Tamper resistance and physical attacks

Part IV: Hardware security research

Dr Sergei Skorobogatov

http://www.cl.cam.ac.uk/~sps32 email: sps32@cam.ac.uk

Computer Laboratory

Security Group, TAMPER Lab

- $\overline{}$ Hardware research lab (TAMPER Lab)
	- Part of the Security Group at the Computer Laboratory Department
	- П Research focused on the hardware aspects of semiconductor devices, computers and communication security
	- $\mathcal{L}_{\mathcal{A}}$ 3 associated staff members, 1 postdoc and 2 research students
	- П Cooperates with interested researchers of other university departments, other universities, government institutions and industrial companies

- $\overline{}$ Perform analysis of on-the-market semiconductor devices against known attacks
- \Box Develop new attack methods and countermeasures
- \Box Develop efficient, inexpensive and fast analysis methods
	- Ξ Semi-invasive methods are in higher demand
- $\overline{}$ Provide consulting for various organisations
	- I. Manufacturers of test equipment
	- П Chip manufacturers
	- Ξ Developers of secure devices

- \mathbb{R}^2 Sample preparation
	- Ξ Manual decapsulation and chemical etching
	- $\mathcal{L}_{\mathcal{A}}$ Laser cutting system
	- $\overline{}$ Externally: plasma etching, backside preparation, CMP, FIB

$\mathcal{L}_{\mathcal{A}}$ Analysis

- Ξ Optical imaging with a high-resolution microscope
- $\overline{}$ Microprobing station
- $\mathcal{L}_{\mathcal{A}}$ Various laser scanning techniques
- $\mathcal{L}_{\mathcal{A}}$ Special microscopes for optical fault injection analysis (sponsors)
- П Externally: optical imaging, SEM, FIB, reverse engineering, emulation techniques
- \Box **Eedback**
	- \blacksquare Reports, consulting, collaboration
	- \blacksquare In plans: special courses on hardware security and semi-invasive attacks (lectures, seminars, demonstrations and practical labs)

- Semi-invasive analysis using equipment from Semiresearch Ltd.
	- $\overline{}$ Ex-demo version of Trioscan BSL2R with NWR QuikLaze-II TriLaze laser cutter
		- $\overline{}$ Dual-mode advanced laser scanning
			- $\overline{}$ **Large-area scanning (12×12 mm²)**
			- г • High-resolution scanning (0.05 μm)
		- $\mathcal{L}_{\mathcal{A}}$ Long-working distance objectives (10 mm minimum for high-magnification objectives)
		- Dual-use laser cutting system
			- Sample preparation

L

- \Box Fault injection (Trig in/out synchronisation)
- Optical fault injection capability for NWR and BSL lasers (external triggering)
	- Evaluation showed that NWR pulsed laser is not suitable for some types of optical fault injection attacks

- $\overline{}$ Semi-invasive analysis using equipment from Semiresearch Ltd.
	- Demo version of Multioscan BTSL4RGI
		- Triple-mode advanced laser scanning
			- $\mathcal{L}_{\mathcal{A}}$ ■ Large-area scanning (18×18 mm²)
			- г • High-resolution scanning (0.025 μm)
			- \Box Real-time scanning
		- Dual wavelength lasers for convenient operation from front and rear sides
		- Improved IR and UV optics plus special CCD cameras for backside navigation
		- Long-working distance objectives (10 mm minimum for high-magnification objectives)
		- Optical fault injection capability for any of the lasers (software, pattern and external triggering)
			- \blacksquare Evaluation showed high effectiveness of the system for many types of optical attacks

 \mathbb{R}^2 Experiments using Semiresearch Trioscan BSL2R special laser system for optical analysis of semiconductors

- Optically enhanced position-locked power analysis
	- Microchip PIC16F84 microcontroller
	- $\overline{}$ ■ Classic power analysis setup (10 Ω resistor in GND, 500 MHz digital oscilloscope) and Trioscan BSL2R special laser system

- \mathbb{R}^2 Optically enhanced position-locked power analysis
	- Standard laser scanning operation reveals all sensitive areas
	- $\overline{}$ Microcontroller was programmed with the program which accesses certain memory locations and output result to the ports
	- Test pattern
		- Run the code inside the microcontroller and store the power trace
		- Trigger fault injection event and store the power trace
		- Compare two traces

- \Box Optically enhanced position-locked power analysis
	- Single acquisition with 250 Ms/s
	- \Box Results for memory read operations
		- $\mathcal{L}_{\mathcal{A}}$ Non-destructive analysis of active memory locations ('0' and '1')

- \Box Optically enhanced position-locked power analysis
	- Single acquisition with 250 Ms/s
	- \Box Results for memory write operations
		- г Non-destructive analysis of active memory locations (' $0\rightarrow 0$ ', ' $0\rightarrow 1$ ', '1 \rightarrow 0' and '1 \rightarrow 1')

- \Box Optically enhanced position-locked power analysis
	- Single acquisition with 250 Ms/s
	- \Box Results for memory read and write destructive operations
		- г Detecting active cells
		- L Detecting active columns in the memory array

- \mathbb{R}^2 Optically enhanced position-locked power analysis
	- Full story to be published later this year
	- Full presentation will appear at CHES-2006
- Other combinations of optical fault injection methods with conventional side-channel attacks
	- $\overline{}$ Fault injection in conjunction with power analysis
		- Temporary CPU modification followed by the Reset to prevent reaction

- Other interesting combinations of the attack methods were found
	- Ξ Will appear later in publications
	- $\mathcal{L}_{\mathcal{A}}$ Together with already known optical methods will become a part of the tuition courses on:
		- $\mathcal{L}_{\mathcal{A}}$ hardware security
		- **Semi-invasive attacks**
		- i. optical attacks

Conclusions

- \mathbb{R}^2 Having proper equipment for semi-invasive analysis is a vital part in the research
- \mathbb{R}^3 It is not always necessary to have very expensive equipment to attack a semiconductor device, but the security analysis could be very expensive
	- $\overline{}$ Fault injection attacks are much easier to use and repeat, than to test the real device against these attacks
- \Box New attacks could emerge when previously known attack methods are combined together
- Simulation does not always work reliably, by testing real hardware some unexpected problems could be spotted