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Abstract. We present an automatic iterative abstraction-refinement methodol-
ogy in which the initial abstract model is generated by an automatic analysis of
the control structures in the program to be verified. Abstract models may admit
erroneous (or “spurious”) counterexamples. We devise new symbolic techniques
which analyze such counterexamples and refine the abstract model correspond-
ingly. The refinement algorithm keeps the size of the abstract state space small
due to the use of abstraction functions which distinguish many degrees of abstrac-
tion for each program variable. We describe an implementation of our method-
ology in NuSMV. Practical experiments including a large Fujitsu IP core design
with about 500 latches and 10000 lines of SMV code confirm the effectiveness of
our approach.

1 Introduction

The state explosion problem remains a major hurdle in applying model checking to
large industrial designs. Abstraction is certainly the most important technique for han-
dling this problem. In fact, it is essential for verifying designs of industrial complex-
ity. Currently, abstraction is typically a manual process, often requiring considerable
creativity. In order for model checking to be used more widely in industry, automatic
techniques are needed for generating abstractions. In this paper, we describe an auto-
matic abstraction technique for ACTL

	
specifications which is based on an analysis of

the structure of formulas appearing in the program (

����� 	

is a fragment of
���� 	

which only allows universal quantification over paths). In general, our technique com-
putes an upper approximation of the original program. Thus, when a specification is
true in the abstract model, it will also be true in the concrete design. However, if the
specification is false in the abstract model, the counterexample may be the result of
some behavior in the approximation which is not present in the original model. When
this happens, it is necessary to refine the abstraction so that the behavior which caused
the erroneous counterexample is eliminated. The main contribution of this paper is an
efficient automatic refinement technique which uses information obtained from erro-
neous counterexamples. The refinement algorithm keeps the size of the abstract state
�

This research is sponsored by the Semiconductor Research Corporation (SRC) under Contract
No. 97-DJ-294, the National Science Foundation (NSF) under Grant No. CCR-9505472, and
the Max Kade Foundation. One of the authors is also supported by Austrian Science Fund
Project N Z29-INF. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of SRC, NSF, or
the United States Government.



space small due to the use of abstraction functions which distinguish many degrees of
abstraction for each program variable. Practical experiments including a large Fujitsu
IP core design with about 500 latches and 10000 lines of SMV code confirm the com-
petitiveness of our implementation. Although our current implementation is based on
NuSMV, it is in principle not limited to the input language of SMV and can be applied
to other languages.

Our paper follows the general framework established by Clarke, Grumberg, and
Long [10]. We assume that the reader has some familiarity with that framework. In
our methodology, atomic formulas are automatically extracted from the program that
describes the model. The atomic formulas are similar to the predicates used for abstrac-
tion by Graf and Saidi [13] and later in [11, 20]. However, instead of using the atomic
formulas to generate an abstract global transition system, we use them to construct an
explicit abstraction function. The abstraction function preserves logical relationships
among the atomic formulas instead of treating them as independent propositions. The
initial abstract model is constructed by adapting the existential abstraction techniques
proposed in [8, 10] to our framework. Then, a traditional model checker is used to de-
termine whether


����� 	
properties hold in the abstract model. If the answer is yes,

then the concrete model also satisfies the property. If the answer is no, then the model
checker generates a counterexample. Since the abstract model has more behaviors than
the concrete one, the abstract counterexample might not be valid. We say that such a
counterexample is spurious. Such abstraction techniques are also known as false nega-
tive techniques.

In our methodology, we provide a new symbolic algorithm to determine whether
an abstract counterexample is spurious. If the counterexample is not spurious, we re-
port it to the user and stop. If the counterexample is spurious, the abstraction function
must be refined to eliminate it. In our methodology, we identify the shortest prefix of
the abstract counterexample that does not correspond to an actual trace in the concrete
model. The last abstract state in this prefix is split into less abstract states so that the
spurious counterexample is eliminated. Thus, a more refined abstraction function is ob-
tained. Note that there may be many ways of splitting the abstract state; each determines
a different refinement of the abstraction function. It is desirable to obtain the coarsest
refinement which eliminates the counterexample because this corresponds to the small-
est abstract model that is suitable for verification. We prove, however, that finding the
coarsest refinement is NP-hard. Because of this, we use a polynomial-time algorithm
which gives a suboptimal but sufficiently good refinement of the abstraction function.
The applicability of our heuristic algorithm is confirmed by our experiments. Using the
refined abstraction function obtained in this manner, a new abstract model is built and
the entire process is repeated. Our methodology is complete for the fragment of


����� 	

which has counterexamples that are either paths or loops, i.e., we are guaranteed to ei-
ther find a valid counterexample or prove that the system satisfies the desired property.
In principle, our methodology can be extended to all of


����� 	
.

Using counterexamples to refine abstract models has been investigated by a num-
ber of other researchers beginning with the localization reduction of Kurshan [14]. He
models a concurrent system as a composition of

�
-processes

� ����������� ��� (
�

-processes
are described in detail in [14]). The localization reduction is an iterative technique that



starts with a small subset of relevant
�

-processes that are topologically close to the
specification in the variable dependency graph. All other program variables are ab-
stracted away with nondeterministic assignments. If the counterexample is found to be
spurious, additional variables are added to eliminate the counterexample. The heuris-
tic for selecting these variables also uses information from the variable dependency
graph. Note that the localization reduction either leaves a variable unchanged or re-
places it by a nondeterministic assignment. A similar approach has been described by
Balarin in [2, 15]. In our approach, the abstraction functions exploit logical relation-
ships among variables appearing in atomic formulas that occur in the control structure
of the program. Moreover, the way we use abstraction functions makes it possible to
distinguish many degrees of abstraction for each variable. Therefore, in the refinement
step only very small and local changes to the abstraction functions are necessary and
the abstract model remains comparatively small.

Another refinement technique has recently been proposed by Lind-Nielson and An-
dersen [17]. Their model checker uses upper and lower approximations in order to han-
dle all of CTL. Their approximation techniques enable them to avoid rechecking the
entire model after each refinement step while guaranteeing completeness. As in [2, 14]
the variable dependency graph is used both to obtain the initial abstraction and in the
refinement process. Variable abstraction is also performed in a similar manner. There-
fore, our abstraction-refinement methodology relates to their technique in essentially
the same way as it relates to the classical localization reduction.

A number of other papers [16, 18, 19] have proposed abstraction-refinement tech-
niques for CTL model checking. However, these papers do not use counterexamples
to refine the abstraction. We believe that the methods described in these papers are or-
thogonal to our technique and may even be combined with ours in order to achieve
better performance. A recent technique proposed by Govindaraju and Dill [12] may be
a starting point in this direction, since it also tries to identify the first spurious state in
an abstract counterexample. It randomly chooses a concrete state corresponding to the
first spurious state and tries to construct a real counterexample starting with the image
of this state under the transition relation. The paper only talks about safety properties
and path counterexamples. It does not describe how to check liveness properties with
cyclic counterexamples. Furthermore, our method does not use random choice to ex-
tend the counterexample; instead it analyzes the cause of the spurious counterexample
and uses this information to guide the refinement process. A more detailed comparison
with related work will be given in the full version

Summarizing, our technique has a number of advantages over previous work:

(i) The technique is complete for an important fragment of ACTL
	

.
(ii) The initial abstraction and the refinement steps are efficient and entirely auto-

matic. All algorithms are symbolic.
(iii) In comparison to methods like the localization reduction, we distinguish more

degrees of abstraction for each variable. Thus, the changes in the refinement are
potentially finer in our approach.

(iv) The refinement procedure is guaranteed to eliminate spurious counterexamples
while keeping the state space of the abstract model small.



We have implemented our new methodology in NuSMV [6] and applied it to a number
of benchmark designs [6]. In addition we have used it to debug a large IP core being de-
veloped at Fujitsu [1]. The design has about 350 symbolic variables which correspond
to about 500 latches. Before using our methodology, we implemented the cone of influ-
ence reduction [8] in NuSMV to enhance its ability to check large models. Neither our
enhanced version of NuSMV nor the recent version of SMV developed by Yang [23]
were able to verify the Fujitsu IP core design. However, by using our new technique, we
were able to find a subtle error in the design. Our program automatically abstracted 144
symbolic variables and performed three refinement steps. Currently, we are evaluating
the methodology on other complex industrial designs.

The paper is organized as follows: Section 2 gives the basic definitions and termi-
nology used throughout the paper. A general overview of our methodology is given in
Section 3. Detailed descriptions of our abstraction-refinement algorithms are provided
in Section 4. Performance improvements for the implementation are described in Sec-
tion 5. Experimental results are presented in Section 6. Future research is discussed in
Section 7.

2 Preliminaries

A program
�

has a finite set of variables ������� � �	�	�
� � � ��� , where each variable
�	 has an associated finite domain ���	� . The set of all possible states for program

�
is ���	��� �	�
� ���	� which we denote by � . Expressions are built from variables in � ,
constants in ���	� , and function symbols in the usual way, e.g. � ����� . Atomic formulas
are constructed from expressions and relation symbols, e.g. � ������� � . Similarly,
predicates are composed of atomic formulas using negation ( ! ), conjunction ( " ), and
disjunction ( # ). Given a predicate $ , 
&%('*),+.- $0/ is the set of atomic formulas occurring
in it. Let $ be a predicate containing variables from � , and 12� - 1 � ������� � 1 � / be an
element from � . Then we write 143 �5$ when the predicate obtained by replacing each
occurrence of the variable �  in $ by the constant 1  evaluates to true.

Each variable �  in the program has an associated transition block, which defines
both the initial value and the transition relation for the variable �  . An example of a
transition block for the variable �  is shown in Figure 1, where 6 87 � � � is the initial

init( 9	: ) := ;<: ;
next( 9	: ) := case= �: : > �: ;= �: : > � : ;?<?.? : ?<?<? ;=&@

: : > @: ;
esac;

init( A ) := B ;
next( A ) := caseC<D
E<D
F�GIHKJ�LNM : B ;A�O2P : ARQIS ;A G P : B ;

else : A ;
esac;

init( P ) := S ;
next( P ) := caseC<D
E<D
F�GIHKJ�LNM : B ;T A G PVU0W�X T P GZY U : PNQIS ;T A G PVU : B ;

else : P ;
esac;

Fig. 1. A generic transition block and a typical example

expression for the variable �  , each condition [�\ is a predicate, and ]^\  is an expression.



The semantics of the transition block is similar to the semantics of the case statement
in the modeling language of SMV, i.e., find the least

�
such that in the current state

condition [�\ is true and assign the value of the expression ]&\  to the variable �  in the
next state.

We assume that the specifications are written in a fragment of
���� 	

called

����� 	

(see [10]). Assume that we are given an

����� 	

specification � , and a program
�

. For
each transition block �  let


&%(' ) +.- ��(/ be the set of atomic formulas that appear in the
conditions. Let


&%('*),+.- ��/ be the set of atomic formulas appearing in the specification
� .

&%(' ) + - � / is the set of atomic formulas that appear in the specification or in the

conditions of the transition blocks.
Each program

�
naturally corresponds to a labeled Kripke structure � �-�� � 6 ��� � � / , where

� � � is the set of states, 6 7 �
is a set of initial states,� 7 � � � is a transition relation, and

�	� ��
�����������������
is a labelling given by� - 1 /8� ���! 
&%('*),+.- � /�3�123 �"� � . Translating a program into a Kripke structure is

straightforward and will not be described here.
An abstraction # for a program

�
is given by a surjection # � � 
 $� . Notice that

the surjection # induces an equivalence relation % on the domain � in the following
manner: let 1 ��& be states in � , then

1'% & iff # - 1 / �(# - & / �
Since an abstraction can be represented either by a surjection # or by an equivalence
relation % , we sometimes switch between these representations to avoid notational over-
head.

Assume that we are given a program
�

and an abstraction function # for
�

. The
abstract Kripke structure )� � -*$� � $6 � $� � $� / corresponding to the abstraction function
# is defined as follows:

1.
$�

is the abstract domain
$� .

2.
$6 - $1 / iff + 1 - # - 1 / � $1 " 6 - 1 /(/ .

3.
$� - $1 � � $1 � / iff + 1 � + 1 � - # - 1 � / � $1 � ",# - 1 � / � $1 � " � - 1 � � 1 � /(/ .

4.
$� -*$1 / �(-/. �10��32540 � - 1 / . (This definition will be justified in Theorem 1.)

This abstraction technique is called existential abstraction [8]. An atomic formula
� respects an abstraction function # if for all 1 and 176 in the domain � ,

- 18% 196 /;:- 1 3 �<�>= 1�6 3 �<� / . Let
$1 be an abstract state.

$� - $1 / is consistent, if all concrete
states corresponding to

$1 satisfy all labels in
$� -?$1 / , i.e., for all 1@ A#CB � -*$1 / it holds that

1,3 �ED/F�G 4H �I40?� � .

Theorem 1. Let # be an abstraction and � be an

����� 	

specification where the
atomic subformulas respect # . Then the following holds: (i)

$� -*$1 / is consistent for all
abstract states

$1 in )� ; (ii) )� 3 �(�J: � 3 �E� .

In other words, correctness of the abstract model implies correctness of the concrete
model. On the other hand, if the abstract model invalidates an


����� 	
specification,

i.e., )�LK3 �M� , the actual model may still satisfy the specification.



Example 1. Assume that for a traffic light controller (see Figure 2), we want to prove� ��������� -	��
��
 & ��� & 1 / using the abstraction function # - � & 1 / ��� & 1 and
# -�� � & &�� / � # -�� &����	��� /,� � � . It is easy to see that � 3 � �

while )� K3 � �
. There

exists an infinite trace ��� & 1 � � � � � � �������	� that invalidates the specification.

gored red green yellow ! 

Fig. 2. Abstraction of a Traffic Light.

If an abstract counterexample does not correspond to some concrete counterexample,
we call it spurious. For example, �"� & 1 � � � � � � �������	� in the above example is a spurious
counterexample.

When the set of possible states is given as the product � � � �	�	� � � of smaller
domains, an abstraction # can be described by surjections #  � �  
 )�  , such that
# - 1 ��������� � 1 � / is equal to

- # � - 1 � / ������� � # � - 1 � /(/ , and
$� is equal to )� � � �	�
� )� � . In

this case, we write # � - # ��������� � # � / . The equivalence relations %  corresponding to
the individual surjections #  induce an equivalence relation % over the entire domain
� � � � � �	�	� � � � in the obvious manner:

- 1 ���
�	�	� � 1 � / % - & ���	�
�	����& � / iff 1 � % � & � " �	�
� " 1 � % � & �

In previous work on existential abstraction [10], abstractions were defined for each
variable domain, i.e., �� in the above paragraph was chosen to be ���	� , where ���	� is
the set of possible values for variable �V . Unfortunately, many abstraction functions #
can not be described in this simple manner. For example, let � � ��# �%$ � � � � �&# ��$ � � � ,
and

$� � ��# �%$ � �I�&# ��$ � . Then there are ')(&� �+*�� $ ',' functions # from � to
$� . Next,

consider #4� - # ��� # � / . Since there are
� � �.- functions from ��# �%$ � � � to �&# ��$ � , there

are only
* ' functions of this form from � to

$� .
In this paper, we define abstraction functions in a different way. We partition the set

� of variables into sets of related variables called variable clusters ��[ ��������� � � [0/ ,
where each variable cluster � [  has an associated domain �2143 � � �65 � G 143 � � � .
Consequently, � � �7143 �^� �	�
� �714398 . We define abstraction functions as surjections
on the domains �7143 � , i.e., �  in the above paragraph is equal to �:143�� . Thus, the
notion of abstraction used in this paper is more general than the one used in [10].

3 Overview

For a program
�

and an

����� 	

formula � , our goal is to check whether the Kripke
structure � corresponding to

�
satisfies � . Our methodology consists of the following

steps.



1. Generate the initial abstraction: We generate an initial abstraction # by examining
the transition blocks corresponding to the variables of the program. We consider
the conditions used in the case statements and construct variable clusters for vari-
ables which interfere with each other via these conditions. Details can be found in
Section 4.1.

2. Model-check the abstract structure: Let )� be the abstract Kripke structure corre-
sponding to the abstraction # . We check whether )� 3 � � . If the check is affir-
mative, then we can conclude that � 3 �J� (see Theorem 1). Suppose the check
reveals that there is a counterexample

$�
. We ascertain whether

$�
is an actual coun-

terexample, i.e., a counterexample in the unabstracted structure � . If
$�

turns out
to be an actual counterexample, we report it to the user, otherwise

$�
is a spurious

counterexample, and we proceed to step 3.
3. Refine the abstraction: We refine the abstraction function # by partitioning a single

equivalence class of % so that after the refinement the abstract structure )� corre-
sponding to the refined abstraction function does not admit the spurious counterex-
ample

$�
. We will discuss partitioning algorithms for this purpose in Section 4.3.

After refining the abstraction function, we return to step 2.

4 The Abstraction-Refinement Framework

4.1 Generating the Initial Abstraction

Assume that we are given a program
�

with � variables ��� � �
�	�
� � � �0� . Given an atomic
formula � , let ����� - �0/ be the set of variables appearing in � , e.g., ����� -�� � � / is � � � � � .
Given a set of atomic formulas � , ����� - � / equals - F�G�	 ����� - � / . In general, for any
syntactic entity 
 , ����� - 
4/ will be the set of variables appearing in 
 . We say that two
atomic formulas � � and � � interfere iff ����� - � � /������� - � � / K��� . Let %�� be the equiv-
alence relation on


&%(' ) +.- � / that is the reflexive, transitive closure of the interference
relation. The equivalence class of an atomic formula �  
&%(' ) +.- � / is called the for-
mula cluster of � and is denoted by � ��� . Let � � and � � be two atomic formulas. Then
����� - � � /������� - � � / K��� implies that � � � �^��� � � � . In other words, a variable �  cannot
appear in formulas that belong to two different formula clusters. Moreover, the formula
clusters induce an equivalence relation % 1 on the set of variables � in the following
way:

�  % 1Z� \ if and only if �  and � \ appear in atomic formulas that belong to the
same formula cluster.

The equivalence classes of % 1 are called variable clusters. For instance, consider
a formula cluster ��[^2� ��� ��� � � � � � � � � . The corresponding variable clus-
ter is � [^ � ��� � � � � � . Let ����[ � ������� � ��[ / � be the set of formula clusters and
� � [ � ������� � � [ / � the set of corresponding variable clusters. We construct the initial
abstraction # � - # � ������� � # / / as follows. For each #0 , we set � 1 3 � � 5 � G 143 � ��� , i.e.,
� 143 � is the domain corresponding to the variable cluster � [  . Since the variable clus-
ters form a partition of the set of variables � , it follows that � � � 143 � � �
�	� � 143 8 .
For each variable cluster ��[  � �V�  � ������� � �  � � , the corresponding abstraction #  is
defined on �7143�� as follows.



#  - 1 ���	�	�
� � 1 � / � #  - & � �	�
�	� ��& � / iff for all atomic formulas �  ��[  ,- 1 ���	�
�	� � 1 � /&3 �M� = - & ���
�	�
� ��& � / 3 � � .

In other words two values are in the same equivalence class if they cannot be “dis-
tinguished” by atomic formulas appearing in the formula cluster ��[8 . The following
example illustrates how we construct the initial abstraction # .

Example 2. Consider the program
�

with three variables
� � �  2�&# ��$ � � � , and � & � & 
  

� ������ ��� 
 �
	�� � shown in Figure 1. The set of atomic formulas is

&%('*),+.- � /4�

� - � & � & 
 � ������ / � - � � � / � -�� � � / � -	� � � / � . There are two formula clusters,
��[ � � � -�� � � / � - � � � / � -�� � � / � and ��[ � � � - � & � & 
 � ������ / � . The corre-
sponding variable clusters are � � � � � and �&� & � & 
 � , respectively. Consider the formula
cluster ��[ � . Values

- # � # / and
- $ ��$ / are in the same equivalence class because for all

the atomic formulas � in the formula cluster ��[ � it holds that
- # � # / 3 �(� iff

- $ �%$ /&3 �E� .
It can be shown that the domain ��# �%$ � � � �2��# �%$ � � � is partitioned into a total of five
equivalence classes by this criterion. We denote these classes by the natural numbers
# �%$ � � � � � ' , and list them below:

#R� � - # � # / � - $ ��$ / � �$ � � - # �%$ / � �� � � - # � � / � - $ � � / � �� � � - $ � # / � -�� � #*/ � -�� ��$ / � �
'�� � -�� � � / �

The domain � ������ ��� 
 �	�� � has two equivalence classes – one containing �

 �
	��

and the other
������

. Therefore, we define two abstraction functions # � � �&# ��$ � � � � 

�&# ��$ � � � � � ' � and # � � � ������ ��� 
 �	�� � 
 � ������ ��� 
 �
	�� � . The first function
# � is given by # � - # � # / � # � - $ ��$ /,� # , # � - # ��$ /,� $ , # � - # � � / � # � - $ � � / � �

,
# � - $ � # /&� # � -�� � #*/&��# � -�� �%$ /&� � , # � -�� � � /&� ' . The second function # � is just the
identity function, i.e., # � - � & � & 
 / � � & � & 
 . Given the abstraction functions, we use the
standard existential abstraction techniques to compute the abstract model.

4.2 Model Checking the Abstract Model

Given an

����� 	

specification � , an abstraction function # (assume that � respects
# ), and a program

�
with a finite set of variables � � �V� ���
�	�
� � � � � , let )� be the

abstract Kripke structure corresponding to the abstraction function # . We use standard
symbolic model checking procedures to determine whether )� satisfies the specification
� . If it does, then by Theorem 1 we can conclude that the original Kripke structure also
satisfies � . Otherwise, assume that the model checker produces a counterexample

$�
corresponding to the abstract model )� . In the rest of this section, we will focus on
counterexamples which are either (finite) paths or loops.

Identification of Spurious Path Counterexamples First, we will tackle the case when
the counterexample

$�
is a path � $� ���
�	�
� � ) � � � . Given an abstract state $ � , the set of con-

crete states
�

such that # -�� /R� $ � is denoted by #�B � - $ � / , i.e., #CB � - $ � /8� � � 3 # -	� /8� $ � � .



We extend #CB � to sequences in the following way: # B � - $� / is the set of concrete paths
given by the following expression

�,� � � �	�
�	� � � � � 3
��
 2 � #
-��  / � $�  " 6 -�� � /�"

�
B ��
 2 �

� -��  � � �� � / � �
We will occasionally write # B ���� ��� to emphasize the fact that #�B � is applied to a sequence.

Next, we give a symbolic algorithm to compute # B � - $� / . Let
� � � #CB � - $� � /  6 and �

be the transition relation corresponding to the unabstracted Kripke structure � . For$ ���
	 � , we define
�  in the following manner:

�  � � 6�� � -��  B � ��� /�A#CB � - $�  / .
In the definition of

�  , 6�� ��-��  B � ��� / is the forward image of
�  B � with respect to the

transition relation � . The sequence of sets
�  is computed symbolically using OBDDs

and the standard image computation algorithm. The following lemma establishes the
correctness of this procedure.

Lemma 1. The following are equivalent:

(i) The path
$�

corresponds to a concrete counterexample.
(ii) The set of concrete paths #�B � - $� / is non-empty.
(iii) For all $ 	��	 � ,

�  K� � .

����
����

����
���� � !" #$#$#$##$#$#$##$#$#$#%$%$%%$%$%%$%$% &$&$&$&&$&$&$&&$&$&$&&$&$&$&
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Fig. 3. An abstract counterexample
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else output j,
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Fig. 4. SplitPATH checks spurious path.

Example 3. Consider a program with only one variable with domain � � � $ �	�
�	� �%$ � � .
Assume that the abstraction function # maps

�  � to f -��hg $ /^i �kj�� $ . There
are four abstract states corresponding to the equivalence classes � $ � � � � � , �%' � � � * � ,
�ml � - �[n � , and � $ # ��$,$ �%$ � � . We call these abstract states

$ $ , $ � , $ � , and
$ ' . The transitions

between states in the concrete model are indicated by the arrows in Figure 3; small
dots denote non-reachable states. Suppose that we obtain an abstract counterexample$� � � $ $ � $ � � $ � � $ ' � . It is easy to see that

$�
is spurious. Using the terminology of Lemma 1,

we have
� � � � $ � � � � � , � � � �%' � � � * � , � � � � n � , and

� 1 ��� . Notice that
� 1 and

therefore 6�� � -�� � ��� / are both empty.

It follows from Lemma 1 that if # B � - $� / is empty (i.e., if the counterexample
$�

is spurious), then there exists a minimal � (
� 	��J	 � ) such that

�  ��� . The sym-
bolic Algorithm SplitPATH in Figure 4 computes this number and the set of states in



�  B � . In this case, we proceed to the refinement step (see Section 4.3). On the other
hand, if the conditions stated in Lemma 1 are true, then SplitPATH will report a “real”
counterexample and we can stop.

Identification of Spurious Loop Counterexamples Now we consider the case when
the counterexample

$�
includes a loop, which we write as � $� � �	�	�
� � $�  � � ��  � � �	�	�
� � ) � � � � .

The loop starts at the abstract state
�� �� � and ends at ) � � . Since this case is more compli-

cated than the path counterexamples, we first present an example in which some of the
typical situations occur.

Example 4. We consider a loop � $� ��� � $� � � $� ��� � as shown in Figure 5. In order to find out
if the abstract loop corresponds to concrete loops, we unwind the counterexample as
demonstrated in the figure. There are two situations where cycles occur. In the figure,
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Fig. 5. A loop counterexample, and its unwinding.

for each of these situations, an example cycle (the first one occurring) is indicated by
a fat dashed arrow. We make the following important observations: (i) A given abstract
loop may correspond to several concrete loops of different size. (ii) Each of these loops
may start at different stages of the unwinding. (iii) The unwinding eventually becomes
periodic (in our case

�vu� � � �� ), but only after several stages of the unwinding. The size
of the period is the least common multiple of the size of the individual loops, and thus,
in general exponential.

We conclude from the example that a naive algorithm may have exponential time
complexity due to an exponential number of loop unwindings. The following sur-
prising result shows that for

$� � � $� ���
�	�
� � $�  � � �� �� ���
�	�
� � ) � � � � , the number of un-
windings can be bounded by � � � � )xwzy

�� �|{ \ { � 3 # B
� - $� \ /	3 , i.e., the number of un-

windings is at most the number of concrete states for any abstract state in the loop.
Let

$�~}��|��� ���
denote this unwinded loop counterexample, i.e., the finite abstract path

� $� � ������� � $�  � � �� �� � ������� � ) � � � / 
�

. Then the following theorem holds.

Theorem 2. The following are equivalent: (i)
$�

corresponds to a concrete counterex-
ample. (ii) # B ���� ��� - $� }����~� ��� / is not empty.

It can be seen from Example 4 that loop counterexamples are combinatorially more
complicated than path counterexamples. Therefore, the proof of Theorem 2 is not im-
mediate; for details, we refer to [7]. We conclude from Theorem 2 that the Algorithm



SplitPATH can be used to analyze abstract loop counterexamples with minor modifi-
cations. For easy reference we shall refer to this algorithm as SplitLOOP.

4.3 Refining the Abstraction

First, we will consider the case when the counterexample
$� � � $� � �	�	�
� � ) � � � is a path.

Since
$�

does not correspond to a real counterexample, by Lemma 1 (iii) there exists a
set
� R7 # B � - $�  / with $ 	 �8� � such that 6k� ��-��  ��� /�8#CB � - ��  � � /���� and

�  is
reachable from initial state set #�B � - $� � /�46 . Since there is a transition from $�  to �� �� �
in the abstract model, there is at least one transition from a state in #�B � - $�  / to a state
in #CB � - �� �� � / even though there is no transition from

�  to #CB � - ��  � � / . We partition
# B � - $�  / into three subsets

�  � u , �  � � , and
�  � � as follows (compare Figure 6):

�  � u � � �  � � � � �  8# B � - $�  /
3 + � 6  8# B � - �� �� � / � � -�� � � 6 / ��  � � �M#CB � - $�  / � -��  � u�� �  � � / �
Intuitively,

�  � u denotes the set of states in #�B � - $�  / that are reachable from initial states.�  � � denotes the set of states in #�B � - $�  / that are not reachable from initial states, but
have at least one transition to some state in # B � - �� �� � / . The set

�  � � cannot be empty
since we know that there is a transition from # B � - $�  / to #CB � - ��  � � / . �  � � denotes the
set of states that are not reachable from initial states, and do not have a transition to a
state in #�B � - �� �� � / . For illustration, consider again the example in Figure 3. Note that� � � � $ � � � � � , � � � �%' � � � * � , � � � � n � , and

� 1 � � . Using the notation introduced
above, we have

� � � u � � n � , � � � � � �Vl � , and
� � � � � ��- � . Since

�  � � is not empty, there
is a spurious transition $�  
 �� �� � . This causes the spurious counterexample

$�
. Hence

in order to refine the abstraction # so that the new model does not allow
$�

, we need a
refined abstraction function which separates the two sets

�  � u and
�  � � , i.e., we need an

abstraction function, in which no abstract state simultaneously contains states from
�  � u

and from
�  � � .

It is natural to describe the needed refinement in terms of equivalence relations:
Recall that #CB � - $ � / is an equivalence class of % which has the form � � � �	�	� ��� / ,
where each �  is an equivalence class of %  . Thus, the refinement %;6 of % is obtained by
partitioning the equivalence classes � \ into subclasses, which amounts to refining the
equivalence relations % \ . The size of the refinement is the number of new equivalence
classes. Ideally, we would like to find the coarsest refinement that separates the two sets,
i.e., the separating refinement with the smallest size. We can show however that this is
computationally intractable.

Theorem 3. (i) The problem of finding the coarsest refinement is NP-hard; (ii) when�  � � � � , the problem can be solved in polynomial time.

We find that the previously known poblem PARTITION INTO CLIQUES can
be reduced to the coarsest refinement problem. The proof is omitted due to
space restrictions. On the other hand, we describe a polynomial time algorithm
PolyRefine corresponding to case (ii) of Theorem 3 in Figure 7. Let

� �
\ �
� B\ be

two projection functions, such that for
� � - 1 ��������� � 1,/ / , � �\ -	� / � 1 \ and



� B\
-�� / � - 1 ��������� � 1 \ B � � 1 \ � ��������� � 1,/ / . Then $ � � � -��  � u � � � � / denotes the projec-

tion set � � B\
-	� /	3 � �\ -	� / � � � �  �  � u � . Intuitively, the condition $ � � � -��  � u � � � � / K�

$ � � � -��  � u � � � � / in the algorithm means that there exists
- 1 � ������� � 1 \ B � � 1 \ � � ������� � 1 / /  $ � � � -��  � u � � � � / and

- 1 � ������� � 1 \ B � � 1 \ � � ������� � 1 / / K $ � � � -��  � u � � � � / . According to
the definition of $ � � � -��  � u � � � � / , � � � - 1 � ������� � 1 \ B � �

� � 1 \ � � ������� � 1 / /  �  � u and� � � - 1 � ������� � 1 \ B � �
� � 1 \ � � ������� � 1 / /,K �  � u , i.e.,

� �  �  � � . Note that
� � and

� � are
only different at

�
-th component. Hence, the only way to separate

� � and
� � into differ-

ent equivalence classes is that
�

and
�

have to be in different equivalence classes of % 6\ ,i.e.,
� K% 6\

�
.

Lemma 2. When
�  � � � � , the relation %;6\ computed by PolyRefine is an equivalence

relation which refines % \ and separates
�  � u and

�  � � . Furthermore, the equivalence
relation %;6\ is the coarsest refinement of % \ .

Note that in symbolic presentation, the projection operation $ � � � -��  � u � � � � /
amounts to computing a generalized cofactor, which can be easily done by stan-
dard BDD methods. Given a function � � � 
 ��# �%$ � , a generalized co-
factor of � with respect to

� � - D��� 2�� � � � 1 � / is the function ��� �
� - � ��������� � � � B � � 1 � ������� � 1 � �

�
� � ��������� � � � / . In other words, ��� is the projection of �

with respect to
�

. Symbolically, the set
�  � u is represented by a function ���*�
	 s � � 


�&# ��$ � , and therefore, the projection $ � � � -��  � u � � � � / of
�  � u to value

�
of the

�
th com-

ponent corresponds to a cofactor of ���*�
	 s .
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Fig. 6. Three sets
2 :�� � Y 2 :�� � , and

2 :�� �

Algorithm PolyRefine
for j := 1 to m I���] 3 G � ]

for every � Y����! ] I
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then � �] 3 G � �](' I T � Y�� U _ _:_
Fig. 7. The algorithm PolyRefine

In our implementation, we use the following heuristics: We merge the states in
�  � �

into
�  � � , and use the algorithm Polyrefine to find the coarsest refinement that separates

the sets
�  � u and

�  � � � �  � � . The equivalence relation computed by PolyRefine in this
manner is not optimal, but it is a correct refinement which separates

�  � u and
�  � � , and

eliminates the spurious counterexample. This heuristic has given good results in our
practical experiments.

Since according to Theorem 2, the algorithm SplitLOOP for loop counterexamples
works analogously as SplitPATH, the refinement procedure for spurious loop coun-
terexamples works analogously, too. Details are omitted due to space restrictions. Our
refinement procedure continues to refine the abstraction function by partitioning equiv-
alence classes until a real counterexample is found, or the


����� 	
property is verified.

The partitioning procedure is guaranteed to terminate since each equivalence class must
contain at least one element. Thus, our method is complete.



Theorem 4. Given a model � and an

����� 	

specification � whose counterexample
is either path or loop, our algorithm will find a model )� such that )� 3 �E� = � 3 �E� .

5 Performance Improvements

The symbolic methods described in Section 4 can be directly implemented using BDDs.
Our implementation uses additional heuristics which are outlined in this section. For
details, we refer to our technical report [7].

1

2

3

� � � �

Fig. 8. A spurious loop counterexample � 9 S Y 9 Y����

Two-phase Refinement Algorithms. Consider the spurious loop counterexample
$� �

� $ $�� $ � � � of Figure 8. Although
$�

is spurious, the concrete states involved in the example
contain an infinite path � $ ��$ ��������� which is a potential counterexample. Since we know
that our method is complete, such cases could be ignored. Due to practical performance
considerations, however, we came to the conclusion that the relatively small effort to
detect additional counterexamples is justified as a valuable heuristic. For a general loop
counterexample

$� � � $ � � ������� � $ �  � � $ � �� ��������� � $ � � � � , we therefore proceed in two phases:
(i) We restrict the model to the state space

�	� ��
 � � � � - - �|{  { � # B � - $�  /(/ of the coun-
terexample and use the standard fixpoint computation for temporal formulas (see
e.g. [8]) to check the property on the Kripke structure restricted to

��� ��
 � � . If a con-
crete counterexample is found, then the algorithm terminates.
(ii) If no counterexample is found, we use SplitLOOP and PolyRefine to compute a
refinement as described above.
This two-phase algorithm is slightly slower than the original one if we do not find a con-
crete counterexample; in many cases however, it can speed up the search for a concrete
counterexample. An analogous two phase approach is used for finite path counterexam-
ples.

Approximation. Despite the use of partitioned transition relations it is often infeasi-
ble to compute the total transition relation of the model � [8]. Therefore, the abstract
model )� cannot be computed from � directly. In previous work [2, 10], a method
which we call early approximation has been introduced: first, abstraction is applied to
the BDD representation of each transition block and then the BDDs for the partitioned
transition relation are built from the already abstracted BDDs for the transition blocks.
The disadvantage of early approximation is that it over-approximates the abstract model



)� [9]. In our approach, a heuristic individually determines for each variable cluster
� [  , if early approximation should be applied or if the abstraction function should
be applied in an exact manner. Our method has the advantage that it balances overap-
proximation and memory usage. Moreover, the overall method presented in our paper
remains complete with this approximation.

Abstractions For Distant Variables. In addition to the methods of Section 4.1, we
completely abstract variables whose distance from the specification in the variable de-
pendency graph is greater than a user-defined constant. Note that the variable depen-
dency graph is also used for this purpose in the localization reduction [2, 14, 17] in a
similar way. However, the refinement process of the localization reduction [14] can only
turn a completely abstracted variable into a completely unabstracted variable, while our
method uses intermediate abstraction functions.

6 Experimental Results

We have implemented our methodology in NuSMV [6] which uses the CUDD pack-
age [21] for symbolic representation. We performed two sets of experiments. One set is
on five benchmark designs. The other was performed on an industrial design of a mul-
timedia processor from Fujitsu [1]. All the experiments were carried out on a 200MHz
PentiumPro PC with 1GB RAM memory using Linux.

The first benchmark designs are publicly available. The PCI example is extracted
from [5]. The results for these designs are listed in the table.

Design #Var #Prop NuSMV+COI NuSMV+ABS
#COI Time

� � Z � � � = �
#ABS Time

� � Z � � � = �

gigamax 10(16) 1 0 0.3 8346 1822 9 0.2 13151 816
guidance 40(55) 8 30 35 140409 30467 34-39 30 147823 10670
p-queue 12(37) 1 4 0.5 51651 1155 5 0.4 52472 1114
waterpress 6(21) 4 0-1 273 34838 129595 4 170 38715 3335
PCI bus 50(89) 10 4 2343 121803 926443 12-13 546 160129 350226

In the table, the performance for an enhanced version of NuSMV with cone of influence
reduction (NuSMV + COI) and our implementation (NuSMV + ABS) are compared.
#Var and #Prop are properties of the designs: #Var =

� -�� / means that
�

is the number
of symbolic variables, and

�
the number of Boolean variables in the design. #Prop is

the number of verified properties. The columns #COI and #ABS contain the number of
symbolic variables which have been abstracted using the cone of influence reduction
(#COI), and our initial abstraction (#ABS). The column ”Time” denotes the accumu-
lated running time to verify all #Prop properties of the design. 3 � � 3 denotes the maxi-
mum number of BDD nodes used for building the transition relation. 3 � [,3 denotes the
maximum number of additional BDD nodes used during the verification of the proper-
ties. Thus, 3 � � 3 � 3 � [,3 is the maximum BDD size during the total model checking
process. For the larger examples, we use partitioned transition relations by setting the
BDD size limit to 10000.

Although our approach in one case uses 50% more memory than the traditional cone
of influence reduction to build the abstract transition relation, it requires one magnitude



less memory during model checking. This is an important achievement since the model
checking process is the most difficult task in verifying large designs. More significant
improvement is further demonstrated by the Fujitsu IP core design.

The Fujitsu IP core design is a multimedia assist (MMA-ASIC) processor [1]. The
design is a system-on-a-chip that consists of a co-processor for multimedia instructions,
a graphic display controller, peripheral I/O units, and five bus bridges. The RTL imple-
mentation of MM-ASIC is described in about 61,500 lines of Verilog-HDL code. After
manual abstraction by engineers from Fujitsu in [22], there still remain about 10,600
lines of code with roughly 500 registers. We translated this abstracted Verilog code into
9,500 lines of SMV code. In [22], the authors verified this design using a ”navigated”
model checking algorithm in which state traversal is restricted by navigation conditions
provided by the user. Therefore, their methodology is not complete, i.e., it may fail to
prove the correctness even if the property is true. Moreover, the navigation conditions
are usually not automatically generated.

In order to compare our model checker to others, we tried to verify this design
using two state-of-the-art model checkers - Yang’s SMV [23] and NuSMV [6]. We
implemented the cone of influence reduction for NuSMV, but not for Yang’s SMV.
Both NuSMV+COI and Yang’s SMV failed to verify the design. On the other hand, our
system abstracted 144 symbolic variables and with three refinement steps, successfully
verified the design, and found a bug which has not been discovered before.

7 Conclusion and Future Work

We have presented a novel abstraction refinement methodology for symbolic model
checking. The advantages of our methodology have been demonstrated by experimen-
tal results. We believe that our technique is general enough to be adapted for other forms
of abstraction. There are many interesting avenues for future research. First, we want
to find efficient approximation algorithms for the NP-complete separation problem en-
countered during the refinement step. Moreover, in a recent paper [4], the fragment
of ACTL

	
that admits “trace”-like counterexamples (of a potentially more complicated

structure than paths and loops) has been characterized; we plan to extend our refinement
algorithm to this language. Since the symbolic methods described in this paper are not
tied to representation by BDDs, we will also investigate how they can be applied to
recent work on symbolic model checking without BDDs [3]. We are currently applying
our technique to verify other large examples.
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