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Stability Properties of Constrained Queueing 
Systems and Scheduling Policies for 
Maximum Throughput in Multihop 

Radio Networks 
Leandros Tassiulas and Anthony Ephremides, Member, IEEE 

Abstruct-The stability of a queueing network with interde- 
pendent servers is considered. The dependency of servers is 
described by the definition of their subsets that can be activated 
simultaneously. Multihop packet radio networks (PRN’s) pro- 
vide a motivation for the consideration of this system. We study 
the problem of scheduling the server activation under the con- 
straints imposed by the dependency among them. The perfor- 
mance criterion of a scheduling policy m is its throughput that 
is characterized by its stability region C,, that is, the set of 
vectors of arrival rates for which the system is stable. A policy 
m,, is obtained which is optimal in the sense that its stability 
region Cn0 is a superset of the stability region of every other 
scheduling policy. The stability region Cmo is characterized. 
Finally, we study the behavior of the network for arrival rates 
that lie outside the stability region. Implications of the results in 
certain types of concurrent database and parallel processing 
systems are discussed. 

I. INTRODUCTION 

E consider a queueing network model that is suit- 
able for communication networks with interde- 

pendent service components. The queueing network has 
arbitrary topology and multiple servers. The servers are 
interdependent in that they cannot provide service simul- 
taneously. The dependency among them is reflected on 
the constraints which specify exactly which subsets of 
servers may be active simultaneously. For example, when 
the constrained queueing system is used as a model of a 
radio network, the servers correspond to the links and the 
constraints disallow simultaneous transmissions for neigh- 
boring links. We consider slotted time. At each time slot, 
routing decisions are taken for the served customers and 
eligible sets of servers are selected for activation. We 
assume that these decisions are made in a centralized 
fashion and are based on global knowledge of the queue 
lengths in the entire network. We assume that buffering 
at each queue is infinite. We consider the system to be 

Manuscript received August 8, 1991; revised April 25, 1092. Paper 
recommended by Associate Editor, K. W. Ross. 

L. Tassiulas is with the Department of Electrical Engineering, Poly- 
technic University, Brooklyn, NY 11201. 

A. Ephremides is with the Department of Electrical Engineering and 
Systems Research Center, University of Maryland, College Park, MD 
20142. 

IEEE Log Number 9204115. 

stable if the queues do not tend to increase without 
bound. We wish to find control policies under which the 
system is stable for given arrival and service rates. Indeed, 
we characterize the region of arrival and service rate 
vectors for which there exists some stabilizing policy, and 
do find a policy which in fact stabilizes the system for all 
arrival and service rate vectors in that region. Such a 
policy is in a sense optimal as far as throughput is con- 
cerned. 

Our main motivation for the consideration of this con- 
strained queueing network model is to study the resource 
allocation problem in multihop radio networks. We are 
interested in scheduled link activation schemes, as op- 
posed to random access methods, for sharing a common 
channel among neighboring nodes. In scheduled link acti- 
vation, a sequence S,, t = 1,2;.., of sets of links which 
may transmit simultaneously without conflicts is specified 
(the schedule) and at each slot t the links of the set S, are 
allowed to transmit. The link activation scheduling prob- 
lem is to determine the sequence S, in a fashion that 
optimizes some performance index. Most of the schemes 
for the scheduling problem have the following form. A 
sequence SI;.., S ,  of eligible link sets is selected and the 
entire schedule consists of periodic repetition of that 
sequence. Several approaches have been taken for the 
determination of the basic schedule sequence S,;.., S,. 
In [41,[61,[16], [18], and [20] different performance criteria 
are adopted and either optimal or suboptimal computa- 
tion of S,;.., S, follows. Special emphasis has been given 
in obtaining distributedly implementable algorithms for 
the design of S,;..,S,. In [19] the problem of optimal 
design of a fixed (state independent) schedule is consid- 
ered and results analogous to the golden ratio policy in a 
single-hop network [lo] are obtained. In 151 scheduling 
schemes are considered where the set of activated links at 
each slot is selected based on the network state in that 
slot. In this work, we consider dynamic link activation 
scheduling where the activated links at each slot are 
selected based on the queue lengths at all network nodes. 
The maximum throughput policy that we obtain for the 
constrained queueing model provides a link activation 
method that stabilizes the network for all arrival rates for 
which it is stabilizable. 
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In addition to multihop radio networks, the constrained 
queueing model is appropriate for other resource alloca- 
tion problems as well. A model of a database with concur- 
rency control and locking has been considered in [ l l ] ,  
[141, and [151; the constrained queueing system that we 
study in this paper captures that database model where 
the constraints reflect the locking constraints of the 
database and the policy that we propose provides a 
concurrency control algorithm that achieves maximum 
throughput. In [31, a generalized multiserver queue is 
proposed as a model of certain parallel processing sys- 
tems; that multiserver queue can also be modeled by an 
appropriate constrained queueing system. 

This paper is organized as follows. In Section 11, we 
describe the constrained queueing model. In Section 111, 
we state the stability performance criteria and we present 
the optimality results. In Section IV, the behavior of the 
system in the instability region is investigated. In Section 
V, we demonstrate how the constrained queueing system 
appropriately models multihop radio networks and certain 
computer systems. A few words about the notation before 
we proceed. The random quantities are denoted by upper 
case letters; for the nonrandom quantities we reserve the 
lower case letters. Vectors are denoted by boldface char- 
acters. A random process, that is, a sequence of random 
variables indexed by time is denoted by the same symbol 
as the random variables without the time index. 

11. THE CONSTRAINED QUEUEING MODEL 

We consider a network consisting of L nodes and N 
links. The connectivity of the system is represented by the 
directed graph G = (V ,  E ) ,  where V is the set of nodes 
and E is the set of links (Fig. 1). Each link corresponds to 
a server that serves customers residing at the origin node 
of the link; after service, the customers are directed to the 
destination node of the link. The origin and destination 
nodes of link i are denoted by q( i )  and Mi), respectively. 
The terms servers and links are used interchangeably in 
the following. A customer may enter the network at any 
node. Its destination is a subset of the network nodes in 
the sense that as long as the customer reaches any of 
these nodes it leaves the system. Each customer reaches 
its destination by appropriate routing through the net- 
work. There are J customer classes which are distin- 
guished by the destinations of the customers. The set of 
destination nodes for class j is y .  At each node 1 cus- 
tomers of all classes are queued, except of those classes j 
for which node 1 is a destination, that is 1 E (any 
customer of the latter classes leaves the system as long as 
it reaches node 1). We consider slotted time. At each slot 
t certain links originating from node 1 provide service; 
those are the active links at slot t .  Notice that the cus- 
tomers are not committed to specific outgoing links of a 
node 1 by the time they reach 1 but at the beginning of 
each slot a decision is taken which customers (of which 
classes) are allocated at which links. This decision corre- 
sponds to routing. 

Fig. 1. The connectivity graph of a constrained queueing network. 

There are constraints in the simultaneous activation of 
the serves in the sense that certain servers cannot provide 
service at the same time. An activation set is a set of 
servers which can be activated in the same slot. An 
activation set is represented by its activation vector, that is 
a binary vector with N elements; the ith element corre- 
sponds to server i, and is equal to 1 if server i belongs to 
the activation set and to 0 otherwise. The terms activation 
set and activation vector will be used interchangeably in 
the rest of the paper. The constraint set S consists of all 
activation vectors of the system; this set completely speci- 
fies the activation constraints. We make the following 
assumption about the structure of the constraint set which 
is natural in the systems we consider. 

C.l Every subset of an activation set is an activation set 
itself. 

At the beginning of each slot an activation set of links 
is selected that provide service during the slot. This is 
referred as scheduling in the following. 

A. Queue Length Dynamics 
The servers are synchronized to start service at the 

beginning of a time slot. At each slot, we control the 
system through the selection of the activation set and of 
the class of the customer assigned to each activated server 
for service. The binary variable E,,(t) indicates whether 
server i is activated in slot t or not and which customer 
class it serves; if E i j ( t )  = 1 server i is activated and serves 
a customer of class j otherwise it is not. A customer 
served by server i in slot t completes service with some 
probability m,. More specifically, we consider a binary 
variable M , ( t )  and a customer served by server i during 
slot t completes service and moves from queue q( i )  to 
queue h( i )  if M,( t )  = 1; otherwise it remains at queue 
q(i). The vector E(t )  = ( E i j ( [ ) :  i = l;.., N ,  j = l;..,J), 
indicates which class each server serves at slot t. A binary 
vector e = (ei,: i = I,... , N ,  j = l;.., J )  is a multiclass 
actication uector if the corresponding vectors e’ = ( e i j :  
i = l;.., N ) ,  j = l;..,J are such that Ci=,e’  E S. Let 8 
by the collection of all multiclass activation vectors. At 
each slot t the vector E(t )  is selected from the set 8. The 
decisions are based on the number of customers of each 
class in each queue. This information is represented as 
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follows. Let X,,(t)  be the number of customers of class j 
at queue I by the end of slot t (or the beginning of slot 
t + 1). The vector X(t) = (X,,( t):  1 = 1;-+, L ,  j = l;.., J )  
consists of the lengths of the queues of all customer 
classes and is called the multiclass queue length vector at 
slot t .  We denote by 2 the space where the vector X(t )  
lies. 

Consider a function g : 2 -  8; if g ( x )  = e = ( e I , :  i = 

l;.., N ,  j = l;.., J )  then denote the vector e J  by g’(x). 
An activation rule is a function g : Z +  8 with the prop- 
erty that no servers are considered activated for nonexist- 
ing customers, that is to say, the number of servers of 
queue 1 activated by the activation vector gJ(x)  are less 
than or equal to xI,; where servers of queue I are those 
servers i for which q( i )  = 1. A n  activation policy is a 
collection of activation rules g,, t = 1,2, ; at slot t we 
have E ( t )  =g , (X( t  - 1)). Until Section V, we consider 
stationary policies that is policies which use the same 
activation rule at each slot. In Section V, it will become 
clear that we do not gain anything with respect to stability 
if we consider nonstationary policies in addition to sta- 
tionary. The class of all stationary activation policies is 
denoted by H .  When the network is operated by policy 7~ 
with activation rule g, at slot t + 1 we have EJ(t + 1) = 

g’(X(t)) where EJ(t) = (EL,( t ) :  i = l,,.., N )  is the activa- 
tion vector of class j at slot t .  The state of the system 
evolves according to the following equation: 

X J ( t  + 1) = X J ( t )  + R J M ( t  + l )EJ(t  + 1) 

+ A’(t  + 1) t = 0, l;..,j = 1 ; s .  > J (2.1) 

where M ( t )  is a diagonal matrix, the ith diagonal element 
of which is equal to M , ( t ) , X J ( t )  = (X/ , ( t ) :  1 = l;.., L )  is 
the vector of the queue lengths of class j by the end of 
slot t ,  A’(t) = ( A , , ( t ) :  I = l;.., L )  is a vector with its Ith 
element A , , ( t )  being equal to the number of customers of 
class j arriving at queue I during slot t and RI is an 
L x N matrix that reflects the connectivities of the queues 
among themselves and with the destination node of class 
j .  Matrix RJ is called the routing matrix of class j .  The 
element of RI in its Ith row and ith column is 

1, if h( i )  = 1 and queue 1 is not connected 
with the destination node of class 1. 

r;, = [;I, i f q ( i )  = 1 
otherwise. 

We assume that (A/,(t))T= ,, {M,(t)):=, are i.i.d. sequences 
of random variables for all 1 = l;.., L ,  j = l;--,J, i = 
l;.., N .  Furthermore, we assume that the above processes 
are independent among themselves and the second mo- 
ments of the arrival processes E[A:,( t ) ]  are finite. Under 
those statistical assumptions and for any policy in H the 
queue length process {X(t))y= is a Markov chain. Finally, 
we make the following assumption concerning the topol- 
ogy of the network. 

C.2 If a customer of class j ,  may reach some queue I, 
then this customer may be forwarded from queue I ,  to 

some destination node of class j ,  if an appropriate route 
is selected. More specifically, if there is a sequence of 
servers i , ; . . ,  i, such that E[Aq(i,)j,(t)I > 0, h(i , )  = 

q ( i m + , ) ,  m = l , - .* ,n  - 1 then there exists a sequence of 
servers i ; ; . . ,  ik, such that the queue q( i l )  receives nonzero 
traffic of class j,, h(ih)  = q ( i h + , ) ,  m = 1;--,n’ - 1 and 
there exists a link in Ed from h(i; , )  to the destination 
node of class j,. 

111. STABILITY CONSIDERATIONS 

The system is stable if the queue length process reaches 
a steady state and does not blow to infinity. When the 
Markov chain X is irreducible, stability of the system is 
equivalent to ergodicity of X .  Under the general assump- 
tions we made about the constraint set and the topology 
of the queueing system we cannot guarantee irreducibility 
of the queue length process. In the general case, the state 
space is partitioned in transient and recurrent states. We 
consider the system to be stable if all recurrent states are 
positive recurrent and the queue length process hits the 
recurrent states with probability one; that is, X does not 
remain in the set of transient states forever. In the follow- 
ing, we state our definition of stability after we recall 
some basic facts from Markov chain theory ([121). 

A state x is reachable by some state y if P(X(t + n )  = 

xlX(t) = y) > 0 for some n 2 1. The states x and y com- 
municate if they are reachable by each other. A set of 
states R is closed if P(X(t + 1) = xlX(t) = y) = 0 for all 
y E R, x E R .  The state space of the chain is partitioned 
in the sets T ,  R , ,  R2;.., where Rj ,  j = 1,2;.., are closed 
sets of communicating states and T contains all states 
which do not belong to any closed set of communicating 
states and therefore are transient. For any x E T assume 
that X(0) = x and consider the time 

if X ( t )  E T ,  V t  > 0 
otherwise 

rx = ( % 7  

min ( t  > 0: X ( t )  E T } ,  

(3.1) 

at which the chain hits some of the sets R’ for the first 
time when it starts at t = 0 from state x .  If U , R j  = 0, 
then clearly rx = m. We can now define stability as fol- 
lows. 

Definition 3.1: The system is stable if for the queue 
length process X we have 

P ( r ,  < m) = 1 Vy E T (3.la) 

and all states x E U 4= R, are positive recurrent. 
The next theorem states sufficient conditions for the 

stability of the system according to Definition 3.1. Those 
conditions involve the drift of a test (Lyapunov) function 
on the state space of the chain. 

Theorem 3.1: Consider a Markov chain X(t )  with state 
space F. If there exists a lower bounded real function 
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I/: 2 -+ R, an E > 0 and a finite subset 2(, of 2 such that 

E [ V ( X ( t  + 1 ) )  - V ( X ( t ) ) ( X ( t )  = y] 5 - E  i f y  @gl. 
(3.2) 

E [ I / ( X ( t  + l))lx(r) = y] < x ify E,x;) (3.3) 

then for the time T~ as defined in (3.1) we have 

P ( T ~  < M) = 1 vx E T 

and all states x E U ;=, R, are positive recurrent. 

criteria for irreducible chains ([2]). 

A. Scheduling for Maximum Throughput 
We would like the system to be stable for a wide range 

of arrival rates. The arrival rate of class j to queue 1, 
E[A,,(t)l is denoted by a/,. The multiclass arrival rate 
vector a = (a/,: 1 = I ; - -  , L ,  j = l ; . . , J >  consists of the 
arrival rates of all classes at all queues. We quantify the 
performance of an activation policy by its stability region. 

Definition 3.2: Stability region C, of policy rr is the set 
of multiclass arrival rate vectors a for which the system is 
stable under rr. 

We wish a policy rr to have a large stability region. 
Roughly speaking, the largest the stability region the 
better the policy is. 

Definition 3.3: A policy rrl dominates another policy r r2  
if C,? c C,,. 

If policy rr, dominates policy rr2 the system is stable 
under rrl whenever it is stable under r r2  (Fig. 2). Two 
policies are not always comparable since it may be that no 
one dominates the other. This is the case for policies rr3 
and r r l  in Fig. 2. 

Proo$ The theorem is a trivial extension of Foster's 

Definition 3.4: The stability region of the system is 

c =  U e,. 
T €  G 

The set C contains all arrival rate vectors for which there 
exists a policy in H that stabilizes the system. An optimal 
policy, that is, one which dominates any other policy in H ,  
should have stability region that is a superset of the 
stability region of any other policy in H ;  therefore, it 
should have stability region equal to C. Such a policy is 
called a maximum throughput policy in the rest of the 
paper. Notice that since two policies may not have compa- 
rable stability regions, it is not clear at all whether a 
maximum throughput policy exists or not. One of our 
main results is that an optimal policy indeed exists. 

B. Maximum Throughput Policy 
The policy r0 that we specify next achieves maximum 

throughput. The activation rule for rro is denoted by 
go(.); the vector E(t) = go(X(t - 1)) is selected in three 
stages. Let us denote the service rate E[M,(t>l by m,;  the 
service rate vector is m = ( m , :  i = l;.., NI. 

Stage 1. For each server i a weight D,( t )  is selected as 
follows. For each class j and server i consider the follow- 

a f 

a 2 

Fig. 2. Stability region diagram. 

ing quantity: 

Let D,(t)  = maxi=,;,, {D,,(t)} be the weight of server i 
and D(t> = (Di(t>: i = l;.., N) the weight vector at slot t .  

Stage 2. A maximum weighted activation vector E is 
selected from S 

i. = arg max{DT(t)c}. 
C t S  

If more than one vector c achieves the maximum, i. is 
selected arbitra;ily among them. 

Stage 3. Let j ,  be the class for which D,(t)  = DLj;(t> for 
each server i;  if_more than one class satisfies the above 
inequality then j ,  can be any of these classes. The multi- 
class activation vector E(t) is as follows, 

1 ,  if c^, = 1 ,  j =; and Xq(,,,(t - 1) is 
greater than the number of servers 
that serve queue q( i )  

0, otherwise. 

E&) = 

Remarks: 
1) If D j j ( t )  is greater than zero and server i serves a 

customer of class j during slot t then the quantity Dj j ( t>  
tends to be reduced. That is, the difference between 
Xhci I j ( t> and Xqcj , j ( t )  is diminished. Policy rro selects E(t> 
such that the servers i and the corresponding classes j for 
which Djj ( t> is larger are activated. In other words, rro 
tends for each class to equalize the queue lengths of the 
same class in different network nodes, giving priority to 
the servers and classes for which this difference is larger. 

2) The implementation of policy rro requires the solu- 
tion of the following optimization problem at each time 
slot t :  

max{D'(t)c} (3.4) 
c r S  
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The number of possible activation vectors (the cardinality 
of SI is usually largely compared to the number of servers; 
in fact, it is of exponential order with respect to the 
number of servers most of the times. Therefore, the 
solution of the above optimization problem by exhaustive 
search of all activation vectors is usually out of the ques- 
tion. In certain cases, the constraint set S has a specific 
structure that can be utilized for the solution of (3.4). In 
Section V, the constraint sets are illustrated for several 
communication and computer systems. Finding efficient 
algorithms for the solution of (3.4) given the constraint set 
S in each particular application is important for the 
implementation of T". 

C. Characterization of the Stability Region 
We proceed now to characterize the system stability 

region C. The set C' that we specify next plays an essen- 
tial role in the characterization of C since, as it will be 
shown later C' c C c c, where F is the closure of C'; 
the closure of C' is well defined since C' is a subset of 
R L  '. The definition of C' involves deterministic flows in 
the graph G and the heuristic discussion that precedes its 
definition provides some intuition. 

Assume that the constrained queueing system is stable 
under some scheduling policy T and that it operates in 
steady state. Let f,, be the rate with which customers of 
class j are served by server i. Since the system is in steady 
state, the rate with which customers of class j enter some 
queue 1 should be equal to the rate with which customers 
of the same class leave the queue I; that is, the rates f , ,  
should satisfy the flow conservation equations in each 
network node. Consider a multicommodity arrival rate 
vector a and let a]  = (al,: 1 = l;.. , L )  be the vector which 
contains the arrival rates of class j at all network queues 
for j = l;.., J .  The vector f l  = ( f , , :  i = l;.., N )  that 
consists of nonnegative numbers and satisfies the flow 
conservation equations which are written in a matrix form 
as 

(3 .5)  a1 = - R l f l  

is called an a-admissible flow vector for class j .  The vector 
f = (f,,: i = l;.., N ,  j = l;.., J )  that consists of nonnega- 
tive numbers and is such that the corresponding vectors f' 
satisfy (3.5) for j = l ; - . , J  is an a-admissible multicom- 
modity flow vector. Let Fa be the set of all a-admissible 
multicommodity flo? vectors. Associated with a vnector 
f E Fa is the vector f = C:=,f'. The component of f that 
corresponds to server i is the total rate with which cus- 
tomers are servedA by server i, irrespectively of their 
classes; therefore, f is called total flow vector. The set C' 
is defined now as follows: 

C' = {a: there exists f E F,, c E c o ( S )  such that for the 

corresponding i we have m ;  'f: < c, if f: > 0 and 

f ,  = 0 if c, = 0 ) 

where COW the convex hull of the constraint set S. The 
closure of C' is characterized in the following lemma. 

? = {a: there exists an f E F,, and a c E c o ( S ) ,  

Lemma 3.1: The closure ? of C' is as follows: 

such that M - '  i 5 c }  

where M is the diagonal matrix with ith diagonal element 
equal to m, ,  i = l;.., N. 

Proot It appears in the appendix. 

D. Optimality Results 
The optimality of m0 and the characterization of C are 

stated in this section. Two lemmas precede the theorem. 
In the following lemma, we show that under ro  the 
system is stable in C'. It is shown that a quadratic func- 
tion of the queue length vector satisfies the conditions 
(3.2) and (3.3) therefore, stability follows from Theorem 
3.1. 

Lemma 3.2: Under policy r o  the system is stable for 
every a E C' 

C' c c,,, . 
Proof It appears in the appendix. 

Lemma 3.3: If a E (c)', then the system is unstable 
for any policy in H .  

Proof It appears in the appendix. 
Policy no achieves indeed maximum throughput as it is 

Theorem 3.2: The set C' characterizes the system stabil- 
stated in the following theorem. 

ity region in the sense 

C'CCCC 

and for the stability region of policy T ~ ,  we have 

C' c C,[) c c c c,,,. 
Proofi By definition of the system stability region we 

have C,,, c C and from Lemma 3.2 

C' c CTII c c. 

c c c' c c,,,. 

(3 4 
From Lemmas 3.2 and 3.3 we have the following: 

(3.7) 

The theorem follows from (3.6) and (3.7). 0 
Remarks: 
1) From the first part of Theorem 3.2 we have c - C 

c c' - C'. It is argued in the following that c - C' is 
the boundary of C' which is a surface (has no interior) in 
the space where a lies. We claim that for no a E - C' 
there exists no ball centered in a which belongs to C'. 
If a belongs to c' - C' then 6 a  does not belong to C' for 
any 6 > 1. This is because if 6a  E I?' then from the 
definition of C' and Lemma 3.1 we have that a belongs to 
C'. In this case a does not belong to c - C' which is a 
contradiction. From the above discussion we see that part 
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a of Theorem 3.2 determines C within a surface in the 
space where a lies, therefore, provides complete charac- 
terization of the stability region for any practical purpose. 
Similarly, part b implies that C,(, differs from C at most 
by a surface therefore, no achieves optimal throughput. 

2 )  In the definition of C', the condition for a pair a of 
arrival and service rate vectors to belong to C' is an 
existential one. It is desirable to have an algorithm to 
decide if a particular pair a belongs to C. Whether an 
efficient algorithm exists or not for this problem depends 
highly on the structure of S .  This problem has been 
studied in a different context in 111 and [7] for two specific 
constraint sets. For a constraint queueing system that 
corresponds to a packet radio network with no secondary 
interference tolerance (in the next section both the radio 
network and the corresponding queueing system are spec- 
ified), deciding whether an arrival rate vector a (m,  = 1, 
i = 1, ... , N) belongs to C' or not is an NP-hard problem 
as it has been shown in [l]. When secondary interference 
is tolerated, the corresponding problem has been shown 
in [7] to be solvable by an algorithm of polynomial time 
complexity. 

3 )  In the above study of the stability regions we did not 
take into account the time which is spent in the concen- 
tration and dissemination of control information as well 
as on the computation of the activation vector in every 
slot. If a time equal to a fraction f of the slot length is 
needed for the above functions then the transmission of a 
packet needs 1 + f  slots. Clearly, in this case an arrival 
rate vector a belongs to the stability region of the system 
if the vector (1 + f)a belongs to C as it has been defined 
earlier. 

IV. BEHAVIOR OF THE SYSTEM UNDER 
NONSTATIONARY POLICIES 

In this section, the behavior of the system under non- 
stationary policies is studied. We focus on systems with a 
single class of customers and we show that for arrival 
rates in (C'Y the total number of customers in the system 
grows to infinity a s .  for any possible scheduling policy. 
Since there is a stationary policy that stabilizes the system 
within C' the above result implies that we do not gain 
anything in stability by considering nonstationary policies. 

Consider a system with one class of incoming customers 
and assume that the service time of a customer is equal to 
one slot that is M l ( t )  = 1 a.s. for i = l;.., N ,  t = 1,2, ... . 
Let us denote by G the class of all policies n = {g,}T=, 
where g ,  is some rule for selecting E(t)  based on the 
whole history of queue lengths up to time t .  Since we have 
just one class of customers, we will denote the unique 
arrival rate vector and queue length vector of the class by 
a and X ( t ) ,  respectively, in the following; the multiclass 
activation vector E ( t )  at slot t coincides with the activa- 
tion vector for the unique customer class and a multicom- 
modity flow coincides with the corresponding total flow 
vector and both vectors are denoted by f. The following 
theorem is the main result of this section. 

Theorem 4.1: For every policy rr E G and arrival rate 
the total number of customers in the sys- vector a E 

tem Xf= ,X,(t> grows to infinity 
L 

lim ~ , ( t )  = x a s .  (4.1) 
I =  1 t - z  

In the proof of the theorem we use some results from 
deterministic network flow theory on a flow network that 
corresponds to the constrained queueing system. We 
briefly state that next. For more details the reader is 
referred to [ 171. 

For each arrival rate vector a and flow vector f, we 
consider a network Nor that consists of a graph Y = 

(V, E) ,  specifying the topology of the network and a 
capacity assignment to the edges Caf: E + R'. Graph Y 
is very similar to the topology graph of the queueing 
network. The set of nodes V contains one node i for each 
queue i of the network, an originator node o and a 
terminal node d. The set of edges E contains one edge 
( I ,  j )  for each server that serves queue I and directs traffic 
to queue j ,  one edge ( I , d )  for each server that serves 
queue I and directs traffic out of the system and one edge 
( 0 , 1 >  for each queue 1. The topology graph Y is the same 
for all vectors a and f. The capacities of the edges depend 
on the vectors a and f as follows. Each edge that corre- 
sponds to server k has capacity f k ;  each edge ( o , l )  has 
capacity a,. The vector q = (q l :  i E E )  which is such that 
0 I q, I Ca,(i) and which satisfies the flow conservation 
equations 

c 4, = c 4, i f 1  E ( V -  { o , d ) )  (4.2) 
I t e rmina tes  I originatcs 

a t  1 a t  1 

is a feasible flow vector for the network N,, . Let Q,, be 
the set of feasible flows. The flow transfer 4 of a flow 
vector q is defined by q = Ef= ,q(o, [). We need to consider 
the maximum flow transfer over all feasible flows in Q,, . 
That is, denoted by 

4af  = max4 (4.3) 
q t Q . r  

and is called maxflow in the following. An alternative 
characterization of the maxflow, which we need in the 
following, is given by the maxflow-mincut theorem. We 
need the notion of a cut to state that theorem. A cut 
(W,  W ' )  of the network N,, is a partition of V such that 
o E W and d E W'. The capacity C,,((W, "'1) of the cut 
(W,W')  is defined as the sum of the capacities of the 
edges which are directed from W to W'.  (We denote both 
the capacity of an edge and the capacity of a cut by 
Car(.).) A mincut of the network N,, is a cut of minimum 
capacity. In the following (W,  W')af denotes a mincut of 
N,, and Waf, W:, refer to the sets W, W' ,  respectively, of 
(W, W'),,. 

Muxflow-Mincut Theorem ([I 71): 

4 a f  = Caf( ( W ,  W' >a,>. 

The next lemma precedes the proof of Theorem 4.1. 
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Lemma 4.1: If a E (c)', then there exists f ,  E c d S )  
such that 

Proofi Since the set of edges { ( o , f ) :  f = l;.., L )  is a 
cut with capacity E:= ,a,, for every f E co(S)  we have the 
following: 

(4.4) 

It is enough for the proof of the lemma to show that the 
equality in (4.4) does not hold and that the maximum is 
actually achieved. The capacity of a cut is a continuous 
function of f. The capacity of a mincut C,,((W, W'),,) is 
continuous in f as a maximum of finitely many continuous 
functions. Since C,, (( W ,  W'),,) is continuous in f, its maxi- 
mum value when f E co(S) is achieved for some f ,  E 

co(S). It is enough to show that E;= la, > C,,>(W, l+"),f<,) 
> 0. Assume that C,,,((W, W')af,l) = E:= ,a l .  Then, from 
the maxflow-mincut theorem, there exists q" E Q,, such 
that 

qc",,;, = a, i = l;.., L .  (4.5a) 

From (4.5a) and the flow conservation equations (4.2) 
which should be satisfied by q", we conclude that the 
elements of q' that correspond to the servers (recall that 
some of the links of Y correspond to the servers), consti- 
tute a vector that belongs to Fa. That vector belongs to 
co(S) as well, as it is implied by the capacity constraints 
and the fact that f ,  E co(S). This is a contradiction since 

Corollay 4.1: There exists an E > 0 such that for every 
a E (0. 0 

f E co(S), we have 

Proot From Lemma 4.1 we have the following: 

L L 

= E > 0 .  (4.6) 

In the left-hand side of (4.6) the capacities of the forward 
edges of (W,  W'),, that originate from o cancel out with 

the corresponding a',s and we have 

which completes the proof of the corollary. 0 
Now we proceed to the proof of Theorem (4.1). 

Proof of Theorem 4.1: We show first the following: 

(4.7) 

For each Q c {l;.., L} ,  from (2.1) we have 

Each edge which has both end nodes in Q contributes a 1 
and a - 1 in C I  E Q(RE(t))r,  each edge directed to a node 
in Q from a node outside of Q contributes a 1 and each 
edge directed from a node of Q to a node out of Q 
contributes a - 1; hence, we have 

where E(/,, ,(t) denotes the component of E ( t )  that corre- 
sponds to the link (1, j ) .  From (4.8) and (4.9) after iterative 
substitutions we get the following: 

( I ,  j ) E E  

(4.10) 

Consider the vector M t )  = (l/t)L:= l E ( ~ )  that belongs to 
co(S) and the flow network Nab((). From Corollary 4.1 we 
get the following: 

where E is as defined there. From relations (4.10) and 
(4.11) we get the following: 

that shows (4.7). For any set Q c {l;.., L )  the random 
variables (EltQ(A[(7)  - a,) + E ) ,  T = 1,2,..., are i.i.d. 
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with expected value E > 0 hence, we have the following: 

VQ E {l;.., L } .  (4.12) 

0 
Remark: A similar result can be obtained in the same 

manner for the case with multiple classes of traffic. The 
graph Y of the corresponding flow network should contain 
one node for every network node and traffic class of the 
constrained queueing system. 

From (4.7) and (4.11) we get (4.1). 

V. APPLICATIONS 
In this section, we present some practical systems for 

which the constrained queueing system is an appropriate 
model. Before we proceed to specific examples of con- 
strained queueing systems we discuss one class of activa- 
tion constraints which are encountered in several practical 
systems; those are the constraints of the conflicting pair 
type. In those kinds of constraints, certain pairs of servers, 
the conflicting pairs, are specified; no two servers that 
constitute a conflicting pair can be activated simultane- 
ously. An activation set is any set of servers that does not 
include any conflicting pair of servers. In this case, the 
constraint set has a nice representation. Consider an 
undirected graph G = (V,  E )  where V is the set of servers 
and E contains a link ( i ,  j )  if servers i and j are a 
conflicting pair. The constraint set contains all indepen- 
dent sets of nodes, that is, all sets such that no two nodes 
of the set are connected by a link. If the constraints are of 
the conflicting pair type, then the solution of the opti- 
mization Problem 3.4 is equivalent to the computation of 
the maximum weighted independent set of the graph that 
represents the constraints. 

A. Multihop Radio Networks 
A radio network consists of N nodes the radio connec- 

tivities of which are specified by the topology graph G = 

(V,  E) .  Each node of V corresponds to a radio node and a 
directed link ( u , w )  from node U to node w denotes that 
node w is within the transmission range of node c. A 
node L’ may communicate directly with node w if node w 
is within the transmission range of node c; otherwise the 
message from node c has to be forwarded to node w 
through other nodes. A link of the topology graph corre- 
sponds to a radio link. A packet entering the system at 
some node i may have as eventual destination any node of 
a set of nodes SJ in the sense that whichever node of S, 
the packet reaches it leaves the system. This assumption 
corresponds to the case where the actual destination of 
the packet is some node outside of the radio network 
which is connected through wired link connections with 
all nodes of SJ. Therefore, after a packet reaches a node 
of S, it does not need the resources of the radio network 
any more. We consider a multidestination system with J 
sets of eventual destinations S , ; . . ,  S,. Notice that two 

destination sets S, and S, may overlap. We distinguish 
the packets in different classes according to their eventual 
destinations. The packet length is constant and the system 
is slotted with slot length equal to the packet length. The 
transmissions are synchronized to start in the beginning of 
a slot. At each slot, t A, ,( t)  packets of class j arrive at 
node i from outside. There are constraints in the simulta- 
neous transmissions of neighboring links. Those con- 
straints depend on several different factors; some of them 
are the number of transceivers per node, the signaling 
forms used, the available frequency bands etc. The con- 
straints vary in different networks. Two typical conflict 
constraints are the following: 

1) If there is a single transceiver per node then at each 
time instant node i may either transmit to exactly one 
other node j or receive from exactly one other node j 
without conflicts. 

2) If there is a single frequency band then the transmis- 
sion of node i to node j is received without conflicts only 
if all the other nodes that have in their range node j are 
silent. 

In a network with a single frequency band and one 
transceiver per node both constraints should be satisfied 
at each time in order to have conflict free transmissions. 
We refer to those networks as networks with no secondary 
interference tolerance. If spread spectrum signaling is 
used, then a node which is within the transmission range 
of several transmitting nodes may lock in the transmission 
of one of them which receives without interference from 
the others. In this case, the second constraint is not 
necessary for conflict free transmissions and we say that 
secondary interference is tolerated. Any set of links can 
transmit simultaneously without conflicts if the conflict 
constraints are satisfied; any such set is called a transmis- 
sion set. When secondary interference is tolerated, trans- 
mission set is any set of links such that no two links of the 
set share a common node; any such set is a matching of 
graph G. 

The radio network is modeled by a constrained queue- 
ing system with 1V1 queues and IEl servers. Each queue 
corresponds to a network node and each server to a radio 
link. There are J customer classes; each class contains 
packets with a specific destination. The service process 
{M[( t ) r= ,  of a link i has the following interpretation. If 
link i transmits at slot t the packet is correctly received if 
M,( t )  = 1, otherwise, it is lost and has to be retransmitted. 
Note that since we select the transmitting links at each 
slot such that conflicts are avoided, the possible packet 
losses which are modeled by the service process are due 
to channel inefficiencies. A set of servers constitute an 
activation set if the corresponding set of links of the radio 
network is a transmission set. The topology graph G = 

(V’,  E’)  of the constrained queueing system is very similar 
to G. The set of nodes V’ is the union of Vg‘ and Vi 
where Vg‘ is identical to V and V& contains one node for 
each packet class. The set of links is E‘ = E: U E; where 
E: is identical to E and E; contains a link ( u , w )  from 
node c E Vi to node w E V& if node c of the radio 
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network belongs to the destination set SI of the class of 
packets that correspond to node w E V;. When secondary 
interference is tolerated the constrained set S contains all 
matchings of G where the weights are updated at each 
slot. 

B. Databases with Concurrency Control 
In databases where concurrent processing of several 

transactions is possible a control mechanism is needed to 
prevent conflicting transactions (transactions which may 
try to alter the same items of the database) from being 
executed simultaneously. The constrained queueing model 
that is considered provides a model for concurrent pro- 
cessing in databases and the constraints in the simultane- 
ous server activation captures the constraint in the simul- 
taneous processing of conflicting transactions; further- 
more the maximum throughput policy ro that we have 
specified earlier provides a concurrency control mecha- 
nism that achieves maximum throughput. The following 
model for databases with concurrency control has been 
considered in [ill, [14], and [151. 

The database consists of N items. The processing of a 
transaction requires a set of the items of the database; 
some of these items need to be exclusively allocated to 
the transaction while the rest may be used by several 
transactions simultaneously as long as no transaction de- 
mands them exclusively. A transaction j specifies by two 
disjoint sets of items ": and R, where is the set of 
items that should be exclusively allocated (locked) during 
the processing of j and R, the set of items that need not 
be exclusively locked by j. Two transactions j and 1 may 
be processed simultaneously if no transaction needs to 
lock exclusively the items which are needed by the other 
transaction; that is, the two transactions may be processed 
simultaneously if 

(U: n W,) U ( y  n R,)  U (w, n R,) = 0. (5.1) 

There are J different transaction classes. Each class is 
characterized by the set of items that the transactions 
need to lock exclusively and nonexclusively. Transactions 
of each class are generated according to Poisson point 
processes. A transaction may be queued for processing if 
it cannot be processed at the time that it is generated. 
Assume that the processing time of a transaction is con- 
stant and the same for all classes. The processing of all 
transactions is synchronized to start at the same time. At 
the time instant that a new processing phase is initiated, a 
decision is taken which set of nonconflicting transactions 
should be selected; this decision can be based on the 
number of transactions of each class which are in the 
system at that time. The above database model corre- 
sponds to a constrained queueing system with J parallel 
queues, J servers one for each queue and J customer 
(transaction) classes. Each queue i receives customers of 
class i only and a served customer is always routed out of 
the system. Activation set is any set of servers that serve 
nonconflictine transaction classes. Note that the con- 

straints in this case are of the conflicting pair type. The 
policy r,, selects for processing at each slot the eligible 
set of transaction classes for which the sum of queue 
lengths is maximum. The stability region of the system is 
equal to the convex hull of the constraint set S.  

C. Parallel Processing 
The generalized multiserver queue has been proposed 

in [3] as a model for certain parallel processing systems. 
The multiserver queue has N servers; the customers 
arrive with rate A; each customer requests to engage a 
random number k of servers (processors) for its service; 
the arrival rate of customers that request k servers is Ap, 
where C,"=, p n  = 1. The total number of servers requested 
by the customers which are served simultaneously should 
be less than or equal to N at each time instant t .  

The multiserver queue as specified above corresponds 
to the following constrained queueing system. There are 
N classes of arriving customers and N queues. Customers 
of class k arrive exclusively in queue k with rate Ap, and 
they correspond to the customers of the multiserver queue 
that need to engage k servers. There are N servers at 
each queue. After service completion a customer leaves 
the system. The element of an activation vector i that 
correspond to server m of queue I is denoted by i lm.  The 
necessary and sufficient condition for a binary vector with 
N 2  elements to be an activation vector Is 

N 

In [3],  under the assumptions of stationarity and ergodic- 
ity of the arrival processes and the service times a 
scheduling policy that stabilizes the queue is obtained. 

Under the assumption of Poisson arrivals and constant 
service times, the policy r,, that we propose here stabi- 
lizes the system as well. The assumption about the statis- 
tics of the arrival and service processes are more restric- 
tive in the latter case. The corresponding policy T,, though 
stabilizes the system without knowledge of the parameters 
( p ,  ;.., p N ) .  The knowledge of these parameters is neces- 
sary for the stabilization of the system by the policy 
proposed in [31. 

VI. DISCUSSION 

In this paper, a constrained queueing system has been 
considered that models the resource allocation problem in 
multihop radio networks. A maximum throughput policy 
ro has been obtained and the stability region of the 
system has been characterized. Policy rr,, decides which 
servers are activated at each slot. The decisions are taken 
in a centralized manner, therefore, the queue length 
information needs to be concentrated; furthermore, the 
computation of the maximum weighted activation set can 
be complex depending on the structure of the constraint 
set. The centralized nature of the policy makes its imple- " 1 I  
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mentation difficult in cases where the state information is 
distributed in different nodes like in the case of radio 
networks. It is of interest to find simpler scheduling poli- 
cies with the same stabilizability properties that are 
amenable to distributed implementation. 

We have studied the constrained queueing system un- 
der the assumption of slotted operation where the servers 
are synchronized to start service simultaneously in the 
beginning of the slot. This assumption appears to be 
restrictive in certain cases. For example, in the database 
model, in order for this assumption to hold, all the trans- 
actions should have the same length such that they finish 
their processing simultaneously. Obtaining stabilizing 
policies in the case where customers have different service 
times is a problem for further investigation. 

APPENDIX 
The property of the convex hull of the constraint set, 

stated in the next lemma is used in the proofs of this 
section. 

Lemma A.1: If a vector c belongs to co(S), then any 
vector a such that 0 2 a I c belongs to co(S)  as well. 

Proof The proof of the lemma follows easily from 
assumption C.l and is omitted for brevity. 

Proof of Lemma 3.1: We denote by B the set which we 
want to show that is equal c‘. We first show that all points 
of B are points of closure of C’, therefore, B c p .  
Suppose that for the vector a there exist f E Fa, c E co(S)  
such that M-’f 2 c. Consider the vectors a,,, n = 1;.., 
such that a, = ((1 - ( l / n > )  al l :  j = l;.., .I, j = l;.., N )  
and the multicommodity flows f, = ((1 - ( l / n ) )  f,’: j = 

l;.., J ,  i = l;.., N ) .  We can easily verify that f E Fa, 
implies th$ f, E Fa,. Furthermore, since M-’f  I c we 
get (M-’RI  - (l/n)>, < c, if <~- ‘ f i ,  > 0. Hence, we 
have a,, E C for every n = l;.. . The limit of the se- 
quence a, is a, therefore we have a E c‘. 

Now we show that all points of closure of C’ belong to 
B therefore c‘ c B. Suppose that a, E c‘, then there 
exists a sequence a, n = l;.., such that a, E C and 
limn ~I a,,, = a. Since ,a, E C, there exjst f, E Fan, c, E 
co(S) such that ( M i ’ f , ) ,  < c, if (M;’f,), > 0. We show 
that there exist f E Fa, c E co(S) such that M-’f I c 
which imply that a belongs to B. We can assume that for 
each class j, the server utilization vector fi, is acyclic in 
the sense that there is no sequence of queues 41,..‘,4n 
such that there exists a server i that directs traffic of class 
j from qr to 4 / + ,  1 = l; . . ,n - 1, 4, to 41 and (fi,), > 0, 
1 = l;.., n. If some f i  is not acyclic, we can easily make it 
without violating the rest of the conditions that f, satis- 
fies. Note, furthermore, that if fi, is acyclic, then 

I l f J  I sllal,ll (A.4)  

where 1 1 .  I I  is the square norm of R“ and 4 depends only 
on the topological structure of the system that is numbers 
of servers, queues, customer classes, and the connectivity. 
Since al, 4 a’ the sequence of flows fi, is bounded be- 
cause of (A.4) therefore there exists a subsequence f i k  
that converges to some vector f’. Notice that f’ is a flow 

vector for class j since 

lla’ + R’f’ll = llal + R’f’ - (aik + R1fik)ll 

- < /la’ - aikII + IIR’(f’ - fik)II + 0 

therefore we have 

Since the above holds for every f’ we conclude that there 
exist a subsequence of multicommodity flows f,, such that 

a1 = -R’f’. 

f,! E Fa.,, f,, + f, M - ’ f n I  5 c, , .  (A.5) 

Since c,! E co(S) ,  I = 1;.-, and co(S) is closed and 
bounded there exists a subsequence cn ik ,  k = l;.., that 
convfrges to a vector c E co(S). From (AS) we have 
M-’f,,k I cnIk  and by taking the limits on both sides of 

0 
Proof of Lemma 3.2: For each vector a E C we show 

that the queue length process satisfies the conditions of 
Theorem 3.1. Consider the function V : P +  Rf defined 
as V(X(t)) = Cf= E:= , (X , , ( t ) )2 .  We show that if a E C 
and E > 0 there exists a positive number b which may be 
a function of E ,  a and of the second-order moments of the 
arrival process, such that 

the inequality we get M-’f  I c. 

E[V(X(t + 1)) - V(X(t))lX(t)] < - - E  

E[V(X(t + 1)) - V(X(t))lX(t)] < x 

if V(X(t)) 2 b.  (A.6) 
Furthermore we show that 

VX(t) EP.  

(A.7) 
Note that the set S, = {x: V(x) < b} is finite; therefore, 
relations (A.6) and (A.7) are the sufficient conditions for 
stability stated in Theorem 3.1. We now proceed to show 
(A.6) and (A.7). After some calculations and using (2.1) 
we get the following: 

E[V(X(t + 1)) - V(x(t)>IX(t>l 
J 

= E[(X’(t + 1))7x’( t  + 1) 
I =  1 

- (XI(  t )) X’(t) IX(t)] 

. (X’(t + 1) + X’(t))lX(t)] 

J 
= E[(X’(t  + 1) - XJ(t) )T 

J = 1  

= E[(R’M(t + l)E’(t + 1) 
I =  1 

+ A ’ ( t  + 1))T(2X’(t)  

+RIM( t + 1)E’( t + 1) + A’(t  + l))lX( 1 ) ]  

J 
= E [  (RIM( t + 1)E’( t + 1) + A’( t + l))T 

] = 1  

.(RIM( t + 1)E’( t + 1) + A’( t + l))lX( t ) ]  

+ 6[2 (RJM(t  + l)E’(t + 1) 
I =  1 

+ A l ( t  + l))‘X1(t)lX(t)]. (A.8) 
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where a’ is the transpose of vector a. The first term in the 
sum in the right-hand side of (A.8) can be bounded for all 
states X(t> by a constant, let us say b,, as we show in the 
following. By simple calculations we have 

element of the vector Xj(t)’RJM is equal to -Dij(t + 1) 
where Djj(t  + 1) is as it has been defined in stage 1 of 
policy no. From the definition of r0  we have for all 
j = l;.., J 

E [ ( R ’ M ( t  + l )EJ ( t  + 1) + AJ(t + l ) )T  XJ(t)TRJMgh(X(t)) = -(D(t + l))‘g/,(X(t)) 

therefore for the first term in the right-hand side of (A.ll) 
we have the following: 

J =  1 

. (RIM( t + 1)E’( t + 1) + A’( t + l))lX( t ) ]  

J L  J L  

= C C E [ ( A / j ( f  + ‘1)‘ + 2 C C + 111 C 2X’(t)‘RJM,/,(X(t)) = -2(D(t + 1))‘ g/j(X(t)). 
] = I  I = l  j =  1 ] = 1  J = 1  

. E [ ( R ’ M ( t  + l)E’(t  + l))ilX(t)] 

+ c 
(A.12) 

Since a E C, there exists a, multiclass flow f with corre- 
sponding total flow vecnor f, and a vector q E co(S) such 
that f E Fa and mf-’f, < q, if q, > 0, f, = 0 if q, = 0. 
Hence, we have 

J L  

E [ ( ( R , M ( t  + 1)EJ( t  + l))i)*lX(t)] 
j = 1 / = 1  

(A.9) 

where the notation (a), denotes the lth element of vector 
a inside the parenthesis. The term ( R ’ M ( t  + l)E’(t + 1))/ 
is upper bounded by the number of servers that direct 
traffic to queue I thus by N as well. Similarly, ( (R’M( t  + 

a /  = -RJfl j = 1, ... , J  (A.13) 

and there exist > such that for = 17 . ’*7  

l)Ej(t + 1)),)* is upperbounded by N 2 .  Thus, from (A.91, 
we have the following: (A.14) 

J Relaticn (A.14) together with Lemma A.l imply that 
6Mp’f E co(S). Thus, we have E [ ( R ’ M ( t  + 1)E’(t + 1) + Aj( t  + 1))’ 

j =  1 

IS1 
. ( R i M ( t  + 1)E’(t + 1) + Ai(t + l ) ) lx ( t ) ]  6 M - ’ i =  -yici 

where c i  E S, -yj 2 0 for i = l;.., IS1 and Ef!l-yi 2 1. Al- 
ternatively, we have 

i =  1 J L  

5 c c E[(A/j( t  + l))*] 
j = 1  l = 1  

.I L 
+ 2 ~  2 CE[A,,-(~ + 111 + LJN* = b,.  

j = 1  / = 1  

(A.lO) 

IS1 

M - ’ i =  A,c ,  (A.15) 
i =  1 

For the second term of the sum in the right-hand side of 
(A.8) we have the following: 

where A; = (Y i /6 )7  that is Ai 2 0, 1’i < 1. The second 
term of the sum in the right-hand side of (A.111, after 
substitutions from (A.13) and (A. 151, becomes 

2 E [ 2 ( R i M ( t  + l )Ei( t  + 1) 
j = l  

+Ai(t  + l ) )T.Xi( t ) lX(t)]  

J 
= 2(Xi(t))‘E[R’M(t + l)E’(t + l)lX(t)] 

j =  1 

J 

+ 2(Xj(t))’E[A’(t + l ) lx ( t ) ]  
j = 1  

J 

= 2(D’(t + 1))‘M-lfj 
j =  1 

J 

- < 2 max ((D’(t + 1))‘)M-’ f i  
j =  l;.., J j =  1 

J k = 2(D(t + 1))‘M-li (A.16) 

where D’(t) = (Df,(t), i = l;.., N ) .  By replacing M-’fin 
(A.16) from (A.151, we get 

= ~ ( X ’ ( ~ ) ) ‘ R I M ~ ; ( X ( ~ ) )  + c ~ ( x J ( ~ ) I ‘ ~ J  
I =  1 ] = 1  

(A.11) 

M = E[M(t) l .  From (AA), (A.101, and (A.ll) the relation 
where go is the activation rule that corresponds to no and 

(A.7) follows. It remains to show (A.6). Notice that the ith 

J IS1 

r= l  
C 2(X’(t))‘a1 2 2(D(t + l ) ) T  

j = 1  

A,c,. (A.16) 
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(A.17) 

From the definition of the no we have From the definition of no we have 
J 

max{(D(t + 1 ) ) ' ~ )  max{(D(t + 1))'CJ 2 (D(t + 1))' c sf,(X(t>> c t S  
I =  1 c E s 

s max{(D(t + l ) )Tc}  - N 2  

2 (D(t + 1 ) ) ' ~  - N 2  

C € S  

Vc E S .  
(A.18) 

The first relation in (A.18) is an inequality instead of 
equality since a certain number of links which should be 
activated according to the vector c  ̂ selected in stage 2 of 
no, are deffered from activation in stage 3. The second 
relation holds since the defferment from activation of 
certain links mentioned earlier, decreases the quantity 
max, {D(t + 1ITc) at most by N 2 .  Relations (A.17) and 
(A.18) imply that 

E[2(RJM(t  + l ) E J ( t  + 1) + a'( t  + 1))'X1(f)lX(t)] 
j =  1 

- < -2max{(D(t + l ) )Tc}  
C € S  

IS1 

+ N 2  + 2(D(t + 1))'c A,c, 
1 = l  

< ' J "  min m,. (A.24) 
- L JL l = i , . . . , ~  

From (A.19) and (A.241, we get 
J 

E[2(RJM(t  + l )E ' ( t  + 1) + AI(t + l))'X'(t)lX(t)] 
J =  1 

(A.25) 

if V ( X ( t ) )  2 b. (A.26) 
If we take 

+ l ) ) 'c}  + N 2 .  
L(E + b ,  + N 2 )  

2(1 - ~ ~ ~ l A l ) m ~ n l = , , , ~ m l  
(A.19) b = JL 

The term - 2(1 - Cl!, A i )  max, {(D(t + 1))'~) can be 
as small as we like if V(X(t ) )  is sufficiently large. Note 
first that, as V(X(t)) grows, the components of X(t> grow 
as well, that is if we have V(X(t)) 2 b then we get 

(A.20) 

Let 

( l o 7 j o )  = arg max { X , , ( f ) } .  (A.21) [ = I  ... L 
j =  l; . . ,  J 

3 ,  

Consider a sequence of queues 1 , , , 1 1 , ~ ~ ~ , 1 , ,  n I L such 
that there is a server that directs traffic of class j ,  from 
queue I ,  to queue lmil, 0 I m < n and from queue I ,  
out of the system; such a sequence exists by assumption 

then (A.6) follows. 0 
Proof of Lemma 3.3: Suppose that a E (plc and the 

system is stable under some policy +. There is a closed set 
of communicating states RI  such that all states in RI  are 
positive recurrent. For the rest of the proof we consider 
the Markov chain restricted in RI. The restricted Markov 
chain is positive recurrent and therefore ergodic. We can 
easily see that since X(t) is ergodic Markov chain, M(t) an 
i.i.d. process and M(t) is independent of (X(O);-.,X(t - 
l)), the process (X(t - l), M(t)) is a Markov chain which 
is ergodic as well. Consider the vector E'(t) = M(t)g'(X(t 
- 1)) where 2 is the activation rule of 6. Its ith element 
is equal to 1 if during slot t a customer of class j which is 
served by server i completes service and moves from 
queue q ( i )  to Mi). The vector C:=,E'(T) indicates how 
many customers of class j have crossed each server during 



1948 IEEE TRANSACTIONS O N  AUTOMATlC CONTROL, VOL 37. NO 12, DECEMBER 1997 

slots 1 to t .  Since ( X ( t  - l),M(t)) is ergodic, the normal- 
ized sum l/tE:= ,E(T) converges a s .  as t + 00 to a vector 
f’ which indicates the average number of class j cus- 
tomers that cross each server i. In each queue 1 and for 
each class j the average number of incoming customers 
should be equal to the average number of outgoing cus- 
tomers since otherwise X,,(t) goes a s .  to infinity and the 
chain cannot be positive recurrent. Hence, we have a’ = 

-RJfJ  and the vector f = (f,,: i = I;.., N ,  j = I;.., J )  
belongs to Fa wher? f,, is the ith element of yector f’. 
We show now that f = C:=,f’ is such that M-’f E COLS) 
therefore we get a E which is a contradiction. Con- 
sider the vector I ( t )  = C:= ,E’(t). We have 

J 

and because of the ergodicity of ( X ( t  - l),M(t)) we have 

1 J 
M(t)  C g ( X ( t  - 1)) 

j =  1 
(A.27) 

where the expectation is taken with respect to the station- 
ary probability distribution of (X(t - l>,M(t)). Since for 
each slot t ,  X ( t  - 1) and M(t) are independent, we have 

J J 

j =  1 

(A.28) 

Since for all X ( t  - 1) we have E:= , g ( X ( t  - 1)) E co(S), 
clearly E[Cf=,g(X(t - l))] E C O ( ; )  as well and from 
(A.27) and (A.28) we get that M -  ’ f belongs to co(S). 0 
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