Tamper resistance and physical attacks

Part I: Introduction

Dr Sergei Skorobogatov

http://www.cl.cam.ac.uk/~sps32 email: sps32@cam.ac.uk

Computer Laboratory

Security Group, TAMPER Lab

Structure of the talk

$\mathcal{L}_{\mathcal{A}}$ **Introduction**

- Physical security
- **Attack technologies**
- Security protection levels
- Attack technologies
	- **Non-invasive attacks**
	- П Invasive attacks
	- **Semi-invasive attacks**
- **Security evaluation and defence technologies**
- \Box Ongoing research

Introduction

- $\mathcal{L}_{\mathcal{A}}$ Protection from physical attacks
	- Ξ Protecting objects from being stolen
	- $\overline{}$ Psychological and historical background
- \Box Physical protection in pre-computer era
	- Burglary (doors, locks, fences, safes)
	- $\mathcal{L}_{\mathcal{A}}$ Theft (guards, chains, locks)
	- $\overline{}$ Military enemy (fortification, armed guards, tanks, missiles)
- Physical protection in computer era
	- τ Military enemy (control and spying)
	- $\mathcal{L}_{\mathcal{A}}$ Bank fraud (PINs, plastic cards, on-line cryptography, holograms)
	- $\overline{}$ Theft (CCTV, RF tags, electronic keys)
	- \Box Services (prepayment meters and cards)
	- \blacksquare Pay-TV piracy (access using smartcards)
	- \blacksquare GSM service (access using SIMs)
	- \blacksquare Software piracy (hardware dongles, crypto-coprocessors)

Introduction

- \mathbb{R}^2 Technical progress pushed low-cost cryptoprocessors towards ubiquity
	- $\mathcal{L}_{\mathcal{A}}$ Car industry
		- anti-theft protection
		- spare parts
	- $\mathcal{L}_{\mathcal{A}}$ Accessory control
		- mobile phone batteries
		- printer toner cartridges
		- memory modules
	- \mathbb{R}^n Access control (tokens and dongles)
	- $\overline{}$ Home appliances (door control, entertainment)
	- \blacksquare Intellectual property (IP) protection (in products)
		- Software copy protection
		- ٠ Protection of algorithms
		- п Protection from cloning

Levels of physical protection

- $\mathcal{L}_{\mathcal{A}}$ Access control
- $\mathcal{L}_{\mathcal{A}}$ **-** Obstruction
- $\overline{}$ Active protection
- $\overline{}$ Sensors
	- n. Lid switch
	- \Box Environment
	- Tamper detection and tamper evidence
- **Software level**
	- П Password protection
	- П Encryption
	- $\mathcal{L}_{\mathcal{A}}$ Protocols
- **Hardware level**
	- \blacksquare Electronics – PCB, sensors
	- Microelectronics – Silicon implementation

Area of interest

- $\mathcal{L}_{\mathcal{A}}$ Hardware security of semiconductor chips
	- Security modules
	- \Box **Smartcards**
	- **T Microcontrollers**
	- $\mathcal{L}_{\mathcal{A}}$ ASICs and custom ICs
	- $\overline{}$ Other single-chip solutions
- $\mathcal{L}_{\mathcal{A}}$ Do we have the same level of protection as in high-end applications?
- \blacksquare Do we have an adequate level of protection?

ELEVEL HIGH

D.G.Abraham et al. (IBM), 1991

- Military and bank equipment
- n. All known attacks are defeated. Some research by a team of specialists is necessary to find a new attack. Total cost: over a million euros. Time to attack: months to years

\Box **ELEVEL MODH**

- Secure i-Buttons, secure FPGAs, high-end smartcards and ASICs
- T. Special attention is paid to design of the security protection. Equipment is available but is expensive to buy and operate. Total cost: hundreds of thousand euros. Time to attack: weeks to months

- \Box **Level MOD**
	- $\mathcal{L}_{\mathcal{A}}$ Smartcards, high-security microcontrollers, ASICs, CPLDs, hardware dongles, i-Buttons
	- П Special tools and equipment are required for successful attack as well as some special skills and knowledge. Total cost: tens of thousand euros. Time to attack: weeks to months

- \Box **Level MODL**
	- Ξ Microcontrollers with security protection, low-cost hardware dongles
	- $\mathcal{L}_{\mathcal{A}}$ Protection against most low-cost attacks. Relatively inexpensive tools are required, but some knowledge is necessary. Total cost: thousands of euros. Time to attack: days to weeks

- \Box Level LOW
	- Ξ Microcontrollers with proprietary read algorithm, remarked ICs
	- $\mathcal{L}_{\mathcal{A}}$ Some security features are used but they can be relatively easy defeated with minimum tools required. Total cost: hundreds of euros. Time to attack: hours to days

- Level ZERO (no special protection)
	- Ξ Microcontroller or FPGA with external ROM
	- $\overline{}$ No special security features are used. All parts have free access and can be easily investigated. Total cost: less than a hundred euros. Time to attack: less than an hour

- \mathbb{R}^2 **Division of levels from HIGH to ZERO is relative**
	- Ξ Some products designed to be very secure might have flaws
	- $\mathcal{L}_{\mathcal{A}}$ Some products not designed to be secure might still end up being very difficult to attack
	- $\mathcal{L}_{\mathcal{A}}$ Technological progress opens doors to less expensive attacks, thus reducing the protection level of some products
- $\mathcal{L}_{\mathcal{A}}$ Proper security evaluation must be carried out to estimate whether products comply with all the requirements
	- П Design overview
	- \Box Test against known attacks

Attacks and attackers

- \Box Who is going to attacks our system?
	- Classes of the attackers
- $\mathcal{L}_{\mathcal{A}}$ What tools will they use?
	- $\overline{}$ Attack categories
	- П Attack methods
- What is the reason to attack?
	- Ξ Attack scenarios
- $\Box,$ How to protect?
	- Ξ Security engineering

Classes of the attackers

- \Box Class I (clever outsiders):
	- very intelligent but may have insufficient knowledge of the system
	- Ξ have access to only moderately sophisticated equipment
	- Ξ often try to take advantage of an existing weakness in the system, rather than try to create one

\mathbb{R}^2 Class II (knowledgeable insiders):

- have substantial specialised technical education and experience
- have varying degrees of understanding of parts of the system but potential access to most of it
- often have access to highly sophisticated tools and instruments for analysis
- \Box Class III (funded organisations):
	- Ξ able to assemble teams of specialists with related and complementary skills backed by great funding resources
	- \blacksquare capable of in-depth analysis of the system, designing sophisticated attacks, and using the most advanced analysis tools
	- \blacksquare may use Class II adversaries as part of the attack team

Attack methods

- $\mathcal{L}_{\mathcal{A}}$ ■ Non-invasive attacks
	- Observe or manipulate with the device without physical harm to it
	- $\overline{}$ Require only moderately sophisticated equipment and knowledge to implement
- \Box **Invasive attacks**
	- $\overline{}$ Almost unlimited capabilities to extract information from chips
	- \Box Normally require expensive equipment, knowledgeable attackers and time
- \Box **Semi-invasive attacks**
	- \Box Chip is depackaged but the passivation layer remains intact
	- \Box Fill the gap between non-invasive and invasive types, being both inexpensive and easily repeatable

Attack categories

- \Box Eavesdropping (non-invasive)
	- Г techniques that allows the attacker to monitor the analog characteristics of supply and interface connections and any electromagnetic radiation
- $\mathcal{L}_{\mathcal{A}}$ Software attacks (non-invasive)
	- $\mathcal{L}_{\mathcal{A}}$ use the normal communication interface and exploit security vulnerabilities found in the protocols, cryptographic algorithms, or their implementation
- Fault generation (non-invasive and invasive)
	- Г use abnormal environmental conditions to generate malfunctions in the system that provide additional access
- $\overline{}$ Microprobing (invasive)
	- Г can be used to access the chip surface directly, so we can observe, manipulate, and interfere with the device
- \Box Reverse engineering (invasive)
	- п used to understand the inner structure of the chip and learn or emulate its functionality; requires the use of the same technology available to semiconductor manufacturers and gives similar capabilities to the attacker

Tamper evidence

- $\overline{}$ ■ Non-invasive attacks
	- $\mathcal{L}_{\mathcal{A}}$ Normally do not leave evidence of the attack
	- Many are reversible
- \Box **Invasive attacks**
	- **T** Destructive, hence, leave evidence of the attack
	- **T** Most are irreversible
- \Box **Semi-invasive attacks**
	- Ξ Destructive to the packaging of the chip
	- Ξ Many are reversible

Attack scenarios

- \Box **Cloning**
	- i. Most widely used attack scenarios (from individuals to companies)
	- $\mathcal{L}_{\mathcal{A}}$ Increasing sales without investment in design
- $\mathcal{L}_{\mathcal{A}}$ **Overbuilding**
	- Г Mass production
- $\mathcal{L}_{\mathcal{A}}$ Theft of service
	- $\mathcal{L}_{\mathcal{A}}$ Attacks on service providers (satellite TV, electronic meters, phones)
- \Box Denial of service
	- Г Dishonest competition
- \Box **Decryption**
	- $\overline{}$ Information recovery
	- п Read cryptographic keys in plaintext
	- Ξ Force crypto keys to a known value
	- п Force cryptosystem to insecure mode
- \Box **Extraction of information**
	- п Trade secrets and IP piracy

Security engineering

- $\overline{}$ Understanding motivations of the attackers
	- Attack scenarios
- $\mathcal{L}_{\mathcal{A}}$ Figuring out what to protect
	- Ξ Locating the most sensitive points (fuses, keys)
- $\mathcal{L}_{\mathcal{A}}$ Estimating capabilities of the attackers
	- $\mathcal{L}_{\mathcal{A}}$ **Equipment**
	- $\overline{}$ Knowledge
- $\overline{}$ Developing adequate protection
	- $\overline{}$ Hardware level (Silicon design, PCB, sensors)
	- $\overline{}$ Software level (encryption, protocols)

- Years 1970 – 1985
	- Tamper protection level ZERO or LOW
	- All components are easy to access and test

- Years 1980 – 1990
	- Tamper protection level LOW
	- г Obscurity vs security

- Years 1985 – 1995
	- Tamper protection level LOW or MODL
	- \Box No special protection used

- \mathbb{R}^2 Years 1990 – 2000
	- Tamper protection level MODL
	- \Box ■ Restricted access

- \mathbb{R}^2 Years 1990 – 2000
	- Tamper protection level MODL or MOD
	- \Box Microcontrollers with security protection

- $\overline{}$ Security fuse is placed separately from the memory array
	- $\overline{}$ Easy to locate and defeat

Microchip PIC12C508 microcontroller

- Security fuse is placed inside the program memory array
	- $\overline{}$ Hard to locate and defeat

STMicroelectronics ST62T60 microcontroller

- \mathbb{R}^2 Security fuse is embedded into the program memory
	- Very hard to locate and defeat
	- n. Similar approach is used in many smartcards

Motorola MC68HC908AZ60A microcontroller

- Monitoring of the security protection
	- Single check on power-up or reset
		- Sensitive to glitching
	- Single check on power-up and store state in a register
		- Sensitive to glitching and fault injection
	- $\mathcal{L}_{\mathcal{A}}$ Check each time access is required
		- Harder to attack because of synchronization requirements
	- П Permanent monitoring
		- Best choice for protection, however, not always convenient

- Years 2000 – 2005
	- Tamper protection level MOD or MODH
	- \Box Glue logic design
		- г used in modern microcontrollers and smartcards

- Years 1995 – present
	- Tamper protection level MOD or MODH
	- \Box Planarisation as a part of modern chip fabrication processes (0.5 μm or smaller feature size)

Microchip PIC16F877 microcontroller Microchip PIC16F877A microcontroller Microchip PIC16F877A microcontroller

- \mathbb{R}^2 Years 1995 – present
	- Tamper protection level MOD or MODH
	- \Box Bus encryption
		- г Simple algorithms not to slow down the communication

Dallas Semiconductor DS5002FP microcontroller

Infineon SLE66 smartcard

- \mathbb{R}^2 Years 1995 – present
	- Tamper protection level MOD or MODH
	- П Secure memory
		- $\mathcal{L}_{\rm{in}}$ VTROM for Mask ROM implementation
		- $\overline{}$ Flash and FRAM for non-volatile memory

- Years 1995 – present
	- $\overline{}$ Tamper protection level MODH
	- $\overline{}$ Top metal layers with sensors
	- $\overline{}$ Voltage, frequency and temperature sensors
	- Memory access protection, crypto-coprocessors

Temic T89C51RD2 microcontroller

- \mathbb{R}^2 Impacts of technological progress
	- П ■ Size of transistors reduced to less than 0.3 µm
	- Г Multiple metal layers obstruct direct observation
	- $\overline{}$ Complexity of circuits significantly increased
	- Г More security features could be implemented

Conclusions

- $\overline{}$ There is no absolute protection – any device can be broken given enough time and resources
- $\overline{}$ **Division of levels from HIGH to ZERO is relative**
	- $\overline{}$ Some products designed to be very secure might have flaws
	- $\overline{}$ Some products not designed to be secure might still end up being very difficult to attack
- $\mathcal{L}_{\mathcal{A}}$ Proper security evaluation must be carried out to estimate whether products comply with all the requirements
- \mathbb{R}^2 ■ Main concern is the cost of an attack
- \Box With technological progress it becomes more difficult to attack devices
- Attack motivations is the major driving factor in compromising security of a device
- \Box Insiders could be potentially more dangerous as they could have more information about the devices