States of Convex Sets

Bart Jacobs bart@cs.ru.nl

Bas Westerbaan bwesterb@cs.ru.nl Bram Westerbaan awesterb@cs.ru.nl

Radboud University Nijmegen

April 14, 2015

States of Convex Sets

Bart Jacobs bart@cs.ru.nl

Bas Westerbaan bwesterb@cs.ru.nl

Bram Westerbaan awesterb@cs.ru.nl

Radboud University Nijmegen

April 14, 2015

The categorical quantum logic group in Nijmegen

The categorical quantum logic group in Nijmegen

1. The semantics and logic of quantum computation.

- 1. The semantics and logic of quantum computation.
- 2. Focus on the common ground between the classical, probabilistic and quantum setting (States, predicates, ...)

- 1. The semantics and logic of quantum computation.
- 2. Focus on the common ground between the classical, probabilistic and quantum setting (States, predicates, ...)

In contrast to the friendly competition at Oxford: they emphasize to axiomatize what is unique and non-classical about quantum mechanics.

- 1. The semantics and logic of quantum computation.
- 2. Focus on the common ground between the classical, probabilistic and quantum setting (States, predicates, ...)
- 3. Identify relevant structure (Effect algebras, ...)

- 1. The semantics and logic of quantum computation.
- 2. Focus on the common ground between the classical, probabilistic and quantum setting (States, predicates, ...)
- 3. Identify relevant structure (Effect algebras, ...)
- 4. Organise it with category theory and formal logic.

- 1. The semantics and logic of quantum computation.
- Focus on the common ground between the classical, probabilistic and quantum setting (States, predicates, ...)
- 3. Identify relevant structure (Effect algebras, ...)
- 4. Organise it with category theory and formal logic.
- 5. Ambition: to make quantum computation more accessible to existing methods and techniques (of categorical logic, ...)

- 1. The semantics and logic of quantum computation.
- 2. Focus on the common ground between the classical, probabilistic and quantum setting (States, predicates, ...)
- 3. Identify relevant structure (Effect algebras, ...)
- 4. Organise it with category theory and formal logic.
- 5. Ambition: to make quantum computation more accessible to existing methods and techniques (of categorical logic, ...)
- 6. On the horizon: a categorical toolkit including a type theory to formally verify quantum programs.

- 1. The semantics and logic of quantum computation.
- 2. Focus on the common ground between the classical, probabilistic and quantum setting (States, predicates, ...)
- 3. Identify relevant structure (Effect algebras, ...)
- 4. Organise it with category theory and formal logic.
- 5. Ambition: to make quantum computation more accessible to existing methods and techniques (of categorical logic, ...)
- 6. On the horizon: a categorical toolkit including a type theory to formally verify quantum programs.
- 7. In this paper ...

- 1. The semantics and logic of quantum computation.
- Focus on the common ground between the classical, probabilistic and quantum setting (States, predicates, ...)
- 3. Identify relevant structure (Effect algebras, ...)
- 4. Organise it with category theory and formal logic.
- 5. Ambition: to make quantum computation more accessible to existing methods and techniques (of categorical logic, ...)
- 6. On the horizon: a categorical toolkit including a type theory to formally verify quantum programs.
- 7. In this paper ... some advances on state spaces

- 1. The semantics and logic of quantum computation.
- Focus on the common ground between the classical, probabilistic and quantum setting (States, predicates, ...)
- 3. Identify relevant structure (Effect algebras, ...)
- 4. Organise it with category theory and formal logic.
- 5. Ambition: to make quantum computation more accessible to existing methods and techniques (of categorical logic, ...)
- 6. On the horizon: a categorical toolkit including a type theory to formally verify quantum programs.
- 7. In this paper ... some advances on state spaces, but we'll come to that!

Oxford & Nijmegen

Setting

Classical : Probabilistic : Quantum

Setting

Classical : Probabilistic : Quantum

Sets : $\mathcal{K}\!\ell(\mathcal{D})$: $\mathbf{v}\mathbf{N}^{\mathsf{op}}$

Setting

Classical : Probabilistic : Quantum

Sets : $\mathcal{K}\!\ell(\mathcal{D})$: $\mathbf{v}\mathbf{N}^{\mathsf{op}}$

sets with maps

sets with probabilistic maps

von Neumann algebras with c.p. unital normal linear maps

	Sets	$\mathcal{K}\!\ell(\mathcal{D})$	vN^{op}
	classical	probabilistic	quantum
topos?	\checkmark	×	X
CCC?	\checkmark	×	×

	Sets	$\mathcal{K}\!\ell(\mathcal{D})$	vN ^{op}
	classical	probabilistic	quantum
topos?	\checkmark	×	X
CCC?	\checkmark	×	X
effectus*	\checkmark	\checkmark	\checkmark

^{*} see next page

An effectus is a category with finite coproducts and 1 such that

An effectus is a category with finite coproducts and 1 such that

these diagrams are pullbacks:

An effectus is a category with finite coproducts and 1 such that

these diagrams are pullbacks:

these arrows are jointly monic:

$$X + X + X \xrightarrow{[\kappa_1, \kappa_2, \kappa_2]} X + X$$

An effectus is a category with finite coproducts and 1 such that

these diagrams are pullbacks:

these arrows are jointly monic:

$$X + X + X \xrightarrow{[\kappa_1, \kappa_2, \kappa_2]} X + X$$

(Rather weak assumptions!)

effectus	meaning
objects	types
arrows	programs

effectus	meaning
objects	types
arrows	programs
1 (final object)	singleton/unit type

effectus	meaning
objects	types
arrows	programs
1 (final object)	singleton/unit type
$1 \stackrel{\omega}{\Rightarrow} X$	

effectus	meaning
objects	types
arrows	programs
1 (final object)	singleton/unit type
$1 \stackrel{\omega}{\longrightarrow} X$	state

effectus	meaning
objects	types
arrows	programs
1 (final object)	singleton/unit type
$1 \stackrel{\omega}{\longrightarrow} X$	state
$X \stackrel{p}{\longrightarrow} 1 + 1$	

effectus	meaning
objects	types
arrows	programs
1 (final object)	singleton/unit type
$1 \stackrel{\omega}{\longrightarrow} X$	state
$X \stackrel{p}{\Rightarrow} 1 + 1$	predicate

effectus	meaning
objects	types
arrows	programs
1 (final object)	singleton/unit type
$1 \stackrel{\omega}{\rightarrow} X$	state
$X \stackrel{p}{\longrightarrow} 1 + 1$	predicate
$1 \overset{\omega}{\underset{\omega \models \rho}{\nearrow}} 1 + 1$	validity

effectus	meaning
objects	types
arrows	programs
1 (final object)	singleton/unit type
$1 \stackrel{\omega}{\longrightarrow} X$	state
$X \stackrel{p}{\Longrightarrow} 1 + 1$	predicate
$1 \xrightarrow{\omega} X \xrightarrow{p} 1 + 1$	validity
$1 \stackrel{\lambda}{\Rightarrow} 1 + 1$	scalar

Examples of states and predicates

State	Predicate	Validity	Scalars
$1\stackrel{\omega}{\to} X$	$X \stackrel{p}{\rightarrow} 1 + 1$	$\omega \vDash p$	$1 \rightarrow 1 + 1$

Examples of states and predicates

	State	Predicate	Validity	Scalars
	$1 \stackrel{\omega}{\to} X$	$X \stackrel{p}{\rightarrow} 1 + 1$	$\omega \vDash p$	$1 \rightarrow 1 + 1$
classical Sets	element $\omega \in X$			

	State	Predicate	Validity	Scalars
	$1 \stackrel{\omega}{\to} X$	$X \stackrel{p}{ o} 1 + 1$	$\omega \vDash p$	$1 \rightarrow 1 + 1$
classical Sets	element $\omega \in X$	$p\subseteq X$		

	State	Predicate	Validity	Scalars
	$1 \stackrel{\omega}{\to} X$	$X \stackrel{p}{\rightarrow} 1 + 1$	$\omega \vDash p$	$1 \rightarrow 1 + 1$
classical Sets	element $\omega \in X$	$p\subseteq X$	$\omega \in {\it p}$	$\{0,1\}$

	State	Predicate	Validity	Scalars
	$1 \stackrel{\omega}{\to} X$	$X \stackrel{p}{\rightarrow} 1 + 1$	$\omega \vDash p$	$1 \rightarrow 1 + 1$
classical Sets	element $\omega \in X$	$p\subseteq X$	$\omega \in {\it p}$	$\{0,1\}$
probabilistic $\mathcal{K}\!\ell(\mathcal{D})$	$\omega \equiv \sum_{i} s_{i} x_{i}\rangle$			

	State	Predicate	Validity	Scalars
	$1 \stackrel{\omega}{\to} X$	$X \stackrel{p}{\rightarrow} 1 + 1$	$\omega \vDash p$	$1 \rightarrow 1 + 1$
classical Sets	element $\omega \in X$	$p\subseteq X$	$\omega \in p$	$\{0,1\}$
probabilistic $\mathcal{K}\!\ell(\mathcal{D})$	$\omega \equiv \sum_{i} s_{i} \ket{x_{i}}$	fuzzy subset $X \stackrel{p}{ ightarrow} [0,1]$		

	State	Predicate	Validity	Scalars
	$1\stackrel{\omega}{\to} X$	$X \stackrel{p}{\rightarrow} 1 + 1$	$\omega \vDash p$	$1 \rightarrow 1 + 1$
classical Sets	element $\omega \in X$	$p\subseteq X$	$\omega \in {\it p}$	$\{0, 1\}$
probabilistic $\mathcal{K}\!\mathcal{U}(\mathcal{D})$	$\omega \equiv \sum_{i} s_{i} \ket{x_{i}}$	fuzzy subset $X \stackrel{p}{ ightarrow} [0,1]$	$\sum_i s_i p(x_i)$	[0, 1]

	State	Predicate	Validity	Scalars
	$1\stackrel{\omega}{\to} X$	$X \stackrel{p}{\rightarrow} 1 + 1$	$\omega \vDash p$	$1 \rightarrow 1 + 1$
classical Sets	element $\omega \in X$	$p\subseteq X$	$\omega \in p$	$\{0, 1\}$
probabilistic $\mathcal{K}\!\ell(\mathcal{D})$	$\omega \equiv \sum_{i} s_{i} \ket{x_{i}}$	fuzzy subset $X \stackrel{p}{\rightarrow} [0,1]$	$\sum_{i} s_{i} p(x_{i})$	[0, 1]
quantum vN ^{op}	normal state $\omega\colon X o \mathbb{C}$			

	State	Predicate	Validity	Scalars
	$1\stackrel{\omega}{\to} X$	$X \stackrel{p}{\rightarrow} 1 + 1$	$\omega \vDash p$	$1 \rightarrow 1 + 1$
classical Sets	element $\omega \in X$	$p\subseteq X$	$\omega \in p$	$\{0, 1\}$
probabilistic $\mathcal{K}\!\ell(\mathcal{D})$	$\omega \equiv \sum_{i} s_{i} \ket{x_{i}}$	fuzzy subset $X \stackrel{p}{\rightarrow} [0,1]$	$\sum_{i} s_{i} p(x_{i})$	[0, 1]
quantum vN ^{op}	normal state $\omega\colon X o \mathbb{C}$	$0\stackrel{ ext{effect}}{\leq p \leq I}$		

	State	Predicate	Validity	Scalars
	$1\stackrel{\omega}{\to} X$	$X \stackrel{p}{\rightarrow} 1 + 1$	$\omega \vDash p$	$1 \rightarrow 1 + 1$
classical Sets	element $\omega \in X$	$p\subseteq X$	$\omega \in p$	$\{0,1\}$
probabilistic $\mathcal{K}\!\ell(\mathcal{D})$	$\omega \equiv \sum_{i} s_{i} \ket{x_{i}}$	fuzzy subset $X \stackrel{p}{ ightarrow} [0,1]$	$\sum_i s_i p(x_i)$	[0, 1]
quantum vN ^{op}	normal state $\omega\colon X o \mathbb{C}$	$0\stackrel{ ext{effect}}{\leq p} \leq I$	$\omega(p)$	[0, 1]

1. Predicates on X form an effect module

 $(\approx \text{an ordered vector space} \qquad \qquad \text{restricted to } [0,1])$

1. Predicates on X form an effect module (\approx an ordered vector space restricted to [0,1])

2. States on X form an convex set

(= algebra for the distribution monad

1. Predicates on X form an effect module (\approx an ordered vector space restricted to [0,1])

States on X form an convex set(= algebra for the distribution monad

3. The scalars form an effect monoid M.

- 1. Predicates on X form an effect module over M (\approx an ordered vector space over M restricted to [0,1])
- States on X form an convex set over M
 (= algebra for the distribution monad over M)
- 3. The scalars form an effect monoid M.

- 1. Predicates on X form an effect module over M (\approx an ordered vector space over M restricted to [0,1])
- States on X form an convex set over M
 (= algebra for the distribution monad over M)
- 3. The scalars form an effect monoid M.

Examples of operatorions on states and predicates

Negation of predicate: $X \xrightarrow{p} 1 + 1 \xrightarrow{\lceil \kappa_2, \kappa_1 \rceil} 1 + 1$

Examples of operatorions on states and predicates

- Negation of predicate: $X \xrightarrow{p} 1 + 1 \xrightarrow{[\kappa_2, \kappa_1]} 1 + 1$
- Convex combination of states $1 \xrightarrow{\lambda} 1 + 1 \xrightarrow{[\omega,\varrho]} X$

Examples of operatorions on states and predicates

- Negation of predicate: $X \xrightarrow{p} 1 + 1 \xrightarrow{[\kappa_2, \kappa_1]} 1 + 1$
- Convex combination of states $1 \xrightarrow{\lambda} 1 + 1 \xrightarrow{[\omega,\varrho]} X$
- \triangleright Predicates p, q are summable whenever there is a b such that

and then their sum is given by $p \otimes q = [\kappa_1, \kappa_1, \kappa_2] \circ b$.

1. $\mathsf{EMod}_M^\mathsf{op}$ is an effectus; $\mathrm{Pred} \colon \mathbf{C} \to \mathsf{EMod}_M^\mathsf{op}$ preserves +.

- 1. **EMod**_M^{op} is an effectus; Pred: $\mathbf{C} \to \mathbf{EMod}_{M}^{\mathrm{op}}$ preserves +.
- 2. Conv_M is not an effectus; Stat: $C \rightarrow Conv_M$ does not always preserve coproducts.

- 1. **EMod**_M^{op} is an effectus; $Pred: \mathbf{C} \to \mathbf{EMod}_{M}^{op}$ preserves +.
- 2. Conv_M is not an effectus; Stat: $C \rightarrow Conv_M$ does not always preserve coproducts.

So what?

- 1. **EMod**_M^{op} is an effectus; Pred: $\mathbf{C} \to \mathbf{EMod}_{M}^{op}$ preserves +.
- 2. Conv_M is not an effectus; Stat: $C \rightarrow Conv_M$ does not always preserve coproducts.

So what? They block treating conditional probability in an effectus.

This is a convex set over [0,1]

1. (that is, algebra for the distrubution monad over [0,1]):

This is a convex set over [0,1]

1. (that is, algebra for the distrubution monad over [0,1]):

2. A convex set A is **cancellative** if for $\lambda \neq 1$, $\lambda x + (1 - \lambda)y_1 = \lambda x + (1 - \lambda)y_2 \implies y_1 = y_2$.

- This is a convex set over [0,1]

 1. (that is, algebra for the distrubution monad over [0,1]):
- 2. A convex set A is **cancellative** if for $\lambda \neq 1$, $\lambda x + (1 \lambda)y_1 = \lambda x + (1 \lambda)y_2 \implies y_1 = y_2$.
- 3. **Theorem** For a convex set A over [0,1] t.f.a.e.
 - 3.1 *A* is cancellative;

- This is a convex set over [0,1]

 1. (that is, algebra for the distrubution monad over [0,1]):
- 2. A convex set A is **cancellative** if for $\lambda \neq 1$, $\lambda x + (1 \lambda)y_1 = \lambda x + (1 \lambda)y_2 \implies y_1 = y_2$.
- 3. **Theorem** For a convex set A over [0,1] t.f.a.e.
 - 3.1 *A* is cancellative;
 - 3.2 $[\kappa_1, \kappa_2, \kappa_2]$, $[\kappa_2, \kappa_1, \kappa_2]$: $A + A + A \longrightarrow A + A$ are jointly injective;

- This is a convex set over [0,1]

 1. (that is, algebra for the distrubution monad over [0,1]):
- 2. A convex set A is **cancellative** if for $\lambda \neq 1$, $\lambda x + (1 \lambda)y_1 = \lambda x + (1 \lambda)y_2 \implies y_1 = y_2$.
- 3. **Theorem** For a convex set A over [0,1] t.f.a.e.
 - 3.1 *A* is cancellative;
 - 3.2 $[\kappa_1, \kappa_2, \kappa_2]$, $[\kappa_2, \kappa_1, \kappa_2]$: $A + A + A \longrightarrow A + A$ are jointly injective;
 - 3.3 *A* is isomorphic to a convex subset of a real vector space.

- This is a convex set over [0,1]1. (that is, algebra for the distrubution monad over [0,1]):
- 2. A convex set A is **cancellative** if for $\lambda \neq 1$, $\lambda x + (1 \lambda)y_1 = \lambda x + (1 \lambda)y_2 \implies y_1 = y_2$.
- 3. **Theorem** For a convex set A over [0,1] t.f.a.e.
 - 3.1 *A* is cancellative;
 - 3.2 $[\kappa_1, \kappa_2, \kappa_2]$, $[\kappa_2, \kappa_1, \kappa_2]$: $A + A + A \longrightarrow A + A$ are jointly injective;
 - 3.3 A is isomorphic to a convex subset of a real vector space.
- 4. The full subcategory $\mathbf{CConv}_{[0,1]}$ of $\mathbf{Conv}_{[0,1]}$ of cancellative convex sets over [0,1] is an effectus!

Normalisation

 $\mathrm{Stat}\colon \textbf{C}\longrightarrow \textbf{CConv}_{[0,1]} \text{ preserves coproducts if }...$

Normalisation

 $Stat\colon \textbf{C}\longrightarrow \textbf{CConv}_{[0,1]} \text{ preserves coproducts if } \dots \\ \textbf{C} \text{ has normalisation:}$

Normalisation

 $\operatorname{Stat}\colon \textbf{C}\longrightarrow \textbf{CConv}_{[0,1]} \text{ preserves coproducts if }...$

C has normalisation:

For every $1\stackrel{\sigma}{\to} X+1$ with $\sigma\neq\kappa_2$ there is a unique $1\stackrel{\omega}{\to} X$ such that the following diagram commutes.

Conclusion and references

1. Every category above is an effectus; every functor above preserves coproducts.

Conclusion and references

- 1. Every category above is an effectus; every functor above preserves coproducts.
- 2. For the relation with conditional probability, see Section 6 of the paper.

Conclusion and references

- 1. Every category above is an effectus; every functor above preserves coproducts.
- 2. For the relation with conditional probability, see Section 6 of the paper.
- For more about effectuses:
 Bart Jacobs, New Directions in Categorical Logic, [...], arXiv:1205.3940v3.