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ABSTRACT
We present a new representation that is guaranteed to encode
any planar triangle graph of V vertices in less than 3.67V bits.
Our code improves on all prior solutions to this well studied
problem and lies within 13% of the theoretical lower limit of
the worst case guaranteed bound. It is based on a new
encoding of the CLERS string produced by RossignacÕs
Edgebreaker compression [Rossignac99]. The elegance and
simplicity of this technique makes it suitable for a variety of
2D and 3D triangle mesh compression applications. Simple
and fast compression/decompression algorithms with linear
time and space complexity are available.
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graph encoding, geometry compression.

1. INTRODUCTION
Many 3D models used in engineering, scientific, medical,
geographical, and visualization applications are represented
by an irregular mesh of bounding triangles. The simplest
representation of such a mesh stores the geometry (a table of
the coordinates of its V vertices) and the connectivity (a table
of triangles, each represented by three vertex indices of at least
log2(V) bits each).

The problem of compactly encoding the connectivity has been
studied extensively as the theoretical problem of short
encoding of planar triangle graphs [Tutte62, Tutte73,
Itai&Rodeh82, Turan84, Naor90, Kao&Teng94,
Keeler&Westbrook95, Munro&Raman97, Chuang&others98,
He&Kao99] and as a practical problem of compressing the
incidence table of triangle meshes for 2D and 3D models
[Deering95, Chow97, Denny97, Hoppe98, Gumhold98, Li98,
Taubin98, Touma98, Rossignac99, Rossignac&Szymczak99].

Because, for large V, the connectivity of triangle meshes
dominates storage, it is important to develop compact
representations for it. For meshes that are homeomorphic to a
sphere, the connectivity information may be represented by a
planar triangle graph. Thus, a short encoding of an unlabeled
planar graph may be used for compressing such triangle
meshes, given a convention for canonical vertex labeling.

Furthermore, in many applications, it is possible to compress
vertex coordinates down to 4 or 5 bits each by using vertex
quantization, geometric predictors, and variable length
encoding of corrective vectors [Deering95, Chow97, Hoppe98,
Taubin&Rossignac98].

Most techniques for encoding planar graphs may be extended
to handle more general meshes with handles, boundaries, and
other non-manifold singularities (see for example discussions
in [Rossignac&Cardoze99, Rossignac&Szymczak99]).

While theoretical investigations are focused on lowering the
worst case storage cost for any planar triangle graph, practical
triangle mesh compression approaches are focused on lowering
the expected storage cost for 3D models commonly found in
CAD, medical, GIS, animation, and graphic applications.

The work reported here makes a theoretical contribution by
introducing a new representation that is guaranteed to encode
any planar triangle graph of V vertices in less than 3.67V bits.

Our new code improves on all prior solutions to this well
studied problem, including Keeler and WestbrookÕs bound of
4.6V bits [Keeler&Westbrook95] and RossignacÕs recently
published bound of 4.0V bits [Rossignac99]. It lies within
13% of the theoretical lower limit of 3.24 bits worst case
guaranteed bound, established by Tutte [Tutte62].

Our approach is based on a new encoding of the CLERS string,
produced by RossignacÕs Edgebreaker compression algorithm
[Rossignac99]. A faster, Wrap&Zip, decompression algorithm
was recently developed by Rossignac and Szymczak
[Rossignac&Szymczak99]. Both algorithms exhibit linear time
and space complexity.

We briefly explain the CLERS string and outline both the
Egebreaker and the Wrap&Zip algorithms in the next section.
Then we describe our new encoding of the CLERS string and
justify our claims of 3.67V bits. Finally, we discuss extensions
to the connectivity graphs of meshes that are non-
homeomorphic to a sphere.



2. EDGEBREAKER
Consider a triangle mesh of T triangles and V vertices that i s
homeomorphic to a sphere. T equals 2VÐ4. The triangle/vertex
incidence relation may be encoded as a planar triangle graph.

Edgebreaker [Rossignac99] visits the triangles and vertices of
the entire mesh in depth-first order by applying the
transformations shown in Figure 1. The left column shows the
precondition for each one of the 5 Edgebreaker operations,
which visit and label one triangle at a time. The right column
shows the result of each operation and the label associated
with the most recently visited triangle. The CLERS string i s
the concatenation of the C, L, E, R, or S labels identifying each
operation.

We use the following color codes. The current triangle i s
medium grey. Previously processed triangles are dark grey.
References to light grey triangles are pushed on the stack after
each S and will be used to identify the current triangle after the
corresponding E operation. White triangles have not been
processed.

Filled circles identify labeled vertices, and an open circle
identifies a vertex which must not have been previously
labeled. We use incremental labels, which define the order in
which vertex coordinates and other attributes are encoded.

The resulting CLERS sequence suffices to capture the
connectivity of the mesh (i.e. of the associated planar triangle
graph).

Figure 1: Edgebreaker compression.

A simple encoding of the labels guarantees 4 bits per vertex. It
is based on the observation that exactly 50% of the symbols are
C operations, because only C operations reach new vertices and
because there are two times as many triangles as vertices.
Therefore, it suffices to encode each C with a single bit code (for
example 0) and each one of the other four operations with a 3-
bit code starting with a 1. Such a code is guaranteed to take
2.0T bits, or equivalently 4.0V bits.

More elaborate codes, proposed in [Rossignac99,
Rossignac&Szymczak99], further reduce the expected storage
cost. For example, the fact that CL and CE combinations are
impossible leads to a simple code with an expected storage cost
to 3.2V bits. For very large meshes, an entropy code reduces the
expected storage cost to less than 2.0V bits
[Rossignac&Szymczak99]. However, these improved codes for
the expected mesh may require 4V or more bits in the worst
situation. Thus these advanced codes do not improve the
original EdgebreakerÕs 4.0V bits worst case bound.

Wrap&Zip decompression [Rossignac&Szymczak99] decodes
and uses the labels of the CLERS string to decide where to
append each new triangle to a previously reconstructed one.
The result is a simply connected topological polygon that
corresponds to a triangle-spanning tree of the original mesh. To
correctly glue the corresponding pairs of its bounding edges,
Wrap&Zip uses the labels to orient the free edges that bound
the polygon counter-clockwise for L, R, and E, and clockwise
for C triangles, as shown in Figure 2.

Figure 2: Wrap&Zip free edge orientation.

A recursive procedure restores the complete incidence
information by gluing pairs of adjacent edges whose
orientations point towards their common vertex. Vertices are
decoded in the order in which they are first encountered.

C

L

R

E

S

C L R

S E



2. OUR NEW CODES
We achieve a guaranteed encoding of 1 and 5/6 bits per
triangle by using a 2-bit prefix for the entire CLERS string to
select between three alternative codes, of which at least one
takes 1 and 5/6 bits per triangle or less.

The three codes, 1, 2, and 3 are presented in Table 1. A C will
be denoted CA when it immediately follows another C and CN

otherwise. We use a similar notation for S and R. L and E can
never follow a C.

State: Code 1: Code 2: Code 3:

CA 0 0 0

SA 10 10 10

RA 11 11 11

CN 0 00 00

SN 100 111 010

RN 101 10 011

L 110 110 10

E 111 01 11

Total cost 2TÐ|SA|Ð|RA| 2TÐ|RN|Ð|E| 2TÐ|L|Ð|E|

Table 1: Three codes

Note that during decompression, the previous label is known
and hence indicates whether one should use codes for labels
that follow a C or codes for labels that do not follow a C. Note
that in each case, and for each one of our three coding schemes,
these codes are exclusive.

The total cost of these operations in bits (bottom row) i s
expressed in terms of T and in terms of the number of incidences
|X| of labels of type X in the CLERS string. We first justify
these total cost formulae and then prove that at least one of
them must not exceed 11T/6 bits.

There are exactly 2+T/2 vertices.  The first two vertices bound
the initial starting edge and need not be explicitly encoded.
Therefore, there is exactly T/2 labels of type C and thus
|L|+|E|+|R|+|S| = T/2. Consequently, there are always T/2 labels
that follow a C and T/2Ð1 labels that do not. Consequently,
|CN|+|CA|=T/2 and |SA|+RA|+|CA|=T/2. From these two equations,
we obtain |CN|=|SA|+RA|.

By adding the cost of all labels, the total cost in bits for code 1
is |CA|+2|SA|+2|RA|+|CN|+3|SN|+3|RN|+3|L|+3|E|. By rearranging
the terms we obtain (|CA|+|CN|)+(2|SA|+|SA|)+(2|RA|+|RA|)
+3|SN|+3|RN|+3|L|+3|E|Ð|SA|Ð|RA| and by identifying groups
C+3(|SA|+|RA|+|SN|+|RN|+|L|+|E|)Ð(|SA|+|RA|). Given that
|C|=T/2, that |S|+|R|+|L|+|E|=T/2, and that  |SA|+RA|=|CN| we
obtain 2TÐ(|SA|+RA|).

The total cost of code 2 is |CA|+2|SA|+2|RA|+|2CN|+3|SN|+2|RN|
+3|L|+2|E|.  We rearrange and group the terms to obtain
(|CA|+|CN|) + |CN|Ð (|SA|+|RA) + 3(|SA| + |RA| + |SN| + |RN| + |L|
+ |E|) -  (|RN|+|E|).  The |CN|Ð(|SA|+|RA|) cancel outs, and,

given that |C|=T/2 and |S|+|R|+|L|+|E|=T/2, we obtain 2T-
(|RN|+|E|).

The cost of code 3 is |CA|+2|SA|+2|RA|+|2CN|+3|SN|+3|RN|
+2|L|+2|E|.  Rearranging terms, it is (|CA|+|CN|)+|CN|-(|SA|+|RA)
+3(|SA|+|RA|+|SN|+|RN|+|L|+|E|)-(|L|+|E|).  We obtain 2T-
(|L|+|E|).    

The best alternative among the three codes has cost
min(2TÐ|SA|Ð|RA|, 2TÐ|RN|Ð|E|, 2TÐ|L|Ð|E|), which may be
simplified to 2T-max(|SA|+|RA|, |RN|+|E|, |L|+|E|).  Clearly,
3max(|SA|+|RA|, |RN|+|E|, |L|+|E|) is no less than the sum
|SA|+|RA|+|RN|+|E|+|L|+|E|.  Since |E|=|S|+1, this sum equals
|SA|+|RA|+|RN|+|E|+|L|+|SA|+|SN|.  Applying the fact that
|S|+|R|+|L|+|E|=T/2, we obtain max(|SA|+|RA|, |RN|+|E| ,|L|+|E|)
>= 1/3 (T/2 + |SA|+1) > T/6.  

The total worst-case cost, therefore, is 2T-max(|SA|+|RA|,
|RN|+|E|, |L|+|E|) < 2T Ð T/6 - |SA|/3 < 11T/6, or, less than
approximately 1.83 T.  For meshes homeomorphic to a sphere,
T=2V-4, so the cost is bounded below 3.67 bits per vertex.
Since |SA| may take on any value between 0 and T/4, the |SA|/3
term in the formula may reduce the expected cost but does not
improve the worst-case guarantee.

2.1.1 Meshes with Boundary
A mesh with boundary may be encoded by adding a dummy
vertex and connecting the dummy vertex to each boundary edge
with an additional triangle.  If the encoding begins from the
dummy vertex, each such triangle will be a C, and the sequence
of initial CÕs may be encoded in O(log(B)) bits, where B is the
number of boundary edges.  The resulting total cost is 11/6
(T+B) - B + O(log(B)), or 11/6 T + 5/6 B + O(log(B)).

2.1.2 Meshes with Handles and Holes
Handles and holes may be represented by modifying each S to
indicate whether the boundary vertex reached is on the
boundary of the mesh itself, on the border of a hole, or on a
loop that cuts a handle.  Rossignac [Rossignac] proposes to
store the bits distinguishing among those three cases in a
separate table, which may be entropy coded to take advantage
of the low frequency of holes and handles in most meshes.  The
table must also identify which handle has been reached and
record the number of edges in the border of each hole, at cost
O(log(handles)) and O(holes*log(B)) respectively.

In a mesh with handles, the above triangle frequencies change
somewhat.  The total number of triangles T is 2V-4+4H, the
total number of CÕs is therefore approximately T/2 Ð 2H, and
the number of non-CÕs is T/2+2H.  The cost of the codes,
therefore, becomes 2T+4H-max(|SA|+|RA|,|RN|+|E|,|L|+|E|).  Since
the additional triangles are non-CÕs, however, the maximum
becomes at least T/6+H/3, for a cost no worse than 3.67
(V+2H)+0.83B, plus the cost of encoding the lookup table.
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