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Abstract

“Counting Your Customers” the Easy Way:
An Alternative to the Pareto/NBD Model

Today’s managers are very interested in predicting the future purchasing patterns of their
customers, which can then serve as an input into “lifetime value” calculations. Among the
models that provide such capabilities, the Pareto/NBD “Counting Your Customers” framework
proposed by Schmittlein, Morrison, and Colombo (1987) is highly regarded. But despite the
respect it has earned, it has proven to be a difficult model to implement, particularly because
of computational challenges associated with parameter estimation.

We develop a new model, the beta-geometric/NBD (BG/NBD), which represents a slight
variation in the behavioral “story” associated with the Pareto/NBD, but it is vastly easier to
implement. We show, for instance, how its parameters can be obtained quite easily in Microsoft
Excel. The two models yield very similar results in a wide variety of purchasing environments,
leading us to suggest that the BG/NBD could be viewed as an attractive alternative to the
Pareto/NBD in most applications.

Keywords: Customer Base Analysis, Repeat Buying, Pareto/NBD, Probability Models,
Forecasting, Lifetime Value



1 Introduction

Faced with a database containing information on the frequency and timing of transactions for a

list of customers, it is natural to try to make forecasts about future purchasing. These projections

often range from aggregate sales trajectories (e.g., for the next 52 weeks), to individual-level

conditional expectations (i.e., the best guess about a particular customer’s future purchasing,

given information about his past behavior). Many other related issues may arise from a customer-

level database, but these are typical of the questions that a manager should initially try to

address. This is particularly true for any firm with serious interest in tracking and managing

“customer lifetime value” (CLV) on a systematic basis. There is a great deal of interest, among

marketing practitioners and academics alike, in developing models to accomplish these tasks.

One of the first models to explicitly address these issues is the Pareto/NBD “Counting Your

Customers” framework originally proposed by Schmittlein, Morrison, and Colombo (1987), here-

after SMC. This model describes repeat-buying behavior in settings where customer “dropout”

is unobserved: it assumes that customers buy at a steady rate (albeit in a stochastic manner)

for a period of time, and then become inactive. More specifically, time to “dropout” is modelled

using the Pareto (exponential-gamma mixture) timing model, and repeat-buying behavior while

active is modelled using the NBD (Poisson-gamma mixture) counting model. The Pareto/NBD

is a powerful model for customer base analysis, but its empirical application can be challenging,

especially in terms of parameter estimation.

Perhaps because of these operational difficulties, relatively few researchers actively followed

up on the SMC paper soon after it was published (as judged by citation counts). But it has

received a steadily increasing amount of attention in recent years as many researchers and

managers have become concerned about issues such as customer churn, attrition, retention, and

CLV. While a number of researchers (e.g., Balasubramanian et al. 1998; Jain and Singh 2002;

Mulhern 1999; Niraj et al. 2001) refer to the applicability and usefulness of the Pareto/NBD,

only a small handful claim to have actually implemented it. Nevertheless, some of these papers

(e.g., Reinartz and Kumar 2000; Schmittlein and Peterson 1994) have, in turn, become quite

popular and widely cited.
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The objective of this paper is to develop a new model, the beta-geometric/NBD (BG/NBD),

which represents a slight variation in the behavioral “story” that lies at the heart of SMC’s

original work, but it is vastly easier to implement. We show, for instance, how its parameters

can be obtained quite easily in Microsoft Excel, with no appreciable loss in the model’s ability

to fit or predict customer purchasing patterns. We develop the BG/NBD model from first

principles, and present the expressions required for making individual-level statements about

future buying behavior. We compare and contrast its performance to that of the Pareto/NBD

via a simulation and an illustrative empirical application. The two models yield very similar

results, leading us to suggest that the BG/NBD should be viewed as an attractive alternative

to the Pareto/NBD model.

Before developing the BG/NBD model, we briefly review the Pareto/NBD model (Section 2).

In Section 3 we outline the assumptions of the BG/NBD model, deriving the key expressions

at the individual-level, and for a randomly-chosen individual, in Sections 4 and 5 respectively.

This is followed by the aforementioned simulation and empirical analysis. We conclude with a

discussion of several issues that arise from this work.

2 The Pareto/NBD Model

The Pareto/NBD model is based on five assumptions:

i. While active, the number of transactions made by a customer in a time period of length t

is distributed Poisson with transaction rate λ.

ii. Heterogeneity in transaction rates across customers follows a gamma distribution with

shape parameter r and scale parameter α.

iii. Each customer has an unobserved “lifetime” of length τ . This point at which the customer

becomes inactive is distributed exponential with dropout rate µ.

iv. Heterogeneity in dropout rates across customers follows a gamma distribution with shape

parameter s and scale parameter β.

v. The transaction rate λ and the dropout rate µ vary independently across customers.
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The Pareto/NBD (and, as we will see shortly, the BG/NBD) requires only two pieces of

information about each customer’s past purchasing history: his “recency” (when his last trans-

action occurred) and “frequency” (how many transactions he made in a specified time period).

The notation used to represent this information is (X = x, tx, T ), where x is the number of

transactions observed in the time period (0, T ] and tx (0 < tx ≤ T ) is the time of the last

transaction. Using these two key summary statistics, SMC derive expressions for a number of

managerially relevant quantities, such as:

• E[X(t)], the expected number of transactions in a time period of length t (SMC, equa-

tion 17), which is central to computing the expected transaction volume for the whole

customer base over time.

• P (X(t) = x), the probability of observing x transactions in a time period of length t

(SMC, equations A40, A43, and A45).

• E(Y (t) |X = x, tx, T ), the expected number of transactions in the period (T, T + t] for an

individual with observed behavior (X = x, tx, T ) (SMC, equation 22).

The likelihood function associated with the Pareto/NBD model is quite complex, involving

numerous evaluations of the Gaussian hypergeometric function. Besides being unfamiliar to most

marketing researchers, multiple evaluations of the Gaussian hypergeometric are very demanding

from a computational standpoint. Furthermore, the precision of some numerical procedures

used to evaluate this function can vary substantially over the parameter space (Lozier and Olver

1995); this can cause major problems for numerical optimization routines as they search for the

maximum of the likelihood function.

To the best of our knowledge, the only published paper reporting a successful implementation

of the Pareto/NBD model using standard maximum likelihood estimation (MLE) techniques is

Reinartz and Kumar (2003), and the authors comment on the associated computational burden.

As an alternative to MLE, SMC proposed a three-step method-of-moments estimation procedure,

which was further refined by Schmittlein and Peterson (1994). While simpler than MLE, the

proposed algorithm is still not easy to implement; furthermore, it does not have the desirable

statistical properties commonly associated with MLE. In contrast, the BG/NBD model, to be
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introduced in the next section, can be implemented very quickly and efficiently via MLE, and

its parameter estimation does not require any specialized software or the evaluation of any

unconventional mathematical functions.

3 BG/NBD Assumptions

Most aspects of the BG/NBD model directly mirror those of the Pareto/NBD. The only differ-

ence lies in the story being told about how/when customers become inactive. The Pareto timing

model assumes that dropout can occur at any point in time, independent of the occurrence of

actual purchases. If we assume instead that dropout occurs immediately after a purchase, we

can model this process using the beta-geometric (BG) model.

More formally, the BG/NBD model is based on the following five assumptions (the first two

of which are identical to the corresponding Pareto/NBD assumptions):

i. While active, the number of transactions made by a customer follows a Poisson process

with transaction rate λ. This is equivalent to assuming that the time between transactions

is distributed exponential with transaction rate λ, i.e.,

f(tj | tj−1;λ) = λe−λ(tj−tj−1) , tj > tj−1 ≥ 0 .

ii. Heterogeneity in λ follows a gamma distribution with pdf

f(λ | r, α) = αrλr−1e−λα

Γ(r)
, λ > 0 . (1)

iii. After any transaction, a customer becomes inactive with probability p. Therefore the

point at which the customer “drops out” is distributed across transactions according to a

(shifted) geometric distribution with pmf

P (inactive immediately after jth transaction) = p(1 − p)j−1 , j = 1, 2, 3, . . . .
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iv. Heterogeneity in p follows a beta distribution with pdf

f(p | a, b) =
pa−1(1 − p)b−1

B(a, b)
, 0 ≤ p ≤ 1 . (2)

where B(a, b) is the beta function, which can be expressed in terms of gamma functions:

B(a, b) = Γ(a)Γ(b)/Γ(a + b).

v. The transaction rate λ and the dropout probability p vary independently across customers.

4 Model Development at the Individual Level

4.1 Derivation of the Likelihood Function

Consider a customer who had x transactions in the period (0, T ] with the transactions occurring

at t1, t2, . . . , tx:

✲· · · · · ·
0 T

×
t1

×
t2

×
tx

We derive the individual-level likelihood function in the following manner:

• the likelihood of the first transaction occurring at t1 is a standard exponential likelihood

component, which equals λe−λt1 .

• the likelihood of the second transaction occurring at t2 is the probability of remaining active

at t1 times the standard exponential likelihood component, which equals (1−p)λe−λ(t2−t1).

. . .

• the likelihood of the xth transaction occurring at tx is the probability of remaining ac-

tive at tx−1 times the standard exponential likelihood component, which equals (1 −
p)λe−λ(tx−tx−1).

• the likelihood of observing zero purchases in (tx, T ] is the probability the customer became

inactive at tx, plus the probability he remained active but made no purchases in this

interval, which equals p + (1 − p)e−λ(T−tx).
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Therefore,

L(λ, p | t1, t2, . . . , tx, T ) = λe−λt1(1 − p)λe−λ(t2−t1) · · · (1 − p)λe−λ(tx−tx−1)
{
p + (1 − p)e−λ(T−tx)}

= p(1 − p)x−1λxe−λtx + (1 − p)xλxe−λT

As pointed out earlier for the Pareto/NBD, note that information on the timing of the x trans-

actions is not required; a sufficient summary of the customer’s purchase history is (X = x, tx, T ).

Similar to SMC, we assume that all customers are active at the beginning of the observation

period; therefore the likelihood function for a customer making 0 purchases in the interval (0, T ]

is the standard exponential survival function:

L(λ |X = 0, T ) = e−λT

Thus we can write the individual-level likelihood function as

L(λ, p |X = x, T ) = (1 − p)xλxe−λT + δx>0 p(1 − p)x−1λxe−λtx (3)

where δx>0 = 1 if x > 0, 0 otherwise.

4.2 Derivation of P (X(t) = x)

Let the random variable X(t) denote the number of transactions occurring in a time period

of length t (with a time origin of 0). To derive an expression for the P (X(t) = x), we recall

the fundamental relationship between inter-event times and the number of events: X(t) ≥ x ⇔
Tx ≤ t where Tx is the random variable denoting the time of the xth transaction. Given our

assumption regarding the nature of the dropout process,

P (X(t) = x) = P (active after xth purchase) · P (Tx ≤ t and Tx+1 > t)

+ δx>0 · P (becomes inactive after xth purchase) · P (Tx ≤ t)
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Given the assumption that the time between transactions is characterized by the exponential

distribution, P (Tx ≤ t and Tx+1 > t) is simply the Poisson probability that X(t) = x, and

P (Tx ≤ t) is the Erlang-x cdf. Therefore

P (X(t) = x|λ, p) = (1 − p)x
(λt)xe−λt

x!
+ δx>0 p(1 − p)x−1

[
1 − e−λt

x−1∑
j=0

(λt)j

j!

]
(4)

4.3 Derivation of E[X(t)]

Given that the number of transactions follows a Poisson process, E[X(t)] is simply λt if the

customer is active at t. For a customer who becomes inactive at τ ≤ t, the expected number of

transactions in the period (0, τ ] is λτ .

But what is the likelihood that a customer becomes inactive at τ? Conditional on λ and p,

P (τ > t) = P (active at t |λ, p) =
∞∑

j=0

(1 − p)j
(λt)je−λt

j!

= e−λpt

This implies that the pdf of the dropout time is given by g(τ |λ, p) = λpe−λpτ . (Note that this

takes on an exponential form. But it features an explicit association with the transaction rate λ,

in contrast with the Pareto/NBD, which has an exponential dropout process that is independent

of the transaction rate.) It follows that the expected number of transactions in a time period of

length t is given by

E(X(t) |λ, p) = λt · P (τ > t) +
∫ t

0
λτg(τ |λ, p)dτ

=
1
p

− 1
p
e−λpt (5)

5 Model Development for a Randomly-Chosen Individual

All the expressions developed above are conditional on the transaction rate λ and the dropout

probability p, both of which are unobserved. To derive the equivalent expressions for a ran-
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domly chosen customer, we take the expectation of the individual-level result over the mixing

distributions for λ and p, as given in (1) and (2). This yields the follow results.

• Taking the expectation of (3) over the distribution of λ and p results in the following ex-

pression for the likelihood function for a randomly-chosen customer with purchase history

(X = x, tx, T ):

L(r, α, a, b |X = x, tx, T ) =
B(a, b + x)

B(a, b)
Γ(r + x)αr

Γ(r)(α + T )r+x

+ δx>0
B(a + 1, b + x − 1)

B(a, b)
Γ(r + x)αr

Γ(r)(α + tx)r+x
(6)

The four BG/NBD model parameters (r, α, a, b) can be estimated via the method of max-

imum likelihood in the following manner. Suppose we have a sample of N customers,

where customer i had Xi = xi transactions in the period (0, Ti], with the last transaction

occurring at txi . The sample log-likelihood function given by is

LL(r, α, a, b) =
N∑

i=1

ln
[
L(r, α, a, b |Xi = xi, txi , Ti)

]
(7)

This can be maximized using standard numerical optimization routines.

• Taking the expectation of (4) over the distribution of λ and p results in the following

expression for the probability of observing x purchases in a time period of length t:

P (X(t) =x|r, α, a, b) =
B(a, b + x)

B(a, b)
Γ(r + x)
Γ(r)x!

(
α

α + t

)r( t

α + t

)x

+ δx>0
B(a + 1, b + x − 1)

B(a, b)

[
1 −

(
α

α + t

)r{ x−1∑
j=0

(Γ(r + j)
Γ(r)j!

(
t

α + t

)j}]
(8)

• Finally, taking the expectation of (5) over the distribution of λ and p results in the following

expression for the expected number of purchases in a time period of length t:

E(X(t) | r, α, a, b) =
a + b − 1

a − 1

[
1 −

(
α

α + t

)r

2F1
(
r, b; a + b − 1; t

α+t

)]
(9)

where 2F1(·) is the Gaussian hypergeometric function. (See the Appendix for details of

the derivation.)
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Note that this final expression requires a single evaluation of the Gaussian hypergeometric

function. But it is important to emphasize that this expectation is only used after the likelihood

function has been maximized. A single evaluation of the Gaussian hypergeometric function for

a given set of parameters is relatively straightforward, and can be closely approximated with a

polynomial series, even in a modeling environment such as Microsoft Excel.

In order for the BG/NBD model to be of use in a forward-looking customer-base analysis,

we need to obtain an expression for the expected number of transactions in a future period of

length t for an individual with past observed behavior (X = x, tx, T ). We provide a careful

derivation in the Appendix, but here is the key expression:

E(Y (t) |X = x, tx, T, r, α, a, b) =

a + b + x − 1
a − 1

[
1 −

(
α + T

α + T + t

)r+x

2F1
(
r + x, b + x; a + b + x − 1; t

α+T+t

)]

1 + δx>0
a

b + x − 1

(
α + T

α + tx

)r+x (10)

Once again, this expectation requires a single evaluation of the Gaussian hypergeometric

function for any customer of interest, but this is not a burdensome task. The remainder of the

expression is simple arithmetic.

6 Simulation

While the underlying behavioral story associated with the proposed BG/NBD model is quite

similar to that of the Pareto/NBD, we have not yet provided any assurance that the empirical

performance of the two models will be closely aligned with each other. In this section, therefore,

we discuss a comprehensive simulation study that provides a thorough understanding of when

the BG/NBD can (and cannot) serve as a close proxy to the Pareto/NBD. More specifically,

we create a wide variety of purchasing environments (by manipulating the four parameters of

the Pareto/NBD model) to look for limiting conditions under which the BG/NBD model does

a poor job of capturing the underlying purchasing process.
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6.1 Simulation Design

To create these simulated purchasing environments, we chose three levels for each of the four

Pareto/NBD parameters, then generated a full-factorial design of 34 = 81 different “worlds”.

For the two shape parameters (r and alpha) we used values of 0.25, 0.50, and 0.75; for each

of the two scale parameters (s and beta) we used values of 5, 10, and 15. When we translate

these various combinations into meaningful summary statistics it becomes easy to see the wide

variation across these simulated worlds. For instance buyer penetration (i.e., the number of

customers who make at least one purchase, or 1 − P (0)) varies from a low of 13% to a high

of 76%. Likewise, average purchase frequency (i.e., mean number of purchases among buyers,

or E[X]/(1 − P (0))) ranges from 2.1 up to 8.2 purchases per period. It is worth noting that

this broad range covers the observed values from the original Schmittlein and Peterson (1994)

application as well as the actual dataset used in our empirical analysis (to be discussed in the

next section).

For each of the 81 simulated worlds, we created a synthetic panel of 4000 households, then

simulated the Pareto/NBD purchase (and dropout) process for a period of 104 weeks. We then

ran the BG/NBD model on the first 52 weeks for each of these datasets, and used the estimated

parameters to generate forecasts for a holdout period covering the remaining 52 weeks. We

evaluate the performance of the BG/NBD based on the mean absolute percent error (MAPE)

calculated across this 52-week forecast sales trajectory. If the MAPE value is a low number

(below, say, 5%), we have faith in the applicability of the BG/NBD for that particular set

of underlying parameters; otherwise we need to look more carefully to understand why the

BG/NBD is not doing an adequate job of matching the Pareto/NBD sales projection.

6.2 Simulation Results

In general, the BG/NBD performed quite well in this holdout forecasting task. The average

value of the MAPE statistic was 2.68%, and the worst case across all 81 worlds was a reasonably

acceptable 6.97%. But upon closer inspection we noticed an interesting, systematic trend across

the worlds with relatively high values of MAPE. In Table 1 we summarize the relevant summary

statistics for the worst ten simulated worlds in contrast with the remaining 71 worlds. Notice that
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the BG/NBD forecasts tend to be relatively poor when penetration and/or purchase frequency

are extremely low.

MAPE Penetration Avg. Purch. Freq
Worst 10 worlds 5.73 18.8% 1.2
Other 71 worlds 2.26 44.5% 3.9

Table 1: Summary of Simulation Results

Upon further reflection about the differences between the two model structures, this result

makes sense. Under the Pareto/NBD model, dropout can occur at any time—even before

a customer has made his first purchase after the start of the observation period. But under

BG/NBD, a customer can not become inactive before making his first purchase. If penetrations

and/or buying rates are fairly high, then this difference becomes relatively inconsequential. But

in a world where active buyers are either uncommon or very slow in making their purchases, the

Pareto/NBD will tend to outperform the BG/NBD.

Beyond this one source of deviation, there do not appear to be any other patterns associated

with higher versus lower values of MAPE. For instance, the Pearson correlation between MAPE

and penetration for the 71 worlds with “good behavior” is a modest 0.142. (In contrast, across

all 81 worlds, this correlation is 0.379.) So when we set aside the worlds with sparse buying, the

BG/NBD appears to be very robust.

It would be a simple matter to extend the BG/NBD model to allow for a segment of “hard

core non-buyers”. This would require only one additional parameter and would likely overcome

this problem completely. But we do not see the likelihood or severity of this problem to be

extreme enough to warrant such an extension as part of the basic model. Nevertheless, we

encourage managers to continually monitor summary statistics such as penetration and purchase

frequency; for many firms this is already a routine practice.

Having established the robustness (and an important limiting condition) about the BG/NBD,

we now turn to a more thorough investigation of its performance (relative to the Pareto/NBD)

in an actual dataset.
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7 Empirical Analysis

We explore the performance of BG/NBD model using data on the purchasing of CDs at the

online retailer CDNOW. The full dataset focuses on a single cohort of new customers who made

their first purchase at the CDNOW web site in the first quarter of 1997. We have data covering

their initial (trial) and subsequent (repeat) purchase occasions for the period January 1997

through June 1998, during which the 23,570 Q1/97 triers bought nearly 163,000 CDs after their

initial purchase occasions. (See Fader and Hardie (2001) for further details about this dataset.)

For the purposes of this analysis, we take a 1/10th systematic sample of the customers.

We calibrate the model using the repeat transaction data for the 2357 sampled customers over

the first half of the 78-week period and forecast their future purchasing over the remaining 39

weeks. For customer i (i = 1, ..., 2357), we know the length of the time period during which

repeat transactions could have occurred (Ti = 39− time of first purchase), the number of repeat

transactions in this period (xi) and the time of his last repeat transaction (txi). (If xi = 0,

txi = 0.) In contrast to Fader and Hardie (2001), we are focusing on the number of transactions,

not the number of CDs purchased.

Maximum likelihood estimates of the model parameters (r, α, a, b) are obtained by maximiz-

ing the log-likelihood function given in (7) above. Standard numerical optimization methods are

employed, using the Solver tool in Microsoft Excel, to obtain the parameter estimates. (Identi-

cal estimates are obtained using the more sophisticated MATLAB programming language.) To

implement the model in Excel, we rewrite the log-likelihood function, (6), as

L(r, α, a, b |X = x, tx, T ) = A1 · A2 · (A3 + δx>0 A4)

where

A1 =
Γ(r + x)αr

Γ(r)
A2 =

Γ(a + b)Γ(b + x)
Γ(b)Γ(a + b + x)

A3 =
( 1

α + T

)r+x
A4 =

( a

b + x − 1

)( 1
α + tx

)r+x

This is very easy to code in Excel— see Figure 1 for complete details. (A note on how to

implement the model in Excel, along with a copy of the complete spreadsheet, can be found at

<insert URL>.
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

2362
2363
2364

A B C D E F G H I
r 0.243
alpha 4.414
a 0.793
b 2.426
LL -9582.4

ID x t_x T ln(.) ln(A_1) ln(A_2) ln(A_3) ln(A_4)
0001 2 30.43 38.86 -9.4596 -0.8390 -0.4910 -8.4489 -9.4265
0002 1 1.71 38.86 -4.4711 -1.0562 -0.2828 -4.6814 -3.3709
0003 0 0.00 38.86 -0.5538 0.3602 0.0000 -0.9140 0.0000
0004 0 0.00 38.86 -0.5538 0.3602 0.0000 -0.9140 0.0000
0005 0 0.00 38.86 -0.5538 0.3602 0.0000 -0.9140 0.0000
0006 7 29.43 38.86 -21.8644 6.0784 -1.0999 -27.2863 -27.8696
0007 1 5.00 38.86 -4.8651 -1.0562 -0.2828 -4.6814 -3.9043
0008 0 0.00 38.86 -0.5538 0.3602 0.0000 -0.9140 0.0000
0009 2 35.71 38.86 -9.5367 -0.8390 -0.4910 -8.4489 -9.7432
0010 0 0.00 38.86 -0.5538 0.3602 0.0000 -0.9140 0.0000
2355 0 0.00 27.00 -0.4761 0.3602 0.0000 -0.8363 0.0000
2356 4 26.57 27.00 -14.1284 1.1450 -0.7922 -14.6252 -16.4902
2357 0 0.00 27.00 -0.4761 0.3602 0.0000 -0.8363 0.0000

=SUM(E8:E2364)

=GAMMALN(B$1+B8)-
GAMMALN(B$1)+B$1*LN(B$2)

=IF(B8>0,LN(B$3)-LN(B$4+B8-1)-
(B$1+B8)*LN(B$2+C8),0)

=-(B$1+B8)*LN(B$2+D8)

=F8+G8+LN(EXP(H8)+(B8>0)*EXP(I8)) =GAMMALN(B$3+B$4)+GAMMALN(B$4+B8)-
GAMMALN(B$4)-GAMMALN(B$3+B$4+B8)

Figure 1: Screenshot of Excel Worksheet for Parameter Estimation

The parameters of the Pareto/NBD model are also obtained via MLE, but this task could be

performed only in MATLAB due to the computational demands of the model. The parameter

estimates and corresponding log-likelihood function values for the two models are reported in

Table 2. Looking at the log-likelihood function values, we observe that the BG/NBD model

provides a better fit to the data.

BG/NBD Pareto/NBD
r 0.243 0.553
α 4.414 10.578
a 0.793
b 2.426
s 0.606
β 11.669
LL −9582.4 −9595.0

Table 2: Model Estimation Results

In Figure 2, we examine the fit of these models visually: the expected numbers of people

making 0, 1, . . . , 7+ repeat purchases in the 39-week model calibration period from the two

models are compared to the actual frequency distribution. The fits of the two models are very

close. On the basis of the chi-square goodness-of-fit test, we note that the BG/NBD model

provides a better fit to the data (χ2
3 = 4.82, p = 0.19) than the Pareto/NBD, χ2

3 = 11.99,

(p = 0.007).
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Figure 2: Predicted versus Actual Frequency of Repeat Transactions

The performance of these models becomes more apparent when we consider how well the

models track the actual number of (total) repeat transactions over time. During the 39-week

calibration period, the tracking performance of the BG/NBD and Pareto/NBD models is prac-

tically identical. In the subsequent 39-week forecast period, both models track the actual (cu-

mulative) sales trajectory, with the Pareto/NBD performing slightly better than the BG/NBD

(under-forecasting by 2% versus 4%), but both models demonstrate superb tracking/forecasting

capabilities.

Our final—and perhaps most critical—examination of the relative performance of the two

models focuses on the quality of the predictions of individual-level transactions in the forecast

period (Weeks 40–78) conditional on the number of observed transactions in the model calibra-

tion period. For the BG/NBD model, these are computed using (10). For the Pareto/NBD, as

noted earlier, the equivalent expression is represented by equation (22) in SMC.

In Figure 3, we report these conditional expectations along with the average of the actual

number of transactions that took place in the forecast period, broken down by the number

of calibration-period repeat transactions. (For each x, we are averaging over customers with

different values of tx.)

Both the BG/NBD and Pareto/NBD models provide excellent predictions of the expected

number of transactions in the holdout period. It appears that the Pareto/NBD offers slightly

better predictions than the BG/NBD, but it is important to keep in mind that the groups towards

14



 0  1  2  3  4  5  6 7+
0

1

2

3

4

5

6

7

# Transactions in Weeks 1−39

E
xp

ec
te

d 
# 

T
ra

ns
ac

tio
ns

 in
 W

ee
ks

 4
0−

78

Actual
BG/NBD
Pareto/NBD

Figure 3: Conditional Expectations

the right of the figure (i.e., buyers with larger values of x in the calibration period) are extremely

small. An important aspect that is hard to discern from the figure is the relative performance

for the very large “zero class” (i.e., the 1411 people who made no repeat purchases in the first

39 weeks). This group makes a total of 334 transactions in weeks 40–78, which comprises 18%

of all of the forecast period transactions. (This is second only to the 7+ group, which accounts

for 22% of the forecast period transactions.) The BG/NBD conditional expectation for the zero

class is 0.23, which is much closer to the actual average (334/1411=0.24) than that predicted

by the Pareto/NBD (0.14).

Nevertheless, these differences are not necessarily meaningful. Taken as a whole across

the full set of 2357 customers, the predictions for the BG/NBD and Pareto/NBD models are

indistinguishable from each other and from the actual transaction numbers. This is confirmed

by a three-group ANOVA (F2,7068 = 2.65), which is not significant at the usual 5% level. This

analysis demonstrates the high degree of validity of both models, particularly for the purposes

of forecasting a customer’s future purchasing, conditional on his past buying behavior.

8 Discussion

Many researchers have praised the Pareto/NBD model for its sensible behavioral story, its

excellent empirical performance, and the useful managerial diagnostics that arise quite naturally
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from its formulation. We fully agree with these positive assessments and have no misgivings

about the model whatsoever, besides its computational complexity. It is simply our intention

to make this type of modeling framework more broadly accessible so that many researchers and

practitioners can benefit from the original ideas of SMC.

The BG/NBD model arises by making a small, relatively inconsequential, change to the

Pareto/NBD assumptions. The transition from an exponential distribution to a geometric pro-

cess (to capture customer dropout) does not require any different psychological theories nor

does it have any noteworthy managerial implications. When we evaluate the two models on

their primary outcomes (i.e., their ability to fit and predict repeat transaction behavior), they

are effectively indistinguishable from each other.

As Albers (2000) notes, the use of marketing models in actual practice is becoming less

of an exception, and more of a rule, because of spreadsheet software. It is our hope that the

ease with which the BG/NBD model can be implemented in a familiar modeling environment

will encourage more firms to take better advantage of the information already contained in

their customer transaction databases. Furthermore, as key personnel become comfortable with

this type of model, we can expect to see growing demand for more complete (and complex)

models—and more willingness to commit resources to them.

Beyond the purely technical aspects involved in deriving the BG/NBD model and comparing

it to the Pareto/NBD, we have attempted to highlight some important managerial aspects

associated with this kind of modeling exercise. For instance, to the best of our knowledge, this

is only the second empirical validation of the Pareto/NBD model— the first being Schmittlein

and Peterson (1994). (Other researchers (e.g., Reinartz and Kumar 2000, 2003; Wu and Chen

2000) have employed the model extensively, but do not report on its performance in a holdout

period.) We find that both models yield very accurate forecasts of future purchasing, both at

the aggregate level as well as at the level of the individual (conditional on past purchasing).

Besides using these empirical tests as a basis to compare models, we also want to call more

attention to these analyses—with particular emphasis on conditional expectations—as the

proper yardsticks that all researchers should use when judging the absolute performance of

other forecasting models for CLV-related applications. It is important for a model to be able to
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accurately project the future purchasing behavior of a broad range of past customers, and its

performance for the zero class is especially critical, given the typical size of that “silent” group.

In using this model, there are several implementation issues to consider. First, the model

should be applied separately to customer cohorts defined by the time (e.g., quarter) of acqui-

sition, acquisition channel, etc. (Blattberg et al. 2001). (For a very mature customer base, the

model could be applied to coarse RFM-based segments.) Second, if we are using one cohort’s

parameters as the basis for, say, another cohort’s conditional expectation calculations, we must

be confident that the two cohorts are comparable. Third, we must acknowledge an implicit

assumption when using the forecasts generated using a model such as that developed in the

paper: we are assuming that future marketing activities targeted at the group of customers will

basically be the same as those observed in the past. (Of course, such models can be used to

provide a baseline against which we can examine the impact of changes in marketing activity.)

Finally, as with the Pareto/NBD, the BG/NBD must be augmented by a model of purchase

amount before it can be used as the basis for CLV calculations. Two candidate models are

the normal-normal mixture (Schmittlein and Peterson 1994) and the gamma-gamma mixture

(Colombo and Jiang 1999). A natural starting point for any such extension would be to assume

that purchase amount is independent of purchase timing (Schmittlein and Peterson 1994).

The BG/NBD easily lends itself to relevant generalizations, such as the inclusion of de-

mographics or measures of marketing activity. However great care must be exercised when

undertaking such extensions: to the extent that customer segments have been formed on the

basis of past behavior (e.g., using the RFM framework) and these segments have been targeted

with different marketing activities, we must be aware of econometric issues such as endogeneity

bias (Shugan 2004) and sample selection bias. If such extensions are undertaken, the BG/NBD

in its basic form would still serve as an appropriate (and hard-to-beat) benchmark model and

should be viewed as the right starting point for any customer-base analysis exercise.
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Appendix

In this appendix, we derive the expressions for E[(X(t)] and E(Y (t) |X = x, tx, T ). Central to

these derivations is Euler’s integral for the Gaussian hypergeometric function:

2F1(a, b; c; z) =
1

B(b, c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − zt)−adt , c > b .

Derivation of E[X(t)]

To arrive at an expression for E[X(t)] for a randomly-chosen customer, we need to take the

expectation of (5) over the distribution of λ and p. First we take the expectation with respect

to λ, giving us

E(X(t) | r, α, p) =
1
p

− αr

p(α + pt)r

The next step is to take the expectation of this over the distribution of p. We first evaluate

∫ 1

0

1
p

pa−1(1 − p)b−1

B(a, b)
dp =

a + b − 1
a − 1

Next, we evaluate

∫ 1

0

αr

p(α + pt)r
pa−1(1 − p)b−1

B(a, b)
dp = αr 1

B(a, b)

∫ 1

0
pa−2(1 − p)b−1(α + pt)−rdp

letting q = 1 − p (which implies dp = −dq)

=
(

α

α + t

)r 1
B(a, b)

∫ 1

0
qb−1(1 − q)a−2(1 − t

α+tq
)−r

dq

which, recalling Euler’s integral for the Gaussian hypergeometric function,

=
(

α

α + t

)r B(a − 1, b)
B(a, b) 2F1

(
r, b; a + b − 1; t

α+t

)
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It follows that

E(X(t) | r, α, a, b) =
a + b − 1

a − 1

[
1 −

(
α

α + t

)r

2F1
(
r, b; a + b − 1; t

α+t

)]

Derivation of E(Y (t) | X = x, tx, T )

Let the random variable Y (t) denote the number of purchases made in the period (T, T + t].

We are interested in computing the conditional expectation E(Y (t) |X = x, tx, T ), the expected

number of purchases in the period (T, T + t] for a customer with purchase history X = x, tx, T .

If the customer is active at T , it follows from (5) that

E(Y (t) |λ, p) =
1
p

− 1
p
e−λpt (A1)

What is the probability that a customer is active at T? Given our assumption that all

customers are active at the beginning of the initial observation period, a customer cannot drop

out before he has made any transactions; therefore,

P (active at T |X = 0, T, λ, p) = 1

For the case where purchases were made in the period (0, T ], the probability that a customer

with purchase history (X = x, tx, T ) is still active at T , conditional on λ and p, is simply the

probability that he did not drop out at tx and made no purchase in (tx, T ], divided by the

probability of making no purchases in this same period. Recalling that this second probability is

simply the probability that the customer became inactive at tx, plus the probability he remained

active but made no purchases in this interval, we have

P (active at T |X = x, tx, T, λ, p) =
(1 − p)e−λ(T−tx)

p + (1 − p)e−λ(T−tx)

Multiplying this by [(1 − p)x−1λxe−λtx ]/[(1 − p)x−1λxe−λtx ] gives us

P (active at T |X = x, tx, T, λ, p) =
(1 − p)xλxe−λT

L(λ, p |X = x, tx, T )
(A2)
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where the expression for L(λ, p |X = x, tx, T ) is given in (3). (Note that when x = 0, the

expression given in (A2) equals 1.)

Multiplying (A1) and (A2) yields

E(Y (t) |X = x, tx, T, λ, p) =
(1 − p)xλxe−λT

(
1
p − 1

pe−λpt
)

L(λ, p |X = x, tx, T )

=
p−1(1 − p)xλxe−λT − p−1(1 − p)xλxe−λ(T+pt)

L(λ, p |X = x, tx, T )
(A3)

(Note that this reduces to (A1) when x = 0, which follows from the result that a customer who

made zero purchases in the time period (0, T ] must be assumed to be active at time T .)

As the transaction rate λ and dropout probability p are unobserved, we compute E(Y (t) |X =

x, tx, T ) for a randomly chosen customer by taking the expectation of (A3) over the distribution

of λ and p, updated to take account of the information X = x, tx, T :

E(Y (t) |X = x, tx, T, r, α, a, b) =∫ 1

0

∫ ∞

0
E(Y (t) |X = x, tx, T, λ, p)f(λ, p | r, α, a, b,X = x, tx, T )dλ dp (A4)

By Bayes theorem, the joint posterior distribution of λ and p is given by

f(λ, p | r, α, a, b,X = x, tx, T ) =
L(λ, p |X = x, tx, T )f(λ | r, α)f(p | a, b)

L(r, α, a, b |X = x, tx, T )
(A5)

Substituting (A3) and (A5) in (A4), we get

E(Y (t) |X = x, tx, T, r, α, a, b) =
A − B

L(r, α, a, b |X = x, tx, T )
(A6)

where

A =
∫ 1

0

∫ ∞

0
p−1(1 − p)xλxe−λT f(λ | r, α)f(p | a, b)dλ dp

=
B(a − 1, b + x)

B(a, b)
Γ(r + x)αr

Γ(r)(α + T )r+x
(A7)
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and

B =
∫ 1

0

∫ ∞

0
p−1(1 − p)xλxe−λ(T+pt)f(λ | r, α)f(p | a, b)dλ dp

=
∫ 1

0

pa−2(1 − p)b+x−1

B(a, b)

{∫ ∞

0

αrλr+x−1e−λ(α+T+pt)

Γ(r)
dλ

}
dp

=
Γ(r + x)αr

Γ(r)B(a, b)

∫ 1

0
pa−2(1 − p)b+x−1(α + T + pt)−(r+x)dp

letting q = 1 − p (which implies dp = −dq)

=
Γ(r + x)αr

Γ(r)B(a, b)(α + T + t)r+x

∫ 1

0
qb+x−1(1 − q)a−2(1 − t

α+T+tq
)−(r+x)

dq

which, recalling Euler’s integral for the Gaussian hypergeometric function,

=
B(a − 1, b + x)

B(a, b)
Γ(r + x)αr

Γ(r)(α + T + t)r+x 2F1
(
r + x, b + x; a + b + x − 1; t

α+T+t

)
(A8)

Substituting (6), (A7) and (A8) in (A6) and simplifying, we get

E(Y (t) |X = x, tx, T, r, α, a, b) =

a + b + x − 1
a − 1

[
1 −

(
α + T

α + T + t

)r+x

2F1
(
r + x, b + x; a + b + x − 1; t

α+T+t

)]

1 + δx>0
a

b + x − 1

(
α + T

α + tx

)r+x
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