Bi-directional Rays in Global Illumination
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ABSTRACT

Global illumination algorithms use rays to transfer the light in the scene. A ray connects two points
that are mutually visible from each other. Although it seems intuitive to transfer the light into both
directions along the ray, only a few algorithms have taken advantage of bi-directional rays so far, which

can increase the samples for minimal additional cost.

In this paper we propose a non-diffuse global

illumination algorithm that exploits this promising alternative. The algorithm is easy to implement but
robust and is able to render complex scenes within a few tens of second.
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1 Introduction

In order to simulate the bounces of light, global
illumination algorithms repeat the same elemen-
tary operation which transfers the radiance of
a point to that point or points which are visi-
ble from here. The visibility between two points
is mutual, thus it seems to be worth transport-
ing the radiance into both directions. However,
with a few exceptions [4, 1] most of the global il-
lumination algorithms apply uni-directional rays
and ignore the transfer from the other direction,
which would be available almost free of charge. In
the following section, a ray-based stochastic itera-
tion algorithm is presented that can efficiently ex-
ploit the additional samples of bi-directional rays.
Global illumination algorithms evaluate the light
transport operator:
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In this equation L is the radiance of point, which
is the sum of the emission L¢ and reflection L",
w' points from ¢ to #, f,. is the BRDF, and G is
the geometric factor:
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where v is the visibility function which is 1 if the
two points are mutually visible and zero other-
wise, and 03,60y are the angles between the sur-
face normals and the direction connecting & and
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Tteration algorithms rely on the fact that the fixed
point of iteration L™ = L°+T;, L("~Y) is the so-
lution of the rendering equation. Thus if this for-
mula is iterated with a contractive light transport
operator, then the process will converge to the
solution from an arbitrary initial function. Itera-
tion requires the radiance function to be stored,
which is made possible by finite-element tech-
niques. Suppose that the surfaces are decom-
posed to patches of area A, Ay, ..., Ax and after
each iteration step the average radiance is stored
on each patch. Thus the stored directional func-
tion on patch ¢ is:
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Substituting this into the iteration formula, we
obtain for L?(n) (w):
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Iteration uses the complete radiance function,
thus the radiance of all patches should be trans-
ported, which can take a long time. In practi-
cal cases the neighboring patches are usually very
similar, thus it would be enough to select one of
them and transfer the total power of the neighbor-
hood at once from here. This idea is exploited by
Monte-Carlo radiosity [2, 3]. Monte-Carlo radios-
ity selects a patch just with certain probability,
but the transferred radiance is divided with this
probability.

We use a random transport operator 7}’: that be-
haves as the real operator in the expected case.
The randomization of the light transport operator
will select two points ¢ and Z in order to trans-
fer the radiance of point ¥ to & with probability
density p(§¥ — Z). Thus the random reflected
radiance L™ generated by the random transport
operator is
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Replacing the light transport operator by a ran-
dom operator, on the other hand, results in an
iteration scheme that does not converge, but the
iterated radiance functions will fluctuate around
the real solution. However, if we compute an im-
age from the radiance estimates of different iter-
ation steps, the average of the images will really
converge to the real image [5].

A good random transport operator introduces
minimum variance, which is met if the probabil-
ity density of selecting an &, ¥ pair mimics the
integrand
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Unfortunately, we can sample with a probablity
density that mimics not the whole integrand, only
a part of it. We can select, for example, source
point % and source direction w’ with probability
density p(¢,w’) that is proportional to L(%) cos 65
and shoot a ray to indentify the receiver point Z.
Note that such sampling would find Z with prob-
ability density L(7,w') - G(&,¥) which is the first

L(g,w") cos b - Y

two major factors of the integrand. Such sam-
pling will also produce a density for backward
transfers from & to ¢, thus with each ray we have
two random samples. Note that we have two es-
timators, where the backward estimator is poorer
since the probability density mimics the forward
transfers from ¢/ to Z, thus the backward estimates
will have higher variance. Taking into account the
two techniques with equal weights, we also inherit
the disadvantages of backward estimates. Fortu-
nately, more sophisticated combination of the two
techniques is also possible as suggested by multi-
ple importance sampling [7, 1]. Balanced heuris-
tic of multiple importance sampling [7] divides
the integrand by the average probability density
of the methods to be combined no matter which
method has generated the given sample.

2 A bi-directional global illumination al-
gorithm

Let us first sample ¢ and w’ with p(¢, w') that is
proportional to L(7,w") cos 85 and then & given i
by the ray shooting process. This can be realized
by first finding the patch ¢ of § proportionally to
its power, i.e. the selection probability is the ratio
of the power of patch j

Qi =A;- /Lj(w') cos by dw',
Q

and the total power of the scene ® =3, ®;.If a
ray transfers the radiance on several wavelengths
simultaneously, then radiance L and total power
® are vectors, thus this formula should be slightly
modified to obtain a scalar probability density p.
We can, for example, use the luminance £(L) of
radiance L, which computes a weighted average of
the radiances of different wavelengths. Replacing
the radiance and the power by their luminances,
we obtain:
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Note that p(§ — %) is the probability density of
sampling two points, thus this can be used not
only when the radiance is transferred from ¥ to
Z, but also when — taking advantage of the bi-
directional ray concept — the radiance is trans-
ferred from Z to §. Thus we have two Monte-
Carlo estimates for the transfer, a classical one,
called forward estimator, and a reverse one, called
backward estimator.



2.1 Representing the patch radiance

Since the patches may be non-diffuse, their radi-
ance is a function of the outgoing direction. Our
goal is to avoid the complete representation of
this function, because that would pose prohibitive
memory requirements. If a patch is hit by a ray in
iteration n, its irradiance I(n) =1/p - cosb,, (i.e.
the incoming radiance estimate multiplied by the
cosine of the incoming angle) and the direction
of the ray w, are stored on the patch. For those
patches that are not hit by the ray, the irradiance
of this iteration step is zero. From the irradi-
ance and incoming direction, the radiance of the
patch in an arbitrary direction w’ can be obtained
as I(n) - f.(wn,w'). Examining this sequence, we
can note that it has a high fluctuation, it is mostly
zero but when the patch is lucky enough to be hit
by a ray, then it gets a larger contribution. The
variance of the whole method can be reduced if
the fluctuation of this sequence is decreased. The
general idea is to replace I(n) sequence by an-
other sequence which smoother but still results
in the correct reflected radiance when averaging
takes place. Two techniques are presented, the
first is based on the main part separation [6] and
the second applies random acceptance and rejec-
tion similar to Metropolis Sampling [8].

The first method separates the constant main
part of the reflected radiance, which is replaced
by its average. Let us store the directional aver-
age of the reflected radiance in variable L%(") in
each patch computed as
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where a(w') is the albedo of the material. Note
that this main part is computed not only from the
last transfer but from the average of all trans-
fers happened so far. We could take advantage
of the fact that the main part is independent of
the outgoing direction, thus an average could be
computed that is valid for all directions. This
technique reduces the general fluctuation but the
variation of the transfers represented by the dif-
ference BRDF (Af, = f,—a/n) still remains high
in the sequence. The second variance reduction
technique solves this problem without requiring
to store more than a single incoming direction
and irradiance per patch.

This method reduces the fluctuation of a sequence
replacing by another sequence of | similar sam-
ples”, thus zero samples are ignored, large sam-
ples of the original sequence will be scaled down

and small samples will be scaled up. In order not
to distort the average of the sequence, a scaled
down larger value will appear more times in the
new sequence sequence. An appropriate scaling
of I(n) is

I(n 1 «
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since it makes the elements of the series as equal
as the luminance can reflect the importance of
a spectrum. In this formula a is the albedo
of the surface if this method is used alone, or
the albedo of the absolute value of the difference
BRDF Ag if this method is applied together with
the separation of the main part. The average will
be correct if we can guarantee that I(n) is ex-
pected to appear L(I(n)a)/C times. A sampling
scheme that can produce samples proportionally
with £(I(m)a) is based on random acceptance
and rejection. At each iteration step the new ir-
radiance I(n) is compared with the stored irradi-
ance I(m). If £L(I(n)a) is greater or equal than
L(I(m)a), then the new irradiance will replace
I(m) in the random representation of the radi-
ance. However, when L£(I(n)a) is smaller than
L(I(m)a), the new irradiance is accepted with
probability L(I(n)a)/L(I(m)a).

2.2 Implementation details

Note that in the formulae of the reflected radi-
ance, the main part and the irradiance appear to
be divided by the actual iteration number. This
means that the radiances of all patches change in
an iteration, thus the computational complexity
of a single iteration loop is linear with the number
of patches. This is clearly undesirable in complex
scenes. Fortunately, the update of all patches can
be avoided if we store variables that are multi-
plied with the iteration number and carry out the
division on the fly. The iteration cycle also con-
tains a hidden loop to consider every single patch,
which is responsible for the random patch selec-
tion. This includes the calculation of the selection
probabilities and then the random selection itself.
The selection probabilities are proportional to the
luminance of the power of the patches, which is
the sum of the luminance of the emission and the
luminance of the reflected radiance (diffuse and
specular reflections). To speed up the update of
the selection probabilities and the random selec-
tion according to these probabilities, we use a bi-
nary tree and a binary search process. The leaves
of this tree correspond to the patches and contain



two values, the luminance of the emitted power
and the luminance of the reflected power multi-
plied by the current iteration number. The nodes
of the tree also contain two values, which are the
sums of the corresponding values of the two chil-
dren of the node. Finally the root of the tree has
the luminance of the total emitted power and the
luminance of the total reflected power multiplied
by the iteration number. Note that each node
contains two variables, an emission and a reflec-
tion times iteration number, from which the lumi-
nance of the power of the node will be computed
on the fly. The on-the-fly computation can allow
us not to visit all nodes of the tree at each itera-
tion to update the iteration number. The update
of this data structure is also logarithmic. Sup-
pose that the reflected radiance at a patch have
changed. The luminance of its increment added
to the reflected radiance variable of the leaf and
this value is propagated upwards adding the in-
crement also to the parents, grandparents, etc. of
this leaf until the root is reached.

Figure 1: An architectural scene: 5 mil-
lion iterations, 80 sec rendering time, 78443
patches

3 Conclusions

In this paper we proposed a stochastic iteration
algorithm that uses bi-directional rays and ap-
plies multiple importance sampling to optimally
combine the forward and backward methods. The
application of bi-directional rays itself provides

a significant increase of samples in the integral
quadratures, especially for the computation of
higher order bounces, for very small additional
cost. We also proposed a low variance random
approximation for the non-uniform directional ra-
diance. This approximation speeds up the con-
vergence, and can also be regarded as a good ini-
tial guess, when the camera moves, thus we can
expect fast convergence during animated walk-
throughs. Finally we have shown, how the ran-
dom selection can be supported by a binary tree,
which results in an overall sub-linear algorithm.
Future improvements include the combination of
different bi-directional strategies in the frame-
work of multiple importance sampling.
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