
Fast Reconstruction of Delaunay Triangulations

Christian Sohler

Heinz Nixdorf Institute and Dept. of Math. and Computer Science,

University of Paderborn, D-33095 Paderborn, Germany

e-mail: csohler@uni-paderborn.de

July 8, 1999

Abstract

We present a new O(n) algorithm to compute good orders for the
point set of a Delaunay triangulation of n points in the plane. Such a
good order makes reconstruction in O(n) time with a simple algorithm
possible. In contrast to the algorithm of Snoeyink and van Kreveld [1],
which is based on independent sets, our algorithm uses a breadth �rst
search (BFS) to obtain these orders. Both approaches construct such
orders by repeatedly removing a constant fraction of vertices from the
current triangulation. The advantage of the BFS approach is that we
can give signi�cantly better bounds on the fraction of removed points
in a phase of the algorithm. We can prove that a single phase of our
algorithm removes at least 1

3
of the points, even if we restrict the degree

of the points (at the time they are removed) to 6. We implemented and
compared both algorithms. Our algorithms is slightly faster and achieves
about 15% better vertex data compression when using a simple variable
length code to encode the di�erences between two consecutive vertices of
the given order.

1 Introduction

The Delaunay triangulation of a planar point set is an important structure in
computational geometry and its application areas. It is, for example, used in

geographic information systems (GIS) to represent terrain models (using an
additional coordinate for the height of a point). These models often consist of
several millions of triangles. Suppose you want to transmit such models from a
server to a client over a slow communication link. At �rst glance, there are two
possibilities:

a) Transmit the point set; since a Delaunay triangulation is a canonical
structure, it can be computed from the point set. However, this
requires �(n logn) time, in general [3] [4].

1



b) Transmit all adjacency information and the point set. This requires
either non-trivial geometry compression algorithms [5] [6] [7] or re-
sults in a huge transmission overhead.

Recently, Snoeyink and van Kreveld [1] introduced a third possibility, which
is also considered in this paper: compute a special order for the point set. If
the point set arrives in this order at the client, the Delaunay triangulation can
be recomputed in O(n) time. Provided the server has already computed the
Delaunay triangulation, it is possible to compute such an order in O(n) time
as shown in [1]. The order-computation-algorithm in [1] has O(logn) phases
and in each phase an independent set I of 
(n0) points is removed from the
current triangulation, where n

0 denotes the number of points in the current
triangulation. Then the created holes are retriangulated and each removed
point gets a reference pointer to its enclosing triangle. This is followed by a
(canonical) DFS or BFS on the triangles of the current triangulation. The
order of the point set is then given by the time the enclosing triangles for the
points in I are visited.

The reconstruction algorithm also has O(logn) phases corresponding to the
phases of the order-computation-algorithm. At the beginning of each phase,
the points can be located by the same canonical DFS or BFS as in the order-
computation-algorithm. This way, the point location for I can be done in O(n0)
time.

Our method relies on a BFS on the graph of the triangulation. We do not
require the points removed in a single phase to be an independent set. The
advantage is, that we can remove more points from the triangulation in a single
phase.

If we transmit the point set of a triangulation we also want to compress the
vertex coordinates. This is often done [5] [6] [7] [8] by rounding the coordinates
to k-bit integers and encoding the di�erences between two consecutive vertices
by a variable length code. Our method ensures that two consecutive points in
the computed order are usually close to eachother. We compared our algorithm
to the one in [1] with respect to the compression results that were achieved with
a simple variable length code. The result is that our algorithm needs about 15%
less memory to store or transmit a compressed point set. We also compared the
running times of both algorithms experimentally. Here our algorithms perform
slightly better (about 20% for order computation and 10% for reconstruction).

The disadvantage of our approach is that it gives up parallel insertion of the
points, which is possible when the points are independent.

Nevertheless, it is well-suited for progressive transmission since we can insert
each point immediately when it arrives at the client. The transmitted points at
the end of each phase give an approximation of the �nal triangulation. Within
a phase the BFS-order guarantees a 'nice' reconstruction.

In section 2 and 3 we explain the algorithms to compute good orders and
to reconstruct the triangulations. In section 4 we analyze the algorithms. Then
we give experimental results.

2



2 Computing Good Orders

To compute a good order we proceed similar to [1] and [2] by repeatedly remov-
ing a constant fraction of vertices from the current triangulation and retrian-
gulating the created holes until only a constant number of points remain. We
describe in this section how a single batch is computed (this corresponds to a
single phase of the algorithm). To simplify the analysis we will from now on
assume that all triangulations have a convex hull de�ned by exactly 3 extreme
points (this can be easily achieved by adding two dummy points). These points
may not be removed in the algorithm of this section.

First we have to introduce a unique order for the vertices of a triangulation
� . Let � be represented by a planar map, i. e. the edges are ordered clockwise
around the vertices. Consider a breadth �rst search (BFS) of � that starts at
the leftmost vertex with the upper boundary edge. If a next edge is requested
during the BFS we always choose the next edge clockwise around the current
vertex. Then such a BFS is unique and we can order vertices and edges by the
�rst time they are visited by that procedure.

At the beginning of a phase of the followingalgorithmwe compute the reverse
BFS order for the vertex set of the triangulation. Then we process all vertices
in that order. We simply remove all vertices that have degree smaller than 7 at
the time they are considered.

The computation of a batch works as follows:

ComputeBatch(�)

compute reverse BFS-order for the vertex set of �
for each vertex in the de�ned order

if deg(v) < 7
remove v and retriangulate
put v on stack S

The order on the stack S and the algorithm in the next section make it pos-
sible to insert the computed batch in O(n) time. We can compute a good order
for the whole point set of the triangulation by iteratively applying the above
algorithm. The explanation how this order can be used for fast reconstruction
follows in the next chapter.

The running time T (n) of the algorithm is T (n) = T (n=c) +O(n) = O(n).

3



3 Reconstruction

Basically, the reconstruction algorithm works reverse to the algorithm from
section two. Again we have O(logn) phases and in each phase we (sequentially)
insert a batch of points into the current triangulation. In each phase we have to
compute a BFS to insert the points of the batch. In contrast to the algorithm
from section 2, we do not compute the BFS at the beginning of the algorithm
and process all vertices in the computed order. We have to insert points during
the BFS and these newly inserted points have in�uence on the BFS order. We
therefore process the BFS tree level by level. For each level we reconstruct the
neighborhood of the vertices of that level using the next points of the batch.
Then we compute the next level of the BFS-tree. In this way, the BFS tree is
adjusted at each new level. In fact, the BFS-tree we compute is the BFS-tree
of the Delaunay triangulation after the insertion of the batch. We now give the
algorithm in pseudocode. Please note that all for each loops must be performed
in (unique) BFS order as de�ned in section 2, i.e. the triangles are visited in
clockwise order around the current vertex v starting with the triangle adjacent
to edge e = (parent(v); v) of the BFS-tree. Let B the current batch and b its
�rst vertex:

RestoreBatch()

for each level l of the BFS-tree
for each vertex v at level l of the BFS-tree

for each triangle t incident to v

if b is in circumcircle(t)
insert b
update triangle list
b = B:next()

compute next level of the BFS-tree

During the execution of the above algorithm for batch B and triangulation
� we call a triangle certi�ed, if it is a triangle of the Delaunay triangulation of
V [B where V is the point set of � .

Now we can state the following lemma:

Lemma 1. After a triangle has been tested in line 5 of the above algorithm
and was not destroyed (that is, b was not in circumcircle(t)) it is certi�ed.

Lemma 2. After all vertices of a level of the BFS-tree have been processed,
all incident triangles are certi�ed. Thus the neighborhood of these vertices
has correctly been reconstructed and we can proceed with our algorithm and
compute the next level of the BFS-tree.

Proof: Follows immediately from Lemma 1.

4



A direct consequence of Lemma 2 is that no triangle has to be checked twice
during a single phase of the algorithm.

Now we must take a closer look at the case when a vertex b is inserted. Since
we know a triangle t that is destroyed by b, we can �nd all destroyed triangles
by a traversal of the (destroyed) triangles starting at t. Since the degree of b
is restricted to at most 6, we can insert the vertex in constant time. After the
insertion, we have two new triangles adjacent to the current vertex. We can
continue the for each loop with these two triangles (recall that the triangles
are visited in clockwise order).

Theorem 1. Algorithm RestoreBatch() correctly inserts a batch of ver-
tices resulting from the algorithm of section 2 into a triangulation also resulting
from that algorithm.

Proof: By induction on the level of the BFS-tree. Level 0 (the root) was
not removed and therefore is correctly reconstructed. Assume the triangulation
has been correctly reconstructed up to level n. Then Lemma 2 implies that we
can reconstruct level n+ 1 by processing all vertices of level n.

To complete this section, we will now give a proof of Lemma 1.

Proof: By contradiction. Let t be the �rst triangle that is tested, not
destroyed, and that does not belong to the triangulation �EOP of the vertex set
of the current triangulation and the batch (which is the triangulation at the end
of the phase). Then either not the whole batch is inserted or t is destroyed by
some vertex b that is still in the batch at the time t is tested. We �rst regard
the second case.

At the time t is tested, b cannot be the �rst vertex of the batch, since
otherwise t was destroyed. Thus there exists at least one other vertex b

0 on the
batch that is inserted before b is inserted. Let v be the smallest vertex (in the
order de�ned by a BFS in �EOP ) adjacent to b in �EOP . Then v is also the
smallest vertex of t, because t is destroyed when b is inserted and by the choice
of t (if the edge between b and v is destroyed by later insertion of a vertex w,
we can use the similar arguments with w to get a contradiction). Furthermore,
v is the smallest vertex whose neighborhood has not been restored. Thus b

0

is also adjacent to v (otherwise, b would appear before b
0 on the batch which

contradicts the choice of b0).
We conclude, that b and b

0 are adjacent to v and that t appears before b
0

and b
0 before b in clockwise order around v.

Let u be the vertex of t that is further away from b in counter-clockwise
order around v. Then the segment bu either crosses vb

0 or it crosses the edge
(parent(v); v) which belongs to a certi�ed triangle (or it crosses some other
certi�ed triangle that is older than t) or b

0 is in the triangle uvb. All three
cases cannot occur: if bu crosses vb0, then b

0 is no longer adjacent to v after the
insertion of b. If bu crosses another certi�ed triangle that is older than t, we

5



have a contradiction to the choice of t. And if b0 is in the triangle uvb, then uvb

cannot be a triangle of the Delaunay triangulation. But uvb is a triangle of the
triangulation, if the insertion of b destroys t. Thus we have found contradictions
in all cases and t cannot be destroyed by another point b.

We still have to regard the other possibility that t is not destroyed but does
not belong to �EOP , that is, not the whole batch of points is inserted. Let
b be the vertex that destroys t (otherwise t appears in �EOP ). Then there is
another vertex b

0 before b in the batch because otherwise t would be destroyed
when it is tested. Since b

0 is before b in the batch, it either destroys t or some
smaller triangle (this follows using similar arguments as above). By choice of t
all smaller triangles are certi�ed, thus t is destroyed which is a contradiction.
This completes the proof of lemma 1.

The running time of the algorithm is linear in the number of created triangles
and thus O(n).

Remark. When implementing the algorithm it is possible to substitute
most of the incircle tests by 1 or 2 sideness tests. We did not use sideness tests
in the pseudocode to keep the code as simple as possible.

6



4 Analysis

We �rst prove that for each triangulation � with n vertices the algorithm from
section 2 computes a batch of size 
(n). Therefore let s be the number of vertices
that remain in the triangulation after the batch has been computed and let b be
the size of the batch. After the batch has been computed the overall degree of
the remaining vertices is 6s� 12 by Euler's formula. Each vertex that remains
in the triangulation has an initial degree of at least 7 when it is considered by
the algorithm. We regard the overall degree of all vertices that have not been
removed from the triangulation. This overall degree can only be lowered when
another vertex is removed. When retriangulating the created hole we observe
that for two adjacent vertices always at least one of them is incident to a new
edge. Thus the removal of a vertex can at most lower the overall degree of the
remaining vertices by 3. The 3 boundary vertices of the convex hull are not
removed and have degree at least 3. We put these observations together:

n = s+ b

7(s� 3) + 3 � 3� 3b � 6s� 12

Substitution immediately yields:

b � 1

4
n

Thus each batch contains at least 25% of the vertices of the current trian-
gulation. But we can still improve the analysis. If we consider a vertex v with
degree 6 (or less) it �rst of all must be connected to its parent in the BFS tree.
Then for every v except for the 3 boundary vertices there is at least one vertex
p that is adjacent to v with p smaller than v (in the usual order). Furthermore,
p has two neighbors that are adjacent to v. One of them is also smaller than v.
The remaining 4 vertices adjacent to v can be larger than v. Thus the degree
of the remaining vertices can only be lowered by 2 and hence:

b � 1

3
n.

The table below given the lower bounds on the batch size for di�erent con-

stants:

constant 6 7 8 9

batch size 1

3
n

2

5
n

1

2
n

1

2
n

Our experiments show that the batch size in practice is much bigger. If
we restrict to vertices with a degree of at most 6, about 80% of the vertices
(randomly distributed in the unit cube) were removed.

7



5 Implementation and Experimental Results

We implemented prototypes of both algorithm in C++. Geometric primitives
are computed using double precision �oating point arithmetic. We restricted
ourselves to incircle tests to simplify the implementation. Our algorithm is
basically implemented the way it is presented in this paper. The algorithm of
Snoeyink and van Kreveld has been slightly changed. Let � be the triangulation
resulting from the removal of an independent set I. Then the points in I are
sorted with respect to the time a BFS on � reaches the �rst triangle that is

destroyed by a point when it is inserted. This way (and using some mark bits)
we avoid unnecessary incircle tests (about 15-20%) during reconstruction. All
inputs are point sets randomly distributed in the unit cube. With algorithm 1
we always refer to the algorithm by Snoeyink and van Kreveld [1].

5.1 Compression of Vertex Coordinates

We compare the e�ectiveness of the compression of the sequence of points com-
puted by either algorithm. Therefore we round the coordinates to 16-bit integers
and encode the position of each vertex relative to the position of its predecessor
in the computed order. That is, we compute the di�erence between these two
vertices and encode this di�erence using variable length code. We process x�

and y�coordinates separately. Our code consists of two tag bits, a sign bit,
and a variable number (depending on the tag) of bits that encode the given
di�erence. The following table describes the code we used:

Tag encodable di�erence

00 -63 to 63

01 -511 to 511

10 -4095 to 4095

11 <-4095 or >4095

Table 1: A simple variable length code

We encoded the sequences of points computed by either algorithm using this
variable length code. It turns out that our algorithm needs roughly 4 bits per
vertex less than the one by Snoeyink and van Kreveld. The following table
gives our experimental results. The initial distribution of the point set was also
uniform in the unit square.

#vertices bits/vertex Algorithm 1 [1] bits/vertex Algorithm 2

5000 31.85 27.49

10000 30.74 26.50

20000 29.62 25.45

40000 28.47 24.39

80000 27.34 23.42

Table 2: Compression results

8



5.2 Running Time

We compared our implementation of both algorithms. First of all note that both
algorithms are fastest (on our inputs), if the degree of the removed vertices is
as low as possible. Therefore, both remove only vertices with degree at most
6. The algorithm presented in this paper performs slightly (about 20% for
construction and 10% for reconstruction) better than [1]. We also counted the
number of incircle tests done by both algorithms. If we want to reduce the
number of incircle tests the algorithm of Snoeyink and van Kreveld performs
best, if the degree of the removed vertices is restricted to 9. Then it needs
roughly 4% more incircle tests than our algorithm does. both algorithm use less
than 10 incircle tests (recall that no sideness tests are used) for each inserted
point on the average. In the table below we refer with 'CO' to the procedure
that computes a well ordered point set from an existing Delaunay triangulation
and with 'Rec' to the computation of a Delaunay triangulation from such an
ordered point set. We also compared both algorithms with the O(n

4

3 ) time
(on random point sets) algorithm by Mücke, Saias, and Zhu [9]. We refer with
'MSZ' to this algorithm in the table below. Time is measured in seconds on a
SUN SPARCstation 4 with 110 MHz.

#vertices MSZ [9] Alg1-CO [1]: Alg 2-CO: Alg 1-Rec [1]: Alg 2-Rec:

5000 4 2 2 2 1

10000 9 5 4 2 2

20000 22 9 7 5 5

40000 52 18 14 11 10

80000 2:04 36 30 23 19

Table 3: Comparison of the two algorithms

#vertices #incircle-tests -Algorithm 1 [1] #incircle-tests -Algorithm 2

5000 50K 48K

10000 100K 96K

20000 199K 192K

40000 399K 383K

80000 799K 768K

Table 4: Number of incircle-tests used by both algorithms

6 Conclusion

We presented a new method to compute orders for a Delaunay triangulation that
allow reconstruction of the triangulation in linear time. We can guarantee that
in a single phase of our algorithm 1

3
of the points are removed (when the degree of

the removed points is restricted to at most 6). This is a signi�cant improvement
to the algorithm of Snoeyink and van Kreveld (which guarantees that 1

10
of the

points of degree 6 can always be removed). Our algorithm is well-suited for

9



data compression and progressive transmission of Delaunay triangulations. It
provides a useful alternative to the algorithm in [1].

References

[1] J. Snoeyink, M. van Kreveld. Linear-time reconstruction of Delaunay trian-
gulations with applications, European Symposium on Algorithms, 1997

[2] M. Denny, C. Sohler. Encoding a triangulation as a permutation of its point
set. 9th Canadian Conference on Computational Geometry, 1997.

[3] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental con-
struction of Delaunay and Voronoi diagrams. Algorithmica, 7:381-413, 1992.

[4] J.-D. Boissonnat and M. Teillaud. On the randomized construction of the
Delaunay tree. Theoret. Comput. Sci. , 112:339-354, 1993.

[5] J. Rossignac. Georgia Institute of Technology, Technical Report: GIT-GVU-
98-35, October 10, 1998.

[6] H. Hoppe. Progressive Meshes. Proc. SIGGRAPH '96, pages 99-108. ACM
SIGGRAPH, 1996.

[7] G. Taubin, J. Rossignac. Geometric Compression through topological
surgery. ACM Trans. on Graphics, 17(2):84-115, 1998.

[8] M. Deering. Geometry Compression. Computer Graphics (Proc. SIG-
GRAPH), pages 13-20, 1995.

[9] E.P. Mücke I. Saias, and B. Zhu. Fast randomized point location without
preprocessing in two- and three-dimensional Delaunay triangulations. Proc.
12th Annu. ACM Sympos. Comput. Geom., pages 274-283, 1996.

10


