
Acta Univ. Sapientiae, Mathematica, 5, 1 (2013) 54–82

Leader election in synchronous networks

Antal Iványi
Faculty of Informatics

Eötvös Loránd University
Budapest, Hungary

email: tony@inf.elte.hu

Dedicated to the memory of my friend Professor Antal Bege

Abstract. Worst, best and average number of messages and running
time of leader election algorithms of different distributed systems are ana-
lyzed. Among others the known characterizations of the expected number
of messages for LCR algorithm and of the worst number of messages of
Hirschberg-Sinclair algorithm are improved.

1 Introduction

We consider the problem of leader election in synchronous networks [11, 16,
30, 43, 59, 92]. The networks are modeled by directed graphs, the processors
are called processes and are modeled as an automaton (see e.g. [11, 59]). In
the case of the deterministic algorithms it is supposed that the processes have
a unique identifier (UID).

The main topic of this paper is the presentation of leader election algorithms
of different synchronous networks and their performance features.

It is known that if the processes are indistinguishable then there is no de-
terministic algorithm to solve the problem. For such anonymous or symmet-
ric networks random algorithms are proposed by Itai and Rodeh [38, 39], by
Ghaffni et al. [31], and by Kalpathi et al. [42].

Lower and upper bounds for the number of necessary messages or necessary
bits are presented by Afek and Gafni, Attiya et al., Bodlaender, Frederickson
and Lynch, Korach et al., and Loui et al. [1, 2, 8, 9, 26, 47, 58].

2010 Mathematics Subject Classification: 68Q25, 68W10, 68W40
Key words and phrases: leader election, synchronous networks, analysis of algorithms,
LCR, HS

54

Leader election 55

The structure of the paper is as follows. After the introductory Section 1 in
Section 2 the enumeration of some distributed systems is presented, then in
Section 3 simple (as complete, chain, mesh and star networks), ring (unidirec-
tional and bidirectional), special (such as De Bruijn, hypercube, Cayley, tree
and recursively scalable networks) and general networks are analyzed.

2 Enumeration of labeled directed networks

Leader election requires that any process can inform any other process on its
own data (e.g. on its own uid). In order to guarantee the participation of all
processes we suppose that the investigated networks are strongly connected.
It is worth to remark that there are also algorithms not requiring the strong
connectedness, but these algorithms have also such output that the leader
election is not solvable.

In this section we deal at first with the influence of the requirement of strong
connectedness on the number of the tested networks, then with some simple
networks such as complete network, star and chain.

2.1 Enumeration of connected and strongly connected net-
works

Let D(n), C(n), and S(n) denote the number of labeled simple, labeled simple
weakly connected and labeled simple strongly connected digraphs, respectively.

The known simple formula

D(n) = 2n(n−1) (1)

gives D(n). The values of D(n), further C(n)/D(n) and S(n)/D(n) are shown
in Table 1 for n = 1, . . . , 15. Values of D(n) for n = 1, . . . , 35 can be found
in [65].

In 2012 Critzer [17] proposed the following method to determine the number
C(n) of the simple labeled weakly connected digraphs:

C(n) = D(n) −
1

n

n−1∑

i=1

k

(
n

k

)
C(k)D(n − k). (2)

Using (1) one can compute the D(n) values necessary to get the values of
C(n) from (2). E.g. (1) results D(1) = 1 and then (2) gives C(1) = 1. In a
similar way D(2) = 4 and C(2) = 3, further D(3) = 64 and C(3) = 54.

56 Antal Iványi

n D(n) C(n)/D(n) S(n)/D(n)

1 1 1.000000 1.00000

2 4 0.750000 0.25000

3 64 0.843750 0.28125

4 4096 0.936035 0.39209

5 1 048 576 0.979500 0.53890

6 1 073 741 824 0.994008 0.68431

7 4 398 046 511 104 0.998280 0.80106

8 72 057 594 037 927 936 0.999511 0.88506

9 ∼ 4.722 366 483 · 1021 0.999863 0.93161

10 ∼ 1.237 940 039 · 1027 0.999962 0.96132

11 ∼ 1.298 074 215 · 1033 0.999990 0.97843

12 ∼ 5.444 517 871 · 1039 0.999997 0.98835

13 ∼ 9.134 385 523 · 1046 0.999999 0.99367

14 ∼ 6.129 982 164 · 1054 0.9999998 0.99659

15 ∼ 1.645 504 557 · 1060 0.99999994 0.99817

Table 1: Number D(n) of simple labeled directed graphs and the ratios
C(n)/(D(n) and S(n)/D(n).

Table 2 contains C(n) for n = 1, . . . , 15. In [66] the values for n = 16, . . . , 35

can be found.
V. A. Liskovets in 1969 [52, 100] proposed the following recursive formulas

to compute S(n):

a(n) = n(n − 1) −

n−1∑

i=1

(
n − 1

t − 1

)
a(t), (3)

λt(m) = 2m(m+t−1) −

m−1∑

k=0

(
m

k

)
λt(k) (4)

and

S(n) = a(n) +
∑

i=1

(
n − 1

t − 1

)
2(m−1)(m−k)λt(n − t)S(t). (5)

Using (3) and (4) one can compute the a(n) and λ(n) values necessary to
get the values of S(n) from (5).

Leader election 57

n C(n)

1 1

2 3

3 54

4 3 834

5 1 027 080

6 1 067 308 488

7 4 390 480 193 904

8 72 022 346 388 181 584

9 4 721 717 643 249 254 751 360

10 1 237 892 809 110 149 882 059 440 768

11 1 298 060 596 773 261 804 821 355 107 253 504

12 5 444 502 293 680 983 802 677 246 555 274 553 481 984

13 91 343 781 554 246 596 956 424 128 384 394 531 707 099 632 640

14 6 129 980 884 648 631 844 901 425 521 287 946 137 183 899 295 465 755 648

15 1 645 504 465 371 454 407 878 687 557 239 154 898 196 072 267 336 301 175 996 872 704

Table 2: Number C(n) of simple labeled connected digraphs.

Simplifying Liskovets’s method in 1971 Wright [100] proposed the following
formulas. Let n ≥ 1,

η(n) = D(n) −

n−1∑

i=1

2(n−1)(n−i)η(i) (6)

and

S(n) = ηn +

n∑

i=1

(
n − 1

i − 1

)
S(i)ηn−i. (7)

According to (6) η1 = 1, η2 = 0, η3 = 16, and η4 = 1536. Using these η

values from (7) we get S(1) = 1, S(2) = 1, S(3) = 18, and S(4) = 1606.

The values of S(n) are in Table 3 for n = 1, 2, . . . , 15. In [75] also the
values for n = 16, 17, 18 can be found.

In 1969 Liskovets [52] proved the following theorem.

Theorem 1 (Liskovets, 1969 [52]) If n ≥ 1, then

D(n) − 2(n + 4)n(n+1)(n+1) ≤ S(n) ≤ D(n) (8)

and

S(n) = D(n)
(
1 − n22−n + n(2n − 1)22−2n

)
+ O(n3nn(n−4)). (9)

Proof. See (Liskovets, 1969 [52]). ¤

58 Antal Iványi

n S(n)

1 1

2 1

3 18

4 1 606

5 565 080

6 734 774 776

7 3 523 091 615 568

8 63 519 209 389 664 176

9 4 400 410 978 376 102 609 280

10 1 190 433 705 317 814 685 295 399 296

11 1 270 463 864 957 828 799 318 424 676 767 488

12 5 381 067 966 826 255 132 459 611 681 511 359 329 536

13 90 765 788 839 403 090 457 244 128 951 307 413 371 883 494 400

14 6 109 064 462 821 545 704 046 426 032 465 737 763 224 760 635 732 888 576

15 1 642 494 209 200 959 152 585 925 675 993 911 516 594 334 047 201 121 102 632 675 328

Table 3: Number S(n) of simple labeled strongly connected digraph.

2.2 Generation of all strongly connected graphs

Let m and n be positive integers, V = {V1 . . . , Vn} be a finite set and A =

{a1, . . . , am} be a finite family of ordered pairs (Vi, Vj) ∈ V×V of the elements
of V. Let D = (V,A) be an arbitrary directed graph [78, Volume A, page 28]
and DT = (V,AT) be the transpose [15, page 530, Exercise 22.1-3] of D defined
by

AT = {(Vi, Vj) ∈ V × V | (Vj, Vi) ∈ V × V}. (10)

A directed spanning tree T of a directed graph D = (V,A) is a rooted tree
that consists entirely of arcs in A, all arcs directed from parents to children
in the tree, and that contains every vertex of D. A directed spanning tree of
D with root vertex Vi ∈ V is a breadth-first spanning tree provided that each
vertex of D at distance d from Vi appears at depth d in the tree (that is, at
distance d from Vi in the tree) [59].

We enumerated the strongly connected networks. The base of the enumer-
ation is the fact that the strong components of a directed graph D and its
transpose DT contain the same strongly connected components [15]. Therefore
we choose arbitrary vertex as a root and build a BST (breath-first spanning
tree) of the given D and of its transpose DT . D is strongly connected if and
only if both deep search trees contain all vertices of D.

Lemma 1 (Cormen et al., 1969 [15]) A directed graph D is strongly connected

Leader election 59

if and only if its arbitrary vertex (e.g. V1) is the root of a breadth-first spanning
tree of D and also the root of the breadth-first search tree DT .

Proof. Let Va and Vb be arbitrary vertices of a strongly connected graph
D. Then D contains a directed path Va = Vi1 , . . . , Vip = Vb and also a
directed path Vb = Vj1 , . . . , Vjq = Va. Therefore DT contains the directed
paths Va = Vjq , . . . , Vj1 = Vb and Vb = Vip , . . . , Vi1 = Va, therefore the
given condition is necessary.

Again let Va and Vb arbitrary vertices of D. If D contains a directed path
(V1 = Vi1 , . . . , Vir = Va) and also a directed path (V1 = Vj1 , . . . , Vjq = Vb),

further DT contains directed paths (V1 = Vk1
, . . . , Vkr = Va) and (V1 =

Vl1 , . . . , Vls = Vb), then D contains directed paths (Va = Vkr , . . . , Vk1
=

V1 = Vi1 , . . . , Vir = Vb) and (Vb = Vls , . . . , Vl1 = V1 = Vi1 , . . . , Vir = Va),

therefore the given condition is sufficient. ¤
Algorithm Strong is based on Lemma 1. It decides if a given directed graph

D is strongly connected.
Input parameters are: n > 1: the number of processes; B = (b1, . . . , bn2):

the adjacency matrix of the current graph as a vector.
Output parameter is L: if D is strongly connected then L = 1, otherwise

L = 0.
Working parameters are i (current number of the vertices); j, k: cycle vari-

ables; m: the current number of vertices in the tree; Q = (Q1, . . . , Qn):
a queue for the waiting vertices; h(Q) = h: the head index of the queue;
t(Q) = t: the tail index of the queue; p = (p1, . . . , pn): the presence vector
of the vertices (pi = 1, if Vi is in the tree, and pi = 0 otherwise).

Strong(n,B)

01 p1 = 1 // line 01–08: Initialization.
02 m = 1

03 h = 1

04 Q1 = 1

05 t = 2

06 L = 1

07 for j = 2 to n

08 pj = 0 // Vj is not in the tree.
09 while t > h // line 09–30: Test of D.
10 u = Qh

11 for j = 1 to n − 1

12 for k = 1 to j − 1 // line 12–20: Before the main diagonal.

60 Antal Iványi

13 if b(u−1)n+k == 1 and p(u−1)n+k == 0

// line 13: Vj not in tree
14 pk = 1 // line 14–15: A new vertex of the tree is found.
15 m = m + 1

16 if m == n

17 return L

18 Qt = j

19 t = t + 1

20 h = h + 1

21 for k = j + 1 to n − 1 // line 21–30: After the main diagonal.
22 if b(u−1)n+k == 1 and p(u−1)n+k == 0

// line 22: Vj not in tree.
23 pk = 1

24 m = m + 1

25 return L

26 Qt = j

27 t = t + 1

28 h = h + 1

29 L = 0 // line 30–31: The graph is not strongly connected.
30 return L

We remark that Strong tests only the existence of a breadth-first span-
ning tree of D. The test of the existence of a breadth-first spanning tree of
DT requires similar instructions (the only difference that in lines 13 and 22
b(u−1)n+k == 1 must be replaced by b(u−1)n+k == 0.

The next assertion characterizes the resource requirements of Strong.

Theorem 2 If b ≥ 2, then Strong requires Θ(n2) memory locations in all
cases and O(2b(b−1)n2) time units in worst case.

Proof. The memory requirement is determined by the size of the input neigh-
borhood matrix B, therefore the maximal memory requirement is Θ(n2) mem-
ory locations. The time requirement of Strong is determined by the facts that
the algorithm investigates at most 2n(n−1) graphs and constructs an n×n sized
matrix for all investigated graphs. ¤

Algorithm All-Strong enumerates the strongly connected networks for
a, a + 1, . . . , b vertices. It is also based on Lemma 1.

The input parameters of All-Strong are a ≥ 2 and b ≥ a: lower and
upper bound for the current size of the investigated network.

Leader election 61

Output parameter is S = (S(a), . . . , S(b)), where S(a) is the number of the
strongly connected networks consisting of a processes, . . . , S(b) is the number
of the strongly connected networks consisting of b processes.

Working parameters are i (current number of the vertices) and j (both
are cycle variables); B = (b1, . . . , bn): the adjacency matrix of the current
network as a vector; b0: help variable to stop the increasing of the adjacency
vector; Q = (Q1, . . . , Qn): a queue for the waiting vertices; h(Q): the head
index of the queue; t(Q) = t: the tail index of the queue; L: logical variable
(if the current graph is strong, then L = 1, otherwise L = 0.

All-Strong(a, b)

01 for i = a to b // line 01–04: Generation of the first graph.
02 S(i) = 0 // line 02: Initialization of the enumeration.
03 for j = 0 to i(i − 1)

04 bj = 0

05 Strong(i, B) // line 05–07: Test of D.
06 if L == 0 // line 06–07: D is not strong.
07 go to 14

08 for j = 1 to i(i − 1) line 08–12: Test of DT .
09 tj = 1 − bj

10 Strong(i, T)

11 if L == 0 // line 11–12: DT is not strong.
12 go to 14

13 S(i) = S(i) + 1 // line 14: D is strong
14 for j = i(i − 1) downto 1 // line 14–18: Generation

of the next graph.
15 if bj == 0

16 bj = 1

17 for k = j + 1 to i(i − −1)

18 bk = 0

19 go to 05 // line 19: Continue with the next graph.
20 print i, S(i) // line 20: Print result for the current size.

The next assertion characterizes the resource requirements of All-Strong.

Theorem 3 If b ≥ 2, then All-Strong requires Θ(b(b − 1)) memory loca-
tions in all cases and O(2b(b−1)n2) time units in worst case.

Proof. The memory requirement is determined by the size of the neighbor-
hood matrices B and T defined in lines 03–04 and 08–09. The maximal size of

62 Antal Iványi

these matrices appears in the case when the graphs contain b vertices, there-
fore the maximal memory requirement is Θ(b(b − 1)) memory locations. The
time requirement of All-Strong is determined by the facts that the algo-
rithm investigates 2b(b−1) graphs and constructs an n× n sized matrix what
according to Theorem 1 requires O(n2) time for one matrix. Multiplying these
expression we get the bound O(2b(b−1)n2). ¤

Another possible approach to generate all labeled strongly connected di-
graphs is to use the minimal digraphs investigated by Garćıa-López and Mar-
ijun [27].

3 Leader election

In the following sections the problem of leader election is considered. The
mathematical models described in [59] are used: networks are modeled by
directed (or sometimes undirected) graphs, processes by vertices. We suppose
that the processors communicate and compute in synchronous rounds. The
leader election problem is to elect a unique leader. Usually it is supposed that
the processes are identical except for unique identifiers (UIDs). The size of
the network is usually unknown.

In Subsection 3.1 some simple networks, then in Subsection 3.2 ring net-
works, in Subsection 3.3 further unidirectional networks, and finally in Sub-
section 3.4 further special and general networks are considered.

3.1 Leader election in simple networks

In this subsection the problem of leader election in simple networks as com-
plete, chain, mesh and star networks is considered.

Peterson [71] in 1985, Afek and Gafni [1, 2] in 1981 and in 1985, Singh [81]
in 1992 derived time and complexity bounds for mesh and complete networks.

In 1984 Korach et al. [47] proved optimal lower bounds for the number of
messages in complete networks.

In 1985 Loui et al. [58] investigated the influence of the direction of the
connections on the leader election algorithms.

There are known algorithms for chain [19] and star [80] networks too.

3.2 Leader election in ring networks

In this subsection comparison-based algorithms of different ring networks (in
details unidirectional and bidirectional ones) are described and analyzed.

Leader election 63

3.2.1 LCR algorithm in unidirectional ring

Figure 1 shows an unidirectional ring consisting of the processes P1, . . . , Pn.

Figure 1: A ring of processes P1, . . . , Pn.

The first known leader election algorithm was proposed by Le Lann [51] in
1977 for unidirectional rings. It is a very simple algorithm. In the first step
each process sends its UID to its clockwise neighbor. In the further steps each
process compares the received UID with its own UID, and if they are equal,
then the process declares itself the leader, otherwise sends the larger UID to
the clockwise neighbor. The algorithm terminates when the process having the
largest UID gets back its own UID.

This algorithm requires n steps and n2 messages.
Chang and Roberts in 1979 [13] proposed an improved version of the previ-

ous algorithm: after the comparison of the received and own UID the processes
send a message only if the received UID is the larger one. We give a formal de-
scription [59] of this algorithm called usually LCR (after Le Lann, Chang and
Roberts) algorithm. It is supposed that the UID’s are the natural numbers
1, 2, . . . , n.

Input parameter is n: the number of processes and p = p1, . . . , pn: a per-
mutation of the UID’s.

Output parameter is Mn = M: the number of messages.
The message alphabet is {1, 2, . . . , n}. For each i (1 ≤ i ≤ n) the state

statei consists of three components:

• u, a UID, initially the UID of Pi;

• sendi, a UID or null, initially the UID of Pi;

64 Antal Iványi

• statusi, having possible values {unknown,leader}.
The state of Pi consists of the single state defined by the given initial values.
The message generation function msgsi is defined by

• send the current value of send to Pi.

We remark that indices are interpreted everywhere mod n.

The transition function transi is defined by the following pseudocode used
in [59]:

send := null
if the incoming message is v, then

case
v > u: send := v
v = u: statusi := leader
v < u: do nothing

endcase
Since LCR is a basic algorithm of leader election and since we execute the

simulation of LCR on a sequential processor, the algorithm is described also
using the pseudocode of [15, 40].

Input parameters are n > 1: the number of processes; p = p1, . . . , pn: a
permutation of the UID’s.

Output parameters are L: the index of the elected leader; M: the number of
messages.

Working parameters are m = (m1, . . . , mn), where mi is the current mes-
sage of Pi; i cycle variable.

LCR(n, p)

01 Pi in parallel for i = 1 to n // line 01–05: Initialization.
02 read pi

03 mi = i

04 si = 0

05 M = n

06 while all states si == 0 // line 06–13: Election.
07 Pi in parallel for i = 1 to n

08 if mi−1 > pi

09 mi = mi−1

10 M = M + 1

11 if mi−1 == pi

Leader election 65

12 si = mi−1

13 L = i

14 return L,M // line 14: Return of the result.

Let Xn be a random variable characterizing the number of messages of LCR
and let Mn be the expected value of Xn at the uniform distribution of the
permutations of the UID’s.

Chang and Roberts in [13] not only improved the algorithm of Le Lann, but
also determined Mn.

Theorem 4 (Chang, Roberts, 1979 [13]) If the permutations of the UID’s
have uniform distribution, then

Mn = n +

n−1∑

i=1

n−1∑

k=1

kP(n; i, k) = n +

n−1∑

k=1

n

k + 1
= O(n log n), (11)

and
Mn = nHn = O(n log n), (12)

where Hn is the nth harmonic number and P(n; i, k) is the probability that the
message i is passed k times.

Proof. See [13]. ¤
P(i, k, n) is the probability that the k − 1 clockwise neighbors of i are less

than i and the kth clockwise neighbor of i is larger than i. There are i − 1

processes less than i and n − i processes larger than i.
Since the place of the UID i can be fixed, the remaining identifiers can be

permuted in (n−1)! manner. The small UID’s can be choosen in (i−1) · · · (i−
k + 1) manner, the kth large UID in n − i manner, and the remaining UID’s
(n − k) · · · 1 manner. So we get

P(n; i, k) =
[(i − 1) · · · (i − k + 1)](n − i)[(n − k) · · · 1]

(n − 1)(n − 2) · · · 1 . (13)

Using the well-known bounds

1

2
blog nc < Hn < dlog ne (14)

it is easy to get the stronger assertion

Mn = Θ(n log n). (15)

Using Leonhard Euler’s following lemma we prove Lemma 3 in which (18)
and (19) are stronger than (12) in Theorem 4.

66 Antal Iványi

Lemma 2 (Euler [22]) If n ≥ 1 then

Hn =

n∑

i=1

1

i
= ln n + γ + βn, (16)

where γ is the Euler-Mascheroni constant (γ ∼ 0.577 215 665) [22, 63, 96] and

lim
n→∞ βn = 0. (17)

Proof. See Fichtengolz [24, Volume II, page 270]. ¤

Lemma 3 If n ≥ 1, then

Mn = n lnn + nγ + nβn (18)

and
Mn = Θ(n log n). (19)

Proof. Substitution of (16) into (12) results (18) which implies (19). ¤
Table 4 illustrates the accuracy of the approximation of (18).
Chen [14] in 2006 published a detailed probabilistic cost analysis of LCR

algorithm. Using generating functions he proved

Mn =
2

n − 1

n−1∑

i=1

Mi +
n

2
for n ≥ 2 (20)

and remarked that M1 = 1.

Using (20) Chen reproved (11) and gave a more exact characterization

Mn = n log n + γn + O(1) (21)

of the mean of Xn, further determined the variance of Xn as

V(Xn) =

(
2 −

π2

6
n2

)
+ O(n log n). (22)

Using Euler-Maclaurin summation [21, 60, 64, 95] D. E. Knuth [46] derived
the following improved version of Lemma 2.

Leader election 67

n E(MLCR(n)) n lnn nγ nβn

1 1.00000000000 0.000000000000 0.5772156649015 0.4227843350985

2 3.00000000000 1.386294361120 1.154431329803 0.4592743090770

3 5.50000000000 3.295836866004 1.731646994705 0.4725161392911

4 8.33333333333 5.545177444480 2.308862659606 0.4792932292476

5 11.41666666667 8.047189562171 2.886078324508 0.4833987799885

6 14.70000000000 10.75055681537 3.463293989409 0.4861491952225

7 18.15000000000 13.62137104339 4.040509654311 0.4881193023021

8 21.74285714286 16.63553233344 4.617725319212 0.4895994902062

9 25.46071428571 19.77502119603 5.194940984114 0.4907521055745

10 29.28968253968 23.02585092994 5.772156649015 0.4916749607267

11 33.21865079365 26.37684800078 6.349372313917 0.4924304789518

12 37.23852813853 29.81887979746 6.926587978818 0.4930603622537

13 41.34173881674 33.34434164700 7.503803643720 0.4935935260189

14 45.52187257187 36.94680261461 8.081019308621 0.4940506486375

15 49.77343489843 40.62075301653 8.658234973523 0.4944469083788

16 54.09166389166 44.36141955584 9.235450638425 0.4947936974029

17 58.47239288489 48.16462684896 9.812666303326 0.4950997326112

18 62.91194540753 52.02669164213 10.38988196823 0.4953717971751

19 67.40705348573 55.94434060416 10.96709763313 0.4956152484385

20 71.95479314287 59.91464547108 11.54431329803 0.4958343737632

Table 4: Concrete values of the expressions in (18).

Lemma 4 (Knuth [46]) If n ≥ 1 then

Hn =

n∑

i=1

1

i
= ln n + γ +

1

2n
+

1

12n2
+

1

120n4
−

Θ2,n

252n6
, (23)

where 0 < Θ2,n < 1.

Proof. See [46, Page 474]. ¤
It is remarkable that in the Online Encyclopedia of Integer Sequences [83, 88]

one can find further members of the series in (23). Using the ideas of the proof
of Lemma 4 we get the following characterization of Mn.

Theorem 5 If n ≥ 1 then

Mn = n ln n + γn +
1

2
+

1

12n2
+

1

120n4
+ Θ

(
1

n5

)
. (24)

68 Antal Iványi

Proof. Using different methods in 1979 Chang and Roberts, in 2006 Chen
proved (12). Substitution of the right side of (23) into (11) results

Mn = E(n) = n ln n + γn +
1

2
−

1

12n
+

1

120n3
−

Θ2,n

252n5
, (25)

implying (24). ¤
Table 5 illustrates the accuracy of the approximation of (25).

n E(n) n ln n nγ + 1
2 − 1

12n
1

120n3 − Θ2,n

252n5

1 1.00000 0.00000 1.07722 −0.0833333 0.0083333 −0.0022157

2 3.00000 1.38629 1.65443 −0.0416667 0.0010417 −0.0001007

3 5.50000 3.29584 2.23165 −0.0277778 0.0003086 −0.0000147

4 8.33333 5.54518 2.80886 −0.0208333 0.0001302 −0.0000036

5 11.41667 8.04719 3.38608 −0.0166667 0.0000667 −0.0000012

6 14.70000 10.75056 3.96329 −0.0138889 0.0000386 −0.0000005

7 18.15000 13.62137 4.54051 −0.0119048 0.0000243 −0.0000002

8 21.74286 16.63553 5.11773 −0.0104167 0.0000163 −0.0000001

9 25.46071 19.77502 5.69494 −0.0092593 0.0000114 −0.0000001

10 29.28968 23.02585 6.27216 −0.0083333 0.0000083 −0.0000000

11 33.21865 26.37685 6.84937 −0.0075758 0.0000063 −0.0000000

12 37.23853 29.81888 7.42659 −0.0069444 0.0000048 −0.0000000

13 41.34174 33.34434 8.00380 −0.0064103 0.0000038 −0.0000000

14 45.52187 36.94680 8.58102 −0.0059524 0.0000030 −0.0000000

15 49.77343 40.62075 9.15824 −0.0055556 0.0000025 −0.0000000

16 54.09166 44.36142 9.73545 −0.0052083 0.0000020 −0.0000000

17 58.47239 48.16463 10.31267 −0.0049020 0.0000017 −0.0000000

18 62.91195 52.02669 10.88988 −0.0046296 0.0000014 −0.0000000

19 67.40705 55.94434 11.46710 −0.0043860 0.0000012 −0.0000000

20 71.95479 59.91465 12.04431 −0.0041667 0.0000010 −0.0000000

Table 5: Concrete values of the expressions in (25).

A third possibility for the proof of (12) is the application of Pascal’s next
formula [68] allowing the recursive computation of the sum of the kth powers
of the first n positive integers.

Theorem 6 (Kovcs [49], Pascal [68], Pólya [72], Wolfram [98]) If n ≥ 1 and

Leader election 69

p ≥ 1, then

S(n, p) =

n∑

i=1

ip =
1

p + 1

(
(n + 1)p+1 − 1 −

p−1∑

k=1

(
p + 1

k

)
S(n, k)

)
. (26)

The following Faulhaber formula [23] also allows the computation of S(n, p).

Theorem 7 (Faulhaber [23], Weisstein [97]) If n ≥ 1 and p ≥ 1, then

S(n, p) =
1

p + 1

p+1∑

i=1

(−1)δi,p

(
p + 1

i

)
Bp+1−in

i, (27)

where δi,p is the Kronecker-delta [87] and Bi is the Bernoulli number [84, 85].

The following double sum gives S(n, p) without recursion.

Theorem 8 (Weisstein [94]) If n ≥ 1 and p ≥ 1, then

S(n, p) =

p∑

i=1

i−1∑

j=0

(−1)j(i − j)

(
n + p − i + 1

n − i

)(
p + 1

j

)
. (28)

3.2.2 Hirschberg-Sinclair algorithm in bidirectional ring

Hirschberg and Sinclair [35] in 1980 proposed an algorithm (HS) for bidirec-
tional rings which elects as leader also the process having the largest UID. HS
requires in worst case only Θ(n log n) messages instead of the Θ(n2) require-
ment of LCR. Figure 2 shows a bidirectional ring.

Input parameters are n > 1: the number of processes; p = p1, . . . , pn: a
permutation of the UID’s 1, . . . , n.

Output parameters: i the index of the elected leader process; N = (N1, . . . ,

Nn), where Ni is the number of messages, sent by process Pi; Q: the total
number of sent messages.

Working parameters are M: the message alphabet ml = (ml1, . . . , mln),

where mli is the current message of Pi to Pi−1; mr = (mr1, . . . , mrn), where
mri is the current message of Pi to Pi+1; s = (s1, . . . , sn): status of Pi; i is
a cycle variable; null the empty message.

The messages are triples, consisting a UID, a flag value(in or out, and a
positive integer counter (hop-count) h. The possible values of the status of the
processes are unknown or leader.

70 Antal Iványi

Figure 2: A bidirectional ring of n processes.

HS(n, p)

01 Pi in parallel for i = 1 to n // line 01–05: Initialization.
02 read pi

03 mli = (i, out, 1) // line 03: First message of Pi to Pi−1.
04 mri = (i, out, 1) // line 04: First message of Pi to Pi+1.
05 si = unknown // line 05: Initialization of the first state of Pi.
06 N = 2n // line 06:Iinitialization of M.
07 while all states are unknown // line 07–12: Computation of M.
07 Pi in parallel for i = 1 to n

08 mri = null
09 mli = null
10 if mri−1 == (j, out, h)

11 if j > i and h > 1

12 mri = (j, out, h − 1)

13 Ni = Ni + 1

14 if j > i and h == 1

15 mli = (j, in, 1)

16 Ni = Ni + 1

17 if j = i

18 si = leader
19 Q = 0 // line 17–19: Summing numbers of messages.
20 for i = 1 to n

21 Q = Q + Ni

22 return i,N, Q // line 22: Return of the results.

Leader election 71

23 if mli+1 == (j, out, h)

24 if j > i and h > 1

25 mli = (j, out, h − 1)

26 Ni = Ni + 1

27 ifj > i and h == 1

28 mri = (j, in, 1)

29 Ni = Ni + 1

30 ifj = i

31 si = leader
32 Q = 0 // line 17–19: Summing the numbers of the messages.
33 for i = 1 to n

34 Q = Q + Ni

35 return i,N, Q // line 17: Return of the results.
36 if mli+1 == (j, in, 1) and i 6= j

37 mri = (j, in, 1)

38 Ni = Ni + 1

39 if mli+1 == (j, in, 1) and i 6= j

40 mli = (j, in, 1)

41 Ni = Ni + 1

42 if mri−1 == (i, in, 1) and mli+1 == (i, in1)

43 phase = phase + 1

44 mri = (i, out, 2phase

45 mli = (i, out, 2phase

Figure 3: Paths of messages of process Pi in algorithm HS.

Hirschberg and Sinclair [35] proved the following property of their algo-
rithm. Let Wn denote the maximal number of messages required by HS in a
bidirectional synchronous ring.

72 Antal Iványi

Theorem 9 (Hirschberg, Sinclair [35]) If n ≥ 1, then

Wn ≤ 8n(dlog ne+ 1) = Θ(n log n) (29)

and
Wn = O(n log n). (30)

We proved the following, stronger assertion.

Theorem 10 If n ≥ 2, then

2nblog nc ≤ Wn ≤ 8ndlog ne (31)

and
W(n) = Θ(n log n). (32)

Proof. The proof follows the ideas of application of bit reversing rings (see
[59, Example 3.6.3] and [59, Figure 3.3]. Let n = 2k, for example with k = 3. If
we choose p20 = p1 = n = 8 and p20+2k−1 = p5 = 7, then p20+2k−2 = p3 = 5,
p20+2k−1+2k−2 = p7 = 6, and finally the remaining processes get the UIDS
1, 2, 3, 4, and use similar construction for larger k ′s then we need at least
8 · 2 + 4 · 2 + 2 · 2 = 28 (in general: 3, 5n) messages. If 2k−1 ≤ n < 2k then
we suppose n = 2k processes and need at least n messages instead of 2n. If
n = 2 then we need only 2 · 2 (in general: 2n) messages, therefore appears in
the theorem only 2n as lower bound. ¤

Burns [12] published in 1980 a bidirectional algorithm which has a bit better
worst case bound for the number of necessary messages.

3.3 Leader election is further unidirectional networks

Dolev et al. [20] and Peterson in 1982 [70] independently published an uni-
directional algorithm whose worst message number is O(n log)n, but their
algorithm allows that the processes have arbitrary long response time that is
they algorithm works only in asynchronous networks.

Rotem et al. [76] in 1987, Santoro et al. [77] in 1988 proposed an unidirec-
tional asynchronous algorithm having O(n log n) messages in the worst case.
Their algorithm elected not only the process having the largest UID, but also
the processes having the k largest UID’s.

Higham and Przytycka [33, 34] used a trick of Smith [89] and proposed an
asynchronous algorithm what sends no more then 1.271n log n+O(n) messages
in worst case.

Leader election 73

The mentioned algorithms suppose that the processes start in the same
round (otherwise they can not terminate). Recently Arrieta et al. [4] elaborated
an algorithm allowing different starting rounds of the processes. The price of
this property is that the guarantee for the worst message number is only O(n2).

In 1996 Alimonti et al. [3] considered the problem of choosing the minimum
and maximum of the UID’s when equal UID’s are allowed. If the size of the
ring is unknown then the problem is unsolvable. The authors describe an
algorith for the unidirectional ring network containing n processes, where the
processes know n. The worst bit complexity (that is the number of sent bits)
of their algorithm is O((c + log n)n) with arbitrary c > 0 and the time bound
is O(c · n · x1/c), where x = max(|umin|, |umax|).

Attiya et al. [5] in 1989, Kalamboukis et al. [41] in 1991, and Pan [67] in
1994 studied the leader election in chordal rings.

Vitányi [93] in 1984 analyzed the leader election algorithms of Archimedean
rings, Kranakis and Krizane [50] in 1997 of anonymous (in which the processes
are undistinguishable) hypercube, and Mans [61] also in 1997 of unlabeled tori

Attiya et al. [6] proved lower bounds for the necessary number of messages
for anonymous ring networks.

Ingram et al. [37] proposed a leader election algorithm for dynamic asyn-
chronous network. Ingram et al. [36] described algorithms for dynamic net-
works with clausal clocks. Augustin et al. [7] published a robust leader election
algorithm for the fast-changing world.

3.4 Leader election in further special and general networks

Peterson [71] in 1985 described efficient algorithms for mesh networks.
In 1995 Masapati and Ural [62] proposed a linear time leader election algo-

rithms for recursively scalable networks.
Yamashita and Kameda [101], further Kranakis and Krizanc [50] investi-

gated algorithms in anonymous hypercube networks.
Tel in 1995 [91], Flocchini and Mans [25] in 1996 analyzed the leader election

algorithms of hypercube networks.
King et al. [45] in 1989, Kim and Belford [44] in 1996 proposed algorithms

for unreliable networks.
In 1997 Mans [61] described an optimal distributed algorithm for unlabeled

tori.
In 2001 Gavoille [29] analyzed the leader election problem of De Bruijn

networks.
In 2005 Shi and Srimani [80] described an algorithm for hierarchical star

74 Antal Iványi

networks.
In 2007 Srimani and Lafiti [90] proposed an algorithm for Cayley networks.
In 2008 Sepehri and Godarzi [79] described an algorithm for tree networks

and using heap structure they proved that their algorithm in worst case re-
quires only O(n) messages.

Peterson [70] in 1952 described efficient algorithms for general networks.
In 1985 Afek and Gafni [2] proved that leader election in general networks

requires Ω(n log n) messages and Ω(log n) time.
Peleg in 1990 [69] proposed a time optimal leader election algorithm for

gereral networks which can be applied also for some special networks.
The basic algorithms of general networks are FloodMax and OptFlood-

Max (see e.g. [59]).
Das et al. [18] proposed effective algorithms which either elect a leader or

signalize that the election is impossible.

Acknowledgement. The author thanks Zoltán Kása (Sapientia Hungar-
ian University of Transylvania) for his useful critical remarks, Valery Liskovets
(Mathematical Institute of Belorussian Academy of Sciences) for his help con-
nected with the enumeration problems, István Csörgő, Attila Kovács, Sándor
Kovács, and László Szili (all from Faculty of Informatics of Eötvös Loránd
University) for their help connected with the sums of powers of natural num-
bers, PhD student Balázs Pinczel for the figures and computer experiments
and PhD students Gergő Gombos and Kristóf Szabados (from the same fac-
ulty) for their technical help. The author also thanks the unknown referee for
the useful remarks.

References

[1] Y. Afek, E. Gafni, Time and message bounds for election in synchronous
and asynchronous complete networks, SIAM J. Comp., 20 (1981), 376–
394.

[2] Y. Afek, E. Gafni, Time and message bounds for election in synchronous
and asynchronous complete networks, in: Principles of Dist. Comp.,
ACM, 1985, 186–195.

[3] P. Alimonti, P. Flocchini, N. Santoro, Finding the extrema of a dis-
tributed multiset, J. Parallel Dist. Comp., 37 (1996), 23–33.

Leader election 75

[4] I. Arrieta, F. Fariña, J. R. G. de Mendl, M. Raynal, Leader election:
From Higham-Przytyckas algorithm to a gracefully degrading algorithm,
Publications Internes de l’IRISA, inria-00605799, version 1, July 2011,
9 pages.

[5] H. Attiya, J. van Leeuwen, N. Santoro, S. Zaks, Efficient elections in
chordal ring networks, Algorithmica, 4 (1989), 437–446.

[6] H. Attiya, M. Snir, M. K. Warmuth, Computing on an anonymous ring,
J. ACM, 35 (1988), 845–875.

[7] J. Augustine, T. Kulkarni, P. Nakhe, P. Robinson, Robust leader election
in a fast-changing world, arXive arXiv:1310.4908v1 [cs.DC], 2013, 12
pages.

[8] H. L. Bodlaender, Some lower bound results for decentralized extrema-
finding in rings of processors, J. Comp. System Sci., 42 (1991), 97–118.

[9] H. L. Bodlaender, New lower bound techniques for distributed leader
finding and other problems on rings of processors, Theor. Comp. Sci.,
81 (1991), 237–256.

[10] B. Bollobás, Random Graphs (Cambridge Studies in Advanced Mathe-
matics 73). Cambridge University Press, Cambridge, United Kingdom,
2001, XVIII + 498 pages.

[11] E. D. Burkhard, D. Kowalski, G. Malewicz, A. A. Shwartsman, Dis-
tributed algorithms, in: (ed. A. Iványi) Algorithms of Informatics, Vol.
2, mondAt Kiadó, Budapest, 2007, 591–642. Electronic version: AnTon-
Com, Budapest, 2011, http://progmat.hu/tananyagok/.

[12] J. E. Burns, A formal model for message passing systems. Tech. Rep.
91, Computer Science Dep., Indiana Univ., Bloomington, IN, May 1980,
21 pages.

[13] E. Chang, R. Roberts, An improved algorithm for decentralized extrema-
finding in circular configurations of processes, Comm. ACM, 22 (1979),
281–283.

[14] W.-M.Chen, Cost distribution of the ChangRoberts leader election al-
gorithm, Theoret. Comp. Sci., 369 (2006), 442–447.

76 Antal Iványi

[15] T. H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms (3rd edition), The MIT Press Hill, Cambridge/New York,
2009, 1312 pages.

[16] G. Coulouris, J. Dollimore, T. Kindberg, G. Blair, Distributed Systems:
Concepts and Design (5th edition), Addison-Wesley, 2011, 1008 pages.

[17] G. Critzer, A recursive formula for the number of labeled simple di-
graphs. OEIS (ed. N. J. A. Sloane), 2012, Sequence A003027.

[18] S. Das, P. Flocchini, A. Nayak, N. Santoro, Effective elections for anony-
mous mobile agents, in: Algorithms and Computation, LNCS 4288, 2006,
732–743.

[19] R. Dinitz, S. Moran, S. Rajsbaum, Bit complexity of breaking and
acheaving symmetry in chains and rings, J. ACM, 55 (2008), 1–28.

[20] D. Dolev, M. Klawe, M. Rodeh, An O(n log n) unidirectional distributed
algorithm for extrema finding in a circle, J. Alg., 3 (1982) 245–260.

[21] L. Euler, Methodus generalis summandi progressiones. Commentarii
Academiae Scientarum Imperialis Petropolitanae, 6 (1738), 68–97, Euler
Archiv E025, and Opera Omnia, 1 (1911), 42–72.

[22] L. Euler, De progressionibus harmonicus observationes, Commentarii
Academiae Scientarum Imperialis Petropolitanae, 7 1740, Euler Archiv
E043, 150–161 and Opera Omnia, 1 (1911), 87–100.

[23] J. Faulhaber, Academia Algebrae, Johann Remelins Verlag, Ulm, 1631,
52 pages.

[24] G. M. Fichtengolz, The Lecture on Differential and Integral Calculations,
Vol. 1, 2, 3 (Russian), Nauka, Moskow, 1969, 607, 807, and 656 pages.

[25] P. Flocchini, B. Mans, Optimal elections in hypercube, J. Parallel Dist.
Comp., 33 1996, 76–83.

[26] G. N. Frederickson, N. A. Lynch, Electing a leader in a synchronous
ring, J. ACM, 34 1987, 98–115.

[27] J. Garćıa-López, C. Marijuán, Minimal strong digraphs, Discrete Math.
312 (2012), 737–744. Also arXiv, arXiv:1004.4827v1 [math.CO] 27 Apr
2010.

Leader election 77

[28] H. Garcia-Molina, Election in a distributed computing system, IEEE
Trans. Comp., C-31 1982, 48–59.

[29] C. Gavoille, Routing in distributed networks: Overview and open prob-
lems, ACM SIGACT News, 32 (2001), 36–52.

[30] C. Georgiou, A. A. Shvartsman, N. A. Lynch, Cooperative Task-Oriented
Computing: Algorithms and Complexity (Synthesis Lectures on Dis-
tributed Computing Theory), Morgan & Claypool Publishers, 2011, 168
pages.

[31] M. Ghaffni, N. A. Lynch, S. Sastry, Leader election using loneliness
detection, in: Distributed Computing, LNCS 6950, 2011, Springer, Hei-
delberg, 2011, 268–282.

[32] F. Harary, Unsolved problems in the enumeration of graphs, Magyar
Tud. Akad. Mat. Kutató Int. Közl. 5 (1960), 63–95.

[33] L. Higham, T. Przytycka, A simple, efficient algorithm for finding in
rings, in: (ed. A. Schiper) Distributed Algorithms (7th Int. Workshp,
WDAG’93, Lausanne, 1993), LNCS 725, Springer-Verlag, Berlin, 1993,
249–263.

[34] L. Higham, T. Przytycka, A simple, efficient algorithm for maximum
finding on rings, Inf. Proc. Letters, 58 (1996), 319–324.

[35] D. S. Hirschberg, J. B. Sinclair, Decentralized extrema-finding in circular
configuration of processes, Comm. ACM, 23 (1980), 627–628.

[36] R. Ingram, T. Radeva, P. Shields, S. Viqar, J. E. Walter, J. L. Welch,
A leader election algorithm for dynamic networks with clausal clocks,
Distrib. Computing, 26 (2013), 75–97.

[37] R. Ingram, P. Shields, J. E. Walter, J. L. Welch, An asynchronous leader
election algorithm for dynamic networks, IEEE International Sympo-
sium on Parallel & Distributed Processing (IPDPS 2009, Rome, 23–29
May 2009), 1–12.

[38] A. Itai, On the computational power needed to elect a leader, in: LNCS,
486, Springer-Verlag, Berlin, 1991, 29–40.

[39] A. Itai, M. Rodeh, Symmetry breaking in distributed networks, Inf.
Comp. 88 (1990), 60–87.

78 Antal Iványi

[40] A. Iványi, Parallel Algorithms (Hungarian), ELTE Eötvös Kiadó, Bu-
dapest, 2005.

[41] T. Z. Kalamboukis, S. L. Mantzaris, Towards optimal distributed elec-
tion on chordal rings, Information Proc. Letters, 38 (1991), 265–270.

[42] M. Kalpathi, H. M. Mahmoud, M. D. Ward, Asymptotic properties of a
leader election algorithm, J. Appl. Probab., 48 (2011), 569–575.

[43] A. D. Kshemkalyani, M. Singhal, Distributed Computing: Principles,
Algorithms, and Systems, Cambridge University Press, Cambridge, 2011,
756 pages.

[44] G. Kim, G. Belford, A distributed election protocol for unreliable net-
works, J. Parallel Distr. Comp., 35 (1996), 35–42.

[45] C.-T. King, T. B. Gendreau, L. M. Ni, Reliable election in broadcast
networks, J. Parallel Distr. Computing, 7 (1989), 521–540.

[46] D. E. Knuth, Concrete Mathematics (2nd edition), Addison-Wesley Pub-
lishing Co., 1994, 672 pages (1st edition: 1988).

[47] E. S. Korach, S. Moran, S. Zaks, Optimal lower bounds for some dis-
tributed algorithms for a complete network of processors, Theoretical
Comp. Sci., 64 (1989), 125–132.

[48] A. Kovács, Sums of the kth powers for the first twenty positive integers.
Manuscript, Budapest, 2012.

[49] S. Kovács, Zur Berechnung der Potenzsummen. Manuscript. Budapest,
2013, 11 pages.

[50] E. Kranakis, D. Krizanc, Distributed computing on anonymous hyper-
cube networks, J. Alg., 23 (1997), 32–50.

[51] G. Le Lann, Distributed systems—towards a formal approach, in: (ed.
B. Gilricst) Information Processing 77 (Toronto, 1977).Vol. 7. of Proc.
of IFIP Congress, North Holland, Amsterdam, 1977, 155–160.

[52] V. A. Liskovets, On a recurrent method for enumeration of graphs with
labeled vertices (Russian), Dokl. AN SSSR, 184 (1969), 1284–1287.

[53] V. A. Liskovets, The number of strongly connected oriented graphs (Rus-
sian), Mat. Zametki, 8 (1970), 721–732.

Leader election 79

[54] V. A. Liskovets, A contribution to the enumeration of strongly connected
digraphs (Russian), Dokl. AN BSSR, 17 (1973), 1077–1080, 1163.

[55] V. A. Liskovets, On a general enumerative scheme for labeled graphs
(Russian), Dokl. AN BSSR, 21 (1977), 496–499.

[56] V. A. Liskovets, Some easily derivable integer sequences. J. Int. Se-
quences, 3 (2000), Article 00.2.2.

[57] V. A. Liskovets, Exact enumeration of acyclic deterministic automata.
Discrete Appl. Math., 154, (2006), 537–551.

[58] M. C. Loui, T. A. Matsushita, D. B. West, Election in a complete net-
work with a sense of direction, Inform. Proc. Letters, 22 (1985), 185–187.

[59] N. A. Lynch, Distributed Algorithms (5th edition, The Morgan Kauf-
mann Series in Data Management Systems), Morgan Kaufmann Pub-
lishers, 2003, XIII + 873 pages (1st edition: 1996).

[60] C. MacLaurin, A Treatise of Fluxions, Vol. 1. and 2, T. W. Ruddimans
and T. Ruddimans, Edinburgh, 1742, 763 pages.

[61] B. Mans, Optimal distributed algorithms in unlabeled tori and chordal
rings, J. Parallel Distributed Comp., 46 (1997), 80–90.

[62] G. H. Masapati, H. Ural, Electing a leader in a synchronous recursively
scalable network, in ICCI90, LNCS 468, Springer-Verlag, Berlin, 1990,
463–472.

[63] L. Mascheroni, Ad notationes ad calculum integralem Euleri, Vol. 1 and
2. Ticino, Italy, 1790 and 1792. Reprinted in Euler, L. Leonhardi Euleri
Opera Omnia, Ser. 1, Vol. 12, Teubner, Leipzig, Germany, 415–542.

[64] Yu. V. Matiyasevich, Alternatives to the Euler-Maclaurin formula for
calculating infinite sums, Math. Notes, 88 (2010), 524–529.

[65] T. D. Noe, Number of labeled weakly connected digraphs with n nodes
for n = 1, . . . , 35. In OEIS (ed. N. J. A. Sloane), May 11, 2007.
http://oeis.org/A053763/b053763.txt.

[66] T. D. Noe, Number of labeled simple connected digraphs with n nodes
for n = 1, . . . , 30. In OEIS (ed. N. J. A. Sloane), January 9, 2009.
http://oeis.org/A003027/b003027.txt.

80 Antal Iványi

[67] Y. Pan, A near-optimal multistage distributed algorithm for finding lead-
ers in clustered chordal rings, Information Sci., 76 (1994), 131–140.

[68] B. Pascal, Ouvres de Blaise Pascal, Vol. 3 (ed L. Brunschvicg, P. Bour-
roux), Nabu Press, Charleston, SC, 2010, 341–367. 1st edition: Blaise
Pascal, Ouvres, 1640.

[69] D. Peleg, Time-optimal leader election in general networks, J. Parallel
Distr. Comp., 8 (1990), 96–99.

[70] G. L. Peterson, An O(n log n) unidirectional distributed algorithm for
the circular extremal problem, ACM Trans. Lang. Systems, 4 (1982),
758–762.

[71] G. L. Peterson, Efficient algorithms for elections in meshes and complete
networks, TR 140, Dept. of Computer Science, Univ. of Rochester, 1985,
5 pages.

[72] Gy. Pólya, Mathematical Discovery on Understanding, Learning and
Teaching Problem Solving. John Wiley & Sons, Inc, New York, NY,
1962, 216 pages.

[73] R. W. Robinson, Counting labeled acyclic digraphs, in: New Directions
in the Theory of Graphs (F. Harary, ed.), Academic Press, New York,
1973, 239–273.

[74] R. W. Robinson, Counting unlabeled acyclic digraphs, Combinatorial
Mathematics V. Lecture Notes in Math., 622 (1977), 28–43.

[75] R. W. Robinson, Table of n, a(n) for n = 1, . . . , 18, in OEIS (ed. N.
J. A. Sloane), 2012. Sequence A003030.

[76] D. Rotem, E. Korach, N. Santoro, Analysis of a distributed algorithm for
extrema finding in a ring, J. Parallel Distr. Comp., 4 (1987), 575–591.

[77] N. Santoro, M. Scheutzow, J. B. Sidney, On the expected complexity of
distributed selection, J. Parallel Distr. Comp., 5 (1988), 194–203.

[78] A. Schrijver, Combinatorial Optimization. Vol. A, B, C (Algorithms and
Combinatorics, Vol. 24, Springer-Verlag, Berlin, 2003, 1800 pages.

[79] M. Seperhi, M. Godarzi, Leader election algorithm using heap structure,
in: 12th WSEAS Int.l Conf. on Computers (Heraklion, Greece, July 23-
25, 2008), 2008, 668–672.

Leader election 81

[80] W. Shi, K. Srimani, Leader election in hierarchical star network, J. Par-
allel Distr. Comp., 65 (2005), 1435–1442.

[81] G. Singh, Leader election in complete networks, in: Proc. of the Eleventh
Annual ACM Symp. on Principles of Distributed Computing, ACM
Press, 1992, 179–190.

[82] N. J. A. Sloane, Number of directed graphs (or digraphs) with n nodes.
OEIS (ed. N. J. A. Sloane), 2013, Sequence A000273.

[83] N. J. A. Sloane, Number of strongly connected digraphs with n labeled
nodes, OEIS (ed. N. J. A. Sloane), 2013, Sequence A003030.

[84] N. J. A. Sloane, Numerator of Bernoulli number Bn. OEIS (ed. N. J. A.
Sloane), 2013, Sequence A027641.

[85] N. J. A. Sloane, Denominator of Bernoulli number Bn., OEIS (ed. N. J.
A. Sloane), 2013, Sequence A027642.

[86] N. J. A. Sloane, The number of directed graphs on n vertices, OEIS (ed.
N. J. A. Sloane), 2013, Sequence A003085.

[87] N. J. A. Sloane, Jacobi (or Knonecker) symbol, OEIS (ed. N. J. A.
Sloane), 2013, Sequence A034947.

[88] N. J. A. Sloane, Bernoulli Numbers B2n/2n, in OEIS (ed. N. J. A.
Sloane), 2013, Sequence A006953.

[89] A. R. Smith, Cellular automata complexity trade-offs, Inf. Control., 18
(1971), 466–482.

[90] P. Srimani, S. Lafiti, Some bounded degree communication networks and
optimal leader election, in: Combinatorial Optimization in Communica-
tion Networks (Combinatorial Optimization), 18 (2006), 467–501.

[91] G. Tel, Linear election in hypercubes, Parallel Proc. Letters, 5 (1995),
357–366.

[92] G. Tel, Introduction to Distributed Systems (Second edition), Cambridge
University Press, Cambridge, 2000, 612 pages (1st edition appeared in
1984).

[93] P. Vitányi, Distributed elections in archimedean ring of processors, in
Proc. 16th Ann. ACM Symp. on Theory of Computing, 1984, 542–547.

82 Antal Iványi

[94] E. W. Weisstein, Double Sum, From Mathworld–A Wolfram Web Re-
source, 2013, http://mathworld.wolfram.com/PowerSum.html.

[95] E. W. Weisstein, Euler-Maclaurin Integration Formulas, 2013,
http://mathworld.wolfram.com/Euler-MaclaurinIntegrationFormulas.html.

[96] E. W. Weisstein, Euler-Mascheroni Constant, From Mathworld–A Wol-
fram Web Resource, 2013,
http://mathworld.wolfram.com/Euler-MascheroniConstant.html.

[97] E. W. Weisstein, Power Sum, From Mathworld–A Wolfram Web Re-
source, 2013, http://mathworld.wolfram.com/PowerSum.html.

[98] S. Wolfram, Wolframalpha, 2013. http://www.wolframalpha.com.

[99] E. M. Wright, Asymptotic enumeration of connected graphs. Proc. Roy.
Soc. Edinburgh Sect. A, 68 (1968/1970), 298–308.

[100] E. M. Wright, The number of strong digraphs, Bull. London Math. Soc.,
3 (1971), 348–350.

[101] M. Yamashita, T. Kameda, Computing on anonymous networks: Parts
I and II, IEEE Trans. Par. Dist. Syst., 7 (1996), 69–96.

Received: 22 March 2013

