
Localizing Handle-Like Grasp Affordances
in 3D Point Clouds

Andreas ten Pas and Robert Platt

College of Computer and Information Science, Northeastern University
Boston, Massachusetts, USA

Abstract. We propose a new approach to localizing handle-like grasp
affordances in 3-D point clouds. The main idea is to identify a set of suf-
ficient geometric conditions for the existence of a grasp affordance and
to search the point cloud for neighborhoods that satisfy these conditions.
Our goal is not to find all possible grasp affordances, but instead to de-
velop a method of localizing important types of grasp affordances quickly
and reliably. The strength of this method relative to other current ap-
proaches is that it is very practical: it can have good precision/recall for
the types of affordances under consideration, it runs in real-time, and
it is easy to adapt to different robots and operating scenarios. We vali-
date with a set of experiments where the approach is used to enable the
Rethink Baxter robot to localize and grasp unmodelled objects.

Keywords: Grasping; 3-D point clouds; Grasp affordances; Handle grasp-
ing

1 Introduction

Robust robot grasping in novel and unstructured environments is an important
research problem that has many practical applications. A key sub-problem is
localization of the objects or object parts to be grasped. Localization is chal-
lenging because it can be difficult to localize graspable surfaces on unmodelled
objects. Moreover, even small localization errors can cause a grasp failure. In
this paper, we develop an approach to localization-for-grasping based on local-
izing parts of objects rather than localizing the entire object. We refer to these
graspable object parts as grasp affordance geometries: object geometries that
can be grasped in a particular way by a particular robot hand. Although the
idea of a grasp affordance has existed in the literature for a long time [5], the
idea has new promise now because the availability of accurate range sensing
information (i.e. the Microsoft Kinect) may make grasp affordance localization
easier. In this paper, we develop an approach to searching a 3-D point cloud for
grasp affordance geometries.

The main idea is to identify a set of sufficient geometric conditions for the
existence of a grasp affordance and to search the point cloud for neighborhoods
that satisfy these conditions. Here, we concern ourselves with “handle-like” grasp
affordance geometries. Our goal is not to find all possible grasp affordances, but

2 ten Pas, Platt

(a) (b)

Fig. 1. (a) An RGB image of a typical scene. (b) Handle-like grasp affordances localized
using our algorithm highlighted in cyan.

instead to develop a method of localizing important types of grasp affordances
quickly and reliably. Developing an efficient search is a key challenge. A complete
handle configuration is determined by seven parameters and a brute force search
of the point cloud would be infeasible in real time. We structure the search in
two ways. First, we constrain the robot hand to grasp in a plane orthogonal to
the minor principal curvature axis of the local object surface at the point where
the grasp occurs. This constraint makes sense intuitively and ultimately enables
us to reduce the search space down to three (spatial) dimensions. Second, we
require a cylindrical gap to be present around an object surface to accommo-
date the grasping robot hand. This constraint enables us to eliminate many
grasp candidates quickly. Figure 1 illustrates typical results of the overall pro-
cess. The strength of this method relative to other current approaches is that it
is very practical: it has good precision/recall for the types of affordances under
consideration, it runs in real-time, and it is easy to adapt to different robots
and operating scenarios. In addition, we have created an easy-to-use ROS pack-
age [15] that implements the algorithm and allows it to be used in most robotic
manipulation operational scenarios.

2 Related Work

The problem of localizing graspable geometries has been the subject of extensive
recent research. An important class of methods work by searching a height map
or a range image for graspable regions. For example, Klingbeil et al. search for
geometries in a range image that can be grasped by a parallel-jaw gripper [10].
A three-dimensional search (x, y, θ) is performed over the range image. The
gripper is constrained to approach the object from a single direction. The work
of Jiang et al. is related [8]. They search a registered RGBD image for regions
that score high on a linear-in-the-features grasp score function, where feature
weights were learned off-line. Closely related to the work of Jiang et al. is that of
Fischinger and Vincze [4]. Rather than searching an RGBD image, they perform
a 3-DOF search of a height map (calculated from a point cloud). They key
element of this work is the introduction of a new type of feature used to develop

Localizing handle-like grasp affordances 3

a graspability score function. Our current work is distinguished from the above
chiefly because we do not use a depth image or height map to structure our search
for grasp affordances, but we operate directly on the point cloud instead. This
brings several advantages including the ability to structure the search in different
ways, and a looser coupling between how the affordance was perceived and the
approach direction of the arm. Overall, our grasp success rates are at least as
good as those of any of the work mentioned above. However, it is important to
remember that this success rate assumes that objects can always be grasped by
a handle that is within reach of the robot.

Other work loosely related to the above includes that of Herzog et al., who
learn graspable height map “templates” based on user demonstrations of good
and bad grasps [7]. Katz et al. develop a method that depends on physical in-
teraction with the objects to be grasped [9]. The robot pushes the object under
consideration and uses the resulting motion to perform segmentation accurately.
The resulting system is very robust, but can require significant pushing interac-
tions prior to grasping. Another line of current research approaches the problem
of localization-for-grasping by searching for known modeled objects in a scene.
Here, it is common to use feature-matching approaches. Appropriate 3-D features
for use with point clouds include Fast Point Feature Histograms (FPFH) [11]
and the SHOT feature [16]. It is typical to use RANSAC or Hough voting [17,
13] to align features found on an object model with features found in a scene.
However, Glover and Popovic recently proposed a new method (loosely related
to ICP [1]) that has demonstrated robustness advantages [6]. Often, the system
may be ignorant of which object is present in a scene. Brook, Ciocarlie, and Hsiao
develop a database-driven method that segments the point cloud into clusters
and compare these clusters against 3D models in a database [2]. A Bayesian
framework is used that incorporates uncertainty in object shape, object pose,
and robot motion error.

3 Localizing Grasp Affordances

An enveloping grasp affordance is a handle-like object geometry that can be
grasped by encircling it with the thumb and fingers of the robot hand. We
locate these geometries in a 3D point cloud by searching for cylindrical shells
that satisfy certain criteria with respect to local neighborhoods of the point
cloud. A cylindrical shell is a pair of co-linear cylinders with different radii. We
require the following conditions on the local point neighborhood to be satisfied:

1. Points near the center of the neighborhood must lie on a curved object
surface (with respect to a parametrized threshold on curvature).

2. The axis of the cylindrical shell must be parallel to the secondary axis of
curvature of the local object surface.

3. The gap between the inner and outer cylinders must contain zero points and
be wide enough to contain the robot fingers.

4. The radius of the innermost cylinder must be no larger than the maximum
hand aperture.

4 ten Pas, Platt

(a) (b)

Fig. 2. Illustration of the affordance search. (a) points in a local neighborhood are
projected onto a plane orthogonal to the minor principal curvature axis of the object
surface. (b) a shell is found that contains points within the inner circle but has a gap
between the inner and outer circle.

If the above conditions are satisfied, we say that an enveloping grasp affordance
exists in the corresponding configuration. These are sufficient conditions for an
enveloping grasp in the sense that if we assume they are satisfied and if we
assume that points lie densely on all object surfaces in the neighborhood and if
we assume the neighborhood can be reached by the robot hand, then we know
that an object can be grasped using an enveloping grasp. This is illustrated in
Figure 2. In Figure 2(a), a locally curved surface has been found (at the root of
the red arrow), and a plane has been drawn orthogonal to the secondary axis of
curvature. Figure 2(b) shows the points after they have been projected onto the
plane and a circular shell (a projection of the cylindrical shell) that satisfies the
enveloping grasp affordance conditions.

Our overall algorithm has the following steps (see Algorithm 1). First, we
randomly sample spherical point neighborhoods approximately two or three cm
in radius. This is accomplished by sampling points uniformly at random from the
cloud and then taking a point neighborhood about each sample (Step 3). Second,
we fit an implicit quadratic function (in three variables) to each of these point
neighborhoods using a least squares algebraic fit with Taubin normalization [14]
(Step 4). As a result of fitting, we obtain an accurate measurement of the magni-
tudes and axes of principal surface curvature in the point neighborhood (Step 5).
We eliminate from consideration all neighborhoods with an associated surface
curvature below some parametrized threshold (Step 6), and project the point
neighborhood onto the plane orthogonal to the axis of minor principal curvature
(Step 7). Next, we fit a circle to the projected points (Step 8). We then fix the
center of the shell to the center of the fitted circle and perform a 1-D search for
cylindrical shells satisfying the enveloping grasp affordance conditions (Step 9).
Last, given the found enveloping grasp affordances, we search for sets of affor-

Localizing handle-like grasp affordances 5

Algorithm 1 Handle Localization

1: A = ∅
2: for i = 1 to I do
3: Sample x uniformly from cloud; calculate point neighborhood about x.
4: Fit a quadratic surface S to point neighborhood.
5: Estimate the median curvature κ̂ of S.
6: if κ̂ > K then
7: Project point neighborhood onto orthogonal plane
8: Fit a circle to points in plane; calculate cicle center, c.
9: Search for cylindrical shell, a, centered at c.

10: if a is found then
11: A = A ∪ a
12: end if
13: end if
14: end for
15: H ← findHandles(A).

dances that are roughly aligned and that exceed a minimum length (Step 15).
Key elements of the algorithm are detailed in the subsections below.

3.1 Estimating Object Surface Curvature by Fitting an Implicit
Quadratic Surface

In order to find high-curvature regions of the point cloud and to estimate the axes
of curvature accurately, we fit an implicit quadratic surface in three variables to
points in the local neighborhood. A quadratic can be described by f(c,x) = 0,
where

f(c,x) =c1x
2
1 + c2x

2
2 + c3x

2
3 + c4x1x2 + c5x2x3+

c6x1x3 + c7x1 + c8x2 + c9x3 + c10, (1)

and c ∈ R10 denotes the parameters of the quadratic and x ∈ R3 denotes the
Cartesian coordinates of a point on the surface.

(a) (b)

Fig. 3. Two examples of implicit
quadratic surfaces fit using Taubin
normalization.

It turns out that there is no known fast
(convex or closed form or etc.) method for
finding the implicit quadratic surface that
minimizes least squares geometric distances
to a set of points (called the geometric fit).
However, there do exist fast methods for solv-
ing for an algebraic fit, that is, a surface that
solves the following optimization problem:

min
c

n∑
i=1

f(c,xi)2 = cTMc, (2)

where M =
∑n

i=1 l(x
i)l(xi)T , x1, . . . ,xn ∈

R3 are the points to which the curve is fitted,

6 ten Pas, Platt

and
l(x) = (x21, x

2
2, x

2
3, x1x2, x1x3, x2x3, x1, x2, x3, 1)T .

To avoid the trivial solution c = 0, it is necessary to impose constraints on
this problem. Different constraints produce different results. One that seems to
produce fits that are intuitively close to the geometric fit is known as Taubin’s
method [14]. Taubin’s method sets the constraint ‖∇xf(c,xi)‖2 = 1. Equation 2
is reformulated as the generalized Eigen decomposition, (M − λN) c = 0, where

N =

n∑
i=0

lx(xi)lx(xi)T + ly(xi)ly(xi)T + lz(xi)lz(xi)T .

Here, lx(x) denotes the derivative of l(x) taken with respect to x1 and the other
derivatives are defined similarly. The eigenvector corresponding to the smallest
eigenvalue provides the best-fit parameter vector.

To fix the axis of the cylindrical shell to lie along the axis of minor principal
curvature, we need to estimate the magnitude and direction of the curvature
of the quadratic surface. The curvature at a particular point can be calculated
by evaluating the shape operator1 on the plane tangent to the point of inter-
est. The eigenvectors of the shape operator describe the principal directions of
the surface and its eigenvalues describe the curvature in those directions. This
can be calculated for a point, x, on the surface by taking the Eigenvalues and
Eigenvectors of: (

I −N(x)N(x)T
)
∇N(x),

where N(x) denotes the surface normals of the quadratic surface. It is calculated
by differentiating and normalizing the implicit surface:

N(x) =
∇f(c,x)

‖∇f(c,x)‖
,

where

∇f(c,x) =

2c1x1 + c4x2 + c6x3 + c7
2c2x2 + c4x1 + c5x3 + c8
2c3x3 + c5x2 + c6x1 + c9

 .

Once a quadratic is fit to a point neighborhood, we evaluate the median curva-
ture of the quadratic surface in the point neighborhood. This is accomplished
by randomly sampling several points from the local quadratic surface and cal-
culating the maximum curvature (maximum of the two principal curvatures)
magnitude at each of them. Then, we take the median of these maximum cur-
vature values and accept as grasp affordance candidates all quadrics where the
median curvature is larger than that implied by the hand capture radius. On
the assumption that all enveloping grasp affordances will be located in a high-
curvature neighborhood, we eliminate from consideration all neighborhoods with
an associated surface curvature below some parametrized threshold.

1 In general, the shape operator, S, can be calculated using the first and second fun-
damental forms of differential geometry: S = I−1II.

Localizing handle-like grasp affordances 7

It is important to note that rather than fitting a quadratic surface in order
to calculate local curvature magnitudes and axes, an alternative is to estimate
curvature from surface normals associated with each point in the neighborhood.
This works as follows. Each point is associated with a surface normal, ni ∈ S3.
Then, an Eigen decomposition is performed for the following matrix:

∑n
i=1 nin

T
i ,

i ∈ [1, n]. The major principal curvature axis is determined to lie in the direction
of the Eigenvector associated with the minimum Eigenvalue. The curvature mag-
nitudes are approximated by taking ratios between the eigenvectors. Although
this type of approach is somewhat common in point cloud processing [12], our
experience informally indicates that the method we present here is better: it
seems to be more accurate, it is less noisy, and it can be computed faster than
estimating surface normals for a (potentially large) set of points.

3.2 Cylindrical Shell Search

Once the directions and magnitudes of the axes of principal curvature are esti-
mated and low-curvature regions are eliminated, we search for cylindrical shells
in three steps. First, we project the points in the local neighborhood onto the
plane orthogonal to the minor principal curvature axis (see Figure 2(a)). Sec-
ond, we calculate the center of the shell by fitting a circle to the points near the
center of the neighborhood (i.e. points near the sampled point, x, in Step 3 of
Algorithm 1). This is accomplished by minimizing algebraic distance as follows.
Let xi and yi denote the two coordinates of the ith point in the plane. Let hx, hy,
and r denote the coordinates of the center and radius of the circle. We calculate:

w = −

(
n∑

i=1

lil
T
i

)−1 n∑
i=1

λili, (3)

where λi = (xi)2 + (yi)2 and li = (−xi,−yi, 1)T . Then calculate the center and

radius using: hx = −0.5a, hy = −0.5b, and r = ±
√
h2x + h2y − c.

Once the best-fit circle is calculated, the third step is to fix the center of the
shell to the center of the circle and search (brute-force 1-D search) over different
radii for a shell such that the gap contains no points and the radius of the inner
cylinder is less than the diameter of the robot hand (conditions 3 and 4 for the
existence of an enveloping grasp affordance).

3.3 Handle Search

The presence of an enveloping grasp affordance guarantees that a grasp is possi-
ble in that configuration as long as all object surfaces in the local area are densely
covered with points. Unfortunately, this is not always the case. The assumption
is particularly problematic for objects that are hard for the range sensor to per-
ceive. For example, the PrimeSense device does very poorly measuring distances
to highly reflective surfaces such as the body of the pot shown in Figure 4(a).

8 ten Pas, Platt

(a) (b) (c)

Fig. 4. Illustration of handle search. (b) shows all grasp affordances found in the point
cloud. (c) shows the handles found that satisfy alignment and minimum length con-
straints. The affordance search finds false positives on the surface of the pot and brush
caused by measurement errors (the PrimeSense device fails to find accurate depths on
reflective surfaces). However, they are eliminated in the handle search.

One way to mitigate this problem is to search for sets of enveloping grasp affor-
dances that form “handles”, i.e. sets of affordances that are roughly aligned and
that cover some minimum length. This helps reduce the number of false posi-
tives. True enveloping grasp affordances are typically found aligned along object
handles. False positives (caused by sensor error) are typically found in arbitrary
configurations. Figure 4(b) and (c) shows an example where the handle search
eliminates all false positives.

We search for handles using brute-force search over all pairs of enveloping
grasp affordances. For each pair of grasp affordances, i and j, with centroids
hi and hj , major principal axes vi and vj , and radii ri and rj , we compute
the following three distances: do = ‖(I − vivTi)vj‖, dc = ‖(I − vivTi)(hi − hj)‖,
and dr = |ri − rj |. An enveloping grasp affordance i is considered to be aligned
with affordance j if do, dc, and dr are below parametrized thresholds. If an
enveloping grasp affordance i is aligned with at least a minimum number of
other grasp affordances, then it is considered to define a handle affordance. The
handles found using this method constitute the output of our algorithm (Step
14, Algorithm 1).

3.4 Sampling Strategy

Sampling plays a key role in our algorithm. As shown in Algorithm 1 (Step 3),
the basic approach is uniform random sampling. We sample a point uniformly
randomly from the point cloud and operate on the neighborhood of points around
that sample. Our experience indicates that in the manipulation scenarios out-
lined in Section 4, 20,000 samples are sufficient to localize all handles in a scene.
With 20,000 samples, Algorithm 1 takes approximately 1.7 seconds to execute
(see Section 4.3). A natural way to speed things up is to use a more effective
sampling strategy. Here, we explore a sequential importance sampling method
that can be viewed as an implementation of the Cross Entropy Method [3]. The

Localizing handle-like grasp affordances 9

method samples a fixed number of point neighborhoods in a series of rounds. In
the first round, neighborhoods are chosen uniformly at random from the point
cloud. After the first round, samples are drawn from a proposal distribution
parametrized by the positions of the enveloping grasp affordances found in all
prior rounds.

The form of the proposal distribution is a key choice that affects the per-
formance of sampling. Here, we explore two variations on the Gaussian kernel
density proposal distribution: a distribution expressed as a sum of Gaussians and
a distribution expressed as a maximum over Gaussians. Let xi ∈ R3, i ∈ [1, n]
denote the centroids of the n enveloping grasp affordances found in all prior
rounds. The sum of Gaussians proposal distribution is:

gsum(x) =
1

n

n∑
i=1

N (x|xi, Σ),

where Σ is a constant parameter. The maximum of Gaussians proposal distri-
bution is:

gmax(x) = η max
i∈[1,n]

N (x|xi, Σ),

where η is the normalization constant. It is relatively easy to sample from either
of these proposal distributions. In order to draw k samples from gsum, initialize
X = ∅ and do the following k times: choose an enveloping grasp affordance index,
j ∈ [1, n], uniformly randomly; 2) draw one sample from N (x : xi, Σ) and add
it to X . Sampling from gmax is slightly more complicated. A method based on
rejection sampling is shown in Algorithm 2.

Algorithm 2 Sampling from a distribution expressed as a maximum over Gaus-
sians
1: X = ∅
2: for i = 1 to n do
3: Choose i uniformly from [1, n]
4: Sample x̂ ∼ N (x|xi, Σ).
5: m← max{N (x̂|x1, Σ),N (x̂|x2, Σ), . . . ,N (x̂|xn, Σ)}.
6: if N (x̂|xi, Σ) ≥ m then
7: X ← X ∪ x̂.
8: end if
9: end for

These two distributions, gsum and gmax, differ in the way that they “allocate”
samples to particular regions of space (i.e. to regions about potential handle
locations). gsum allocates samples to a region in direct proportion to the number
of grasp affordances that have been found in that region. This can be a problem
if there are multiple handles present in a scene, but one handle is more likely
to be populated by enveloping grasp affordances than the others (perhaps it is
larger, longer, or is more densely covered with points in the cloud). In this case,

10 ten Pas, Platt

(a) (b)

Fig. 5. Illustration of difference in sampling strategy. (a) shows samples drawn from
gsum. (b) shows samples drawn from gmax. Notice that the distribution in (b) covers
the two handles more evenly.

the handle where grasp affordances are more likely to be found is sampled even
more densely on the next round. The result is that gsum has a tendency to over-
sample some handles in the scene and ignore others. gmax corrects for this effect
somewhat by sampling from all handle regions with a more even probability.

This difference is illustrated in Figure 5. Suppose that on a particular round of
sampling, the algorithm has found all of the enveloping grasp affordances shown
in cyan. Figure 5(a) shows a set of 100 samples drawn from gsum and Figure 5(b)
shows the same number of samples drawn from gmax. Notice that the distribution
drawn from Figure 5(a) samples the object on the right more densely than the
object on the left. This is because the object on the right was more densely
covered with enveloping grasp affordances on prior rounds. Figure 5(b) shows
that samples drawn from gmax cover both objects more evenly.

4 Experiments

4.1 Experimental Setup

We performed grasping experiments using the Rethink Robotics robot, Bax-
ter. An Asus XTion Pro range sensor, mounted near the bottom of the robot’s
“chest”, was used to sense a 3D point cloud containing the objects in front of
the robot (see Figure 6(a)). A typical grasp was performed as follows. First, the
Asus range sensor captured a range image of the target objects that was imme-
diately converted to a 3D point cloud. Second, our algorithm was run for this
point cloud and handle affordances were localized. Third, the right arm reached
toward the handle closest to the base of the right arm. The arm was moved to
a position such that a point between the two gripper fingers was placed at the
handle centroid. The target orientation was such that the gripper was perpen-
dicular to the handle axis and an axis pointing outward from the gripper was
co-linear with a line between the handle and the base of the right arm. After
reaching the target pose, the gripper was closed, the object lifted into the air,
and transported to a large box where the object was deposited. If a grasp failed

Localizing handle-like grasp affordances 11

on the first attempt, the robot continued to try to grasp by repeating this pro-
cess. During each motion, the arm followed a straight line through configuration
space.

(a) (b)

Fig. 6. (a) Typical grasping scenario. (b) The 12 objects used in our experiments.
Notice that all objects have handles.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 7. Illustration of a typical clear-the-table experiment.

We tested our localization and grasping algorithms in two ways. First, we
performed a series of 12 single-object grasp trials for each of the 12 objects
(shown in Figure 6(b)) where each object was presented by itself. On each trial,
the robot repeatedly attempted to grasp the presented object until either the
object was grasped or it was pushed out of range. A grasp trial was run for each
object in four different orientations at three different positions. Objects were
placed such that a significant number of points on the handle were visible to
the Asus range sensor and such that the handle was within the workspace of
the robot’s right arm. Second, we performed a series of 10 clear-the-table trials
where we evaluated the capability for our approach to grasp a series of objects

12 ten Pas, Platt

in the presence of clutter. On each clear-the-table trial, the robot attempted to
clear five objects (selected from the set shown in Figure 6(b)). Figure 7 shows a
typical run of a clear-the-table experiment.

4.2 Localization Results

The single-object experiments indicate that our approach is capable of robustly
grasping objects with handles. Table 1 shows the results. Out of the 12 grasp
trials for each object, the table shows the number of successful grasps performed
on the first try (column 2), by the second try (column 3), and by the third
try (column 4). Notice that our method successfully grasped each object on
the first try approximately 85% of the time. By the third try, it had nearly
perfect grasp success. The only exception was for the Carrying Case where the
object was pushed out of the workspace during a failed grasp attempt (collision
between gripper and target object). Table 2 shows the results of ten clear-the-
table experiments. The results show that our method sometimes failed to grasp
one of the five presented objects. They also show that it sometimes took up to
eight grasp attempts before all five objects were grasped.

Table 1. Results for the single-object experiments

Object Grasped on 1st attempt Grasped on 2nd attempt Grasped on 3rd attempt

Blue Bottle 10/12 10/12 12/12
White Purex Bottle 11/12 12/12 12/12
White All Bottle 9/12 12/12 12/12
Carrying Case 11/12 11/12 11/12

Brush 1 10/12 11/12 12/12
Pot 11/12 12/12 12/12

Plunger 11/12 12/12 12/12
Sprayer 11/12 12/12 12/12
Dust Pan 11/12 12/12 12/12
Brush 2 8/12 12/12 12/12
Sponge 8/12 12/12 12/12

Lint Roller 11/12 12/12 12/12

Table 2. Results for the clear-the-table experiments

Trial num: 1 2 3 4 5 6 7 8 9 10

Number of objects grasped out of total objects: 5/5 4/5 5/5 4/5 5/5 4/5 5/5 5/5 4/5 5/5
Total grasp attempts: 5 5 5 7 7 6 5 5 5 8

4.3 Algorithm Runtime

This number is a conservative estimate of the maximum number of neighbor-
hoods needed to localize all handles in our application scenarios. The algorithm
was implemented in C++ on an Intel i7 3.5GHz system (four physical CPU
cores) with 8GB of system memory. Runtime was averaged over 10 runs. The
results are shown in Figure 8. As they show, total runtime is a little more than

Localizing handle-like grasp affordances 13

Fig. 8. Runtime of the localization algorithm for 20,000 samples averaged over 10 runs.

0.5Hz with the majority of the time taken by the brute-force 1-D shell search. We
suspect that a closed-form approximation to the brute-force search exists that
would reduce this time. Nevertheless, we expect this runtime to be fast enough
for most application scenarios.

4.4 Comparison of Different Sampling Strategies

We also performed experiments to evaluate the number of handles in a scene
missed by the algorithm as a function of the number of neighborhoods (I in
Algorithm 1) and as a function of the sample strategy used. We tested with point
clouds from seven scenes. The first five scenes contained exactly five different
handles each. The last two scenes contained nine and ten handles, respectively.
On each of these seven scenes, we tested the performance of our algorithm using
three different sample strategies: uniform random Monte Carlo (MC), sequential
importance sampling with gsum, and sequential importance sampling with gmax.
For each sample strategy, we performed experiments with 2000 and 5000 sampled
neighborhoods. For uniform random MC we just sampled 2000 or 5000 samples
in one batch. For sequential importance sampling with 2000 samples, we sampled
1000 neighborhoods in the first round and then 100 more neighborhoods in each
of ten successive rounds. For sequential importance sampling with 5000 samples,
we sampled 2000 samples in the first round and then 300 samples in each of 10
successive rounds.

Figure 9 show the results. Each bar shows the mean and standard deviation
of 20 runs in the corresponding test scenario. The ground truth bar (yellow)
shows the actual number of handles present in each scene. These results indicate
the following. First, our method can be expected to find two or three handles
in any scene with as few as 2000 samples using any sampling method. This is
sufficient for some tasks (such as table clearing), where it is only necessary to
grasp one object at a time. However, even 5000 sampled neighborhoods might
not be enough to find all handles in a complex scene, especially if uniform random
Monte Carlo is used. We found that it was necessary to use as many as 20000
sampled neighborhoods in order to localize all handles using this method. The

14 ten Pas, Platt

(a) 2000 sampled neighborhoods (b) 5000 sampled neighborhoods

Fig. 9. Performance comparison between the three sampling strategies for 2000 (a) and
5000 (b) samples, averaged over 20 runs. The error bars show the standard deviation.

results also indicate that it is generally better to use a sequential sampling
method. Moreover, the results show that sequential importance sampling using
the gmax proposal distribution has the best performance. This strategy finds
nearly all handles with 5000 sampled neighborhoods.

5 Conclusions

The paper proposes a new approach to localizing handle-like grasp affordances
in 3-D point clouds. The core of the idea is to identify sufficient geometric con-
ditions for the existence of a class of grasp affordances and to search the point
cloud for point neighborhoods where these conditions are satisfied. Our work
makes use of an approach to implicit quadratic curve fitting that (to our knowl-
edge) has not been used in the robotics literature. Our reported results show
high grasp success rates similar to those reported in Klingbeil et. al. [10] and
Fischinger et. al. [4]. Moreover, our method has important advantages relative
to other approaches including fast run time, the ability to operate on 3D point
clouds rather than range images or height maps, and the ability to localize han-
dles. In our single-object experiments, nearly all grasp failures were caused by
attempting to grasp false positives found because of depth measurement errors
or because of insufficient point density on object surfaces in the neighborhood of
the false positive. For example, the grasp failures of Brush 2 were caused mainly
by the algorithm localizing the brush part of the object because of significant
measurements errors in that area. Our clear-the-table experiments also suffered
from localization failures. However, there, the effects of localization errors were
more serious because of the clutter. A failed attempt to grasp one object some-
times pushed other objects out of the workspace such that a complete clearing of
the table became impossible. In general, we found the grasping process to be very
robust as long as multiple re-grasp attempts were allowed. Overall, the results
in Tables 1 and 2 indicate that our approach is practical for many real robot
application scenarios. We have incorporated our work into a ROS package [15].

Localizing handle-like grasp affordances 15

Acknowledgements. This work was supported in part by NASA under Grant
No. NNX13AQ85G and ONR under Grant No. N000141410047.

References

1. P. Besl and N. McKay. A method for registration of 3d shapes. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 14(2):239256, 1992.

2. P. Brook, M. Ciocarlie, and K. Hsiao. Collaborative grasp planning with multiple
object representations. In IEEE Int’l Conf. on Robots and Automation, 2011.

3. Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A
tutorial on the cross-entropy method. Annals of operations research, 134(1):19–67,
2005.

4. D. Fischinger and M. Vincze. Empty the basket - a shape based learning approach
for grasping piles of unknown objects. In IEEE Int’l Conf. on Intelligent Robot
Systems, 2012.

5. J. Gibson. The Ecological Approach To Visual Perception. Psychology Press, 1979.
6. J. Glover and S. Popovic. Bingham procrustean alignment for object detection in

clutter. In IEEE Int’l Conf. on Intelligent Robot Systems, 2013.
7. A. Herzog, P. Pastor, M. Kalakrishnan, L. Righetti, T. Asfour, and S. Schaal.

Template-based learning of grasp selection. In IEEE Int’l Conf. on Robotics and
Automation, 2012.

8. Y. Jiang, S. Moseson, and A. Saxena. Efficient grasping from rgbd images: Learning
using a new rectangle representation. In IEEE Int’l Conference on Robotics and
Automation, 2011.

9. D. Katz, M. Kazemi, D. Bagnell, and A. Stentz. Clearing a pile of unknown objects
using interactive perception. In IEEE Int’l Conf. on Robotics and Automation,
2013.

10. E. Klingbeil, D. Rao, B. Carpenter, B. Ganapathi, A. Ng, and O. Khatib. Grasping
with application to an autonomous checkout robot. In IEEE Int’l Conf. on Robotics
and Automation, 2011.

11. R. Rusu, N. Blodow, and M. Beetz. Fast point feature histograms (fpfh) for 3d
registration. In IEEE Int’l Conf. on Robots and Automation, 2009.

12. R. Rusu and S. Cousins. 3d is here: Point cloud library (pcl). In Intl. Conference
on Robotics and Automation, 2011.

13. M. Sun, B. Xu, G. Bradski, and S. Savarese. Depth-encoded hough voting for joint
object detection and shape recovery. In European Conference on Computer Vision,
2010.

14. G. Taubin. Estimation of planar curves, surfaces and nonplanar space curves
defined by implicit equations, with applications to edge and range image segmen-
tation. IEEE Trans. PAMI, 13:1115–1138, November 1991.

15. A. ten Pas and R. Platt. Handle detector ROS package.
http://wiki.ros.org/handle detector.

16. F. Tombari, S. Salti, and L. Stefano. Unique signatures of histograms for local
surface description. In European Conference on Computer Vision, 2010.

17. F. Tombari and L. Stefano. Object recognition in 3d scenes with occlusions and
clutter by hough voting. In Pacific-Rim Symposium on Image and Video Technol-
ogy, 2010.

