is the opacity that we will discuss in more details in Chapter 4 and
Chapter 5. Γ2 is one of the adiabatic exponents discussed in Section
2.3.2.

There are four equations with four dependent variables, P (r), M(r), L(r),
and T (r). The density ρ(r) is determined with the equation of state P =
P (ρ, T,Xi), where Xi stands for compositions. All other quantities, κ(r),
ε(r), sm(r), and Γ2(r), are known functions of ρ, T , and Xi.

With a given stellar radius R, boundary conditions can be chosen as

L(r = 0) = 0,M(r = 0) = 0, P (r = R) = 0, T (r = R) = 0 . (3.7)

The last two conditions at r = R are called the zero boundary conditions.
They are of course not rigorously valid in that they do not represent the
observed surface properties. A more physical value may be found in, for
example, Chiu (1968, page 26 and §8.6). Since the pressure and temperature
at the surface are extremely low compared with those in the stellar interior,
the solution of these differential equations is actually not sensitive to these
small values at the outer boundary. A more detailed discussion about these
boundary conditions can be found in Clayton (1983, §6.1).
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For a star with given compositions and radius R, the solution of stellar
structure can be found by solving the equations discussed above with appro-
priate boundary conditions. Since the boundary conditions are not at the
same point – this is a two-point boundary-value problem – the uniquess of
the solution is not guaranteed. It has been shown, nonetheless, the solution is
‘locally unique’, that is, solutions are not close to one another infinitesimally
(Kahler 1972).

It may be more convenient to use the co-called Lagrangian coordinate,
M , that is, the total encircled mass from the stellar center to the point in
question, as the independent variable to re-formulate all these equations. In
such a case, r is treated as a function of M , and the boundary conditions
with a given stellar mass M, are

L(M = 0) = 0, r(M = 0) = 0, P (M = M) = 0, T (M = M) = 0 .(3.8)

It is also more often desired to compute a stellar model with a given total
mass instead of radius.

3.2 The equation of hydrostatic equilibrium

From the first two of the four equations, that is, the equations for pressure and
for mass, one can infer some general properties. Further with an assumed
relation between the pressure and density, the stellar structure (P (r) and
ρ(r)) can be determined.

As a first application, from Eq.(3.1) and (3.3) we have:

d

dr
(P +

GM2

8πr4
) = −GM2

2πr5
< 0 . (3.9)

It gives a lower limit to the pressure Pc at the stellar center:

Pc >
GM2

8πR4
, (3.10)

since GM2

8πr4
→ 0 when r → 0 and P → 0 when r → R . This is actually

a quite loose limit; check the case of the Sun (see Section 1.3.4), where the
dimensional estimate (P ∼ GM2

R4 ) gives the pressure at about 1/3 radius from
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the center. Nonetheless, it gives a quick constraint. Actually one may prove
this constraint can be more stringent by a factor of 3, that is,

Pc >
3

8π

GM2

R4
, (3.11)

since

d

dr
(P +

3

8π

GM2

r4
) = −2(〈ρ〉 − ρ)

GM

r2
< 0 , (3.12)

where 〈ρ〉 is the average density of the region from the stellar center to the
point considered, where the density is ρ.

3.2.1 The virial theorem

From the equation of hydrostatic equlibrium, we have

4πr3
dP

dM
= −GM

r
.

The left-hand side can be turned into

d

dM
(4πr3P )− 4πr2 · 3P dr

dM
= −GM

r
,

and then after integrating over M from 0 to the total stellar mass M, we
have

4πr3P |M0 −
∫ M

0

3P

ρ
dM = −

∫ M

0

GM

r
dM .

It follows that
∮

PdV = −1

3
Ω , (3.13)

where dV = dM
ρ

and Ω is the gravitational potential energy of the star.
For the non-relativistic case,

P =
1

3

∫

v ·mv · fdv

=
2

3
KV , (3.14)
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where
∫

fdv = n, n is the number density, and KV is the kinetic energy per
unit volume. It follows that

K = −1

2
Ω (3.15)

and

E = K + Ω = −K . (3.16)

Eq.(3.15) is usually referred as the virial theorem. We note that it is
obtained under the assumption of a static, non-relativistic system with grav-
itational interaction only.

For the ultra-relativistic case,

P =
1

3

∫

c · p · fdv

=
1

3
KV . (3.17)

So,

K = −Ω (3.18)

and

E = K + Ω = 0 . (3.19)

This is of course only an idealized limiting case, for particles will never reach
the speed of light and E = 0 in fact describes an unbounded system.

From the virial theorem, we have

△K = −1

2
△Ω ,

△E =
1

2
△Ω ,

and

△E△K < 0 .

The above shows that between two hydrostatic-equilibrium states of a star,
change in the gravitational energy is compensated by the change in the kinetic
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energy with only one half of the amount. The total mechanical energy is not
conserved. There must occur at the same time other processes to account
for the energy transformation.

One application of the virial theorem concerns the hydrostatic stability
and the value of the adiabatic exponent Γ1. Consider a small mass element
of the star, for an adiabatic infinitesimal change of this mass element,

dU = −PdV ,

where U is the kinetic energy plus other possible degrees of freedom. From

dP

P
+ Γ1

dV

V
= 0

and

PV =
2

3
K

(so this is for the non-relativistic case; see Eq.(3.14) and consider an infinites-
imally small mass element), we have

dU =
2

3

dK

Γ1 − 1
.

For a monatomic ideal gas, Γ1 = 5/3, we have as expected dU = dK, that is,
U = K and there are no other degrees of freedom besides the kinetic energy
in the internal energy. For the whole star we may consider

U =
2

3

K

Γ1 − 1
,

if the adiabatic exponent Γ1 is constant everywhere in the star, or it is un-
derstood in an average sense. With K = −1

2
Ω, the total energy E = U + Ω

is then

E =
Γ1 − 4

3

Γ1 − 1
Ω . (3.20)

If the total energy E is positive, the star can fly apart. It occurs, as shown
in Eq.(3.20), when Γ1 decreases to be smaller than 4

3
(but still larger than

1). A pure photon gas has Γ1 =
4
3
(Section 2.3.2) and does not form a stable

star. It also indicates that a radiation pressure dominated star has a more
fragile hydrostatic structure. Ionization may make Γ1 smaller, sometimes
even smaller than 4

3
(think of an ideal gas with a large CV ). Regions of

ionization in the stellar interior could therefore be subject to hydrodynamical
instability.
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3.2.2 Scale heights in atmospheres

Again, from the equation of hydrostatic equilibrium and considering the sit-
uation at the stellar surface, we have

dP

dz
= −ρg , g =

GM
R2

.

Now for simplicity we assume a constant temperature T and P = ρkT
µmu

. The
spatial variation of temperature in the atmosphere of a star is usually much
smaller than that of density and pressure. It follows that

P = P0 exp(−
µmugz

kT
) (3.21)

and

ρ = ρ0 exp(−
µmugz

kT
) . (3.22)

The concept of the scale height can be realized in this case as

H ≡ kT

µmug
, (3.23)

which is actually, in a more general form,

H ≡ − P
dP
dz

. (3.24)

The scale height is a characteristic scale in height over which the density or
pressure varies significantly. It is generally also a function of height.

3.2.3 The Von Zeipel’s theorem

If a star is not spherically symmetric, which is actually the reality, the Von
Zeipel’s theorem goes like the following. Because

∇P = −ρ∇φ ,

the two vector fields, ∇P and ∇φ, are parallel. The pressure is therefore
a function of the gravitational potential φ only, that is, P = P (φ). (Equi-
potential surfaces coincide with equi-pressure surfaces.) From

∇P =
dP

dφ
∇φ ,
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we have

ρ = −dP

dφ
= ρ(φ) ,

that is, the density is also a function of φ only. It is obvious that the same is
true for the temperature. So, all properties are constant in an equi-potential
surface.

3.3 The linear stellar model

From the equations of hydrostatic equilibrium and mass conservation we have
got some useful properties. To go further, but still not to get into the whole
business involving the equations of energy conservation and transportation,
some assumed knowledge about the density profile is needed. As an example,
we consider a linear model, in which the density profile is

ρ = ρc(1− r/R) , (3.25)

where ρc is the density at the stellar center and R is the stellar radius. The
mass profile can be obtained from

dM

dr
= 4πr2ρc(1− r/R)

to be

M(r) = (
4r3

3
− r4

R
)πρc . (3.26)

The total mass of the star is then

M = M(R) =
πR3

3
ρc . (3.27)

Instead of characterizing the profiles with the parameter ρc, one can also use
the total mass of the star. So, the mass profile is

M(r) = (
4r3

R3
− 3r4

R4
)M . (3.28)

The pressure profile can be obtained likewise from

dP

dr
= −GM

r2
ρc(1− r/R)
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to be

P (r) = Pc −G(
2r2

3
− 7r3

9R
+

r4

4R2
)πρ2c . (3.29)

The central pressure Pc can be determined by requiring

P (R) = Pc −
5πG

36
ρ2cR

2 = 0 ,

which gives

Pc =
5πG

36
ρ2cR

2 =
5G

4π

M2

R4
.

The pressure profile can thus also be described with either ρc or M.

3.4 Polytropic stellar models

A star is called a polytrope of index n when the relation between the pressure
and density is assumed to be

P = Kρ
n+1
n , (3.30)

where K and n are constants. This relationship looks artificial, but in fact it
may be a quite good approximation in many cases. For example, for n = 3/2,
i.e., P = Kρ5/3, it may well represent a non-relativistic degenerate star. For
n = 3, P = Kρ4/3, it describes an ultra-relativistic degenerate star, or a
star with a constant radiation pressure fraction (see the Eddington standard
model discussed at the end of this section). For n = ∞, P = Kρ, it is an
imaginary isothermal star consisting of an ideal Maxwellian gas.

3.4.1 The Lane-Emden equation

From the equations of hydrostatic equlibrium and mass conservation we may
get

1

r2
d

dr
(
r2

ρ

dP

dr
) = −4πGρ . (3.31)
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By defining two dimensionless variables, θ and ξ, in place of density ρ and
radius r,

ρ = ρcθ
n (3.32)

and

r = αξ , (3.33)

where

α =

√

√

√

√(n + 1)Kρ
1−n
n

c

4πG
, (3.34)

Eq.(3.31) can be re-formulated, with Eq.(3.30), as

1

ξ2
d

dξ
(ξ2

dθ

dξ
) = −θn , (3.35)

which is the Lane-Emden equation of index n. The Lane-Emden equation
is a second-order differential equation of θ, which gives the density profile.
With a given n, θ as a function of ξ is uniquely determined with two boundary
conditions. Since ρ(0) = ρc, we have θ(0) = 1. We can also find that dθ

dξ
|0 = 0.

With these two boundary conditions and a given polytropic index n, the
solution θ(ξ) is determined and, when translated into the real density ρ and
radius r, is parameterized only by ρc and K. In other words, for a given
polytrope of index n and constant K, stellar models are parameterized by ρc
only.

Analytic solutions to the Lane-Emden equation exist only for n = 0, 1,
and 5:

n = 0, θ = 1− ξ2/6 (ρ is a constant) (3.36)

n = 1, θ =
sin ξ

ξ
(3.37)

n = 5, θ = (1 + ξ2/3)−1/2 (3.38)

The outer boundary of the star corresponds to the ξ at which θ takes the
first zero value. Denoting this ξ as ξ1, i.e., θ(ξ1) = 0, we can see that for
n = 0, ξ1 =

√
6, for n = 1, ξ1 = π, and for n = 5, ξ1 → ∞.
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The Lane-Emden equation can also take other forms. If we define

χ = ξθ(ξ) (3.39)

then we have

d2χ

dξ2
= − χn

ξn−1
. (3.40)

Or, if

x =
1

ξ
, (3.41)

then

x4 d
2θ

dx2
= −θn . (3.42)

3.4.2 Properties of a polytropic star

Since the solution to the Lane-Emden equation can be uniquely obtained,
either analytically or numerically, for a given polytropic index n, properties
like the total mass M and the stellar radius R can also be determined with
given K and ρc. Values of ξ1 and dθ

dξ
|ξ1 are also needed, which can be known

from the solution for different n (Table 3.1).

• The stellar radius R is

R = αξ1 =

√

√

√

√(n+ 1)Kρ
1−n
n

c

4πG
ξ1 . (3.43)

• The mass of the star M is

M =
∫ R

0
4πr2ρdr

= 4πα3ρc

∫ ξ1

0
ξ2θndξ

= −4πα3ρc

∫ ξ1

0

d

dξ
(ξ2

dθ

dξ
)dξ

= 4π

√

√

√

√

(

(n + 1)K

4πG

)3

ρ
3−n
n

c



−ξ21
dθ

dξ

∣

∣

∣

∣

∣

ξ1



 . (3.44)
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n ξ1 −ξ21
dθ
dξ
|ξ1 ρc

ρ̄

0 2.4494 4.8988 1.0000
0.5 2.7528 3.7871 1.8361
1.0 3.14159 3.14159 3.28987
1.5 3.65375 2.71406 5.99071
2.0 4.35287 2.41105 11.40254
2.5 5.35528 2.18720 23.40646
3.0 6.89685 2.01824 54.1825
3.25 8.01894 1.94980 88.153
3.5 9.53581 1.89056 152.884
4.0 14.97155 1.79723 622.408
4.5 31.83646 1.73780 6189.47
4.9 169.47 1.7355 934800
5.0 ∞ 1.73205 ∞

Table 3.1: Constants of the Lane-Emden equation (Chandrasekhar 1939,
page 96).

• The average density ρ̄ is

ρ̄ =
4πα3ρc

(

−ξ21
dθ
dξ
|ξ1
)

4π
3
α3ξ31

= ρc



− 3

ξ1

dθ

dξ

∣

∣

∣

∣

∣

ξ1



 . (3.45)

• The central pressure Pc can be trivially expressed as Pc = Kρ(n+1)/n
c .

It can also be formulated in terms of the total mass M and radius R
as

Pc =
1

4π(n+ 1)(dθ
dξ
|ξ1)2

GM2

R4
. (3.46)

• Now let’s find the gravitational potential energy Ω of a polytropic star
in terms of the polytropic index, total mass and the stellar radius. From

1

ρ

dP

dr
= (n+ 1)

d(P/ρ)

dr
= −GM

r2

57



and

(n+ 1)
P

ρ
= −

∫ r

∞

GM(r′)

r′2
dr′ + C

= −Φ(r) +
∫ R

∞

GM(r′)

r′2
dr′

= −Φ(r)− GM
R

,

where Φ is the gravitational potential as a function of r and the constant
C is so chosen by considering P/ρ = Kρ1/n = 0 at r = R, we have

Ω =
1

2

∫ M

0
ΦdM

= −1

2

(

(n+ 1)
∫ M

0

P

ρ
dM +

GM2

R

)

= −1

2

(

(n+ 1)
∮

PdV +
GM2

R

)

= −1

2

(

(n+ 1)(−Ω

3
) +

GM2

R

)

.

Eq.(3.13) was used to reach the last equality. The factor 1
2
at the

beginning of the right hand side is needed since φ is the potential
established by the whole configuration. So, in terms of M, R, and n,
the potential energy is

Ω = − 3

5 − n

GM2

R
. (3.47)

One can see that, for a polytropic star to have a negative gravitational
potential energy, we must have n < 5.

From the above discussion, we can also see that dR
dρc

= 0 for n = 1 and
dM
dρc

= 0 for n = 3. The latter is particularly interesting because for that

kind of model (n = 3) the stellar mass depends only on K. We have also
seen the model of n = 5 corresponds to an infinite star, ξ1 → ∞. This is
consistent with Eq.(3.47), which requires n < 5 for a polytropic star.
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3.4.3 The Eddington standard model

Now consider a star whose pressure comes from radiation and an ideal gas,
just like the one discussed in Section 2.3.1. From

Pr =
1

3
aT 4 = (1− β)P

and

Pg =
ρkT

µmu
= βP ,

we can have

P =

(

k

µmu

)4/3 (
3(1− β)

aβ4

)1/3

ρ4/3 , (3.48)

which is just a polytropic relationship of n = 3, if the approximation of β
and µ being constant is adopted. This approximation should not be pushed
to the limiting cases of β = 1 or 0. Although this approximation cannot be
really good, this model, called the Eddington standard model, provides
a useful tool to estimate properties of many stars.

3.4.4 The Chandrasekhar limit

For an ultra-relativistic degenerate star we also have P = Kρ4/3. From
Eq.(3.44), Eq.(2.91) and solutions to the Lane-Emden equation (see Ta-
ble 3.1) the total mass of such a star is

M =
5.80

µ2
e

M⊙ . (3.49)

A white dwarf is a star supported by the electron degeneracy pressure against
gravity. With mass getting higher, the star gets more and more relativistic.
Such a configuration can only exist with mass less than that making the
whole star ultra-relativistic. So the mass in Eq.(3.49) is the upper limit of
the mass of white dwarfs, which is called the Chandrasekhar limit. The
major composition of a white dwarf is carbon and oxygen. The corresponding
electron mean molecular weight is µe = 2, and the Chandrasekhar limit is
about 1.45M⊙.
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Exercises

1. Verify Eq.(3.12).

2. Estimate typical scale heights for the Earth’s atmosphere (T ∼ 300 K),
the solar atmosphere (T ∼ 6000 K), the atmosphere of a white dwarf
(T ∼ 20000 K), and of a neutron star (T ∼ 106 K). The mass of the
latter two can be taken as one solar mass.

3. Find the gravitational potential energy for the linear stellar model in
terms of G, M and R.

4. Show dθ
dξ
|0 = 0.

5. Derive Eq.(3.46).

6. Show that the mass of the Eddington standard model is given numeri-
cally by

M = 18.3

√
1− β

µ2β2
M⊙ . (3.50)

7. Estimate Pc, ρc and Tc for a star of mass 1M⊙ and radiu 1R⊙, using
the Eddington standard model and the linear model. For the former,
what are the values of β and µ?

8. Verify Eq.(3.49).
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Chapter 4

Energy Transport in Stellar
Interiors

Stars shine so that we can detect their existence. Their shining also implies
evolution through energy output. The conversion of energy among different
forms and their transportation in stars are thus important to the understand-
ing of stellar structure and evolution. In the previous chapter, the pressure
profile and mass profile in a star are studied with an assumed polytropic
relation, which is surely an idealization. In this chapter we will discuss the
description of energy transport in stars, which is closely related to the tem-
perature profile in stellar interiors, which through the equation of state and
the coupled equations will give a more realistic pressure and density profile.
Energy transport via radiation, convection and conduction are discussed in
the following sections.

4.1 Radiation fields

In the following we shall introduce the notions that one uses to describe a
radiation field before formulating its transportation. The axial symmetry is
often a very good approximation when dealing with radiation transport in
the stellar interiors and atmospheres. In such a case, the various quantities
described below can be expressed as moments of the specific intensity.

• the specific intensity –
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The specific intensity Iν is defined as

Iν(~r, Ω̂, t) dνdΩdt Ω̂ · n̂dA = dE , (4.1)

where dE is the energy passing through the area dA, whose normal
direction is n̂, in the direction Ω̂ within the frequency range dν, the
solid angle dΩ, and the time interval dt.

• the mean intensity –

The mean intensity (or, the mean specific intensity, to be more precise)
is defined as

Jν ≡
1

4π

∫

Iν(Ω̂)dΩ . (4.2)

If Iν is isotropic, we have Jν = Iν .

The energy density can be obviously related to the mean intensity:

uν =
4π

c
Jν . (4.3)

When the polar axis is chosen, the integration over the solid angle can
be written as

Jν =
1

4π

∫

Iνdµdφ ,

where µ is the cosine of the polar angle and φ is the azimuthal angle.
If Iν is axially symmetric, we have

Jν =
1

2

∫ 1

−1
Iνdµ , (4.4)

which is the zeroth-order moment of Iν .
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• the flux –

The flux density Fν (or called the specific flux) is

Fν(n̂) =
∫

Iν(Ω̂)Ω̂ · n̂dΩ , (4.5)

which is the energy per unit time per unit area per unit frequency
passing through an area whose normal direction is n̂. If Iν is axially
symmetric with respect to n̂, we have

Fν = 2π
∫ 1

−1
Iνµdµ (4.6)

The Eddington flux Hν is defined as

Hν =
1

2

∫ 1

−1
Iνµdµ , (4.7)

which is the first-order moment of Iν . It is clear that

Hν =
Fν

4π
. (4.8)

Sometimes another quantity Fν , the astrophysical flux, is used, which
is simply Fν = Fν

π
= 4Hν.

One may also define the flux as a vector in the following way:

~Fν =
∫

Iν(Ω̂)Ω̂dΩ . (4.9)

It is clear that Fν(n̂) define earlier is simply the magnitude of the

projection of ~F in the n̂ direction.

• The K-integral –
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The projected magnitude sum of momentum transport per unit time
per unit area in the radiation field of frequency range dν through an
area with normal direction n̂ is

(
∫ µ=1

µ=−1

Iν
c
µ2dµdφ) dν . (4.10)

If the radiation field is isotropic, it is the same as the radiation pressure
discussed in Section 2.3.1, since

Pνdν = 2× (
∫ µ=1

µ=0

Iν
c
µ2dµdφ) dν = (

∫ µ=1

µ=−1

Iν
c
µ2dµdφ) dν . (4.11)

If again Iν is axially symmetric with respect to n̂, we have

Pν = 2π
∫ µ=1

µ=−1

Iν
c
µ2dµ ,

which is often expressed as Pν =
4π
c
Kν , where

Kν =
1

2

∫ 1

−1
Iνµ

2dµ (4.12)

is the K-integral, the second-order moment of Iν .

4.2 The equation of radiation transfer

In stellar atmospheres, the spacial range considered is often very much smaller
than the stellar radius, and therefore the plane-parallel approximation is ad-
equate. Even in stellar interiors, to associate each location at a certain ra-
dial distance from the center with a certain optical depth, similar notations
used in the plane-parallel approximation is also adopted. In a plane-parallel
medium with ẑ in the normal direction, the equation of radiation transfer
reads

cos θ
dIν
dz

= −kνIν + jν , (4.13)
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where θ is the angle between the z-axis and the direction of radiation prop-
agation, kν is the attenuation coefficient and jν is the specific emissivity,
both of which in general include contribution from scattering. In a general
case without the plane-parallel symmetry, one may simply drop out cos θ
and consider z as the actual path, or equivalently, consider dℓ = dz/ cos θ
as the actual path. The attenuation coefficient kν is also often expressed
as kν = ρκν , where ρ is the mass density and κν is the opacity. The
subscript ν used for kν and κν is different from our convention in that it em-
phasizes the frequency dependence but does not denote a quantity per unit
frequency. The opacity may include contribution from the so-called bound-
bound, bound-free, free-free opacities, and the loss due to scattering. It is
strongly frequency-dependent. Some more details will be discussed in the
next chapter. Defining the optical depth τν as

dτν = −kνdz

and the source function Sν as

Sν = jν/kν ,

the radiative transfer equation turns into

µ
dIν
dτν

= Iν − Sν . (4.14)

The source function Sν , as being the ratio of emissivity and the attenuation
coefficient, is an intrinsic physical property of the medium, that is, the matter
through which the radiation propagates. If Sν > Iν , Iν will increase along
the path in the direction indicated by µ. A formal solution can be found by
noting that the above equation can be turned into

d

dτν
(Iνe

−τν/µ) = −Sν

µ
e−τν/µ

and then, integrating from τ2 to τ1,

Iν(τ1) = Iν(τ2)e
−(τ2−τ1)/µ +

1

µ

∫ τ2

τ1
Sν(t)e

−(t−τ1)/µdt . (4.15)

Considering τ2 → ∞ and τ1 assigned to be 0, the emergent specific intensity
is

Iν(τ1 = 0, µ) =
1

µ

∫ ∞

0
Sν(t)e

−t/µdt =
1

µ
S̃ν(1/µ) , (4.16)
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where S̃ν is the Laplace transform of the source function Sν .
Radiative transfer equation can also be written in terms of flux and ra-

diation pressure. Integrating Eq.(4.14) over µ, we have

dHν

dτν
= Jν −

1

2

∫ 1

−1
Sνdµ . (4.17)

With Eq.(4.14) ×µ and then integrated over µ, one has

dKν

dτν
= Hν −

1

2

∫ 1

−1
Sνµdµ . (4.18)

If Sν is isotropic, we have

dKν

dτν
= Hν . (4.19)

4.3 Radiative equilibrium

4.3.1 The diffusion approximation

In the deep interior of a star, the radiation field is almost isotropic and
approaches thermal equilibrium. Matter there is also close to thermal equi-
librium with the radiation field. In such a case, the source function will be
very close to the Planck function, i.e., Sν ∼ Bν . This can be understood by
placing an element of such matter in a cavity containing a radiation field at
a certain temperature. Since we assume that matter is in thermal equilib-
rium at that temperature, from Eq.(4.14), we can see that Sν must be equal
to Bν at that temperature so that the radiation field, as described by Iν ,
can remain in that equilibrium with Iν = Bν in this gedanken experiment.
The condition that Sν = Bν is called the local thermal equilibrium (LTE)
assumption. Expanding the source function at optical depth tν as a power
series with respect to a certain point (or layer) at optical depth τν,0 where
the LTE assumption is made,

Sν(tν) =
∞
∑

n=0

1

n!

dnBν

dτν n
(tν − τν,0)

n , (4.20)
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and from Eq.(4.15), one can find that (e.g. Mihalas 1978, p.50), considering
τ1 = τν,0 and τ2 = ∞(µ > 0) or τ2 = 0(µ < 0) , we have

Iν(τν,0, µ) =
∞
∑

n=0

µnd
nBν

dτν n
= Bν(τν,0) + µ

dBν

dτν
+ µ2d

2Bν

dτν 2
+ · · · . (4.21)

All the above derivatives of the Planck function are evaluated at the depth
τν,0. The diffusion approximation is that, at a very large optical depth
(τν,0 ≫ 1), one may keep only terms up to the first derivative so that the
specific intensity and its moments can be written as

Iν(τν , µ) ≈ Bν(τν) + µ
dBν

dτν
, (4.22)

Jν(τν) ≈ Bν(τν) , (4.23)

Hν(τν) ≈ 1

3

dBν

dτν
, (4.24)

and

Kν(τν) ≈
1

3
Bν(τν) . (4.25)

The Eddington flux can then be expressed in terms of the temperature
gradient:

Hν =
1

3

dBν

dτν
= −1

3

(

1

ρκν

dBν

dT

)

dT

dr
, (4.26)

where dτν = −ρκνdr is used. Recall that Fν = 4πHν and for the total flux
we have

F =
∫

Fνdν =
L

4πr2
= −4π

3

(

∫

1

ρκν

dBν

dT
dν

)

dT

dr
. (4.27)

Defining the Rosseland mean opacity 〈κ〉 as

1

〈κ〉 =

∫ 1
κν

dBν

dT
dν

∫ dBν

dT
dν

(4.28)

and noting that

∫

dBν

dT
dν =

4σT 3

π
,
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Eq.(4.27) leads to

L = −16π

3

acr2T 3

ρ〈κ〉
dT

dr
, (4.29)

which describes the magnitude of radiative luminosity at a radius with given
temperature gradient and other local physical properties. The Rosseland
mean opacity 〈κ〉 is an average of opacities with emphasis on the frequency
ranges in which the Planck function’s temperature derivative is the largest
(dBν

dT
peaks at about ν = 2.8kT/h) or in which the medium is more transpar-

ent (therefore a smaller κν).
When the energy is transported by radiation only (the so-called radiative

equilibrium), the temperature gradient should obey the following:

dT

dr
= − 3

4ac

ρ〈κ〉
T 3

L

4πr2
, (4.30)

which is the equation of temperature gradient in radiative equilibrium, here
derived with the diffusion approximation, that is, only valid at a very large
optical depth. We note that in Eq.(4.28) the concept of reduced opacity is
not yet included; see the next chapter.

4.3.2 The mass-luminosity relation

From Eq.(4.29) one can make an order-of-magnitude estimate:

L ∼ 4π

3

ac

ρ〈κ〉
R2T 4

R
∝ RT 4

ρ〈κ〉 . (4.31)

Considering that P ∼ GM2

R4 , P ≈ ρkT
µmp

and ρ ∼ M/R3, we have T ∝ µM/R

for a gas-dominated star. Therefore,

L ∝ µ4

〈κ〉M
3 , (4.32)

which gives a rough relation between stellar luminosity and its mass. The
mass dependence also exists in µ and 〈κ〉, however. If instead, we consider
a radiation-dominated star, P ≈ 1

3
aT 4 ∼ GM2

R4 , we have T ∝ M0.5/R. We
then have

L ∝ M/〈κ〉 . (4.33)

68



This is consistent with the M-L relationship inferred from observations in
that the dependence weakens towards the high mass end. The Rosseland
mean opacity can be quite well approximated by the Kramer opacity, that
is, 〈κ〉 ∝ ρT−3.5. For gas-dominated stars, we then have L ∝ µ7.5M5.5/R0.5.
The dependence on mass gets stronger in this case. We should also note, how-
ever, for main sequence stars the radius and mass are positively correlated.
The mass dependence of luminosity is therefore reduced to some extent. For
radiation-dominated stars, we will have L ∝ µ3.5M3.5/R0.5. Again, we see a
weaker luminosity dependence on stellar masses for higher-mass stars.

4.4 Non-radiative energy transport

4.4.1 Convective instability

Convection may occur when the heat flux is so large that radiation alone
is not efficient enough to transport the flux. To explore the condition for
the convective instability to occur, let’s consider a mass element undergoing
an adiabatic, perturbative rising. We assume that the pressure inside the
element and in its surroundings keeps equal to each other all the time because
the time scale for reaching pressure balance, to the order of the free-fall time
scale, is usually much shorter than that for reaching thermal equilibrium.
If the density drop during the rising is larger than the surroundings, which
is computed based on the assumption of radiative equilibrium, the mass
element will continue rising, i.e. the perturbation is not damped. In such
a case, convection occurs, and the assumption of radiative equilibrium is no
longer justified. In other words, if
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then we have convective instability. The above condition is the same as
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, (4.34)

since the pressure drop is the same for the element and its surroundings. The
quantity with subscript ‘rad’ is that computed from radiative equilibrium.
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In computing a stellar model, one has to check whether convection occurs
or not at all the points, that is, to compare the temperature gradient obtained
from Eq.(4.30) with
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. It is thus desirable to express
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in terms of

other local thermodynamic functions.
From Eq.(2.42) one can easily see that
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)
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. (4.35)

So the condition for convective instability can be stated as
∣

∣

∣

∣

∣

dT

dr

∣

∣

∣

∣

∣

rad

>

∣

∣

∣

∣

∣

(1− 1

Γ2
)
T

P

(

dP

dr

)∣

∣

∣

∣

∣

. (4.36)

A general form of Γ2 can be found in Eq.(2.57). If Γ2 is closer to unity, it is
easier for convection to occur.

For the case of an ideal gas, PV = NkT and 1 − 1
Γ2

= (CP − CV )/CP ,
one can find

(

dT

dr

)

ad

= −cP − cV
cP

µmug

k

= − g

cP
, (4.37)

where cP is the heat capacity at constant pressure per unit mass and g is
the gravitational acceleration. The last equality is obtained by noting that
CP − CV = Nk and cP − cV = Nk/M = k/(µmu). In a region where cP is
large (therefore cV is also large and Γ2 is closer to unity) it is more likely to
have convective instability. This may occur in an ionization region.

The maximal luminosity that radiation can transfer without causing con-
vection is

Lmax(r) = −16π

3

acr2T 3

ρ〈κ〉

(

dT

dr

)

ad

, (4.38)

which, with Eqs.(2.31), (3.1) and (4.35), can be turned into

Lmax(r)

M(r)
=

16πGc

〈κ〉 (1− 1

Γ2
)
Pr

P
. (4.39)
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The luminosity Lmax can be relatively small in regions with large opacity and
convection is likely to happen. Again, regions of ionization are possible ex-
amples. On the other hand, high above the photosphere, the opacity, as well
as the pressure, gets smaller and smaller because density drops very quickly
(think of Kramer opacity and note that temperature does not change much).
The maximal heat flux that can be carried by radiation therefore becomes
larger. Depending on the actual structure, convection can occur in different
regions in a star, but at the outer atmosphere, radiative equilibrium is usu-
ally a good description. Close to the stellar core, if the energy generation
per unit mass is larger than the maximum value described in Eq.(4.39), con-
vection will occur. This is the case for massive stars at whose central core
the hydrogen burning is mainly through the CNO cycle, which is very much
temperature sensitive and therefore is concentrated in a small core region,
where the large luminosity of massive stars is already achieved. Therefore
the energy generation per unit mass is large and convection tends to occur.
In contrast, the p-p chain hydrogen burning, like that going on in the Sun,
happens in a larger core region. The luminosity per unit mass is therefore
smaller and radiative equilibrium is established there.

4.4.2 The mixing-length theory

In principle, when convection occurs, energy transportation is still carried
out by the two mechanisms: convection and radiation. However, it will be
demonstrated in the following that the convection is so efficient a mechanism
that almost all the heat is transported by convection and transportation by
radiation can be neglected, as long as convection occurs. It is, nonetheless,
not simple at all to develop a satisfying theory of energy transportation rate
for convection. In the following we will describe the basic picture of the so-
called mixing length theory, and demonstrate at the same time the the
actual temperature gradient is very close to the adiabatic one. So, for the
concern of computing a stellar model, the adiabatic temperature gradient
can be employed for convection zones.

Now, define the superadiabatic gradient as

d△T

dr
≡
(

dT

dr

)

ad

− dT

dr
, (4.40)

which is the difference between the adiabatic temperature gradient and the
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actual one, and consider a ‘mixing length’ Λ, over which the mass elements
travel adiabatically and then exchange heat with the surroundings. In the
following we will try to express convection flux in terms of the superadiabatic
gradient, the mixing length and other local physical properties.

The convective heat flux can be written as

Fconv =
1

2
ρv̄ · cP△T , (4.41)

where v̄ is a typical average speed, cP△T = △q is the heat excess per unit
mass carried by the convective material, and the factor 1

2
takes into account

that only half of the mass is rising upwards. The temperature excess △T can
be written in terms of the mixing length and the superadiabatic gradient as

△T ≈ Λ
d△T

dr
,

and the average speed v̄ can be estimated from the upward motion of the
convecting mass element as in the following.

Since the pressure, which keeps equal all the time in the mass element
and in its surroundings, is proportional to ρT (so we are considering an ideal
gas system dominated by gas pressure), we have

△ρ ≈ − ρ

T
△T , (4.42)

where △ρ and △T are the density and temperature excess in the element
over its surroundings, and ρ and T should be understood as taking a certain
average value in the traveling path. The net force (difference of the buoyant
force and the gravitational one) per unit volume can be estimated as

f = −g△ρ = g
ρ

T
△T ,

which gives an acceleration of

d2rρ
dt2

= g
△T

T
,

where rρ is the position of the mass element in question. The average speed
can then be estimated as the product of the acceleration and a typical time
scale:

v̄ ≈ g
△T

T
t
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with t being the time scale of the adiabatic travel, that is, the time scale for
completing heat exchange. This time scale is about

t ≈
√

ΛT

g△T
, (4.43)

as can be seen from the acceleration expression. Now we have

v̄ ≈
√

gΛ
△T

T

and the convective heat flux is

Fconv =
1

2
ρcP

(

g

T

)
1
2

Λ2

(

d△T

dr

) 3
2

. (4.44)

Correspondingly, the luminosity transported by convection is

Lconv =
4πr2

2
ρcP

(

g

T

) 1
2

Λ2

(

d△T

dr

) 3
2

. (4.45)

The determination of an adequate mixing length is not trivial. The adi-
abatic assumption is probably not good for a mixing length larger than the
local scale height, beyond which properties of the surroundings are very dif-
ferent from the original environments of the convective cell. In the stellar
interior, unlike in the transition region around the atmosphere, the scale
height is not much shorter than the whole stellar dimension. To demonstrate
the claim made at the beginning of this section, let’s take the Sun as an
example and denote Λ with αR⊙. From the solar model computed by Bah-
call & Ulrich (1988; see also Guzik & Lebreton 1991), at r = 0.75R⊙ other
quantities are M = 0.985M⊙, T = 1.82× 106 K, and ρ = 0.122 g/cm3. The
local gravitational acceleration is g = GM/r2 ≈ 4.7×104 cm/sec/sec and the
heat capacity is about cP ≈ 5

2
k

µmu
≈ 108.6 erg/K/g, assuming a monatomic

ideal gas and µ ≈ 1
2
. Inserting these values into Eq.(4.45) and assuming all

the solar flux in transported by convection, Lconv = 1033.6 erg/sec, we have

d△T

dr
≈ 10−11α− 4

3K/cm . (4.46)

With α = 0.1, the superadiabatic gradient is about 10−10 K/cm, which is
10−6 times the typical temperature gradient in the Sun. It implies that
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in the convection zone of the Sun, the deviation of the actual temperature
gradient from the adiabatic one is really negligible. So one may use the
adiabatic temperature gradient, Eq.(3.6), to describe the real temperature
gradient when convection occurs. The time scale for the convective cell to
reach thermal equilibrium with its surroundings, from Eq.(4.43), is about

2× 106 α
2
3 sec, which is indeed much longer than the dynamic time scale.

The mixing length theory is limited by the lacking of a good estimation for
the mixing length. Furthermore, closer to the stellar surface the scale heights
get shorter and shorter. The superadiabatic gradient is then not necessarily
small. Unfortunately, convection does occur in the outer part of a star like
our Sun. For efforts in establishing a sound convection theory, readers are
referred to review articles in Cox, Livingston & Matthews (1991).

4.4.3 Thermal conduction

Thermal conduction is the phenomena that heat is transfered by particles as
their kinetic energy from higher-temperature regions to lower-temperature
ones via successive collisions. In the sense of a diffusion process, it is similar
to the radiation transfer in which heat is carried by photons. Its efficiency
depends basically on the energy excess of the carriers over their environment
at each collision. Since the thermal speed of electrons is much larger than
that of ions, it is pretty well to consider conduction by electrons only. Except
for degenerate gases, the mean free path of a photon is usually much longer
than those of electrons. Photons can travel farther and the energy differ-
ence between them and the new surroundings is larger. Therefore, in usual
cases, radiation is much more efficient than thermal conduction for energy
transportation. However, thermal conduction may play important roles, for
example, in constructing the structure of compact stars.

To explore the efficiency of thermal conduction, one is interested in know-
ing the conductive flux for a given temperature gradient. In this regard,
we will outline a general way and then present a simplified, approximate
approach to obtain an approximate expression for a non-relativistic non-
degenerate gas.
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A general approach to estimate the conduction flux

The particle current density and the energy flux they carry can be written
in terms of the distribution function as

Jr =
2m3

h3

∫

vrf(~v)d
3v (4.47)

and

F =
2m3

h3

∫

K(v)vrf(~v)d
3v , (4.48)

where the subscript r stands for the radial direction, which is what we are
interested in, f is the electron distribution function that

∫ 2
h3fd

3p = ne, and
K is the kinetic energy of a particle at speed v. The distribution function
also depends on location, which is not expressed explicitly for simplicity.
When we consider the thermal conduction with the spherical symmetry of
the star or in a plane-parallel atmosphere, the whole problem is basically one
dimensional, i.e., in the radial direction. With a given temperature gradient,
we want to find F subject to the condition of Jr = 0 for a static star. The
distribution function f(~v) is no longer the equilibrium one in the presence of
a temperature gradient. Otherwise Jr and F will both be zero.

The Boltzman transport equation reads
(

∂

∂t
+ ~v · ∇~r + ~a · ∇~v

)

f =

(

∂f

∂t

)

col

. (4.49)

We may consider the distribution function as

f(~v) = f0(v) + g(~v) , (4.50)

where g(~v) is a perturbation to the equlibrium distribution f0. With terms
of zeroth-order in perturbation, the Boltzman transport equation can be
written as

(

∂f

∂t

)

col

= vr
∂f0
∂r

+ ar
∂f0
∂vr

. (4.51)
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The right-hand side of the above equation can be expressed in terms of local
thermodynamic properties, the temperature gradient and the local accelera-
tion field by noting that

∂f0
∂r

=
∂f0
∂µ

dµ

dr
+

∂f0
∂T

dT

dr

= −∂f0
∂ǫ

∂µ

∂T

dT

dr
+ (−∂f0

∂ǫ

ǫ− µ

T
)
dT

dr

= −∂f0
∂ǫ

(
∂µ

∂T
+

ǫ− µ

T
)
dT

dr
,

and

ar
∂f0
∂vr

= ar
∂f0
∂ǫ

∂ǫ

∂vr
= vr

∂f0
∂ǫ

(mar) .

So we have
(

∂f

∂t

)

col

= vr
∂f0
∂ǫ

(

mar − (
∂µ

∂T
+

ǫ− µ

T
)
dT

dr

)

. (4.52)

One then usually take the relaxation time approach, that is, from the
details of scattering processes to express the collision term in such a form
that

(

∂f

∂t

)

col

= −g(~v)

τ(v)
, (4.53)

where τ(v) is the relaxation time. It is the time scale that the distribution
function would need to relax to its equilibrium value via collisions only, that
is,

f(~v, t) = f0(v) + g0(~v) exp(−t/τ(v)) . (4.54)

If the relaxation time can be found from consideration of a suitable model in-
volving relevant scattering processes, the perturbation g(~v) can be expressed,
from Eq.(4.52), in terms of dT

dr
and ar. For example, the relaxation time can

take the form of

1

τ(v)
= 2πvni

∫ π

0

dσ(θ)

dΩ
(1− cos θ) sin θ dθ , (4.55)
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for a model of uncorrelated ions and electron-ion scattering only, where ni is
the number density of ions and dσ

dΩ
= ( Ze2

mv2
)2(1− cos θ)−2 is the Rutherford

cross section (Clayton 1983, p.244). This g(~v) is then employed to compute
Jr and F , and by requiring Jr = 0, F can be written in terms of dT

dr
. A

detailed calculation, which applies to any degree of degeneracy for a non-
relativistic gas as treated here, can be found, for example, in Clayton (1983,
§3-4). A relativistic treatment can be found in Chiu (1968, p.178).

A simplified approach for a non-relativistic, non-degenerate gas

Because electrons have a much larger speed than ions, we may consider the
conductive flux at a location r towards positive-r direction as

F =
1

6
nev̄εr−ℓe −

1

6
nev̄εr+ℓe , (4.56)

where εr is the typical energy of a single electron at position r, which is about
3
2
kT , and ℓe is the mean free path of electron-ion collisions. Because of the

Z2 dependence of the collision cross section and the degeneracy of electrons,
collisions between electrons and electrons are usually ignored (Clayton 1983,
p.238). The above equation can be turned into

F = −1

2
knev̄ℓe

dT

dr
(4.57)

≡ −λc
dT

dr
, (4.58)

where the thermal conductivity λc is

λc =
1

2
knev̄ℓe . (4.59)

The mean speed v̄ is about
√

3kT/me and the mean free path ℓe is about

(σni)
−1, where ni is the ion number density and σ is the scattering cross

section. This cross section can be estimated as σ ∼ πr20 with r0 being the
closest approaching distance, mev̄

2/2 = Ze2/r0. Noting that ne = ρ
mu

1+X
2

(Eq.(2.23) and Eq.(2.25), thus with the assumption of complete ionization)
and ni =

ρ
Amu

, the conductivity turns into this form:

λc =
9
√
3

16π

k
7
2

m
1
2
e e4

A

Z2
(1 +X) T

5
2 . (4.60)
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The above equation deals with only one species of ions. X can only takes
the value 1 (with A = Z = 1) or 0. For mixed species of ions, one needs

only to replace Z2/A with (
∑

Z=1
ρZZ2

AZ
)/ρ = (

∑

Z=1 nZZ
2)mu/ρ, where ρZ ,

AZ and nZ are the mass density, atomic weight and number density of the
ion with atomic number Z, respectively. Therefore, we have a more general
expression:

λc =
9
√
3

16π

k
7
2

m
1
2
e e4

ρ

(
∑

Z=1 ρZZ2/AZ)
(1 +X) T

5
2 . (4.61)

To compare the efficiency of conduction with radiation, it is common to
define a conductive opacity κc as

κc =
4acT 3

3ρλc
(4.62)

so that the flux is

F = − 4ac

3ρκc

T 3dT

dr
, (4.63)

similar to Eq.(4.29). When the two mechanisms, radiation and conduction,
are both considered, the combined opacity κ is

1

κ
=

1

κr
+

1

κc
. (4.64)

The conductive opacity for a non-relativistic non-degenerate gas is, from
Eq.(4.61),

κc ∼ 1.6× 105
(
∑

Z=1 ρZZ
2/AZ)

ρ(1 +X)

T
1
2
7

ρ0
cm2/g . (4.65)

For an extremely degenerate gas, but still non-relativistic, the conductive
opacity is

κc ∼ 5× 10−3 (
∑

Z=1 ρZZ
2/AZ)

ρ(1 +X)

T 2
7

ρ25
Θ cm2/g , (4.66)

where Θ is a factor of order unity (Cox & Giuli 1968, p.390). The factor
(
∑

Z=1 ρZZ
2/AZ)/ρ is kept in this current form without being spelt out to

join the numerical factor so that it is easier to consider the mass fraction ρZ/ρ
of different species. These approximate expressions can be used to compare
with those radiative opacities discussed in Section 5.3. Usually one finds that
conduction is more important than radiation only in a degenerate gas.
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Radiation as conduction

From Eq.(4.56) one may easily replace neε with photon energy density u and
v̄ with c to have

F =
1

6
cur−ℓ −

1

6
cur+ℓ (4.67)

=
cℓ

3

du

dT

dT

dr
(4.68)

= −4

3
acℓT 3dT

dr
, (4.69)

where ℓ is the mean free path of a photon and u = aT 4 is used. We note
that ℓ = 1

ρκ
, where ρ is the mass density of matter and κ is a certain kind of

average opacity. We then have

F = −4

3

acT 3

ρκ

dT

dr
, (4.70)

which is equivalent to Eq.(4.30). It is clear that the Rosseland mean opacity
should be used for κ from the consideration that F =

∫ Fνdν. Here, the
condition that u = aT 4 and an isotropic photon number flux is assumed.

4.4.4 Circulation

When the rotation of a star is taken into account, the hydrostatic equilib-
rium equation can still hold if the potential is an equivlent one involving
contribution from the gravitational force and the centrifugal force. Such a
star will not be spherical, but oblate to some extent. Recall the Von Zeipel’s
theorem that all the thermodynamic quantities are functions of the potential
only. With dT/dr = (dT/dφ)∇φ, the radiative flux can be written as

~F = f(φ)∇φ . (4.71)

On an surface of constant potential, the radiative flux is not constant since
the magnitude of ∇φ is larger in the polar direction than in the direction
of the equatorial plane. If the thermodynamic properties of a mass element
remain static, it should hold that

∇ · ~F = 0 .
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From Eq.(4.71) we have

∇ · ~F =
df

dφ
|∇φ|2 + f(φ)∇2φ . (4.72)

For a rigid rotation with angular velocity ω,

∇2φ = 4πGρ− 2ω2 , (4.73)

which is also a function of φ only. Now that ∇φ is not a constant over an
equipotential surface, the condition ∇ · ~F = 0 cannot be true everywhere on
equipotentials. Some stellar material must be heated and get warmer.

The radiative flux is larger in the polar direction, so the effect of heating
is stronger there. Material may rise in the polar direction and sink in the
equatorial plane. Such a circulation gives rise to the so-called meridional
flow. The reality is much more complicated than what is discussed here.
Predictions of the flow speed and detections of such flows are still contro-
versial, even for the case of the Sun, which is probably the only star whose
meridional flow can be measured (see, e.g. Howard et al. 1991, Zhao et al.
2013).

Exercises

1. Using Eq.(4.15) verify Eq.(4.21).

2. Estimate the scale height at 0.75 R⊙ in the Sun. Compare this with
the choice of a mixing length of 0.1 R⊙ and with the scale height at
the solar surface.

3. If somewhere in a star’s interior, ρ = 1 g/cm3, T = 106 K, and the
radiative opacity is mainly due to the bremsstrahlung κff , which is
about 1023ρT−3.5 in gaussian units (see Section 5.3), estimate the mean
free path of a photon and that of an electron for electron-ion scattering.
For simplicity, assume the composition is a completely ionized hydrogen
gas.
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Chapter 5

Opacities and Line Profiles

To solve the equations governing the structure and evolution of stars, as
discussed in Section 3.1, physics input is needed. That includes equation
of state, nuclear energy generation rate, and opacities. Opacities are block-
out of photon propagation due to interactions between photons and matter.
Photons may be absorbed by atoms or ions, which may undergo a transition
from a lower energy state to a higher one (a bound-bound process, excitation)
or release an ionized electron (a bound-free process, ionization, the photoelec-
tric effect). The former happens for photons of certain specific energies and
therefore results in a line opacity, while the latter makes a continuous one.
Free electrons may also absorb photons when passing through a Coulomb
field, e.g. in the vicinity of an ion or a nucleus. This is the inverse process of
bremsstrahlung. It is a free-free process and also makes a continuous opacity.
Photons may also be scattered by electrons into a direction different from the
original propagation. Scattering therefore serves as a mechanism to reduce
the radiation intensity in a certain direction. It can be treated as a contin-
uous opacity. Given composition, density, and temperature, the magnitude
of the aforementioned opacities depend on occupation in different excitation
states and degree of ionization, whose determination is what Saha’s equation
is about.
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5.1 Saha’s equation

We shall first review the spectroscopic notations of energy levels and the par-
tition function. To denote a certain atomic energy level, a format like n 2s+1ℓj
is often used, where n is the principle quantum number for the energy level,
s is the spin quantum number, ℓ is the orbital quantum number, which runs
from 0 to n−1, and j is the total angular momentum. The statistical weight,
gn, of a certain level denoted by n is gn = 2n2. This is of course treating the
level n as one level, neglecting all the detailed energy-level splitting. In this
sense, the statistical weight can be understood as the number of degenerate
states for a certain energy level.

From Boltzmann’s law, Eq.(2.76), we have

N =
∞
∑

n=1

Nn = A
∞
∑

n=1

gn e
−En/kT ≡ AZ(T ) , (5.1)

where N is the total particle number of the system and Z(T ) is the partition
function:

Z(T ) =
∞
∑

n=1

gn e
−En/kT . (5.2)

The series summation in the partition function apparently does not converge.
In a real physical system, however, there is a suppression of continuum due
to the presence of other particles. The summation is therefore truncated at
a finite term and the ionization energy is replaced by an effective one. The
total number of particles at energy level n can be expressed as

Nn =
N

Z(T )
gn e

−En/kT . (5.3)

Now, to derive Saha’s equation, let’s consider the ratio of particle numbers
at two different states,

Ni+1,m(v)dv

Ni,n

=
g(v)

gi,n

e−(Ei,∞+Ei+1,m+ 1
2
mev2)/kT

e−Ei,n/kT
, (5.4)

where Ni+1,m(v)dv is the number of those (i+1)-times ionized ions which are
at energy level m and whose (i+ 1)th-times ionized electron is at the speed
v. The notation for energies used in the above equation is that Ei,j is the
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energy of the i times ionized ion at energy level j, the ground state is denoted
by j = 1, all ground state energy of different ionization states, Ei,1, is set to
zero, and Ei,∞ is the energy required for the ionization from state (i, 1) to
(i+ 1, 1). Please particularly pay attention to the meaning of notations used

here. The state energies in the numerator and denominator in Eq.(5.4) are
both referenced with respect to Ei,1, which is set to be zero. The statistical
weight g(v) is the statistical weight of the (i+1)-times ionized ion at energy
level m, gi+1,m, times the number of states available to one electron of speed
v, that is,

g(v) = gi+1,m × ge ×
4πp2dp

h3 × ne

, (5.5)

where the electron degeneracy ge will be taken as 2. Defining the ionization
energy of energy level n as χi,n = Ei,∞ −Ei,n, we have

Ni+1,m

Ni,n
=

∫

Ni+1,m(v)dv

Ni,n

=
2gi+1,m

gi,n

∫∞
0 4πp2e−

p2

2mekT dp

neh3
e−Ei+1,m/kT e−χi,n/kT . (5.6)

Noting that the integration over momentum p is equal to (2πmekT )
3/2, we

then have

neNi+1,m

Ni,n
=

2gi+1,m

gi,n

(2πmekT )
3/2

h3
e−Ei+1,m/kT e−χi,n/kT . (5.7)

With the above equation and summing up all the energy level m, we have

Ni+1 =
∞
∑

m=1

Ni+1,m = 2Zi+1
(2πmekT )

3/2

h3
e−χi,n/kT

Ni,n

negi,n
.

Then similarly, we can turn the above equation into

Ni,n =
neNi+1gi,ne

(Ei,∞−Ei,n)/kTh3

2Zi+1(2πmekT )3/2

and by summing up all the energy level n to get

Ni =
∞
∑

n=1

Ni,n =
neNi+1Zih

3e+Ei,∞/kT

2Zi+1(2πmekT )3/2
.
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With this, finally we reach Saha’s equation:

neni+1

ni
=

2Zi+1

Zi

(2πmekT )
3/2

h3
e−χi/kT , (5.8)

where the ionization energy is χi = χi,1 = Ei,∞. In fact, from Eq.(5.7), we
have already got

neni+1,m

ni,n
=

2(gi+1,me
−Ei+1,m/kT )

(gi,ne−Ei,n/kT )

(2πmekT )
3/2

h3
e−χi/kT , (5.9)

from which Eq.(5.8) can also be derived. The degree of ionization of a cer-
tain species in a system is decribed by Saha’s equation, Eq.(5.8). Different
species are coupled to one another through ne, the number density of free
electrons. In addition to the temperature dependence, which is the dominant
one, density also plays a role in a complicated way.

As an example, for an H-He system, the degree of ionization can be defined
as

η1 =
np

nH + np
; η2 =

nHe+

nHe + nHe+ + nα
; η3 =

nα

nHe + nHe+ + nα
. (5.10)

These ionization degrees are linked to Saha’s equation in the following way:

np

nH

=
η1

1− η1
;

nHe+

nHe

=
η2

1− η2 − η3
;

nα

nHe+
=

η3
η2

(5.11)

and

ne = ρ(
X

mH

η1 +
Y

mHe

(η2 + 2η3)) . (5.12)

Then, the ionization degrees η1, η2 and η3 can be solved. The partition
function of free protons and free α particles can be taken as simply 1 and
very often only a few terms are needed to compute partition functions of
other bound-system species to a very high accuracy.

5.2 The reduced opacity

Consider the natural decay from a higher level n to a lower level m. The
associated, emitted photon has an energy of hν = En − Em. We shall now
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discuss transition probabilities of these micro-processes in an equilibrium
state. The Einstein coefficient Anm is the probability per unit time for such
a decay, that is,

Nn(t) = Nn(0)e
−Ant (5.13)

and

An =
m<n
∑

m=1

Anm . (5.14)

Anm is about 108 s−1 for Hα line.
The reverse process of the natural decay happens when adequate photons

are available. Denoting the probability per unit time for the transition from
level m to level n as uνBmn, where uν is the specific energy density of the
photon field at frequency ν, we have in the equilibrium state

NnAnm = NmuνBmn = NmBmn
8π

c3
hν3

ehν/kT − 1
. (5.15)

This is, however, inconsistent with Boltzmann’s law, Eq.(2.76), since Anm

and Bmn, as intrinsic properties of the matter, may depend on ν but not on
T , the temperature. There is no way to make the above equation into the
form of Boltzmann’s law. Something is still missing.

In fact, in the presence of ambient photons, not only absorption transi-
tion will occur, but also emission transition will be induced. Denoting the
probability per unit time of the stimulated (induced) emission as uνBnm, we
now have in the equilibrium state

NnAnm +NnuνBnm = NmuνBmn , (5.16)

from which uν can be expressed as

uν =
Anm/Bnm

Nm

Nn

Bmn

Bnm
− 1

. (5.17)

Since this is in equilibrium, uν =
8π
c3

hν3

ehν/kT−1
and Nm/Nn = gm

gn
ehν/kT , one can

find that the relation between Einstein coefficients is

Anm =
8π

c3
hν3Bnm (5.18)
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and

gnBnm = gmBmn . (5.19)

We note that Einstein coefficients are intrinsic properties of an atom, which
depend on the atomic structure only. Therefore, the above relation, although
obtained by considering the thermal equilibrium case, is universally valid.

In considering radiation transfer, the stimulated emission can be regarded
as ‘negative absorption’. The net absorption becomes

NmuνBmn −NnuνBnm = NmuνBmn(1−
NnBnm

NmBmn

)

= NmuνBmn(1− e−hν/kT ) , (5.20)

in which LTE is assumed so that Nn/Nm follows Boltzmann’s law. It is
therefore very important to note that for the radiative opacities, that is, b-
b, b-f and f-f opacities, a ‘reduced’ one should be used to account for the
induced emission. The reduced opacity, κ∗, is

κ∗ = κ(1− e−hν/kT ) . (5.21)

5.3 Continuous opacities

The attenuation of radiation during its propagation is described by the at-
tenuation coefficient kν in Eq.(4.13), or equivalently by the opacity κν , which
is κν = kν/ρ = nσν/ρ, where ρ is the mass density, n is the number den-
sity of the particles causing the attenuation, and σν is the corresponding
cross section. Since there are several absorption processes, including exci-
tation (the bound-bound absorption), ionization (bound-free), and inverse
bremsstrahlung (free-free), which cause attenuation, the opacity κν should
be understood as the sum of opacities due to these processes. Furthermore,
electron scattering also removes photons from the original propagation direc-
tion, and thus causes attenuation on photons propagating in that direction.
It can also be treated as one kind of absorption and a ‘scattering opacity’ κsc

can be defined. The Rosseland mean opacity is then

1

〈κ〉R
=

1
∫ dBν

dT
dν

∫

1

(κbb + κbf + κff)(1− e−hν/kT ) + κsc

dBν

dT
dν . (5.22)
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5.3.1 Electron scattering

We shall now discuss the ‘scattering opacity’ first. The cross section of pho-
tons scattering off electrons is much larger than that of scattering off ions, so
we will consider electron scattering only. Depending on energetics, the scat-
tering between photons and electrons is customarily divided into three types:
Thomson scattering, Compton scattering, and inverse Compton scattering.
When the photon energy is much smaller than electron’s rest energy, the
energy of the photon before and after the scattering is about the same. This
is the Thomson scattering. When the photon energy is not small, photons
will lose energy in the scattering. This is the Compton scattering. When the
electron is more energetic, photons may gain energy from electrons. This is
the inverse Compton scattering. For optical light, Thomson scattering is a
good approximation.

One may find in many textbooks (e.g. Jackson 1975; Rybicki & Lightman
1979) the derivation of the Thomson scattering cross section. Its differential
form is

dσ

dΩ
=

(

e2

mec2

)2
1

2
(1 + cos2 θ) , (5.23)

where θ is the scattering angle. The dependence on mass indicates that ion
scattering is not important. The total cross section σT is call the Thomson
cross section,which is

σT =
∫ dσ

dΩ
dΩ =

8π

3

(

e2

mec2

)2

= 0.667× 10−24cm2 . (5.24)

Thomson cross section is very often used when estimating the significance of
interaction between photons and electrons. We note that it is equal to 8π

3
r2e ,

where re is the classical radius of the electron.
The scattering opacity is κsc = neσT/ρ. Noting that µe = ρ

nemu
and

µe =
2

1+X
for a completely ionized gas, we have

κsc =
1 +X

2

σT

mu

≈ 0.2 (1 +X) cm2/g . (5.25)
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5.3.2 Free-free opacity

An exact treatment of the free-free opacity requires quantum mechanics
computation. Here we will take a simple classical approach and then later
add modifications from results which are more accurate. We consider the
Bremsstrahlung emission first. The energy emitted by an accelerated elec-
tron is, from Larmor’s formula,

E =
∫ ∞

−∞

dE

dt
dt =

2e2

3c3

∫ ∞

−∞
a2dt , (5.26)

where a is the acceleration. For an electron passing through the vicinity of an
ion of charge Ze with an initial speed v and impact parameter b, considering
the major interaction time period to be b/v and in that time period the
acceleration is about Ze2

b2me
, we have the total emitted energy

E ≈ 2e2

3c3

(

Ze2

b2me

)2
b

v
. (5.27)

The major frequency ν of the emitted photons is such that 2πν b
v
≈ 1. There-

fore we have b ≈ v
2πν

and db = − v
2π

dν
ν2
. For a single encounter, the differential

energy emitted per unit time at ν by electrons at v is the product of the
differential electron number flux at v, the differential area of the encounter
for emission at frequency ν, and the emitted energy, that is,

nevf(v)dv × 2πbdb× E

= nef(v)dv ×
(

8π2

3

Z2e6

m2
ec

3

1

v

)

dν

= cuνdν × dσν(v)× (1− e−hν/kT ) ,

where the last equality comes from the requirement that the emitted energy
should be equal to the absorbed energy when the system is in equilibrium
and dσν(v) is the differential absorption cross section due to electrons at v.
This expression is the photon energy flux multiplied by the cross section with
the factor (1− e−hν/kT ) to take into account the stimulated emission.

Although we consider an equilibrium state here, the cross section is an
intrinsic property of the system. Therefore the validity of the result obtained
does not depend on this assumption. Noting that

uν =
4π

c

2ν2

c2
hν

ehν/kT − 1
,
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we then have the absorption cross section to be

dσν(v) = nef(v)dv ×
(

8π2

3

Z2e6

m2
ec

3

1

v

)

(4π
2ν2

c2
hν)−1ehν/kT

≈ nef(v)dv ×
π

3

Z2e6

hcm2
evν

3
, for hν ≪ kT . (5.28)

The free-free opacity can be obtained by integrating over electron’s speed
v, that is,

ρκff(ν) = niσff = ni

∫

nef(v)dv ×
π

3

Z2e6

hcm2
evν

3
× 4√

3
gff(v, ν) , (5.29)

where correction from quantum mechanics computation is added at the end,
and gff(v, ν) is the Gaunt factor for free-free processes. Then, after the inte-
gration we get

ρκff(ν) =
4

3
(

2π

3mekT
)1/2

Z2e6

hcm2
eν

3
× nineḡff(ν) , (5.30)

where ḡff(ν) is the speed-averaged Gaunt factor, which is basically of order
of unity.

Let’s now consider the Rosseland mean of the free-free opacity. Since the
dependence on ν in ḡff(ν) is not strong, we adopt the approximation to treat
it separately from the ν−3 dependence in κff when performing the average
over ν. Keeping relevant factors, we have the Rosseland mean of κff to be

〈κff〉R ∝
∫ dB

dT
dν

∫ ν3

(1−e−hν/kT )
dB
dT

dν
× Z2

T 1/2

nine

ρ
〈ḡff〉ν . (5.31)

From
∫ dB

dT
dν = 4σ

π
T 3 and ne =

ρ
µemu

, it follows that

〈κff〉R ∝ Z2ni

µe

T−3.5 . (5.32)

The Z2ni factor should be replaced by
∑

Z Z2nZ to include the case of mul-
tiple species. Since

∑

Z

Z2nZ =
ρ

mu
(X + Y + z〈Z

2

A
〉)

≈ ρ

mu
(1− z) , (5.33)
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in which the metal mass fraction is denoted by z to avoid the confusion with
the atomic number Z and the last approximation is valid for z ≪ 1, and
µe ≈ 2

1+X
for complete ionization, we have

〈κff〉R ∝ (1 +X)(1− z)ρT−3.5 . (5.34)

The Rosseland mean of the free-free opacity can therefore be expressed
as

〈κff〉R = 3.68× 1022〈ḡff〉ν(1 +X)(1− z)ρT−3.5 cm2/g , (5.35)

where 〈ḡff〉ν only weakly depends on temperature and all the quantities are
in gaussian units. An opacity with density and temperature dependence of
ρT−3.5 is called the Kramer opacity.

5.3.3 Bound-free opacity

The bound-free opacity is far more complicated than the free-free one. It
involves ionization of different species and from different states. For more
detailed treatment, readers are referred to Clayton (1983, p.205), Chiu (1968,
p.230) and Cox & Giuli (1968, p.380). An approximate expression of the
Rosseland mean bound-free opacity, valid for a certain range of density and
temperature, is

〈κbf〉R ≈ 4.34× 1025
〈gbf〉ν

t
(1 +X)zρT−3.5 cm2/g , (5.36)

where 〈gbf〉ν is the frequency-averaged Gaunt for the bound-free process,
which is of order of unity, and t is the so-called ‘guillotine factor’, which is
comparable or larger than one.

This opacity, just like the Rosseland mean free-free opacity, also has the
form of the Kramer opacity. Its temperature dependence can be understood
by considering that the ionization cross section for a hydrogenic electron at
a state n is (Clayton 1983, Eq.(3-151))

σbf =
64π4mee

10Z4

3
√
3ch6n5

gbf(ν, n, ℓ, Z)

ν3
. (5.37)

The ν−3 factor will lead to a T−3 dependence when taking the Rosseland
mean. The opacity in fact depends on not only the cross section but also the
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Core Surface
ρ 102 10−7

T 107 103.7

X 0.5 0.75
κsc 0.3 0.35
κff ∼ 2 ∼ 600
κbf ∼ 50 ∼ 15000
κc ∼ 1000 ∼ 1010

Table 5.1: Opacities in the core and near the surface of the sun. All quantities
are in gaussian units. Note that the larger the less important for κc, which
apparently does not play a significant role in a star like the sun.

number of available atoms/ions with bound electrons. A certain tempera-
ture dependence will come in when the ionization degree is considered. It is
clear that the number of bound electrons increases with decreasing tempera-
ture. Furthermore, although the individual ionization cross section does not
depend on density either, the number of bound electrons actually increases
with increasing density, as can be seen from Saha’s equation as long as the
density is not too high. It turns out that in a limited parameter space the
bound-free opacity also behaves like Kramer’s opacity.

Taking the sun as an example, we have some rough estimate listed in
Table 5.1. One can see that in the core of the sun, radiative opacities are all
comparable. Near the surface, κbf and κff dominate. Conduction is negligi-
ble in both cases. When we move further out from the photosphere of the
sun, since density drops quickly, κsc will become more and more dominant.
Readers are referred to Figure 3-15 in Clayton (1983, p.223) for the relative
importance of these opacities at different density and temperature.
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5.4 Bound-bound opacity and line broaden-

ing

5.4.1 Bound-bound opacity and natural broadening

Bound-bound opacity is determined by, besides the availability of atoms/ions
with bound electrons, the absorption cross section of an atom to absorb a pho-
ton of a specific energy which is the energy difference between two electronic
states of the atom. It in turn depends on the transition probability of that
atom between the two specific states. These are complicated, because there
are many, if not countless, possible transitions, but these absorption cross
sections can be computed in Quantum Mechanics with the time-dependent
perturbation theory, which we won’t elaborate further and readers should
consult quantum mechanics textbooks or Clayton (1983) and Rose (1998)
for more details. We will only try to illustrate some major features here.
The importance of bound-bound opacity is not easy to assess. It depends
on composition and local properties like density and temperature. Of course
neutral or partially ionized species are needed for this opacity to play some
role. A figure to illustrate relative importance among different opacities in
energy transportation can be found in Figure 3-15 in Clayton (1983).

Bound-bound opacity is a line opacity, in contrast to other continuum
ones. It causes spectral absorption lines, superposed on a continuum. These
lines are not sharply at a certain frequency, but are broadened. To under-
stand line broadening, we start with the transition cross section. The ab-
sorption cross section for transition between states k and s can be expressed
as

σks(ω) =
2π2e2

mec
fks

(

Γ/2π

(ω − ωks)2 + (Γ/2)2

)

, (5.38)

where h̄ωks is the energy gap between states k and s, Γ is the FWHM of
the profile function, and fks is the so-called oscillator strength of this
transition, which depends on ωks and the wave functions of states k and
s. It varies a lot for different transitions, but is roughly to the order of
unity for some major (often seen) ones. For example, the Lyα line, which
corresponds to the transition between 2p and 1s states of a hydrogen atom,
has an oscillator strength equal to 0.42. The Lorentzian profile comes from
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the fact that the time-dependent wave function of state k can be expressed
as

Ψk(t) = uke
− t

2τk eiωkt (t > 0) , (5.39)

where uk and ωk are the time-independent eigen function and the energy level
of state k, respectively, and τk is the mean radiative life time of state k, which
can be computed with transition probabilities of all possible transitions. Note
that the reason to have a factor of 2 in front of τk is that Ψk(t) is the wave
function, rather than the probability, which is to be evaluated as Ψ∗

kΨk.
Taking the 2p state of a hydrogen atom as an example again, its life time is
found to be 0.16 × 10−8 sec. The probability that this state has an energy
E = h̄ω is given by its Fourier transform Ψ̃k(ω). The Fourier power of such
a (damped oscillation) wave function is exactly a Lorentzian profile with
Γk =

1
τk

(Rose 1998, page 128; Rybicki & Lightman 1979, page 97). Since in

general there is uncertainty in the energy at both the lower (k) and upper (s)
levels, the width Γ in the cross section σ(ω), Eq.(5.38), is actually the sum of
that at those two levels, that is, Γ = Γk+Γs (Rose 1998, page 138-139). This
direct summation may be understood from the fact that, when calculating
the transition probability, a certain product of wave functions of the two
states is considered. The exponential terms in the wave function lead to the
summation of the individual width and also to the difference of the energies
at the two energy levels.

Different notations and formalisms may be used by different authors for
this cross section. To make clear the preference used here, we note the
following normalization condition:

∫ ∞

−∞

Γ/2π

(ω − ω0)2 + (Γ/2)2
dω =

1

π
tan−1

(

2(ω − ω0)

Γ

)

|∞−∞ = 1 . (5.40)

Since this line width is due to the natural lifetime of energy states, it is called
the natural broadening of spectral lines.

5.4.2 Doppler and collisional broadening

Atoms are in random thermal motion. Photons emitted or absorbed by these
moving atoms therefore have an energy different from that in the rest frame of
an atom, because of the Doppler effect. So, a spectral line will be broadened,
beside its natural broadening. This is called the Doppler broadening.
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The change in frequency associated with an atom of speed vz (taking the
z-axis as the line of sight and the observer is in the +z direction) is

△ω = ω − ω0 = ω0
vz
c

, (5.41)

where ω0 is the rest-frame frequency. The number of atoms distributed in

the speed range from vz to vz +dvz is proportional to exp(−mav2z
2kT

)dvz, where
ma is the mass of the atom. Replacing vz with ω (Eq.(5.41)), we will have
the profile function to be

φ(ω) =
1

△ωD

√
π
e
−(

ω−ω0
△ωD

)2
, (5.42)

where △ωD is the Doppler width, defined as

△ωD =
ω0

c

√

2kT

ma
. (5.43)

We note that the profile function φ is so defined that
∫

φ(ω)dω = 1. Doppler
broadening leads to a Gaussian line profile.

Natural broadening always exists. It appears together with the Doppler
broadening. Furthermore, collisions may make the lifetime of an energy
state shorter if the collisional frequency is high, which is often the case. We
therefore have a Lorentzian line profile due to the collisional broadening,
which, together with the natural broadening, has a width Γ as

Γ = Γk + Γs + 2νc , (5.44)

where Γk+Γs is the FWHM due to natural broadening and νc is the collisional
frequency (Rybicki & Lightman 1979, page 290). Recalling that Γk = 1

τk
, we

can see that νc, which leads to a mean life time 1
νc

for each energy state, is
the width of the corresponding Lorentzian profile due to collision life time;
there is an additional factor like e−

νc
2
t in Eq. (5.39). For each state, the

uncertainty in energy due to finite life time is therefore characterized by the
width Γk + νc. When considering the transition between states k and s, we
reach the above Γ. Note that νc here is not the angular frequency ωc, but Γ
is still the FWHM in angular frequency.

Now we should consider the combined effect of such Lorentzian and Gaus-
sian profiles, because all these phenomena, natural decay, thermal motion,

94



and collision, are present at the same time. We may proceed by considering
the profile as an average of the Lorentzian profile over the speed states of the
atom, that is, taking ω0 to be ω0 + ω0

vz
c
,

φ(ω) =
Γ

2π

∫ ∞

−∞

( ma

2πkT
)
1
2 exp(−mav2z

2kT
)

(ω − ω0 − ω0
vz
c
)2 + (Γ

2
)2
dvz . (5.45)

By employing the Voigt function H(a, u),

H(a, u) =
a

π

∫ ∞

−∞

exp(−y2)dy

a2 + (u− y)2
, (5.46)

we may have φ(ω) in a more compact form:

φ(ω) =
1

△ωD

√
π
H(a, u) (5.47)

with

a =
Γ

2△ωD
(5.48)

and

u =
ω − ω0

△ωD
. (5.49)

If we consider u ≪ 1, that is, ω very close to the central frequency ω0,
the integrant in the Voigt function, Eq.(5.46), is large when y ≈ u if a ≪ 1.
We then have

∫ ∞

−∞

exp(−y2)dy

a2 + (u− y)2
≈ e−u2

∫ ∞

−∞

dx

a2 + x2
=

π

a
e−u2

, (5.50)

which means close to the central frequency the profile is approximately a
Gaussian; the Doppler broadening dominates. The above result does not
apply if we do not have a ≪ 1. In fact if a ≫ 1, φ is approximately a
constant close to the central frequency. On the other hand, if we consider
u ≫ 1, we have

∫ ∞

−∞

exp(−y2)dy

a2 + (u− y)2
≈ 1

a2 + u2

∫ ∞

−∞
e−y2dy =

√
π

a2 + u2
, (5.51)

which means at the wing of the line the profile is more like a Lorentzian.
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Exercises

1. For a pure hydrogen gas at a certain temperature, how does the ioniza-
tion degree change with the electron number density? With the mass
density? Neglect the density dependence of the partition function and
of the ionization energy.

2. Compare the f-f and b-f opacities for population I stars (Z = 0.02) and
population II stars (Z = 0.001) using Kramer’s approximation with
〈ḡff〉 = 〈gbf〉 = 1 and the guillotine factor t equal to 10.
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Chapter 6

Nuclear Energy Sources

Stars are powered by nuclear fusion reactions. For the case of the Sun, it is
easy to argue against the gravitational and chemical energy as the origin of
its luminosity. Nuclear energy is not only a viable option, but also a rich and
powerful resort, which leads to the construction of consistent stellar models,
to the understanding of stellar evolution, and to the theory of nucleosynthesis.
Observations of supernova explosions, helioseismology, and solar neutrinos all
provide support to this concept.

6.1 The ignition of thermonuclear reactions

6.1.1 The Coulomb barrier

For nuclei to fuse, the Coulomb barrier must be overcome. Typically, at
a distance of one fermi (10−13 cm), the Coulomb energy is EC ∼ e2/r ∼ 1
MeV. In the environment near the stellar center, temperature may be of order
of 107 K or 108 K, which corresponds to a typical thermal energy of several
thousands of electron volt (keV) only. Therefore, the tunneling effect plays
an important role in triggering efficient reactions. The barrier height is pro-
portional to the product of electrical charges of the two paticipating nuclei.
It is obvious that lighter species should fuse first.
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6.1.2 The minimum stellar mass for ignition

We shall now consider a very much simplified picture to estimate the mini-
mum mass required for a star to ignite nuclear fusion. We first try to find a
relation between the stellar mass and its central temperature. Assuming a
star with a uniform mass distribution, the hydrostatic equilibrium equation
reads

dP

dr
= −ρ

GMr

r2
= −4π

3
Gρ2r ,

and the pressure is

P (r) =
2π

3
Gρ2(R2 − r2) ,

where R is the stellar radius. Further assuming an ideal-gas equation of
state, we then have the temperature at the stellar center, Tc, as

Tc =
GmuµM

2kR
, (6.1)

where M is the total stellar mass. In this equation, to achieve a certain
central temperature for nuclear burning to be effective, a certain stellar mass
is required. It depends, however, still on the stellar radius, implying that
density plays a role. We need to find a way to eliminate that dependence.

At the stellar center, if degeneracy pressure dominates, temperature is
irrelevant to the structure stability against gravity. In case the temperature
and density are high enough for nuclear fusion to proceed in such a degen-
erate environment, explosive nuclear burning will happen, since degeneracy
pressure maintains the structure and temperature can go higher and higher.
Examples are the so-called helium flash and thermal pulses (i.e. helium shell
flashes). On the other hand, if the temperature and density are not high
enough, but electron degeneracy can already hold the structure (i.e. degen-
eracy still dominates), the temperature and density will not increase further.
No nuclear reaction will happen. Let’s therefore set the condition for stable
nuclear burning to happen at the stellar center to be that the electron de-
generacy does not dominate there when the desired temperature is reached,
that is,

kTc > εF,e (6.2)

=
h̄2

2me
(
3π2

µemu
)
2
3 (

M
4π
3
R3

)
2
3 .
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Table 6.1: Estimated minimum stellar mass for igniting nuclear burning
based on simplified arguments discussed in the text. The central temperature
Tc given here is the typical temperature at which corresponding reactions are
efficient. For the case of hydrogen fuel, X = 0.75 and Y = 0.25 are assumed.

fuel Tc µe µ M/M⊙
H 107 K 1.14 0.6 0.14
He 108 K 2 1.3 0.18
C 6× 108 K 2 1.7 0.48

This is of course not a strict, rigorous condition but serves as a guidance only.
We are interested in the constraint on mass for a given central temperature
Tc, which under the simplification of a constant density is proportional to
M/R. Eliminating R in the above equation with Eq.(6.1), we finally reach
the condition that

M >
3.9× 10−7

µ
1/2
e µ3/2

(Tc/K)
3
4 M⊙ . (6.3)

For a given Tc, there is a mass lower limit for degeneracy not to dominate
at the stellar center. One can realize this point by considering ρ ∝ M/R3 ∝
T 3
c /M

2, that is, to reach a certain Tc, a larger mass requires only a smaller
density so that degeneracy does not dominate. In Table 6.1 typical values are
listed according to Eq.(6.3). These estimates are understandably rough and
different from those obtained with detailed modeling. For example, many
models indicate that, to ignite hydrogen burning, the minimum stellar mass
is about 0.08 M⊙. Nonetheless, the above discussion indicates that, if the
stellar mass is small, degeneracy may be reached first before nuclear reaction
can take place.
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6.2 Nuclear energy generation rates

6.2.1 Q-value of a nuclear reaction

The energy released by a nuclear reaction is denoted as the Q-value of that
reaction, which is the rest-energy change in the reaction. For a reaction like

X + a → Y + b , (6.4)

the Q-value is defined as

Q ≡ △E = (MX +Ma −MY −Mb)c
2 . (6.5)

Since charge is conserved in the reaction, we may replace the nucleus mass
with the atomic mass. Small errors due to difference in electron binding
energy are introduced.

An often used expression for the Q value is, with the definition of the
atomic mass excess △M of a certain element as

△M = M − Amu , (6.6)

where M is the atomic mass and A is the atomic mass number,

Q = (△MX +△Ma −△MY −△Mb)c
2 . (6.7)

The reason to use this definition is that the atomic mass is usually what is
measured in laboratories. Tables of atomic mass excess can be found in many
textbooks (e.g. Clayton (1983), Table 4-1). Some most-often-referred cases
are listed here in Table 6.2. The atomic mass excess of C12 is by definition
zero. The released energy may increase the thermal energy of the reaction
products, be carried by photons (sometimes via the annihilation of electron-
positron pairs), or escape as neutrinos.

6.2.2 Energy generation rate and lifetime

The nuclear energy generation rate per unit mass in the stellar interior, ε, as
appearing in Eq.(3.4), can be written as

ε =
QraX
ρ

, (6.8)
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when referred to a process involving the fusion of a and X , where raX is the
rate per unit volume for this process. It can be expressed as

raX =
nanX

1 + δaX

∫

vσ(v)φ(v)dv (6.9)

=
nanX

1 + δaX
〈vσ〉 , (6.10)

in which δaX is the Kronecker symbol, v is the relative velocity, and φ(v) is
the probability distribution. When the distributions of the two species a and
X are both Maxwellian, it can be shown that φ(v) is also Maxwellian:

φ(v)dv = 4π
(

µ

2πkT

)
3
2

exp

(

− µv2

2kT

)

v2dv , (6.11)

where µ is the reduced mass, µ = mamX

ma+mX
. The nuclear energy generation

rate per unit mass, ε, can therefore be computed.
The lifetime of species a against the reaction between a and X , τaX , can

be defined as
(

∂na

∂t

)

X

= − na

τaX
= −raX(1 + δaX) . (6.12)

The factor (1 + δaX) appears in the above equation since if a and X are the
same the number change rate is twice of the reaction rate. It is obvious that

τaX =
1

nX〈vσ〉
, (6.13)

and when there are other processes, for example, involving species Y , we
have

1

τa
=

1

τaX
+

1

τaY
. (6.14)

These time scales are closely related to the stellar evolution time scales.
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6.2.3 The most effective energy

For given species participating the nuclear reaction and given temperature
of the system, reactions happen most effectively among particles of a certain
energy, which is determined mainly by the factors of the tunneling effect to
overcome the Coulomb barrier in the reaction cross section and the ther-
mal distribution to ensure the presence of enough particles. To find the
energy dependence of the cross section, we start with the penetration fac-
tor of the tunneling effect (the Gamow factor), which is proportional to
exp(−2πZ1Z2e2

h̄v
) from quantum mechanics calculations. It may be understood

by considering the ratio of the Coulomb energy to the kinetic energy:

EC

EK
=

Z1Z2e
2/r0

µv2/2
=

2Z1Z2e
2

h̄v
, (6.15)

where r0 ≈ h̄/p = h̄/µv is adopted. It is conventional to write the Gamow
factor in terms of the kinetic energy in the center-of-mass frame E = 1

2
µv2

as exp(−b/
√
E), with

b ≡ 2παZ1Z2

√

µc2

2
, (6.16)

where α = e2

h̄c
is the fine structure constant.

Considering another ‘area’ factor πλ2 ∝ (h/p)2 ∝ 1/E, the reaction cross
section is usually written as

σ(E) =
S(E)

E
exp(− b√

E
) . (6.17)

The function S(E) is then a slowly varying function, which can be determined
by experiments.

Now, for the Maxwellian velocity distribution, with E ∝ v2, we have

φ(E)dE = φ(v)dv =
2√
πkT

√

E

kT
exp(− E

kT
) dE . (6.18)

The average reaction rate per pair of particles is then

〈vσ〉 =
∫

v(E)σ(E)φ(E) dE

102



=
∫

√

2E

µ

S(E)

E
exp(− b√

E
)

2√
πkT

√

E

kT
exp(− E

kT
) dE

=

√

8

πµ

1

(kT )3/2

∫

S(E) exp(− E

kT
− b√

E
) dE . (6.19)

In the above integral, the exponent is composed of contributions from the
thermal distribution and the tunneling effect. The most effective energy
is that high enough to have significant tunneling and low enough to have
more particles. The maximum of that exponetial occurs at the most effective
energy E0, which is

E0 = (
bkT

2
)
2
3 . (6.20)

6.2.4 Approximate expressions

Since S(E) is a slowly varying function and the integrant in Eq.(6.19) is only
significant near the most effective energy E0, an approximate expression of
Eq.(6.19) can be obtained with the replacement of S(E) by S(E0) and the
exponential by a gaussian form. We approximate the exponential as

exp(− E

kT
− b√

E
) ≈ exp(−E0

kT
− b√

E0

) exp(−(
E − E0

△ )2)

= exp(−3E0

kT
) exp(−(

E −E0

△ )2) , (6.21)

where △ = 2
√

E0kT/3 is so set to match the second derivatives. The rate
can be approximated as

〈vσ〉 ≈
√

8

πµ

S(E0)

(kT )3/2
exp(−3E0

kT
)
∫ ∞

−∞
exp(−(

E −E0

△ )2) dE

=

√

8

πµ

S(E0)

(kT )3/2
△
√
π exp(−3E0

kT
) . (6.22)

The error introduced due to the lower-limit change in the integration is neg-
ligible. We may now write down the rate in terms of b and temperature.
With the definition that

η ≡ 3E0

kT
= 3(

b

2
)
2
3 (kT )−

1
3 , (6.23)
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we have

〈vσ〉 ≈ 8
√
2

9
√
3

S(E0)√
µb

η2e−η . (6.24)

This is a quite clean expression. For a given reaction (b is then given), with
the knowledge of S, it is a simple function of temperature. However, at least
three more corrections should be called for attention. First, one more term in
approximating S(E) may be included, that is, S(E) ≈ S(E0) +

dS
dE

(E −E0),
instead of S(E0) only. Second, the replacement of the exponential by a
gaussian may be better treated. Third, electron screening, which we shall
discuss later, may play some role.

The reaction rate is very sensitive to temperature. We may explore its
dependence on the variation of temperature around a typical temperature at
which the reaction efficiently takes place in the following way. At a temper-
ature T close to the typical temperature T∗, we have

T

T∗
= 1 + ξ , ξ ≪ 1 (6.25)

and

η

η∗
= (

T∗

T
)
1
3 ≈ 1− ξ

3
. (6.26)

The rate can be expanded as

r

r∗
=

S(E0(T ))

S(E0(T∗))
(
η

η∗
)2e−η+η∗

≈ (
η

η∗
)2e−η∗(

η
η∗

−1)

≈ (1− 2

3
ξ)(1 + η∗

ξ

3
)

≈ 1 +
(η∗ − 2)

3
ξ . (6.27)

Considering that

(
T

T∗
)n ≈ 1 + nξ ,
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we may have

r

r∗
≈ (

T

T∗
)n , (6.28)

with

n ≡ η∗ − 2

3
. (6.29)

Now the energy generation rate can be expressed as a power law in temper-
ature T with power index n:

ε =
Qr

ρ
=

Q

ρ

nanX

1 + δaX
〈vσ〉

≈ Q

ρ2
nanX

1 + δaX

〈vσ〉∗
T n
∗

ρT n . (6.30)

For the reaction p+p → D+e++νe inside the Sun, T∗ ≈ 107 K, the index n
is about 4.5. Other reactions may have even higher indices.

We did not show what is the so-called ‘typical’ temperature for a certain
reaction. Those in Table 6.1 come from most model computations. Although
local density also matters, from the discussion in the previous paragraph, we
can see that the reaction rate is very sensitive to temperature and therefore
those typical temperatures are pretty much universal to a large extent in
stellar interiors.

6.3 Electron screening

In a plasma, although the Coulomb energy between particles is by definition
much smaller than the typical kinetic energy, charges will still tend to collec-
tively concentrate toward charges of different signs. It is a manifestation of
the collective effect of the long-range interaction. The result is an effective
shielding surrounding a charge and an effective binding of a charge with the
whole plasma. Such a shielding can reduce the Coulomb barrier and enhance
the rate of nuclear reaction inside stars.
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6.3.1 The Debye-Hückel model

Consider a particle with charge Zie. The number density of particles with
charge Ze at a distance r from the Zi particle can be written as

nZ(r) = n̄Z e−
ZeVi(r)

kT , (6.31)

where Vi(r) is the potential around particle Zi due to all charged particles
in the plasma, and n̄Z is the average number density of particle Z, which
should be approximately found when r is very large. The Poisson equation
reads

∇2Vi = −4πρQ = −4πe
∑

Z

ZnZ (6.32)

with Ze = −1 for electrons. Under the condition of

ZeVi(r)

kT
≪ 1 , (6.33)

we have

∇2Vi(r) ≈ −4πe
∑

Z

Zn̄Z(1−
ZeVi(r)

kT
)

=
4πe2

kT
(
∑

Z

Z2n̄Z)Vi(r)

= κ2Vi(r) , (6.34)

which defines the notation κ. The solution of the above equation can be
easily found to be

Vi(r) =
Zie

r
e−κr

=
Zie

r
e−r/RD , (6.35)

which satisfies Vi → Zie
r

at r → 0. The Debye-Hückel radius RD is defined
as

RD ≡ 1

κ
=

(

4πe2

kT

∑

Z

Z2n̄Z

)− 1
2

. (6.36)
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The charge of particle Zi is shielded by other charges in the plasma and the
potential surrounding Zi drops off exponentially. Introducing the parameter

ζ ≡
∑

Z>0

(Z2 + Z)
XZ

AZ
(6.37)

the Debye-Hückel radius turns into

RD =

√

√

√

√

kT

4πe2 ρ
mu

ζ
. (6.38)

The potential at r ≪ RD is

Vi ≈
Zie

r
− Zie

RD
. (6.39)

The effect of shielding is that as if there is equal amount of charge with
opposite sign surrounding a charge at the Debye-Hückel radius. Near the
charge the potential is modified by −Q/RD, where Q = Zie is the charge of
the particle. This is the potential experienced by charged particles of charge
Q due to the contribution from the whole plasma.

A free electron in a plasma, therefore, is actually moving at a potential of
+e/RD, instead of zero potential as usually set. This results in a continuum
depression of energy −e2/RD for free electrons. Furthermore, the potential
of an electron bound to a charge Ze is shifted by −(Z − 1)e/RD (the charge
of the whole bound system is (Z − 1)e, and note that the Z here is not
the atomic number, but the charge number of the ion in question), and the
corresponding energy level is shifted by (Z−1)e2/RD. The ionization energy
is then modified to be an effective ionization energy E ′:

E ′ = E + (− e2

RD

)− (
(Z − 1)e2

RD

) = E − Ze2

RD

, (6.40)

where E is the original ionization energy. Besides, the combined effect of such
a continuum depression and energy level up-shift, in addition to resulting in
an effective ionization energy, also destroys higher energy states of an atom
(or an ion). The problem of infinite summation in partition functions in the
Saha equation therefore no longer exists.
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Since we are considering interactions between particles, the gas is not as-
sumed to be perfectly ideal. The deviation from an ideal gas can be expressed
as

U =
3

2
NkT + UC (6.41)

and

P =
N

V
kT + PC , (6.42)

where UC and PC are those due to the Coulomb interaction. It can be shown
that PC = 1

3
UC

V
(e.g. Clayton (1983), page 143, which is somewhat lengthy)

and therefore

PC =
1

3
× 1

2

∑

Z

n̄ZZe
(−Ze)

RD

= −1

6

e2

RD

∑

Z

Z2n̄Z . (6.43)

The pressure of such a gas is modified (the magnitude is actually reduced)
by this amount, which is a very small correction, otherwise the Debye-Hückel
model will not be valid. This is the case of a nearly ideal gas. For systems
with stronger internal interaction, other methods must be invoked.

6.3.2 Weak screening

Recall that the nuclear reaction cross section is energy dependent. For the
nuclear reaction rate per pair with electron screening, we may consider an
effective (kinetic-equivalent) energy Es = E − Us in computing the cross
section, where Us is the potential energy of the incident particle due to the
shielding potential in the vicinity of the target particle. We note that Us =
−Z1Z2e

2/RD < 0, where Z1e and Z2e are the charge of the two interacting
nuclei. Now we have, with Eq.(6.18),

〈σv〉s =
∫

σ(Es)v(E)φ(E) dE

∝
∫

σ(Es)Ee−
E
kT dE

=
∫ ∞

−Us

σ(Es)(Es + Us)e
−Es+Us

kT dEs

≈ e−
Us
kT

∫ ∞

0
σ(Es)Ese

−Es
kT dEs , (6.44)

108



Table 6.2: Some values of the atomic mass excess. (Clayton 1983, page 289)

Z element A △Mc2 (MeV)
0 n 1 8.07144
1 H 1 7.28899
1 D 2 13.13591
2 He 3 14.93134
2 He 4 2.42475
4 Be 8 4.94420
6 C 12 0
8 O 16 -4.73655
10 Ne 20 -7.04150
12 Mg 24 -13.93330

where in the last approximation we have considered σ ≈ 0 for Es ≤ −Us and
also −Us ≪ E0, the most effective energy, so that the Us term in the inte-
grant will make only a very small contribution and therefore can be dropped.
Finally we have

〈σv〉s ≈ e−
Us
kT 〈σv〉 ≈ (1− Us

kT
)〈σv〉 , (6.45)

where the shielding exponent is

− Us

kT
=

Z1Z2e
2

RDkT
= 0.188Z1Z2ρ

1
2 ζ

1
2T

− 3
2

6 . (6.46)

This is of course only valid when it is much less than unity. For Z1 = Z2 = 1,
ρ = 150 g/cm3, T6 = 15, X = 0.75, and Y = 0.25, the above expression gives
a number of about 0.06. The nuclear reaction rate is increased by electron
screening.

6.4 Major nuclear reactions in stars

6.4.1 The proton-proton chain and the CNO cycle

In main sequence stars, the major nuclear reaction is the so-called ‘hydrogen
burning’, that is, four protons making an α particle. It is accomplished

109



Table 6.3: The proton-proton chain (Clayton 1983, page 380; Bahcall 1989,
page 67). Q is the total Q value of the reaction, which includes 〈Qν〉, the
average Q carried by neutrinos.

reaction Q (MeV) 〈Qν〉 (MeV)
(pp-I chain)
p + p → D + e+ + ν 1.442 0.263
D + p → He3 + γ 5.494
He3 + He3 → He4 + 2 p 12.859
(pp-II chain)
He3 + He4 → Be7 + γ 1.586
Be7 + e− → Li7 + ν 0.862 0.862
Li7 + p → 2 He4 17.347
(pp-III chain)
Be7 + p → B8 + γ 0.135
B8 → Be8 + e+ + ν 17.979 6.710
Be8 → 2 He4 0.095
(pep) p + e− + p → D + ν 1.442 1.442
(hep) He3 + p → He4 + e+ + ν 19.795 9.625

through various channels of reactions. In the proton-proton chain, as listed
in Table 6.3, most α particles are produced through pp-I chain (about 85%)
for the case of the Sun, and about 15% via pp-II chain. The reaction rates
depend on the cross sections, compositions, density and temperature. The
proton lifetime regarding the first reaction in the proton-proton chain is about
1010 years for the Sun. This is the key time scale which affects the evolution
of the Sun.

The CNO cycle, listed in Table 6.4, also plays an important role in con-
verting four protons into an α particle. For the Sun, the pp chian makes
about 90% contribution and the CNO cycle about 10%. The CNO cycle is
more important for upper main sequence stars because of the higher Coulomb
barrier.
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Figure 6.1: The proton-proton chain and its branching ratios for the current
sun.

6.4.2 Helium burning

When the hydrogen fuel at the center of a star is exhausted, a helium core
forms, which contracts gravitationally. This is the red giant stage. When the
temperature at the center increases to about 108 K, the helium burning via
the so-called triple-α process to make heavier elements becomes possible.
Roughly speaking, only stars with a main-sequence mass larger than about
0.4 M⊙ can reach this point.

The triple-α process is

He4 + He4 → Be8

followed almost immediately by

Be8 + He4 → C12 + γ.
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Table 6.4: The CNO cycle (Clayton 1983, page 392; Bahcall 1989, page 72)

reaction Q (MeV) 〈Qν〉 (MeV)
C12 + p → N13 + γ 1.944
N13 → C13 + e+ + ν 2.221 0.7067
C13 + p → N14 + γ 7.550
N14 + p → O15 + γ 7.293
O15 → N15 + e+ + ν 2.760 0.9965
N15 + p → C12 + He4 4.965
or (∼ 4× 10−4)
N15 + p → O16 + γ 12.126
O16 + p → F17 + γ 0.601
F17 → O17 + e+ + ν 2.762 0.9994
O17 + p → N14 + He4 1.193

Since Be8 is unstable (lifetime about 2.6 × 10−16 sec against disintegration
into two α particles; the atomic mass excess of Be8 is 4.94420 MeV), a third
α particle must be immediately available to ensure the formation of C12. The
total energy output of the triple-α process is 7.274 MeV.

In this stage, the reaction of α-capture

C12 + He4 → O16 + γ,

with Q = 7.161 MeV, also occurs. Depending on the availability of He4 and
the high temperature to overcome higher Coulomb barrier, reactions like

O16 + He4 → Ne20 + γ (Q = 4.73 MeV)

and

Ne20 + He4 → Mg24 + γ (Q = 9.31 MeV)

may also occur.

6.4.3 Carbon/Oxygen burning and beyond

After the exhaustion of helium at the stellar center, a C/O core forms. The
core again contracts. If the stellar mass is large enough, say, above 4 M⊙,

112



carbon burning may occur when the temperature is about 6× 108 K. There
are multiple channels for carbon burning with different rates:

C12+C12 → Mg24 + γ Q = 13.930 MeV
→ Na23+ p Q = 2.238 MeV
→ Ne20 + α Q = 4.616 MeV
→ Mg23+ n Q = −2.605 MeV
→ O16 + 2α Q = −0.114 MeV.

The production of Mg23 requires too much energy and therefore is of a neg-
ligible rate. In the mean time, α-capture by C12, O16, Ne20, and Mg24 may
proceed efficiently. By the end of this carbon burning stage, the initial C12

nuclei have been converted primarily to O16, Ne20, Na23, Mg24, and Si28.
For stars of a main-sequence mass larger than about 8 M⊙, the core tem-

perature can reach 109 K after the continued contraction of the oxygen core.
At this high temperature, photo-disintegration becomes very important.
A major one is

Ne20 + γ → O16 + α.

With α-capture by Ne20,

Ne20 + α → Mg24 + γ,

the net effect is to convert two Ne20 into O16 and Mg24, plus a net release of
4.583 MeV in γ-rays. This is sometimes referred to as the neon burning.

At the same time, oxygen burning happens efficiently. The energetically
accessible channels are

O16+O16 → S32 + γ Q = 16.539 MeV
→ P31+ p Q = 7.676 MeV
→ S31+ n Q = 1.459 MeV
→ Si28 + α Q = 9.593 MeV
→ Mg24 + 2α Q = −0.393 MeV.

The major product is Si28.
At the end of oxygen burning, the stellar core continues to heat up. Subse-

quent reactions are basically re-arrangement by capturing a certain particle
ejected from a nucleus due to photo-disintegration. The effect of such re-
arrangement is to convert nuclear particles to their most stable forms, which
are close to Fe56, which has the maximum binding energy per nucleon. The
final stage will be an iron core and eventually a supernova event during which
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many heavy elements are synthesized. There are more details in determining
the mass ranges for different nuclear burning stages to happen. The possible
existence of neutrino magnetic moments also matters (See, e.g., Heger et al.
2009).

Exercises

1. Show that Eq.(6.11) is indeed the case.

2. What are the Q and 〈Qν〉 values for a complete pp-I, pp-II, and pp-III
chain respectively?

3. Verify Eq.(6.38).

4. Suppose the thermal energy is much larger than the typical Coulomb
energy between particles. Demonstrate that RD ≫ r, where r is the
typical inter-particle distance.
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