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ABSTRACT

Russian-roulette is one of the most important techniques to compute infinite dimensional integrals
in an unbiased way. However, Russian roulette is also responsible for adding large amount of noise.
This paper examines Russian roulette and a related problem, the sampling of combined BRDF's and
proposes two improvements that can reduce the additional noise of Russian-roulette and random
elementary BRDF selection, keeping also the unbiasedness of the method. The first improvement
takes advantage that the light transfer is computed on several wavelengths simultaneously, thus
the distribution of the energy on the wavelengths should be more precisely taken into account
when Russian-roulette is made to terminate the walk or to select randomly from the elementary
BRDFs. The second improvement gets rid of the fundamental assumption of Russian roulette
that the contribution is zero when the walk is terminated. If we have a better estimation for the
incoming radiance at this case, this estimation can be used instead, which can significantly reduce
the additional noise.
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Introduction

Random walk global illumination algorithms have
to evaluate an infinite sequence of the integrals of
the following form:

L™(Z,w) = /w(w,f,w') CL(E, W) dw'!
Q

where L"(Z,w) is the radiance reflected at point
Z in direction w,

w(w,Fw') = frW, T, w) - cosd’
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is the probability density of the light scattering,
which equals to the product of the BRDF func-
tion f, and the cosine of angle between direction
w’ and the surface normal at the given point. Fi-
nally, L'*(Z,w') is the incoming radiance, which
equals to the emission and the reflected radiance
of that point which is visible from Z at direction

w'.

When Monte-Carlo integration is used, the inte-
grand is divided and simultaneously multiplied
by a probability density p(w’), converting the in-
tegral to an expected value:

Q

p(w')

A Monte-Carlo quadrature would generate ran-
dom directions in the domain with probability
density p and estimate the expected value as an
average of the integrand values for these direc-
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The incoming radiance L™ is the sum of the
emission and the reflected radiance at the visible
point. Since the reflected radiance of the visible
point should be obtained by a similar integral, the
sample process has to be repeated, giving rise to
an infinite recursion. One way of avoiding this is
to limit the levels and assuming that after d re-
flections the light transfer can be neglected. This
approach distorts the result and makes it biased.
Russian roulette [1], on the other hand, solves
the problem of infinite recursion providing still
asymptotically correct, unbiased results. The so-
lution is based on randomization, that is, the er-
ror of considering only finite length samples is
converted to a random noise with zero mean. In
this way, as the number of samples increases, this
error vanishes. Similar randomization happens
when we have combined BRDFs, defined as the
sum of elementary BRDFs, because we can sam-
ple the direction only according to the elementary
BRDFs.

This paper examines these randomization prob-
lems. In section 1 we review and analyze Russian-
roulette and the different possibilities of combined
BRDF sampling. Then two improvements are
presented. Section 2 proposes to take into ac-
count the spectral properties to reduce the noise
of the randomization. Section 3, on the other
hand, includes a rough estimate of the reflected
radiance when the walk is terminated, instead of
using zero as happens in the classical method. We
show that this simple technique can significantly
reduce the variance.

1.1 Russian roulette

Russian roulette further randomizes the integral
quadrature corresponding to a given reflection
and before taking a sample it decides randomly
with probability s whether it really evaluates the
integrand at the sample point or simply assumes
that the integrand is zero without any calcula-
tions. In order to compensate the not computed
terms, when the integrand is really computed, it
is divided by probability s. This randomization
introduces a new random variable, called ran-
domized reflected radiance L™, which is equal to
w/p - L'" /s if the integrand is evaluated and zero

otherwise. The Monte-Carlo quadrature, which
provides the estimate as an expected value will
still be correct:

E[L™] =s- E[L™ | evaluated] +

(I1—s)- E[L™ | not evaluated] =

ﬂ+(1—s)-0:EP-

S.E{E.Lin.
p

p

The variance of the new estimator, on the other
hand, is increased:

D?*[L™]
()
-2l

Note that D? [w/p-Li“] is the variance of the
original estimator not using Russian roulette,
thus the additional variance of Russian roulette
is the first term of equation 2.

= B[(L™)*] - B*[L7] =

s-F

+(1—-5)-0-FE*L"] =

+D? P
p

- Li“} . (2)

Random walk algorithms set the continuation
probability s to minimize the fluctuation of the
new estimator w/p - L™ /s. Since there is usually
no information about the incoming radiance L",
s is set to approximate w/p. If ideal BRDF sam-
pling is used, then p is proportional to w and thus
s is the ratio of proportionality. The proportion-
ality ratio can be derived from the fact that p in-
tegrates to 1 since it is a real probability density,
while w integrates to the albedo of the surface
defined by a(Z,w) = [w(w,Z,w') dw'. Thus s is
Q
usually set to approximate the local albedo.

1.2 BRDF sampling for materials of mul-
tiple reflection type

Practical reflection models incorporate different
simple BRDFs. For example, a lot of materials
can be well modeled by a sum of diffuse and spec-
ular reflections. Methods are available to sample
directions according to either the diffuse or the
specular BRDF but not for the sum of them.

Fortunately, Russian-roulette can also be ex-
tended to handle these cases. Suppose that the
scattering probability density is available in the



form of a sum of the weights corresponding to
elementary BRDF's:

w=w] +wWs+ ...+ Wy.

Thus the radiance of a single reflection is:

Lr:/(wl +wy + ... +w,) L' dw'.
Q

Agssume that probability density p; can be found
to mimic an elementary scattering density w; and
these densities should be used to sample the com-
posed integrand. We have two options to attack
this problem. Either the integral is decomposed
to a sum corresponding to different scattering
densities and the terms are sampled separately,
or we use the elementary sampling densities to
sample the integrand as a whole and combine the
results of the estimators. In the following, we re-
view and compare these methods.

1.2.1 Decomposing the integrand

Method 1 decomposes the reflected radiance ac-
cording to the elementary scattering densities [7]:

n
U:/wvww:Z/wwﬁmh

Q i=lq

These integrals are then estimated using the prob-
ability density that mimics the elementary scat-
tering probability:

ro__ . wy in . I __ . Wi in
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=1 Q
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This sum can also be computed by Monte-Carlo
techniques. Let us select the ith term of this sum,
i.e. the ith BRDF, with probability s; and weight
the resulting radiance by 1/s; or stop the walk
with probability 1 -3, s;. Thus the new random
variable representing the reflected radiance is
1ir — & . Lin
8iPi

if the ith model is used, and 0 if no model is
selected.

This is a Monte-Carlo estimation of the sum. Ac-
cording to importance sampling, the variance will
be small if (w; /p;)- L™ /s; can be made nearly con-
stant. Since we usually do not have a-priori infor-
mation about L™, w;/(p;s;) can be made a con-
stant number. Thus to obtain a low-variance es-
timator, an elementary BRDF should be selected

with the probability of its transformed weight
w;/p;. Unfortunately, this is still not optimal
when Russian roulette is also used, since the ter-
mination of the walk has zero contribution. Note
that the weight w;/p; may either be equal or ap-
proximate the albedo, thus a low-variance estima-
tor selects an elementary BRDF with the proba-
bility of its albedo.

1.2.2 Combination of sampling schemes

We can also suppose that we have different sam-
pling schemes for the incoming direction, thus an
estimator can be obtained by using all the tech-
niques and combining their results. Let us use a
weighted sum for such combination:

n n

E ai~/E-Li“-pidw':§ a,wE[E-Li“].
i—1 pi i—1 pi

— A —

where a; is the weight of the expected value corre-
sponding to density p;. The expected value is cor-
rect if Y1 | o;. Again, we can use Monte-Carlo
estimation for this sum. Let us select the ith term
of this sum, i.e. the ith BRDF, with probability
s; and weight the resulting radiance by 1/s; or
stop the walk with probability 1 — >, s;. Thus
the random reflected radiance variable L™ is

w
SiPi

a; - N Lin

if the ith model is used, and 0 if no model is
selected. In this Monte-Carlo estimation of the
sum the variance will be small if a; - w/p; - L'"/s;
can be made nearly constant. Taking into account
the requirement that the sum of weights is 1, we

can obtain:
Si

E?:l Sj .

Q; =

Substituting this into the formula of the reflected
radiance, we can obtain the following estimate of
method 2:

Ly = ——— 1"
bi Zj Sj

The method discussed so far applied a static
weighting of different techniques. However, it
seems worth using a weighting scheme that de-
pends on the generated direction as well [2]. The
formal basis of such combination is given by
the theory of multiple importance sampling [9].
Multiple importance sampling combines different



RMS error

sampling techniques in a way that their advan-
tages are preserved, i.e. the variance of the com-
bined estimator is smaller than the individual es-
timators and not far from the optimum. One of
such weighting schemes, called the balance heuris-
tic, sets the weights proportional to the probabil-
ity density of the individual methods. Formally,
this means that we always divide with the aver-
age density of the combined techniques, no mat-
ter which method generated the sample. Thus
the random reflected radiance of this method 3

182
w

21 SiPj
if the ith model is used, and 0 if no model is
selected.
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1.2.3 Comparison of the BRDF selection
methods
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Figure 1: Comparison of the three random

BRDF selection mechanism.

In figure 1 we compared the error curves of the
three discussed method using a path tracing al-
gorithm to render the Cornell Box scene. We can
notice that the performances of method 1 and
method 3 are similar but method 2 is poorer.
The reason of the worse performance of method
2 comes from the fact that we assumed that the
probability density of the individual methods are
good to sample the integrand in the whole do-
main. However, the specular sampling cannot
sample the whole domain of the diffuse reflection.
This problem is solved by method 1 separating
the integrand and by method 3 using a mixed
probability density.

In the following section, we introduce a spectral
optimization that can be used with all mentioned
methods. In order to have unified notations, if

the ith elementary BRDF is used, then we shall
denote the random reflected radiance estimation
as

W;

S

L' = X Lin‘

where factor W; represents the following weights
for three discussed methods, respectively:

Wi ws; ws;
pi’ Piy;si 2Pisi
2 Spectral optimization of Russian

roulette

In this section we consider the spectral properties
of the carried radiance and the scattering density
in order to optimize Russian roulette and BRDF
selection. The BRDF f,., the scattering density
w and the albedo are not scalar values, since they
depend on the wavelength and the light is usually
transferred on several (3, 8, 16, etc.) wavelengths
simultaneously in global illumination algorithms.
On the other hand, the continuation probability
s must be scalar, thus the “proportionality” with
the albedo should be given a special interpreta-
tion. The usual technique is to make the continu-
ation probability proportional to the average (or
weighted average) of the albedo values at different
wavelengths, and working with the “luminance”
of the albedo instead of the wavelength dependent
albedo. Unfortunately, this can be very inefficient
if the scene has highly saturated colors. Assume,
for example, that the simulation is carried out on
three wavelengths corresponding to the red, green
and blue colors and a blue light source illuminates
an ideally reflecting, yellow (red + green) wall.
In this case, the reflected radiance on all wave-
lengths will be zero at the wall, thus it is no use
continuing the walk. However, the average of the
albedos on the three wavelengths is 2/3, thus Rus-
sian roulette will continue the completely useless
computation with probability 2/3.

The same problem can occur when the elemen-
tary BRDF's are selected randomly. Assume that
our surface has diffuse reflection in red and green
(the surface is yellow) and the specular reflection
in blue. When the surface is lit by blue color, the
diffuse BRDF cannot contribute to the reflected
light, thus it is not worth selecting. However,
if the selection mechanism is based on the aver-
age of the reflectances of different wavelengths,
it can happen that the irrelevant diffuse BRDF
is selected with 2/3 while the relevant specular
BRDF only with 1/3 probability.



In this section we propose solutions for the men-
tioned problems occurring when the light is trans-
ferred on multiple wavelengths. We have to take
into account the spectral properties of the radi-
ance or importance accumulated up to the given
reflection point. In path tracing we start at the
eye, walk in the scene generating the continua-
tion direction by BRDF sampling and Russian
roulette, then gather the emission (or the reflec-
tion of the direct light sources) of the visited
point. The found illumination value is multiplied
by the product of the scattering densities divided
by the sampling probability densities and the con-
tinuation probabilities. Thus the weight of an il-
lumination value at the mth reflection is:

W w2 Wm]
s(1] -~ s2] T s[m]”

where W k] is the weight at the kth reflection and
o is the diadic product:

@, .. ,aD)opM, .. pW] =

@V 50 a® o p].

The result F'is also a vector:

On the other hand, if we use light tracing the
initial point and direction is sampled with proba-
bility density p. and the radiance estimator after
the mth reflection is:

_ Lo Wil w2 Wim]

F_pe o i o o2 0...0 s[m]'

In both gathering and shooting algorithms, at the
current reflection we can select from n elementary
BRDFs or terminate the walk, with probabilities
51,82,...,5, and 1 — > s, respectively. If ele-
mentary BRDF i is selected, then the new weight
after the reflection is:

(1) )
r . Wi . F Wi
S; S;

Using the intuition of importance sampling, we
have to make the selection aiming at making the
power associated with a ray constant. Since now
we have a vector of weights, an appropriate aver-
age of the elements can be kept close to constant.
Let us use a wavelength dependent additional
weighting function h to provide the weighted av-
erage of the weights, which can be either constant

or follow the visual sensitivity curve. Thus we in-
tend to keep

0
W,
FO . i = FO . p,.

Thus the selection probabilities s; are

DY O ~Wi(l) hy
S; = Zl F(l) ] hl

Note that this formula incorporates the spectral
properties of the radiance or importance carried
to the given reflection point in variable F'. Thus
when we arrive with green light at a red sur-
face, the selection probability will be automati-
cally zero. Either other elementary BRDFs take
the role or the walk is terminated.

Figure 2 shows the error curves of a path trac-
ing program implemented with the classical and
the spectral Russian roulette. The test scene of
the left figure was a room where the sum of the
albedo and the emission was 1 at each point and
on all wavelengths. In this case the solution can
be obtained analytically [8]. The diffuse albedo
of the walls for the three wavelengths was a dif-
ferent permutation of the values (1.0,0.5,0.2), to
simulate a scene with saturated colors. The test
scene of the right image was the standard Cornell
Box. For both test scenes, significantly less rays
were needed to achieve the same level of error.
We observed a speedup of 30 to 50 percent.

3 Russian-roulette with incoming radi-
ance estimation

The other main problem of Russian roulette is
that when the walk is terminated, it assumes that
the incoming radiance is zero. The additional
variance increase introduced by this assumption

)

Note that this variance can be significant if the
expected radiance is far from being zero and the
continuation probability is small. This can hap-
pen if the incoming illumination is large.

In order to attack this problem, assume that we
have some rough estimation L for the incoming
radiance L™ at the given point. When the walk
is decided to be terminated, we use this rough
estimate instead of assuming that the incoming
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Figure 2: Comparison conventional and the spectral Russian roulette for a “furnace” and for the

Cornell Box.

radiance is zero. If the walk is continued, then a
linear combination of the actually computed ra-
diance w/p- L™ and the reflection of this estimate
a- L is inserted in the estimator, that is, we use

0I5 a L.
p

where a is the local albedo, which also represents
the response for directionally uniform illumina-
tion. The a and S values of this linear combi-
nation can be determined from the requirement
that the expected value of this estimator should
be correct:

L™= s-(a-E [% : Lin} +ﬁ-a-i>+(1—s)~a-i.

From this requirement we obtain that

1-s
’ ﬁ:_ )

S

1
o= -
5

thus the estimator for continuing the walk is

er:w/p-Li“_ (1—5)-a-i'

S S

On the other hand, when the walk is terminated
the estimator is L'™" = a - L.

Let us compute the variance of this estimator:

D*[L"™] = s-E {<W/P'Lin e —8)'a'z>2-| +

A —

(1—s)-(al)? — E*[L*] =

1 w o 2
<——1)-E <—-Lm—a-L>
s p

Comparing this result to equation 2, we can con-
clude that the added variance of the random ter-
mination is reduced to

1 w . 2\ 2
(——1>~E <—-L‘“—a-L>
s b

This improvement can, for example, be used to
reduce the continuation probability and thus in-
crease the speed of the method. In order to eval-
uate the potential speed up, let us suppose that
the original Russian roulette uses s,;q while the
new method s,.,, continuation probability, which
are set to provide the same error. Solving the

(ol -
() ol

equation, we can obtain:

+D2 |:E 'Lin:| )
p

o 1y

Sold
(1 — Sold)/d+ 1

Snew =

where ~
E [(w/p L Lin _ [)?
E(w/p- L™)?]

is the goodness of estimation L.

In order to find the speed up ratio, we rely on the
fact that the average length of the random walk is
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1/(1—s), where s is the continuation probability.
The speed up is then the average number of the
rays to be shot by the old method divided by the
number of rays shot by the new method:

1/(1_Sold) o 1
1/(1_5new) B 1_(1_d)'50ld‘

speedup =

Note that this can be high if s,;4 is large and d is
small. In the optimal case, when d = 0, the speed
up is 1/(1 — so14), which means that the walk can
be stopped after the first hit.

The different techniques that can provide esti-
mations L are discussed in the next section. At
this point we should just emphasize that this es-
timation can be very rough, the modified Russian
roulette will compensate its error. However, the
speed up factor depends on the accuracy of this
estimation.

3.1 Estimating the incoming radiance
The incoming radiance L can be estimated either
from the analysis of the scene or from the data
gathered during a preprocessing phase.

classic Russian Roulette

Russian Roulette with variance reduction =------

1.96 |
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Figure 3: The effect of the global radiance

estimation.

Suppose that the scene is closed. In this case,
we can approximate the average radiance in the
scene, which can be regarded as an estimate for

L. The total emitted power of the light sources is

P° ://Le(a':‘,w)-cosO dZdw
5 Q

where S is the set of all surface points, L¢ is
the emitted radiance and 6 is the angle between

the direction of the emission and the surface nor-
mal. This emitted power will be multiplied by the
albedo at each reflection. Suppose that the aver-
age albedo in the scene is a. The reflected power
in the scene is the sum of the single reflection,
double reflection, etc., that is:

a®de
PP (G +at+...) = .
(@+a” +...) Tz
From the average power, we can obtain the aver-
age radiance:
~ 1 adc
L(Z,w) ~ — - .
(7 w) 7S 1-—a

We used a conservative estimate and did not take
into account the direct illumination in the esti-
mate of L. The reason is that the direct illumina-
tion can have high variation and can be estimated
poorly without computing it, which can result in
an overestimation of L. Examining the variance
formulae, we had better underestimate L.

Figure 3 shows the effects of the proposed esti-
mate. We can notice that the new method re-
quired about 30% less samples to achive the same
level of error.

4 Conclusions

In this paper we analyzed Russian roulette and
random elementary BRDF sampling. We con-
cluded that when combined BRDF's are sampled
with the probability densities of the elementary
BRDFs, then either the integrand decomposition
method or multiple importance sampling should
be used. We also proposed a spectral version of
Russian roulette and the random BRDF selection
and showed that this improvement resulted in 30-
50 percent speed up. Finally, we examined the
application of a simple estimate for the incom-
ing radiance for the case when Russian roulette
terminates the walk. Even if this estimate is ob-
tained from a single value, the speedup is an addi-
tional 30 percent. Our future goal is to use more
accurate estimates that are available in photon
map [3], or from virtual light sources [4], which
can result in more significant speedups.
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Figure 4: Cornell Chickens rendered by path tracing with classical Russian roulette (left), by
estimated reflected radiance and the image of pixels where the estimation is negative. We used 100
samples per pixel and the rendering time was 245 sec.
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