Tamper resistance and physical attacks

Part II: Attack technologies

Dr Sergei Skorobogatov

http://www.cl.cam.ac.uk/~sps32 email: sps32@cam.ac.uk

Computer Laboratory

Security Group, TAMPER Lab

- **Non-penetrative to the attacked device**
	- Normally do not leave tamper evidence
- **Tools**
	- Digital multimeter
	- **IC** soldering/desoldering station
	- **Universal programmer and IC tester**
	- **Oscilloscope**
	- Logic analyzer
	- Signal generator
	- **Programmable power supplies**
	- **PC with data acquisition board**
	- **PCB prototyping boards or FPGA boards**

Timing attacks

- Different computation time for different conditions
	- **Incorrect password verification**
		- Termination on incorrect byte
		- **-** Different computation length for incorrect bytes
	- **Incorrect implementation of encryption algorithms**
		- **Performance optimisation (conditional branches)**
		- **Cache memory usage**
		- Non-fixed time processor instructions (multiplication, division)

Brute force attacks

- Searching for keys and passwords
	- Inefficient selection of keys and passwords
- **Recovering design from CPLDs, FPGAs and ASICs**
- **Eavesdropping on communication to find hidden functions**
- Forcing a device into test mode

- **Power analysis**
	- Measuring power consumption in time (voltage drop over a resistor or using a transformer)

Power analysis

- Very simple set of equipment a PC with an oscilloscope, but some knowledge in electrical engineering and digital signal processing is required
- Very effective against many cryptographic algorithms and password verification schemes
- When a difference in a single bit of data is required, average over hundreds or thousands of power traces is necessary
- To find a difference in an instruction flaw, a single trace acquired with a high resolution is enough
- **There are some tricks to reduce the noise**
	- **PCB** design
	- **Low-noise components**
	- **-** Oversampling or high-resolution acquisition

- **Power analysis**
	- Password check in Freescale MC908AZ60A microcontroller
	- Single acquisition, 250 Ms/s (10 MHz CPU clock):

- **Electro-magnetic analysis (EMA)**
	- Similar to power analysis, but instead of a resistor, a small magnetic coil is used
	- By placing the coil close to the part of circuit that performs the critical computations, better signals can be observed
	- Our experiments showed that very little advantage over conventional power analysis can be achieved

- **Glitch attacks**
	- Clock glitches
	- Power glitches
- **Security fuse verification in the Mask ROM bootloader of** the Motorola MC68HC05B6 microcontroller
	- Double frequency clock glitching
	- **Low-voltage (1.8 2.2 V) power glitching (standard** V_{DD} **= 5 V)**

cont:

- **Glitch attacks**
	- Change single instructions or data
		- Links between gates form RC delay elements. Maximum RC sum of any signal path determines maximum CLK frequency
		- Transistors compare internal signals with a part of V_{cc} (usually \mathcal{V}_{2}), which allows V_{cc} glitches

Picture courtesy of Dr Markus Kuhn

- **Data remanence in SRAM**
	- Residual representation of data after erasure
		- First discovered in magnetic media
	- Low temperature data remanence
		- Dangerous to tamper resistant devices which store keys and secret data in SRAM
	- Long period data storage
		- Ion migration and electromigration effects
		- Dangerous to secure devices which store keys at the same memory location for years

- **Low temperature data remanence in SRAM**
	- Eight SRAM samples were tested at different temperatures
	- Grounding the power supply pin reduces the retention time

- **Data remanence in non-volatile memories**
	- EPROM, EEPROM and Flash
		- Widely used in microcontrollers and smartcards
		- Floating-gate transistors, 10³ 10⁵ e⁻, ΔV_™ ~ 3.5 V
	- Levels of remanence threat
		- File system (erasing a file \rightarrow undelete)
		- **File backup (software features)**
		- Smart memory (hardware buffers)
		- **Memory cell**
	- Possible outcomes
		- Circumvention of microcontroller security
		- Information leakage through shared EEPROM areas between different applications in smartcards

- **Data remanence in EPROM, EEPROM and Flash**
	- UV light or electrical erase followed by power glitching
	- **Memory and password/fuse are erased simultaneously**
		- V_{DD} variation or power glitching
		- \blacksquare Read sense circuit: $V_{\text{TH}} = K V_{\text{DD}}$, $K \sim 0.5$
	- **Not suitable for modern semiconductor technologies**

- **Data remanence in EEPROM and Flash**
	- Memory and password/fuse are erased simultaneously
		- Fast process (difficult to control erasure)
		- V_{TH} drops too low (power glitching does not work)
		- Cell charge alteration does not work
			- Voltage monitors and internally stabilized power supply
			- **Internal charge pumps and timing control**
			- **•** Difficult to terminate the erase cycle

- **Data remanence evaluation of the Microchip PIC16F84A**
	- 100 μV precision power supply
	- 1 **µs timing control**

- Measuring V_{TH} close to 0 V
	- Power glitch to reduce V_{ref} to 0.5 V
		- Still not enough
	- Exploiting after-erase discharging delay
		- Accidentally discovered in year 2000
		- \blacksquare Shifts $V_{\scriptscriptstyle\rm TH}$ up by 0.6 \ldots 0.9 V
	- Applying both techniques simultaneously:

$$
V_{\text{th}} = K V_{\text{DD}} - V_{\text{W}}
$$

 V_{TH} = -0.4 … 2.0 V

- **Experimental method**
	- $V_{\text{TH}} = V_{\text{ref}} = K V_{\text{DD}} V_{\text{W}}$, $K = 0.5$, $V_{\text{W}} = 0.7 V_{\text{V}}$
	- **Memory bulk erase cycles (5 V, 10 ms)**
		- Flash memory, 100 cycles: ΔV_{TH} = 100 mV
		- **EEPROM memory, 10 cycles: Δ** V_{TH} **= 1 mV**

- **Data recovery from programmed and erased PIC16F84A**
	- Large difference in V_{TH} between cells in the array
	- \blacksquare Measure the cell's V_{th} before and after an extra erase cycle

- Never-programmed and programmed cells
	- PIC16F84A comes programmed to all 0's
		- 10,000 erase cycles, then bake 10 h at 150˚C to fully discharge cells. Measure V_{TH}
		- Program to all 0's, then another 10,000 erase cycles. Measure V_{TH}
	- Still noticeable change of $\Delta V_{\text{TH}} = 40 \text{ mV}$

- **Penetrative attacks**
	- Leave tamper evidence or destroy the device
- **Tools**
	- **IC soldering/desoldering station**
	- **Simple chemistry lab**
	- **Wire bonding machine**
	- Signal generator, logic analyzer and oscilloscope
	- High-resolution optical microscope
	- **Kata Microprobing station**
	- **Laser cutting system**
	- Focused Ion Beam (FIB) workstation
	- **Scanning electron microscope (SEM)**
	- PC with data acquisition board
	- **PCB prototyping boards or FPGA boards**

- Sample preparation
	- **Decapsulation**
		- \blacksquare Manual: using fuming nitric acid (HNO₃) and Acetone, 60 °C
		- Automatic: using concentrated $HNO₃$ and $H₂SO₄$

Picture courtesy of Semiresearch Ltd

- Sample preparation
	- **Decapsulation**
		- **Front-side**
		- Rear-side

- **Sample preparation**
	- **Decapsulation**
		- **Partial**
		- Full

- **Sample preparation**
	- **Bonding**
		- **Wedge wire bonder**
		- Gold ball bonder

- **Optical imaging**
	- Resolution is limited by optics and wavelength of a light
		- **F** $R = 0.61$ *λ* / *NA* = 0.61 *λ* / *n* sin(*μ*)
			- Reducing wavelength of the light (using UV sources)
			- Increasing refraction index of the medium (using immersion oil: $n = 1.5$)
			- Increasing the angular aperture (dry objectives have *NA* = 0.95)

- **Optical imaging**
	- **Image quality depends on microscope optics**
		- **Colour aberrations and geometric distortions**
			- Reduce resolution
			- Problems with merging images

- **Optical imaging**
	- **Image quality depends on microscope optics**
		- **-** Depth of focus

- **Optical imaging**
	- Additional features aimed at increasing resolution and contrast
		- **-** Darkfield illumination (only edges are visible)
		- **Polarising contrast (reduces reflections)**
		- **Confocal imaging (separates layers)**

- **Deprocessing**
	- Removing passivation layer, exposing the top metal layer for microprobing attacks
	- **Decomposition of a chip for reverse engineering**
	- **Mask ROM extraction**
- **Methods**
	- Wet chemical etching
		- \blacksquare Isotropic uniformity in all directions
		- Uneven etching and undercuts (metal wires lift off the surface)
	- **Plasma etching (dry etching)**
		- **Perpendicular to the surface**
		- **Speed varies for different materials**
	- Chemical-mechanical polishing
		- Good planarity and depth control, suitable for modern technologies
		- Difficult to maintain planarity of the surface, special tools required

- **Deprocessing**
	- Wet chemical etching
		- Hydrofluoric acid or fluoride-ion solutions for passivation and $SiO₂$
		- KOH solutions, HCl or H_2O_2 for silicon and metals
	- Dry plasma etching
		- $\rm CF_4$, $\rm C_2F_6$, $\rm SF_6$ or $\rm CCl_4$ gases

- Removing top metal layer using wet chemical etching
	- Good uniformity over the surface
	- Works reliably only for chips fabricated with 0.8 μm or larger technology (without polishing layers)

Motorola MC68HC705C9A microcontroller

- **Removing top metal layer using wet chemical etching**
	- Unsuitable for chip fabricated with 0.5 μm or smaller technology (with chemical-mechanical polishing) because of undercuts, under- and over-etching

Microchip PIC16F76 microcontroller

- **EXTERGHTM Mask ROMs**
	- Removing top metal layers for direct optical observation of data in NOR ROMs (bits programmed by presence of transistors)
	- Not suitable for VTROM (ion implantation) used in smartcards

Motorola MC68HC705P6A microcontroller

- **Memory extraction from Mask ROMs**
	- Selective etching of metal layers for direct optical observation of data in NOR ROMs (bits programmed by contact layer)
	- Not suitable for VTROM (ion implantation) used in smartcards

NEC μPD78F9116 microcontroller

EXTENDITY EXTRACTION from Mask ROMs

O. Kömmerling M. Kuhn, 1999

 Selective (dash) etchants reacts with doped and non-doped regions at different speeds, exposing the ROM bits

- Reverse engineering understanding the structure of a semiconductor device and its functions
	- Optical using a confocal microscope (for > 0.5 μm chips)

- **Reverse engineering of modern deep-submicron chips**
	- Decomposition using plasma-chemical etching and polishing
	- Taking high-resolution digital images (SEM for <0.18 μm chips)
	- Merging digital images creating a large image of the surface

- **Reverse engineering of modern deep-submicron chips**
	- Aligning and stitching images together creating layer pairs
	- **Netlist extraction creating a gate-level circuit diagram**
	- Converting the Netlist into VHDL file for simulation and analysis

- **Nicroprobing with fine electrodes**
	- Eavesdropping on signals inside a chip
	- Injection of test signals and observing the reaction
	- Used for extraction of secret keys and memory contents

- **Laser cutting systems**
	- Removing polymer layer from a chip surface
	- **-** Local removing of a passivation layer for microprobing attacks
	- **Cutting metal wires inside a chip**

Picture courtesy of Dr Markus Kuhn

- **Laser cutting systems**
	- **Removing polymer layer, cutting through M3 and M2 layers**
	- **Local removing of a passivation layer and cutting metal wires**

- **Focused Ion Beam workstation**
	- Chip-level surgery with 10 nm precision
	- **Etching with high aspect ratio**
	- **Platinum and SiO₂ deposition**

Picture courtesy of Semiresearch Ltd

- **Focused Ion Beam workstation**
	- Creating probing points inside smartcard chips
	- **Modern FIBs allow access from the rear side; requires special** backside chip preparation techniques to reduce the thickness of silicon to $10 - 20$ µm

Picture: Oliver Kömmerling

- Chip modification
	- Cutting a wire from the security-fuse sensor circuit
	- **Restoring the blown security fuse**

Picture: Oliver Kömmerling

- **-** Chip modification
	- Reading out memory from smartcards
		- Disconnect most parts of the CPU except the program counter
		- Modify the program counter such that it will scan all addresses

- **Filling the gap between non-invasive and invasive attacks**
	- Less dangerous to target device (decapsulation without penetration)
	- Less expensive and easier to setup and repeat than invasive attacks
- **Tools**
	- IC soldering/desoldering station
	- Simple chemistry lab
	- **Wire bonding machine**
	- **Signal generator, logic analyzer and oscilloscope**
	- **High-resolution optical microscope**
	- Special microscopes (laser scanning, infrared etc.)
	- **UV light sources**
	- **Heating tools**
	- X-ray sources
	- **Scanning electron microscope**
	- PC with data acquisition board or FPGA prototyping boards

- **History of semi-invasive attacks**
	- UV attacks had been used for a long time before the semiinvasive method of attacks was defined
	- Advanced laser scanning techniques have been used in failure analysis to locate defects inside chips
	- We introduced optical fault injection attacks in 2002 as an example of a semi-invasive attack
- **Sample preparation technique is very similar to the one** used for invasive attacks – both front and rear-side decapsulation required
- **Advanced optical probing techniques**
- Yet to be explored
	- X-rays attacks (without even opening the chip package)
	- Interference with strong and localised electromagnetic fields

- **History of semi-invasive attacks**
	- Optical fault injection was observed in my experiments with microprobing attacks in early 2001

- **Sample preparation**
	- **Decapsulation techniques (manual or automatic by using** $HNO₃$ **)**
	- **Scanning Acoustic Tomography (Hitachi MI-SCOPE 10)**
		- Analysis of the inner IC package content

UV attacks

- Well known for over 20 years and used for EPROM and EEPROM
- Usually do not work on chips fabricated with 0.35 μm or smaller process
	- Multiple metal layers block >95% of the active area
	- CMP process used in fabrication of modern chips diffuse the light
- Not suitable for most Flash devices
	- Do not affect the charge on the floating gate
	- \blacksquare Damages the device by shifting transistor's V_{TH} into abnormal state
- Most of modern microcontrollers have protection against UV attacks
	- **Top metal protection layers**
	- UV detectors using same type of cells
	- Inverted cells (UV changes the state from erased to programmed)
	- **Self-destructors (UV sensitive reference cells)**

- **Advanced imaging techniques**
	- Approaching chip from rear side with infrared light
	- Silicon is almost transparent to photons with $\lambda > 1100$ nm

- **Backside infrared imaging**
	- Microscopes with IR optics should be used
	- **IR enhanced CCD cameras or special cameras must be used**
	- Resolution is limited to 0.6 μm by the wavelength of used light

- **Backside infrared imaging**
	- **Reflected and transmitted light illumination can be used**

Texas Instruments MSP430F112 microcontroller

- **Backside infrared imaging**
	- Mask ROM extraction without chemical etching
		- **Resolution is limited by wavelength of the infrared light**

Motorola MC68HC705P6A microcontroller

- **Advanced imaging techniques**
	- Using micro-lenses to increase NA of the optics
	- More effective for backside imaging increasing resolution to 0.15 μm

- **Advanced imaging techniques active photon probing**
	- Optical Beam Induced Current (OBIC)
		- Photons with energy exceeding semiconductor band gap ionize IC's regions, which results in a photocurrent flow used to produce the image
		- **Localisation of active areas**
		- Also works from the rear side of a chip (using infrared lasers)

Microchip PIC16F84A microcontroller

- **Advanced imaging techniques laser scanning**
	- Mask ROM extraction without chemical etching
		- Also works from the rear side of a chip
		- Resolution is limited by wavelength of the infrared laser

Motorola MC68HC705P6A microcontroller

- Advanced imaging techniques active photon probing
	- Light-induced current variation
		- Alternative to light-induced voltage alteration (LIVA) technique
		- Photon-induced photocurrent is dependable from the state of a transistor
		- Reading logic state of CMOS transistors inside a powered-up chip
		- Works from the rear side of a chip (using infrared lasers)

Microchip PIC16F84 microcontroller

- Data remanence in EEPROM and Flash memory devices
	- Using lasers to
		- monitor the state of memory transistors
		- \blacksquare influence cell characteristics ($V_{\uparrow\mathsf{H}}$)
		- influence read-sense circuit (V_{ref})

Microchip PIC16F84 microcontroller

- **Data remanence in EEPROM and Flash memory devices**
	- Modern multilayer technologies (0.35 μm or smaller process)
		- **Three metal layers plus CMP makes it harder to attack the chip from** its front side

Atmel ATmega8 microcontroller

- **Data remanence in Flash memory devices**
	- Modern multilayer technologies (0.35 μm or smaller process)
		- Rear side approach will be more effective

Atmel ATmega8 microcontroller

- **Optical fault injection attacks**
	- New class of attacks we introduced in 2002
	- Original setup involved optical microscope with a photoflash

- **Optical fault injection attack setup**
	- The Microchip PIC16F84 microcontroller (1.2 μm fabrication process) was programmed to monitor its internal SRAM
	- Magnification of the microscope was set to its maximum (1500×)
	- Light from the photoflash was shielded with aluminium foil aperture

- **-** Optical fault injection attacks
	- Intensive ionization opens closed transistor but does not influence opened transistor
	- The flip-flop can be switched by exposing closed n-channel transistor, causing the SRAM cell to change its state

- **Optical fault injection attacks**
	- Allocation of memory bits inside the array
	- Physical location of each memory address

- **IMPROVEMENTS to the fault injection attack setup**
	- Replacing the photoflash with a laser pointer
	- Using a motorised stage for easier control and analysis
	- **Using the laser cutter system setup for fault injection**
		- Laser pulses have fixed duration $(5 8 \text{ ns})$
		- The energy of pulses varies from pulse to pulse
	- Using specialised tools for optical fault evaluation (special laser microscopes designed specifically for optical fault probing)
		- Characterisation for the depth of focus
			- Chips with three and four metal layers very sensitive to the Z coordinate
		- Characterisation for different wavelengths and coordinates
			- Shorter wavelengths produce higher photocurrent
		- Characterisation for pulse duration
			- Long-distance effects for longer pulses (>100 μs)

Comparing with invasive attacks

• Comparing with non-invasive attacks

Conclusions

- **There are many ways a given system can be attacked**
	- Defender must protect against as many attacks as possible
- **Technical progress helps both defenders and attackers**
- **Estimate attacker's experience and tools**
- **Security hardware engineers must be familiar with attack** technologies to develop adequate protection
- **Security protection of a system must be implemented at** all levels, from hardware to software and human interface
- As attack technologies are constantly improving, secure hardware designs must be revised from time to time