
A Kochen-Specker system has at least 21 vertices

Sander Uijlen
suijlen@cs.ru.nl

Bas Westerbaan
bwesterb@cs.ru.nl

Radboud Universiteit Nijmegen

July 7, 2014



A Kochen-Specker system S is a finite set of points on the (open)
northern hemisphere, such that there is no 010-coloring; that is:
there is no {0, 1}-valued coloring with

1. three pairwise orthogonal points are assigned (1, 0, 0), (0, 1, 0)
or (0, 0, 1) and

2. two orthogonal points are not assigned (1, 1).

point ∼ direction of magnetic field in measurement of SPIN-1
coloring ∼ non-contextual deterministic theory

Theorem (Kochen-Specker)

There is a Kochen-Specker system. Thus: there is no
non-contextual deterministic theory predicting the measurement of
a SPIN-1 particle.
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The smallest Kochen-Specker system?

Kochen-Specker 1975 ≤ 117
Penrose, Peres (indep.) 1991

≤ 33

Conway ∼ 1995

≤ 31

U&W july? ≥ 22 or = 21
U&W may ≥ 21

Arends, Wampler, Ouaknine 2009

≥ 18
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Conway’s record



It is a problem about graphs

Given a finite set of points S on the projective plane, its
orthogonality graph G(S) has as vertices the points and two points
are adjacent if and only if they are orthogonal.

A graph G is embeddable if there is a S such that G ≤ G(S).

A 010-coloring of a graph, is a {0, 1}-vertex coloring, such that

1. every triangle is colored (1, 0, 0), (0, 1, 0) or (0, 0, 1) and

2. no adjacent vertices are colored both 1.
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It is a problem about graphs

There is a Kochen-Specker system with n points
if and only if

there is a embeddable and non-010-colorable graph on n vertices.



Restrict the search

(The orthogonality graph of) a minimal Kochen-Specker system is
connected; ∼ 1026.4

squarefree and ∼ 1010.2

has minimal vertex degree 3; ∼ 107.5
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The candidates

Our computation found the following number of non 010-colorable
squarefree graphs with minimal vertex degree 3

#V # candidates

≤ 16 0
17 1
18 2
19 19
20 441

21 ≥ 7616
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Unembeddable subgraphs

All these candidates contain as a subgraph one of these
unembeddable graphs.



Pen and paper proof of unembeddability

Suppose this graph is embeddable.

Note that v and a are
distinct points orthogonal to p1. Thus p1
is fixed. Observe: p1 is collinear to v × a.

Similarly: p2 is collinear to v × (v × a).
And so on. We see a is collinear
to x × (x × (w × (w × (v × (v × a))))).
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Pen and paper proof of unembeddability

We may assume z = (0, 0, 1), x = (1, 0, 0), v = (v1, v2, 0),
w = (w1,w2, 0) and a = (0, a2, a3). We have:(

0
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a3

)
is collinear to
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Since v and w are not collinear, we have by Cauchy-Schwarz
| 〈v ,w〉 | < 1. Note |v1|, |w2| ≤ 1. Thus: |v1w2 〈v ,w〉 | < 1.
Contradiction.
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Example of automized cross product chasing
load_package redlog;
rlset R;
procedure d(x,y);

(first x) * (first y) +
(second x) * (second y) +
(third x) * (third y);

procedure k(x,y);
{(second x)*(third y) - (third x)*(second y),
(third x)*(first y) - (first x)*(third y),
(first x)*(second y) - (second x)*(first y)};

v0c1 := 1; v0c2 := 0; v0c3 := 0;
v1c1 := 0; v1c2 := 1; v1c3 := 0;
v0 := {v0c1, v0c2, v0c3};
v1 := {v1c1, v1c2, v1c3};
v2 := {v2c1, v2c2, v2c3};
v3 := {v3c1, v3c2, v3c3};
v2c1 := 0;
neq0 := k(v0,k(v3,v1));

(snip)

neq29 := k(k(k(k(v3,v1),v1),v2),k(k(v3,v0),v3));
phi :=

(first neq0 neq 0 or
second neq0 neq 0 or
third neq0 neq 0) and

(snip)

(first neq29 neq 0 or
second neq29 neq 0 or
third neq29 neq 0) and

d(v2,v0) = 0 and
d(k(k(v3,v0),v3),k(k(k(k(v3,v1),v1),v2),v2)) = 0 and
true;

rlqe ex(v3c3,
ex(v3c2,
ex(v3c1,
ex(v2c3,
ex(v2c2,phi)))));



Source code, paper and experimental results can be found at

kochen-specker.info

Some open problems:

I If G is embeddable, is there a S such that G = G(S).

I Is every embeddable graph, grid embeddable? That is: using
points of the form ( x√

n
, y√

n
, z√

n
) for x , y , z , n ∈ Z.
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