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Abstract—For certain classes of linear, time-
invariant, multi-input multi-output plants, a system-
atic synthesis method is developed for stabilization
using Proportional+Integral+Derivative (PID) con-
trollers, where the closed-loop poles can be assigned
to the left of an axis shifted to the left of the origin.
For some of these plant classes, the real-parts of the
closed-loop poles can be smaller than any arbitrary
pre-chosen negative value. Stable and some unsta-
ble multi-input multi-input plants with transmission-
zeros in the left-half complex-plane are included in
these classes that admit PID-controllers with this
property of small negative real-part assignability of
closed-loop poles.

Keywords: simultaneous stabilization and tracking,

PID control, integral action, stability margin

1 Introduction

Many practical control designs use Propor-
tional+Integral+Derivative (PID) controllers, which
are preferred due to their simplicity, integral-action
property, and low-order (see e.g., [1]). Rigorous PID
synthesis methods based on modern control theory
have been explored recently in e.g., [6, 8, 5]. Sufficient
conditions for PID stabilizability of linear, time-invariant
(LTI), multi-input multi-output (MIMO) plants were
given in [5] and several plant classes that admit
PID-controllers were identified.

One important criterion for control design is the as-
signment of the closed-loop poles sufficiently far from
the imaginary-axis of the complex-plane in order to
have small time-constants, implying short settling times.
Therefore, it is desirable for the closed-loop poles to have
real-parts less than −h for a pre-specified positive con-
stant h. The goal of this paper is to identify plant classes
such that closed-loop poles can be assigned to the left of
an axis shifted away from the origin and to develop a syn-
thesis procedure that explicitly describes PID controllers
that achieve this performance objective.
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Since the order of PID-controllers is restricted to two,
their simplicity and low-order present the constraint that
only certain classes of plants can be controlled by using
PID-controllers, but others may require higher order con-
trollers, or those with poles with positive real-parts, for
stabilization. In fact, strong stabilizability is a necessary
condition for PID stabilizability of the plant, although it
is not a sufficient condition [5]. For example, the plant
with transfer-function G(s) = s−1

s2−p2 is not PID stabiliz-
able for any p > 1 since it is not strongly stabilizable; on
the other hand, the plant G(s) = 1

(s−1)3 is not PID sta-

bilizable although it is strongly stabilizable. In addition
to closed-loop stability, it is desirable to asymptotically
track important test signals with zero steady-state er-
ror. If the integral constant is non-zero, PID-controllers
achieve asymptotic tracking of step-input references. The
integral-constant of the PID-controller can be non-zero
only if the plant has no (transmission) zeros at the origin
of the complex-plane. Therefore, we only consider sub-
classes of MIMO plants that are strongly stabilizable and
have no (transmission) zeros at s = 0.

We study three plant classes in detail: The first class is
the set of plants whose poles have real-parts less than
−h for a prescribed h ≥ 0. The zeros of this class are
unrestricted except that there are no zeros at s = 0. For
this class, the objective of obtaining PID-controllers such
that the closed-loop poles have real-part less than −h
can be achieved only for certain values of h as shown in
Proposition 2.1-(i). The restriction on h is removed if the
plants that have no finite zeros with real-parts larger than
the given −h ; the closed-loop poles can be assigned to the
left of an axis going through this −h for any chosen value
of h as shown in Proposition 2.1-(ii)-(iii). The second
class under consideration is the set of plants that have
no zeros at infinity and whose (transmission) zeros have
real-parts less than −h for a prescribed h ≥ 0. This
time the pole locations are unrestricted. The third class
of plants allows zeros at infinity but no other zeros that
have real-parts less than −h for a prescribed h ≥ 0. For
the second and third plant classes, Propositions 2.2 and
2.3 present systematic PID-controller synthesis methods,
where the closed-loop poles can be pushed as far as to the
left of the finite zero with the largest negative real-part.
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The paper is organized as follows: Following the introduc-
tion, the main results are presented in Section 2, starting
with the problem statement and basic definitions. The
three plant classes under consideration are studied un-
der three separate subsections. Several illustrative nu-
merical examples are given for each of the plant cases
for single-input single-output (SISO) and MIMO plant
transfer-functions. The choice of the free parameters can
be optimized with a chosen cost function. Section 3 gives
concluding remarks.

Although we discuss continuous-time systems here, all re-
sults apply also to discrete-time systems with appropriate
modifications.

Notation: Let C , R, R+ denote complex, real, posi-
tive real numbers. For h ∈ R+ ∪ {0}, let Uh := {s ∈
C | Re(s) ≥ −h} ∪ {∞}. If h = 0, Uh = U0 := {s ∈
C | Re(s) ≥ 0} ∪ {∞} is the extended closed right-
half complex plane. Let Rp denote real proper ratio-
nal functions of s. For h ≥ 0, Sh ⊂ Rp is the sub-
set with no poles in Uh . The set of matrices with en-
tries in Sh is denoted by M(Sh) ; Sh

m×m is used in-
stead of M(Sh) to indicate the matrix size explicitly. A
matrix M ∈ M(Sh) is called Sh-stable; M ∈ M(Sh)
is called Sh-unimodular iff M−1 ∈ M(Sh). The H∞-
norm of M(s) ∈ M(Sh) is ‖M‖ := sups∈∂Uh

σ̄(M(s)),
where σ̄ is the maximum singular value and ∂Uh is the
boundary of Uh . We drop (s) in transfer-matrices such
as G(s) where this causes no confusion. We use co-
prime factorizations over Sh ; i.e., for G ∈ Rp

m×m,
G = Y −1X denotes a left-coprime-factorization (LCF)
and G = NgD

−1
g denotes a right-coprime-factorization

(RCF) where X,Y,Ng , Dg ∈ M(Sh) , detY (∞) 6= 0,
detDg(∞) 6= 0. For MIMO transfer-functions, we re-
fer to transmission-zeros simply as zeros; blocking-zeros
are a subset of transmission-zeros. If G ∈ Rp

m×m is full
(normal) rank, then zo ∈ Uh is called a transmission-zero
of G = Y −1X if rankX(zo) < m; zb ∈ Uh is called a
blocking-zero of G = Y −1X if X(zb) = 0 and equiva-
lenty, G(zb) = 0.

2 Main results

Consider the LTI, MIMO unity-feedback system
Sys(G,C) shown in Fig. 1, where G ∈ Rp

m×m and C ∈
Rp

m×m are the plant and controller transfer-functions.
Assume that Sys(G,C) is well-posed, G and C have no
unstable hidden-modes, and G ∈ Rp

m×m is full rank.

- h - C - h? - G -
6

−
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Figure 1: Unity-Feedback System Sys(G,C)

We consider the realizable form of proper PID-controllers
given by (1), where Kp, Ki, Kd ∈ Rm×m are the pro-
portional, integral, derivative constants, respectively, and
τ ∈ R+ (see [3]):

Cpid(s) = Kp +
Ki

s
+

Kd s

τs+ 1
. (1)

For implementation, a (typically fast) pole is added to
the derivative term so that Cpid in (1) is proper. The
integral-action in Cpid is present whenKi 6= 0. Subsets of
PID-controllers are obtained by setting one or two of the
three constants equal to zero: (1) becomes a PI-controller
Cpi when Kd = 0, an ID-controller Cid when Kp = 0, a
PD-controller Cpd when Ki = 0, a P-controller Cp when
Kd = Ki = 0, an I-controller Ci when Kp = Kd = 0, a
D-controller Cd when Kp = Ki = 0.

Definition 2.1 a) Sys(G,C) is said to be Sh-stable iff
the closed-loop transfer-function from (r, v) to (y, w) is
inM(Sh) . b) C is said to Sh-stabilize G iff C is proper
and Sys(G,C) is Sh-stable. c) G ∈ Rp

m×m is said to
admit a PID-controller such that the closed-loop poles of
Sys(G,C ) are in Uh iff there exists C = Cpid as in (1)
such that Sys(G,Cpid ) is Sh-stable. We say that G is
Sh-stabilizable by a PID-controller, and Cpid is an Sh-
stabilizing PID-controller.

Let G = Y −1X be any LCF of G, C = NcD
−1
c be any

RCF of C; for G ∈ Rp
m×m, X,Y ∈M(Sh), detY (∞) 6=

0, and for C ∈ Rp
nu×ny , Nc, Dc ∈M(Sh) , detDc(∞) 6=

0. Then C Sh-stabilizes G if and only if

M := Y Dc +XNc (2)

is Sh-unimodular (see [4, 9]).

The problem can be described as follows: Suppose that
h ∈ R+ is a given non-negative constant. Is there a PID-
controller Cpid that stabilizes the system Sys(G,Cpid)
with a guaranteed stability margin, i.e., with real parts
of all closed-loop poles of the system Sys(G,Cpid) less
than −h? For h = 0, the problem is the same as placing
the closed-loop poles anywhere into the left-half complex-
plane with arbitrary negative real parts. It is clear that
this goal is not achievable for some plants. Even when it
is achievable, it may be possible to place the closed-loop
poles to the left of a shifted-axis that goes through −h
only for certain h ∈ R+ .

Let ŝ and Ĝ , Ĉpid be defined as

ŝ := s+ h, equivalently, s =: ŝ− h ; (3)

Ĝ(ŝ) := G(ŝ− h) ; (4)

Ĉpid(ŝ) := Cpid(ŝ− h) := Kp +
Ki

ŝ− h
+

Kd (ŝ− h)

τ(ŝ− h) + 1
.

(5)

Engineering Letters, 16:2, EL_16_2_11
______________________________________________________________________________________

(Advance online publication: 20 May 2008)



Then Cpid(s) Sh-stabilizes G(s) if and only if Ĉpid(ŝ) S0-

stabilizes Ĝ(ŝ). For any α ∈ R+ , an RCF of Ĉpid(ŝ) is
given by

Ĉpid = (
(ŝ− h)

ŝ+ α
Ĉpid ) (

(ŝ− h)

ŝ+ α
I )−1 . (6)

We consider plant classes that admit PID-controllers and
identify values of h ∈ R such that the closed-loop poles
lie to the left of −h. A necessary condition for existence
of PID-controllers with nonzero integral-constant Ki is
that the plant G(s) has no zeros (transmission-zeros or
blocking-zeros) at s = 0 (see [5]). Therefore, all plants
under consideration are assumed to be free of zeros at the
origin (of the s-plane). The three specific classes under
consideration are defined as follows:

1) The first class of plants, called Gph , is the set of Sh-
stable m×m plants that have no (transmission or block-
ing) zeros at s = 0; i.e., for a given h ∈ R+ ∪ {0}, let
Gph ⊂ Sh

m×m be defined as

Gph := { G(s) ∈ Sh
m×m | detG(0) 6= 0}. (7)

For G(s) ∈ Gph , with Ĝ(ŝ) := G(ŝ− h), detG(0) 6= 0 is

equivalent to det Ĝ(h) 6= 0. Clearly, the plants G ∈ Gph
may have transmission-zeros or blocking-zeros anywhere
in C other than s = 0.

2) The second class of plants, called Gzh , is the set of
m × m plants that have no (transmission or blocking)
zeros in Uh ; i.e., for a given h ∈ R+ ∪ {0}, let Gzh ⊂
Rp

m×m be defined as

Gzh := { G(s) ∈ Rp
m×m | G−1(s) ∈ Sh

m×m }. (8)

In the SISO case, this class represents plants without ze-
ros in Uh that have zero relative degree. Some plants
in the set Gzh are not Sh-stable; therefore, these plants
either have poles in U0, or they are S0-stable but some
poles have negative real-parts larger than the specified
−h. Obviously, the plants in Gzh satisfy the necessary
condition for existence of PID-controllers with nonzero
integral-constant Ki since the fact that they have no ze-
ros in Uh implies that they have no zeros at s = 0.

3) The third class of plants, called G∞ , is the set of m×
m strictly-proper plants that have no (transmission or
blocking) zeros in Uh except at infinity. For a given h ∈
R+ ∪ {0}, let G∞ ⊂ Rp

m×m be defined as

G∞ := { G(s) ∈ Rp
m×m |

1

s+ a
G−1(s) ∈ Sh

m×m

for any a > h}. (9)

In the SISO case, this class represents plants without ze-
ros in Uh , that have relative degree one. Some plants
in the set G∞ are not Sh-stable; therefore, these plants
either have poles in U0, or they are S0-stable but some

poles have negative real-parts larger than the specified
−h. Obviously, the plants in G∞ satisfy the necessary
condition for existence of PID-controllers with nonzero
integral-constant Ki since the fact that they have no ze-
ros in Uh implies that they have no zeros at s = 0.

The set Gph ∩ Gzh corresponds to Sh-stable plants with
no poles and no zeros in Uh (including infinity). The set
Gph ∩ G∞ corresponds to Sh-stable plants with no poles
in Uh and no zeros in Uh except at infinity.

2.1 Plants with no poles in Uh

We start our investigation by considering the Sh-stable
plant class Gph described in (7). In Proposition 2.1-(i),
we obtain a sufficient condition on h for existence of PID-
controllers that Sh-stabilize the plant G ∈ Gph such that
none of the closed-loop poles are in Uh . We propose a
systematic PID-controller synthesis procedure, where the
controller parameters are explicitly defined. In Proposi-
tion 2.1-(ii), we consider the subclass Gph ∩ Gzh of Gph ,
where the plants have no (transmission or blocking) ze-
ros in Uh , i.e., G ∈ Gph such that G−1 ∈ M(Sh). For
these Sh-unimodular plants, there exist stabilizing PID-
controllers such that none of the closed-loop poles are
in Uh for any h ∈ R+ . In Proposition 2.1-(iii), we con-
sider the subclass Gph∩G∞ , where the plants are strictly-
proper and have no finite (transmission or blocking) ze-
ros in Uh , i.e., G ∈ Gph such that 1

s+a
G−1 ∈ M(Sh)

for any a > h. For these plants, there exist stabilizing
PID-controllers such that none of the closed-loop poles
are in Uh for any choice of h ∈ R+ . Proposition 2.1-(ii)
and (iii) indicate that PID-controllers can be designed so
that the closed-loop poles have negative real-parts less
than any −h if the open-loop poles and (finite) zeros
are not in Uh . A methodology leading to explicit design
parameter choices is proposed for each special case.

Proposition 2.1 (PID controller synthesis for Sh-stable
plants):
Let h ∈ R+ and G(s) ∈ Gph be given.
i) (Sh-stable plants with zeros in Uh ): Define Θ(ŝ) as

Θ(ŝ) := Ĝ(ŝ)(K̂p +
K̂d(ŝ− h)

τ(ŝ− h) + 1
) +

Ĝ(ŝ)G(0)−1 − I

ŝ− h
.

(10)
If the given h ∈ R+ satisfies

h <
1

2
‖ Θ(ŝ) ‖−1, (11)

for some K̂p ∈ Rm×m, K̂d ∈ Rm×m and τ < 1/h, then
there exists an Sh-stabilizing PID-controller. Further-
more, Cpid can be designed as follows: Choose any K̂p ∈

Rm×m, K̂d ∈ Rm×m, τ ∈ R+ satisfying τ < 1/h. Let
Kp = (α+h)K̂p , Kd = (α+h)K̂d , Ki = (α+h)G(0)−1 =

(α+ h)Ĝ(h)−1, where α ∈ R+ satisfies

h < α < ‖ Θ(ŝ) ‖−1 − h . (12)
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Then an Sh-stabilizing PID-controller Cpid is given by

Cpid = (α+h)K̂p+
(α+ h)G(0)−1

s
+
(α+ h)K̂d s

τs+ 1
. (13)

ii) (Sh-stable plants with no zeros in Uh ): Let G(s) ∈
Gph ∩ Gzh . Then there exists an Sh-stabilizing PID-
controller. Furthermore, Cpid can be designed as follows:

Choose any nonsingular K̂p ∈ Rm×m , any Kd ∈ Rm×m,
and τ ∈ R+ satisfying τ < 1/h. Choose any g ∈ R+

satisfying
g > 2h . (14)

Define Φ̃(ŝ) as

Φ̃(ŝ) := K̂−1
p [ Ĝ

−1
(ŝ) +

Kd(ŝ− h)

τ(ŝ− h) + 1
] . (15)

Let Kp = β̃K̂p , Ki = g β̃K̂p , where β̃ ∈ R+ satisfies

β̃ > ‖ Φ̃(ŝ) ‖ . (16)

Then an Sh-stabilizing PID-controller Cpid is given by

Cpid = β̃K̂p +
g β̃ K̂p

s
+

Kd s

τs+ 1
. (17)

iii) (Sh-stable strictly-proper plants ): Let G(s) ∈ Gph ∩
G∞ . Then there exists an Sh-stabilizing PID-controller.
Furthermore, Cpid can be designed as follows: Let
Y (∞)−1 := sG(s)|s→∞ . Choose any Kd ∈ Rm×m, and
τ ∈ R+ satisfying τ < 1/h. Choose any g ∈ R+ satisfy-
ing

g > h . (18)

Define Ψ̃(ŝ) as

Ψ̃(ŝ) := [ Ĝ
−1

(ŝ) +
Kd(ŝ− h)

τ(ŝ− h) + 1
]

(ŝ− h)

(ŝ− h+ g)
Y (∞)−1

− ŝ I . (19)

Let Kp = δ̃Y (∞) , Ki = g δ̃ Y (∞) , where δ̃ ∈ R+ satis-
fies

δ̃ > ‖ Ψ̃(ŝ) ‖ . (20)

Then an Sh-stabilizing PID-controller Cpid is given by

Cpid = δ̃ Y (∞) +
g δ̃ Y (∞)

s
+

Kd s

τs+ 1
. (21)

Remark : Condition (11) is obviously satisfied if h = 0,
i.e., Uh = U0; therefore, there exists a PID-controller
Cpid of the form in (1) that stabilizes a given stable
plant G, where the closed-loop poles of the system
Sys(G,Cpid) may be anywhere in the open left-half
complex-plane.

Proof of Proposition 2.1: i) Substitute ŝ = s + h as in
(3), (4), (5). With Ĝ(ŝ) = I−1Ĝ, write Ĉpid(ŝ) as in (6).

By (2), Ĉpid in (13) stabilizes Ĝ(ŝ) if and only if M̂(ŝ) is
S0-unimodular:

M̂(ŝ) =
(ŝ− h)

ŝ+ α
I + Ĝ(ŝ)

(ŝ− h)

ŝ+ α
Ĉpid

= I −
(α+ h)

ŝ+ α
I +

(ŝ− h)

ŝ+ α
Ĝ(ŝ)Ĉpid

= I +
(α+ h)(ŝ− h)

ŝ+ α
Θ(ŝ) . (22)

In (22), Θ(ŝ) ∈ M(S0) since Ĝ(ŝ)G(0)−1−I

ŝ−h
=

Ĝ(ŝ)Ĝ(h)−1−I

ŝ−h
∈M(S0). If (11) and (12) hold, then h < α

and α+ h < ‖Θ(ŝ)‖−1 imply

‖
(α+ h)(ŝ− h)

ŝ+ α
Θ(ŝ) ‖ ≤ (α+ h)‖

ŝ− h

ŝ+ α
‖ ‖Θ(ŝ) ‖

= (α+ h) ‖Θ(ŝ) ‖ < 1;

hence, M̂(ŝ) in (22) is S0-unimodular by the “small-gain
theorem” (see e.g., [9]). Therefore, Ĉpid(ŝ) stabilizes

Ĝ(ŝ); hence, Cpid is an Sh-stabilizing controller for G.

ii) Write the controller Cpid(s) given in (17) as

Cpid(s) = (
s

s+ g
Cpid)(

s I

s+ g
)−1

= (β̃K̂p +
Kd s

(τ s+ 1)

s

(s+ g)
)(

s I

s+ g
)−1. (23)

Substitute ŝ = s+h into (23) to obtain an RCF of Ĉpid(ŝ)
as in (6), with α = g − h. Then

Ĉpid(ŝ) = ( β̃K̂p +
Kd (ŝ− h)

(τ(ŝ− h) + 1)

(ŝ− h)

(ŝ− h+ g)
)(

(ŝ− h)

ŝ− h+ g
I)−1 , (24)

where (1 − τh) ∈ R+ and (g − h) ∈ R+ by assumption.
Since G(s) ∈ Gph∩Gzh implies G−1(s) ∈M(Sh), we have

Ĝ
−1

(ŝ) ∈M(S0). By (2), Ĉpid(ŝ) in (17) stabilizes Ĝ(ŝ)

if and only if M̃β(ŝ) is S0-unimodular:

M̃β(ŝ) =
(ŝ− h)

ŝ− h+ g
I + Ĝ(ŝ)

(ŝ− h)

ŝ− h+ g
Ĉpid

= Ĝ(ŝ) β̃ K̂p + [ I + Ĝ(ŝ)
Kd (ŝ− h)

(τ(ŝ− h) + 1)
]

(ŝ− h)

(ŝ− h+ g)

= β̃ Ĝ(ŝ)K̂p( I

+
1

β̃
K̂

−1

p [ Ĝ
−1

(ŝ) +
Kd(ŝ− h)

(τ(ŝ− h) + 1)
]

(ŝ− h)

(ŝ− h+ g)
)

= β̃Ĝ(ŝ)K̂p(I +
1

β̃
Φ̃(ŝ)

(ŝ− h)

(ŝ− h+ g)
), (25)
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where K̂p is nonsingular and G−1(s) ∈ M(Sh) implies

Ĝ
−1

(ŝ) ∈M(S0) by assumption. If (14) holds, then 2h <

g and β̃ > ‖Φ̃(ŝ)‖ imply

‖
1

β̃
Φ̃(ŝ)

(ŝ− h)

(ŝ− h+ g)
‖ ≤

1

β̃
‖ Φ̃(ŝ) ‖ ‖

(ŝ− h)

(ŝ− h+ g)
‖

=
1

β̃
‖ Φ̃(ŝ) ‖ < 1;

hence, M̃β(ŝ) in (25) is S0-unimodular. Therefore,

Ĉpid(ŝ) an S0-stabilizing controller for Ĝ(ŝ); hence, Cpid

is an Sh-stabilizing controller for G.

iii) Substitute ŝ = s+h as in (3), (4), (5). Then an LCF
of Ĝ(ŝ) is

Ĝ(ŝ) = Ŷ −1X̂ := I−1Ĝ(ŝ) .

Write the controller Cpid(s) given in (21) as

Cpid(s) = (
s

s+ g
Cpid)(

s I

s+ g
)−1

= (δ̃Y (∞) +
Kd s

(τs+ 1)

s

(s+ g)
)(

s I

s+ g
I)−1. (26)

Substitute ŝ = s+h into (26) to obtain an RCF of Ĉpid(ŝ)
as in (6), with α = g − h. Then

Ĉpid(ŝ) = ( δ̃ Y (∞) +
Kd (ŝ− h)

(τ(ŝ− h) + 1)

(ŝ− h)

(ŝ− h+ g)
)(

(ŝ− h)

ŝ− h+ g
I )−1 , (27)

where (1 − τh) ∈ R+ and (g − h) ∈ R+ by assumption.
Since G(s) ∈ Gph ∩ G∞ implies (s + a)G(s) ∈ M(Sh)
and 1

(s+a)G
−1(s) ∈ M(Sh) for a > h, we have (ŝ − h +

a)Ĝ(ŝ) ∈M(S0) and
1

(ŝ−h+a) Ĝ
−1

(ŝ) ∈M(S0); similarly,

(ŝ+ δ̃)Ĝ(ŝ) ∈M(S0) and
1

(ŝ+δ̃)
Ĝ
−1

(ŝ) ∈M(S0). By (2),

Ĉpid(ŝ) in (26) stabilizes Ĝ(ŝ) if and only if M̃δ(ŝ) is

S0-unimodular:

M̃δ(ŝ) =
(ŝ− h)

(ŝ− h+ g)
I + Ĝ(ŝ)

(ŝ− h)

(ŝ− h+ g)
Ĉpid

= (ŝ+ δ̃)Ĝ(ŝ)(
1

(ŝ+ δ̃)
Ĝ
−1

(ŝ)
(ŝ− h)

(ŝ− h+ g)
I

+
1

(ŝ+ δ̃)
I

(ŝ− h)

(ŝ− h+ g)
Ĉpid)

= (ŝ+ δ̃)Ĝ(ŝ)(
δ̃Y (∞)

(ŝ+ δ̃)

+
1

(ŝ+ δ̃)
[Ĝ

−1
(ŝ) +

Kd(ŝ− h)

(τ(ŝ− h) + 1)
]

(ŝ− h)

(ŝ− h+ g)
)

= (ŝ+ δ̃)Ĝ(ŝ) ( I +
1

(ŝ+ δ̃)
[

(ŝ− h)

(ŝ− h+ g)
Ĝ
−1

(ŝ)Y (∞)−1

− ŝI +
Kd(ŝ− h)

(τ(ŝ− h) + 1)

(ŝ− h)

(ŝ− h+ g)
Y (∞)−1] )Y (∞)

= (ŝ+ δ̃) Ĝ(ŝ) ( I +
1

(ŝ+ δ)
Ψ̃(ŝ) )Y (∞) . (28)

Then Ψ̃(ŝ) ∈ M(S0) and therefore Mδ(ŝ) in (28) is S0-

unimodular since δ > ‖Ψ̃(ŝ)‖ implies

‖
1

(ŝ+ δ̃)
Ψ̃(ŝ) ‖ ≤ ‖

1

(ŝ+ δ̃)
‖ ‖ Ψ̃(ŝ) ‖

=
1

δ̃
‖ Ψ̃(ŝ) ‖ < 1.

Therefore, Ĉpid(ŝ) an S0-stabilizing controller for Ĝ(ŝ);
hence, Cpid is an Sh-stabilizing controller for G.

The systematic PID-controller design method of Propo-
sition 2.1 is illustrated by the following examples. Given
h ∈ R+ and G ∈ Gh, define

ρ := max{x|p = x+ jy, where p is a pole of G(s)};
(29)

then −h > ρ since G ∈ Gh. We also define

γ(K̂p, K̂d) := ‖ Θ(ŝ) ‖−1 . (30)

Example 2.1 Consider the same plant transfer-function
as that of Example 3.2 in [2].

G(s) =
(s− 5)(s2 + 8s+ 32)

(s+ 2)(s+ 8)(s2 + 12s+ 40)
. (31)

By (29), ρ = −2. Suppose that h = 1 and we choose
K̂p = −2.5, K̂d = −0.3, τ = 0.05. We compute γ =
2.9 > 2h = 2, and set α = 0.5γ. The closed-loop poles
are {−2.52±j0.94, −3.44±j2.22, −4.57±j15.20}, which
all have real-parts less than −h = −1.

Note that γ is a function of (K̂p, K̂d) for a given h. The

constant contour of γ(K̂p, K̂d) is shown in Fig. 2, where
the solid line represents γ = 2h as the upper-bound for
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Figure 2: Contour of γ(K̂p, K̂d) for Example 2.1

condition (11). The point K̂p = −2.5, K̂d = −0.3 is
marked by ”+”, which is inside the region of the solid
line.

From the list of the values evaluated for the contours in
Table 1, we can see that there exists a maximum γ∗ for
the given h. The curve γ∗(h) is plotted in Fig. 3 as the
solid line, where the dashed line represents γ = 2h. We
can see from Fig. 3 that there exists an absolute value
hmax < −ρ such that the sufficient condition will not be
satisfied when h > hmax.

Table 1: Evaluated points for contours in Example 2.1

x -2 -2 -1 0 0 1
y -1 0 -1 -3 -1 -1
γ 0.80 2.09 0.50 0.23 0.37 0.29

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 3: Plot of γ∗(h) for Example 2.1

Example 2.2 Consider the transfer-function

G(s) =
(s+ 5)(s2 + 8s+ 32)

(s+ 2)(s+ 3)(s2 + 5s+ 40)
, (32)

which belongs to the set of Sh-stable strictly-proper
plants with no zeros in Uh for h < 2. According to
Proposition 2.1(iii), for any h < 2, there exists a PID con-
troller such that the closed loop transfer function is Sh-
stable. However we cannot use the procedure in Propo-
sition 2.1(i) to achieve this for all h < 2 as seen in the
γ∗(h) curve shown in Fig. 4. For those h’s on the right
side of the intersection point, Proposition 2.1(i) is not
applicable.

0 0.5 1 1.5 2
0

5

10

15

20

25

Figure 4: Plot of γ∗(h) for Example 2.2

To use Proposition 2.1(iii) for h = 1.99, we can choose
τ = 0.05 since 0.05 < 1/1.99. Choose arbitrarily Kd = 2
and g = 4 > h. With Y (∞) = 1, we can com-
pute ‖ Ψ̃(ŝ) ‖ = 31.01 and simply choose δ̃ = 32.01.
The closed-loop poles are {−3.49± j3.04,−4.26,−5.29±
j5.29,−80.20}, which all have real-parts less than −h =
−1.99.

Example 2.3 Consider the quadruple-tank apparatus in
[7], which consists of four interconnected water tanks and
two pumps. The output variables are the water levels
of the two lower tanks, and they are controlled by the
currents that are manipulating two pumps. The transfer-
matrix of the linearized model at some operating point
is

G =

[
3.7b1
62s+1

3.7(1−b2)
(23s+1)(62s+1)

4.7(1−b1)
(30s+1)(90s+1)

4.7b2
90s+1

]
∈ S0

2×2. (33)

One of the two transmission-zeros of the linearized sys-
tem dynamics can be moved between the positive and
negative real-axis by changing a valve. The adjustable
transmission-zeros depends on parameters b1 and b2 (the
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proportions of water flow into the tanks adjusted by two
valves). For the values of b1 , b2 chosen as b1 = 0.43
and b2 = 0.34, the plant G has transmission-zeros at
z1 = 0.0229 > 0 and z2 = −0.0997. By (29) ρ = −1/90 =
−0.0111. Suppose that h = 0.004. Choose τ = 0.05, and

K̂p =

[
−22.61 37.61
72.14 −43.96

]
, K̂d =

[
5.28 6.21
6.53 7.84

]
.

(34)
We can compute γ = 0.0099 > 2h = 0.008, and set α =
0.5γ. The maximum of the real-parts of the closed poles
can now be computed as−0.0059, which is less than−h =
−0.004. Thus the requirement is fulfilled.

0 0.002 0.004 0.006 0.008 0.01 0.012
0

0.005

0.01

0.015

0.02

0.025

Figure 5: Plot of γ(h) for Example 2.3

For a given (K̂p, K̂d), γ can be uniquely determined. For

the given value of (K̂p, K̂d) in (34), the curve of γ(h) is
given in Fig. 5 as the solid line and the dash-dotted line
represents the straight line 2h. The intersection point
thus decides the maximum value hmax such that con-
dition (11) is violated, which clearly indicates that the
choice of h = 0.004 is feasible.

Example 2.4 The PID-synthesis procedure based on
Proposition 2.1 involves free parameter choices. Con-
sider the same transfer-function as in (31) of Example
2.1. Let h = 1, choose τ = 0.05, and set α = 0.5γ as
before. If we choose (K̂p = 2.5, K̂d = 0.2), then the the
dotted line in Fig. 6 shows the closed-loop step response.
However, if we choose (K̂p = 2, K̂d = −0.1), then we
obtain a completely different step response as shown by
the dash-dotted line. It is natural to ask then if the free
parameters can be chosen optimally in some sense. Con-
sider a prototype second order model plant, with ζ = 0.7
and ωn = 6; i.e.,

Tm =
ω2
n

s2 + 2ζωs+ ω2
n

. (35)

We want the actual step response so(t) to be as close as
possible to the closed-loop step response sm(t) using the

Figure 6: Step responses for Example 2.4

model plant Tm. The solid line shows the step response
using Tm. Consider the cost function

error =
1

3

∫ 3

0

(sm(t)− so(t))
2dt, (36)

where so(t) is the step response for any choice of (K̂p,

K̂d). By plotting the contour of the error in terms of (K̂p,

K̂d), we find the global minimum of the error occurring
at (K̂p = 1.47, K̂d = −0.15). The step response for this

choice of (K̂p, K̂d) is shown by the solid line marked with
a circle, which is closer to the model step response than
the other two.

2.2 Plants with no zeros in Uh

Consider the class Gzh of m ×m plants with no (trans-
mission or blocking) zeros in Uh as described in (8). The
plants in Gzh obviously have no zeros at s = 0 since they
have no zeros in Uh. The plants G ∈ Gzh may not be
Sh-stable but G−1 ∈M(Sh) ; an LCF of G(s) is

G = Y −1X = (G−1)−1I . (37)

The plants in Gzh are obviously strongly stabilizable,
and they admit S0-stabilizing PID-controllers (see [5]).
Proposition 2.2 shows that these plants also admit Sh-
stabilizing PID-controllers for any pre-specified h ∈ R+ ,
and proposes a systematic PID-controller synthesis pro-
cedure.

Proposition 2.2 (PID controller synthesis for plants
with no zeros in Uh):
Let G ∈ Gzh . Then there exists an Sh-stabilizing PID-
controller Cpid . Furthermore, Cpid can be designed as
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follows: Choose any nonsingular K̂p ∈ Rm×m . Choose
anyKd ∈ Rm×m, and τ ∈ R+ satisfying τ < 1/h. Choose
any g ∈ R+ satisfying

g > 2h . (38)

Define Φ(ŝ) as

Φ(ŝ) := K̂−1
p [ Ĝ

−1
(ŝ) +

Kd(ŝ− h)

τ(ŝ− h) + 1
] . (39)

Let Kp = βK̂p , Ki = g βK̂p , where β ∈ R+ satisfies

β > ‖ Φ(ŝ) ‖ . (40)

Then an Sh-stabilizing PID-controller Cpid is given by

Cpid = βK̂p +
g β K̂p

s
+

Kd s

τs+ 1
. (41)

Proof of Proposition 2.2: Substitute ŝ = s + h as in
(3), (4), (5). Then an LCF of Ĝ(ŝ) is Ĝ(ŝ) = Ŷ −1X̂ :=

( Ĝ
−1

(ŝ) )−1I . Write the controller Cpid(s) given in (41)
as

Cpid(s) = (
s

s+ g
Cpid)(

s I

s+ g
)−1

= (βK̂p +
Kd s

(τ s+ 1)

s

(s+ g)
)(

s I

s+ g
)−1. (42)

Substitute ŝ = s+h into (42) to obtain an RCF of Ĉpid(ŝ)
as in (6), with α = g − h. Then

Ĉpid(ŝ) = ( βK̂p +
Kd (ŝ− h)

(τ(ŝ− h) + 1)

(ŝ− h)

(ŝ− h+ g)
) (

(ŝ− h)

ŝ− h+ g
I )−1 , (43)

where (1 − τh) ∈ R+ and (g − h) ∈ R+ by assumption.
By (2), Ĉpid(ŝ) in (42) stabilizes Ĝ(ŝ) if and only if Mβ(ŝ)
is S0-unimodular:

Mβ(ŝ) = Ŷ (ŝ)
(ŝ− h)

ŝ− h+ g
I + X̂(ŝ)

(ŝ− h)

ŝ− h+ g
Ĉpid

= Ĝ
−1

(ŝ)
(ŝ− h)

ŝ− h+ g
I +

(ŝ− h)

ŝ− h+ g
Ĉpid

= β K̂p + [ Ĝ
−1

(ŝ) +
Kd (ŝ− h)

(τ(ŝ− h) + 1)
]

(ŝ− h)

(ŝ− h+ g)

= β K̂p ( I +
1

β
K̂

−1

p [ Ĝ
−1

(ŝ)

+
Kd (ŝ− h)

(τ(ŝ− h) + 1)
]

(ŝ− h)

(ŝ− h+ g)
)

= β K̂p ( I +
1

β
Φ(ŝ)

(ŝ− h)

(ŝ− h+ g)
) , (44)

where K̂p is unimodular and G−1(s) ∈ M(Sh) by as-
sumption. If (38) holds, then 2h < g and β > ‖Φ(ŝ)‖
imply

‖
1

β
Φ(ŝ)

(ŝ− h)

(ŝ− h+ g)
‖ ≤

1

β
‖Φ(ŝ) ‖ ‖

(ŝ− h)

(ŝ− h+ g)
‖

=
1

β
‖Φ(ŝ) ‖ < 1;

hence, Mβ(ŝ) in (44) is S0-unimodular. Therefore,

Ĉpid(ŝ) an S0-stabilizing controller for Ĝ(ŝ); hence, Cpid

is an Sh-stabilizing controller for G.

Example 2.5 Consider the MIMO system

G =

[
(s+2)(s+3)
(s−4)(s−8) 0
(s+1)(s+5)
(s+6)(s+7)

(s+4)(s+8)
s2−6s+12

]
∈ S0

2×2 , (45)

which has no (transmission) zeros larger than −2. Thus
we can choose h = 1.99. Since 0.05 < 1/1.99, τ = 0.05
can be selected. Let g = 5 to fulfill the requirement
g > 2h. Let us arbitrarily choose

K̂p =

[
1 2
3 4

]
, Kd =

[
5 6
7 8

]
. (46)

We can calculate the norm ‖Φ(ŝ) ‖ = 163.8 from (40).
By arbitrarily choosing β = 164.8, the maximum of the
real-parts of the closed poles can now be computed as
−2.3561, which is less than −h = −1.99. Thus the re-
quirement is fulfilled.

2.3 Plants with no finite U-zeros

Consider the class G∞ of m × m strictly-proper plants
that have no other (transmission or blocking) zeros in Uh

as described in (9). Since the plants in G∞ have no zeros
in Uh other than the one at s =∞, they obviously have
no zeros at s = 0. The plants G ∈ Gzh are not all Sh-
stable but 1

s+a
G−1 ∈ M(Sh) for any a > h; an LCF of

G(s) is

G = Y −1X = (
1

s+ a
G−1)−1(

1

s+ a
I ) ; (47)

in (47), G(∞) = 0, and Y (∞)−1 = (s + a)G(s)|s→∞ =
sG(s)|s→∞ . The plants in G∞ are strongly stabiliz-
able, and they admit S0-stabilizing PID-controllers [5]).
Proposition 2.3 shows that these plants also admit Sh-
stabilizing PID-controllers for any pre-specified h ∈ R+ ,
and proposes a systematic PID-controller synthesis pro-
cedure.

Proposition 2.3 (PID controller synthesis for strictly-
proper plants):
Let G ∈ G∞ . Then there exists an Sh-stabilizing PID-
controller, and Cpid can be designed as follows: Let
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Y (∞)−1 := sG(s)|s→∞ . Choose any Kd ∈ Rm×m, and
τ ∈ R+ satisfying τ < 1/h. Choose any g ∈ R+ satisfy-
ing

g > h . (48)

Define Ψ(ŝ) as

Ψ(ŝ) := [ Ĝ
−1

(ŝ) +
Kd(ŝ− h)

τ(ŝ− h) + 1
]

(ŝ− h)

(ŝ− h+ g)
Y (∞)−1

− ŝI. (49)

Let Kp = δY (∞) , Ki = g δY (∞) , where δ ∈ R+ satisfies

δ > ‖ Ψ(ŝ) ‖ . (50)

Then an Sh-stabilizing PID-controller Cpid is given by

Cpid = δ Y (∞) +
g δ Y (∞)

s
+

Kd s

τs+ 1
. (51)

Proof of Proposition 2.3: Substitute ŝ = s + h as in (3),
(4), (5). Then an LCF of Ĝ(ŝ) is

Ĝ(ŝ) = Ŷ −1X̂ := (
1

ŝ− h+ a
Ĝ
−1

(ŝ) )−1(
1

ŝ− h+ a
I ).

Write the controller Cpid(s) given in (51) as

Cpid(s) = (
s

s+ g
Cpid)(

s I

s+ g
)−1

= (δY (∞) +
Kd s

(τ s+ 1)

s

(s+ g)
)(

s I

s+ g
)−1. (52)

Substitute ŝ = s+h into (52) to obtain an RCF of Ĉpid(ŝ)
as in (6), with α = g − h. Then

Ĉpid(ŝ) = (δ Y (∞) +
Kd (ŝ− h)

(τ(ŝ− h) + 1)

(ŝ− h)

(ŝ− h+ g)
)(

(ŝ− h)

ŝ− h+ g
I)−1 , (53)

where (1 − τh) ∈ R+ and (g − h) ∈ R+ by assumption.
By (2), Ĉpid(ŝ) in (52) stabilizes Ĝ(ŝ) if and only if Mδ(ŝ)

is S0-unimodular:

Mδ(ŝ) = Ŷ (ŝ)
(ŝ− h)

(ŝ− h+ g)
I + X̂(ŝ)

(ŝ− h)

(ŝ− h+ g)
Ĉpid

=
1

(ŝ− h+ a)
Ĝ
−1

(ŝ)
(ŝ− h)

(ŝ− h+ g)
I

+
1

(ŝ− h+ a)
I

(ŝ− h)

(ŝ− h+ g)
Ĉpid

=
1

(ŝ− h+ a)
δ Y (∞) +

1

(ŝ− h+ a)
[ Ĝ

−1
(ŝ)

+
Kd (ŝ− h)

(τ(ŝ− h) + 1)
]

(ŝ− h)

(ŝ− h+ g)

=
(ŝ+ δ)

(ŝ− h+ a)
(

δ I

ŝ+ δ
+

1

(ŝ+ δ)
[Ĝ

−1
(ŝ)

+
Kd(ŝ− h)

(τ(ŝ− h) + 1)
]
(ŝ− h)Y (∞)−1

(ŝ− h+ g)
)Y (∞)

=
(ŝ+ δ)

(ŝ− h+ a)
( I +

1

(ŝ+ δ)
Ψ(ŝ) )Y (∞). (54)

Then Ψ(ŝ) ∈M(S0) since

Ψ(ŝ)= Ĝ
−1
(ŝ)

(ŝ− h)

(ŝ− h+ g)
Y (∞)−1 − ŝI

+
Kd (ŝ− h)

(τ(ŝ−h)+1)

(ŝ− h)

(ŝ− h+ g)
Y (∞)−1

= (ŝ− h+ a)Ŷ (ŝ)
(ŝ− h)

(ŝ− h+ g)
Y (∞)−1 − ŝI

+
Kd (ŝ− h)

(τ(ŝ− h) + 1)

(ŝ− h)

(ŝ− h+ g)
Y (∞)−1

= ŝ[
(ŝ− h)

(ŝ− h+ g)
Ŷ (ŝ)Y (∞)−1 − I]

+ [(a− h)Ŷ (ŝ) +
Kd (ŝ− h)

(τ(ŝ− h) + 1)
]
(ŝ− h)Y (∞)−1

(ŝ− h+ g)
,

and Ŷ (∞) = Y (∞) implies [ (ŝ−h)
(ŝ−h+g) Ŷ (ŝ)Y (∞)−1− I ] is

strictly-proper. ThereforeMδ(ŝ) in (54) is S0-unimodular
since δ > ‖Ψ(ŝ)‖ implies

‖
1

(ŝ+ δ)
Ψ(ŝ) ‖ ≤ ‖

1

(ŝ+ δ)
‖ ‖Ψ(ŝ) ‖

=
1

δ
‖Ψ(ŝ) ‖ < 1.

Therefore, Ĉpid(ŝ) an S0-stabilizing controller for Ĝ(ŝ);
hence, Cpid is an Sh-stabilizing controller for G.

Example 2.6 Consider a similar transfer-function as in
Example 2.2 by changing all its stable poles into unstable
ones:

G(s) =
(s+ 5)(s2 + 8s+ 32)

(s− 2)(s− 3)(s2 − 5s+ 40)
. (55)

This transfer-function is an unstable strictly-proper plant
with no zeros in Uh for h < 4. According to Proposi-
tion 2.3, there exists a PID controller for any h < 4 such
that the closed loop transfer function is Sh-stable.
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Let us consider h = 2.5. We can choose τ = 0.05
since 0.05 < 1/2.5. Choose arbitrarily Kd = 2 and
g = 5 = 2h > h. With Y (∞) = 1, we can compute the
norm ‖Ψ(ŝ) ‖ = 52.58 and simply choose δ = 60. The
closed-loop poles are {−2.605± j3.827,−2.899,−9.859±
j9.524,−82.173}, which all have real-parts less than
−h = −2.5.

To demonstrate a PID controller exists for all h < 4,
let us choose h = 3.99. We can choose τ = 0.05 as
before since 0.05 < 1/2.5. Choose arbitrarily Kd = 2
and g = 8 > h. With Y (∞) = 1, we can compute
the norm ‖Ψ(ŝ) ‖ = 13905.36 and simply choose
δ = 14000. The closed-loop poles are {−3.99007 ±
j3.99997,−4.96577, 8.10888,−19.90415,−14009.04107},
which all have real-parts less than −h = −3.99. Even
though the goal is achieved, δ is now very large since the
value of h approaches its limit.

Example 2.7 Consider the MIMO system

G =

[
2(s+3)

(s−4)(s−8)
1

(s+20)
(s+5)

(s+6)(s+7)
(s+4)

s2−6s+12

]
∈ S0

2×2 , (56)

which has no (transmission) zeros larger than −1.39.
Thus we can choose h = 1. Since 0.05 < 1, τ = 0.05 can
be selected. Let g = 2 to fulfill the requirement g > h.
Let us arbitrarily choose

Kd =

[
1 2
3 4

]
. (57)

We can compute the norm ‖Φ(ŝ) ‖ = 94.77 from (49).
By arbitrarily choosing δ = 96, the maximum of the real-
parts of the closed poles can now be computed as −1.25,
which is less than −h = −1. Thus the requirement is
fulfilled.

3 Conclusions

For several important classes of LTI MIMO plants, sys-
tematic synthesis procedures were developed so that that
closed-loop system is stabilized using a PID-controller
that places the closed-loop poles in the left-half complex-
plane to the left of the plant zero with the largest nega-
tive real-part. The plants under consideration are either
stable, or unstable with restrictions on the location of
the zeros. For the unstable plant case, only one zero at
infinity is allowed, which in the SISO plant case means
that the relative degree is no more than one. The pro-
posed synthesis methods allow freedom in the choice of
parameters. Illustrative examples were given, including
one that demonstrates how this freedom can be used to
improve an SISO system’s performance. Extending the
optimal parameter selection to MIMO systems would be
a challenging goal. Future directions of this work would

explore extending the design method to a wider class of
unstable plants, perhaps with more zeros at infinity. Op-
timal parameter selections for the MIMO case will also
be explored.
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