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INTRODUCTION 

The working mind is greatly leveraged by interaction with the 
world outside it. A conversation to share information, a grocery 
list to aid memory, a pocket calculator to compute square 
roots-all effectively augment a cognitive ability otherwise se- 
verely constrained by what is in its limited knowledge, by lim- 
ited attention, and by limitations on reasoning. But the most 
profound leverage on cognitive ability is the ability to invent 
new representations, procedures, or devices that augment cog- 
nition far beyond its unaided biological endowment-and boot- 
strap these into even more potent inventions. 

This chapter is about one class of inventions for augmenting 
cognition, collectively called "information visualization." Other 
senses could be employed in this pursuit-audition, for exam- 
ple, or a multi-modal combination of senses-the broader topic 
is really informationperceptualization; however, in this chap- 
ter, we restrict ourselves to visualization. Visualization employs 
the sense with the most information capacity; recent advances in 
graphically agile computers have opened opportunities to ex- 
ploit this capacity, and many visualization techniques have now 
been developed. A few examples suggest the possibilities. 

Example 1 : Finding Videos with the  FilmFinder 

The use of information visualization for finding things is illus- 
trated by the FilmFinder (Ahlberg & Shneiderman, 1994a, 

1994b). Unlike typical movie-finder systems, the FilmFinder is 
organized not around searching with keywords, but rather 
around rapid browsing and reacting to collections of films in the 
database Figure 26.1 shows a scattergraph of 2000 movies, plot- 
ting rated quality of the movie as a function of year when it was 
released. Color differentiates type of movies-comedy from 
drama and the like. The display provides an overview, the en- 
tire universe of all the movies, and some general features of the 
collection. It is visually apparent, for example, that a good share 
of the movies in the collection were released after 1965, but also 
that there are movies going back as far as the 1920s. Now the 
viewer "drills down" into the collection by using the sliders in 
the interface to show only movies with Sean Connery that are 
between 1 and 4% hours in length (Fig. 26.2). As the sliders are 
moved, the display zooms in to show about 20 movies. It can 
be seen that these movies were made between 1960 and 1995, 
and all have a quality rating higher than 4. Since there is now 
room on the display, titles of the movies appear. Experimenta- 
tion with the slider shows that restricting maximum length to 
2 hours cuts out few interesting movies. The viewer chooses the 
highly rated movie, "Murder on the Orient Express" by double- 
clicking on its marker. Up pop details in a box (Fig. 26.3) giving 
names of other actors in the movie and more information. The 
viewer is interested in whether two of these actors, Anthony 
Perkins and Ingrid Bergman, have appeared together in any 
other movies. The viewer selects their names in the box, and 
then requests another search (Fig. 26.4). The result is a new dis- 
play of two movies. In addition to the movie the viewer knew 
about, there is one other movie, a drama entitled "Goodbye, 

FIGURE 26 1 .  FilmFinder overview scattergraph Courtesy University of Maryland 



FIGURE 26 2 FilmFinder scattergraph zoom-in. Courtesy University of Maryland. 

FIGURE 26 3 FilmFinder d etails o n  demand.  Courtesy University of Maryland. 
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FIGURE 26.4. FilmFinder retrieval by example Courtesy University of Maryland. 

Again," made around 1960. The viewer is curious about this 
movie and decides to watch it. 

Information visualization has allowed a movie viewer in a 
matter of seconds to find a movie he or she could not have spec- 
ified at the outset. To do this, the FilmFinder employed several 
techniques from information visualization: (a) an overview of 
the collection showing its structure; (b) dyna?Â¥ni queries, in 
which the visualization seems to change instantaneously with 
control manipulations; (c) zooming in by adding restrictions 
to the set of interest; (d) details on demand, in which the user 
can display temporarily detail about an individual object, and 
(e) retrieval by example, in which selected attributes of an in- 
dividual object are used to specify a new retrieval set. 

Example 2: Monitoring Stocks with TreeMaps 

Another example of information visualization is the TreeMap vi- 
sualization on the SmartMoney.com website,l which is shown in 
Fig. 26.5Ca). Using this visualization, an investor can monitor 

more than 500 stocks at once, with data updated every 15 min- 
utes. Each colored rectangle in the figure is a company The size 
of the rectangle is proportional to its market capitalization. 
Color of the rectangle shows movement in the stock price. 
Bright yellow corresponds to about a 6% increase in price, 
bright blue to about a 696 decrease in price. Each business sec- 
tor is identified with a label like "Communications." Those items 
marked with a letter N have an associated news item. 

In this example, the investor's task is to monitor the clay's 
market and notice interesting developments. In Fig. 26.5(a), the 
investor has moved the mouse over one of the bright yellow 
rectangles, and a box identifying it as Erickson, with a +9.28% 
gain for the day, has popped up together with other informa- 
tion. Clicking on a box gives the investor a popup menu for se- 
lecting even more detail. The investor can either click to go to 
World Wide Web links on news or financials, or drill down, for 
example, to the sector (Fig. 26.5[b]), or  down further to indi- 
vidual companies in the software part of the technology sector 
(Fig. 26.5[c]). The investor is now able to immediately note in- 
teresting relationships. The software industry is now larger than 

www.smanmoney corn 
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FIGURE 26.5 TreeMap of daily stock prices. Courtesy SmartMoney com 

Example 3 -  Sensemaking with Permutation Matrices 

As a final information visualization example, consider the case 
proposed by Bertin (1977/1981) of a hotel manager who wants 
to analyze hotel occupancy data (Table 26.1) to increase her re- 
turn. In order to search for meaningful patterns in her data, she 
represents it as a permutation matrix (Fig. 26.7[a]. A permuta- 
tion matrix is a graphic rendition of a cases x variables display. In 
Pig 26.7(a), each cell of Table 26.1 is a small bar of a bar chart. 
The bars for cells below the mean are white; those above the bar 
are black. By permuting rows and columns, patterns emerge 
that lead to making sense of the data. 

In Fig. 26.7(a), the set of months, which form the cases, are 
repeated to reveal periodic patterns across the end of the cy- 
cle. By visually comparing the pairs of rows, one can find rows 



FIGURE 26.6 TreeMap of year-to-date stock pnces. Courtesy SmartMoney com 

TABLE 26 1. Dgta for Hotel Occupancy (Based on Bertin ( I  97711981)) 

ID VARIABLE )AN FEE MAR APR MAY ]UNE IULY AUG SER OCT NOV DEC 

I % Female 26 21 26 28 20 20 20 20 20 40 I5 40 
2 % bca1 69 70 77 7 I 3 7 36 39 39 5 5 60 68 72 
3 %USA 7 6 3 6 23 I4 I9 I4 9 6 8 8 
4 % South America 0 0 0 0 8 6 6 4 2 I2 0 0 
5 %Europe 20 I5 I4 I5 23 2 7 22 30 27 I9 I9 I7 
6 % M EastIAfrica I 0 0 8 6 4 6 4 2 I 0 I 
7 %Asla 3 I0 6 0 3 13 8 9 5 2 5 2 
8 % Bus~nessmen 78 80 85 86 85 87 70 76 87 85 87 80 
9 % Tour~sts 22 20 15 14 I5 13 30 24 13 I5 I3 20 
I0 % Direct R e s e ~ a t ~ o n s  70 70 75 74 69 68 74 75 68 68 64 75 
1 I %Agency Reservations 20 I8 I9 I7 27 2 7 I9 19 26 27 2 1 I5 
I2 %Air Crews I0 I2 6 9 4 5 7 6 6 5 I5 I0 
I3 %Under 20 2 2 4 2 2 1 I 2 2 4 2 5 
I4 %20-35 25 27 3 7 35 2 5 2 5 27 28 24 30 24 30 
I5 % 35-55 48 49 42 d8 54 55 5 3 5 1 5 5 46 5 5 43 
I6 %Over55 25 22 I7 I5 I9 I9 I9 19 19 20 I9 22 
I7 Price of rooms I63 I67 I66 174 I52 I55 I45 I70 157 174 165 156 
t 8 kn@h of stay I 7  1.7 I 7  I91  I 9  2 1 54 I 6  1~73 I 8 2  166 I 4 4  
I9 % Occupancy 67 82 70 83 74 77 56 62 90 92 78 5 5 
20 Conventions 0 0 0 I I I 0 0 I I I I 



that are s~nlilar. These are reorclered and grouped (Fig. 26.7[b]). 
By this means, ~t is discovered that there seem to be two pat- 
terns of yearly variation. One pattern 111 Fig, 26.7(b) is seniian- 
nual, clividing the year into the cold months of October through 
April and the warm months of May through September. The 
other pattern breaks the year into fo~w d~s t~nc t  regions. We have 
thus found the beginnings of a schewza-that is, a fran~ework 
In terms of which we can encode the raw data and describe it 
111 a more compact language, Instead of talking about the events 
of the year in terms of ~ndividual months, we can now talk in 
terms of two series of periods, the semiannual one, and the four 
distinct periods. As we do so, there is a residue of information 
not incl~~decl as part of our clesci-iptive language. Sensemaking 
proceeds by the onzission a?zd t-ecoding o/i?zjomzation into 
more co~npact,fonn (see Resnikoff, 1989). This residue of in- 
formation may be reduced by finding a better or more articu- 
lated sclleina, or ~t may be left as noise. Beyond finding the ba- 
SIC patterns In the data, the hotel manager wants to make sense 
of the data relative to a purpose: she wants to increase the oc- 
cupancy of the hotel, Therefore, she has also pernluted gen- 
eral ~ndicators of activity in Fig. 26 7@), such as % Occ~~pancy 
and Length of Stay, to the top of the diagram and put the rows 
that correlate w~th these below them. Th~s  reveals that Conven- 
tions, B~~siness~nen, and Agency Resel-vations, all of which gen- 
erally have to do w ~ t h  convention business, are associated w ~ t h  
higher occupancy This 1nsig11t comes from the match in pat- 
terns i??ternal to the visual~zation; it also comes from noting 
why these variables ni~ght correlate as a consequence of factors 
extenzal to the visual~zation. She also d~scovers that marked dif- 
ferences ex~st  between the winter and summer g ~ ~ e s t s  during 
the slow periods. In winter, there are more local g~~es t s ,  women, 
and age differences. In summer, there are more foreign tourlsts 
and less variation in age. 

This visualization was L I S ~ ~ L I I  for sensenialcing on hotel oc- 
cupancy data, but ~t is too complicated to communicate the 
high points. The hotel manager therefore creates a s~mplified 
diagram, Fig. 26 7(c). By graymg some of the bars, the m a n  
points are more 1-ezd11~ graspable, while still preserving the 
data relations. A December convention, for example, does not 
seem to have the effect of the other conventions in bringing in 
guests. It is shown in gray as residue in the pattern. The hotel 
manager s~~ggests  moving the convention to another month, 
where it might have more effect on increasing the occupancy of 
the hotel. 

What Is Information Visualization? 

The FihnFi?zde~; the PeeMap, and the pe~wzutation inat?-ix 190- 

tel analysis a ~ e  all examples of the use of infomiation visual- 
ization. We can deJne in/omzation visualization as "the use 
of computer-supported, mteractive, vis~ial repmentatlons of 
abstract data in order to amphfy cognition'' (Card, Mackinlay, & 
Shneiderman, 1999). 

Information vis~~alization needs to be disting~~ished from 
related areas: scientijic z~isz~alization is like information visu- 
alization, but it is applied to scient~fic data ancl typically is 
~hysically based, The starting point of a natural geomet~ical 
substrate for the data, whether the human body or earth ge- 

ography, tends to emphasize fincling a way to make v~s~ble  tlie 
invis~ble (sayj velocity of air flow) w~thin an exlstmg spatial 
framework, The chief problen~ for ~nfornmtion visualization, In 
contrast, is often findmg an effectwe nlapping between ab- 
s~ract  entities and a spatial repl-esentation. Both information 
visualization and scientific vis~~alizat~on belong to the broadei- 
f~eld of data graphics, wliich is the use of abstract, 110111-epre- 
sentational visual representations to amplify cognition. Data 
gsaphics, in turn, is part of info?-mation desigfz, which con- 
cerns itself w ~ t h  external repl-esentations for amplifying cog- 
n~tion. At the l~igl~est  level, we could considel- infol-niation cle- 
sign a part of external cognition, the L I S ~ S  of the external 
world to acco~nplish some cognitive process. Characterizing 
the purpose of information visualization as ainplgving cog?tz'- 
tio~z is purposely broad. Cognition can be the process of writ- 

ing a scientif~c paper or shopping on the Internet for a cell 
phone. Generally, ~t refas  to the intellect~~al processes in 
which information is obtained, transformed, stored, retrieved, 
and used. All of these can be advanced generally by means of 
external cognition, and In particular by means of ~nformation 
vis~ializat~on. 

Why Does Visualization Work? 

Visualization aids cogn~tion not beca~ise of some myst~cal su- 
periority of pctures over other forms of thought and comnlu- 
nication, but rather because v~sual~zation helps the user by 
making the world o ~ ~ t s i d e  the mncl a resource for t h o ~ ~ g h t  in 
specif~c ways. We list six groups of these in Table 26.2 (Card 
et al., 1999): Visualization amphfies cogn~tion by (a) increasing 
the memory and processing resources available to the users, 
(b) reducing search for informat~on, (c) using visual represen- 
tations to enhance the detection of patterns, (d) enabhng per- 
ceptual inference operations, (e) using perceptual attention 
mechanisms for monitoring, and (f) by encocling mformation 
in a manipulable mecl~unl. The F11mFincie1-, for examplej allows 
the representation of a large amount of data in a small space 
in a way that allows patterns to be perceived visually in the 
data, Most important, the method of instantly responding 111 

the d~splay to the dynamic movement o f ~ l ~ e  s11clers allowed 
users to rapidly explore the multidimensional space of f11ms. 
The TreeMap of the stock market allows mon~toring and explo- 
ration of many equities. Again, much data is represented in lit- 
tle space. In tlxs case, the display nlanages the user's attention, 
drawing it to those equities with unusually large changes, and 
supplying the means to drill down into the data to ~~nderstand 
why these movements may be happening. In the hotel man- 
agement case, the visual representation makes it easier to no- 
tice similarities of behavior in a ni~~ltidiniensional attribute 
space, then to c l ~ ~ s t e r  and laerepresent rliese. The f1na1 prod- 
uct is a compact (ancl sin~plif~ed) representation of the origi- 
nal data that supports a set of forward clecisions. In all of these 
cases, visualizat~on allows the user to (a) examine a large 
amount of information, (b) l e e p  an overview of the whole 
while p~~rsuing cletails, (c) keep track of (by using the display as 
an external working memory) many things, and (d) produce an 
abstract representation of a sit~~ation through the omission 2nd 
recoding of inlormation. 
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TABLE 26.2. How Informat~on Visualization Amplifies Cogn~tion 

1. Increased Resources 
H~gh-bandw~dth hierarch~cal interaction 

Parallel perceptual processmg 
Offload work from cogntive to 

perceptual system 
Expanded work~ng memory 
Expanded storage of ~nformat~on 

2. Reduced Search 
bcal~ty of procesmg. 
High data densty 
Spat~ally-indexed addressmg 

3. Enhanced Recognition of Patterns 
Recogn~t~on ~nstead of recall 

Abstraction and aggregat~on 

Vsual schemata for organlzat1on 
Value, relationsh~p, trend 

4. Perceptual Inference 
Visual representat~ons make some 

problems obv~ous 

Graph~cal computations 
5. hrceptuai Monitoring 

6. Manipulable medium 

Human movmg gaze system part~t~ons hmted channel capacity SO that ~t comb~nes h~gh spatial 
resolution and w~de aperture In sensmg the visual environments ( L a r k ~ n  &Simon, 1987). 

Some attr~butes of v~sual~zations can be processed In parallel compared to text, wh~ch IS serial 
Some cognitive ~nferences done symbol~cally can be recoded into ~nferences done w~th simple 

perceptual operat~ons (Lark~n & Simon, 1987) 
Visual~zat~ons can expand the working memory available for solving a problem (Norman, 1993) 
Visual~zations can be used to store masswe amounts of mformatm In a quickly access~ble form 

(e g ,  maps) 

Visual~zations group informat~on used together reducmg search (Lark~n & S~mon, 1987) 
Visuahzat~ons can often represent a large amount of data In a small space (T~~fte, 1983) 
By grouping data about an object, v~sual~zat~ons can avo~d symbohc labels (Larkin & Smon, 1987) 

Recogn~zing informat~on generated by a v~sualization IS easler than recalling that ~nformat~on by 
the user 

Visuahzat~ons simphfy and organlze ~nformat~on, supplying higher centers with aggregated Forms of 
mformat~on through abstraction and select~ve omlsslon (Card, Robertson, & Mack~nlay, 1991)- 

(Resn~koff, 1989) 
Visually organizing data by structural relat~onsh~ps (e g , by t~me) enhances patterns 
Visualizat~ons can be constructed to enhance patterns at all three levels (Bertin, 196711983) 

Visuahzat~ons can support a large number of perceptual ~nferences that are very easy for humans 
[Lark~n & Simon, 1987) 

Visualizations can enable complex spec~ahzed graphical computations (Hutchins, 1996) 
Visual~zat~ons can allow for the monltormg of a large number of potential events i f  the display IS 

organ~zed so that these stand out by appearance or mot~on 
Unhke statlc d~agrams, visual~zat~ons can allow explorat~on OF a space of parameter values and can 

amplify user operations 

Source Card, Macklnla~ & Shne~derman, I999 

many colors9 Sunlight enters fl-om the window at right and is 
refracted into many colors by a prism. One of these colors can 
be selected (byan aperture in a screen) and further refracted by 
another prisnl, but the light stays the same color, showing that 
it has already been reduced to its elementary components. As in 
Newton's illustration, early scientific and mathematical diagrams 
generA1y had a spatial, physical basis and were used to reveal 
the hidden, underlying order in that world. 

Surprisingly, d~agrams of abstract, nonphysical mformation 
are appam~tly  rather recent. Tufte (1983) dates abstract clia- 
grains to (Playfa~r~ 1786) in the 18th century Figure 26.9 is one 
of Playfair's earliest diagrams. The purpose was to convince 
readers that English Imports were catching up with imports. 
Starting with Playfar, the classical methods of plotting data were 
developed-graphs, bar charts, and the rest. 

Recent advances in the visual representation of abstract in- 
formation derive from several strands that became intertwined. 
In 1967, Bertin (1967/1983, 1977/1981), a French cartographer 
published his theory of The Semidogy of Graphics. This theory 
identified the basic elements of diagrams and their combma- 
tion. Tufte (1983, 1990, 1997), from the fields of visual design 
and data graphics, published a series of seminal books that set 
forth principles for the design of data graph~cs and emphasized 
maximizing the density of useful informat~on. Both Bertin's and 
T~fte's theories became well known and influential. Meanwhile, 
within statistics, Tukey (1977) began a movement on exploratory 
data analysis. His emphasis was not on the quality of graphical 

presentationl but on the use of pictures to give rapid, statistical 
~nsight into data ~dations.  For example, "box and whisker plots" 
allowed an analyst to get a rapid characier~zation of data distri- 
butions. Cleveland and McGill (1988) wrote an influential book, 
D y ~ a m i c  G~aphics f07- Statisticsj explicating new v~sualizat~ons 
of data with particular emphasis on the vis~~alizat~on of mu1tid1- 
mensional data, 

In 1985, NSF launched an initiative on scientzfic visualiza- 
tion (McCorn~ick & DeFantil 1987). The purpose of this initia- 
tive was to use advances in computer graphics to create a new 
class of analytical instruments for scient~fic analys~s, especially as 
a tool for comprehending large, newly produced datasets in the 
geophysical and biological sciences. Meanwhile, the computer 
graphics and artificial ~ntelligence communities were interested 
in the automatic design ofvisual presentations of data. Maclunlay's 
(1986a, 1986b) them APT formalized Bertin's design theory, 
added psychophysical data, and used these to build a system for 
a~itomat~cally generating diagrams of data, ta~lored for some 
purpose. Roth and Mattis (1990) budt a system to do more com- 
plex visualizat~ons, such as some of those from T~~f te .  Casner 
(1991) added a representation of tasks. This community was in- 
terested not so much in the quality of the graphics as in the au- 
tomation of the match between data characteristics, presenta- 
tional purpose, and graphical presentation. Finally, the user 
interface community saw advances in graphics hardware open- 
ing the pos~ibility of a new generatlon of user interfaces. The 
first use of the term "information v~sualization" was probably in 
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FIGURE 26 8. Newton's optics ihstration [from Robin, 1992) 

Robertson, Card, and Macklnlay (1989). Early st~~ciies in this tion for trees. Robertson, Card, and Mackinlay (1993) presented 
colnni~~nity foc~~sed  on ~ 1 x 1 -  interaction with large amounts of ways or ~lsing animation and distortion to interact wit11 large 
information: Felner and Beshers (1990) presented a methocl, data sets in a system called the Information Visualizer, which 
worlds wlthin worlds, for showing six-c1in-ie1is10nal financial data ~ised,foczis 4- context d~splays to non~miformly present large 
in an immersive virr~la11-eahty Shneiderman (1992) developd a amounts of information. The en-iphasis for these studies was 
technique called "dynamic q~~er i e s "  for interactively selecting on the means for cognitwe amplif~cat~on, rather than on the 
subsets of data items and TkeMaps, a space-filling 1-epresenta- q~1a11ty of the graphics presentations. 
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The remainder of this chapter will concentrate on the tech- 
niques that have been developed for mapping abstract infor- 
mation to interactive visual form to aid some intellectual task. 
The perceptual foundations of this effort are beyond the scope 
of this chapter, but are covered in Ware (2000). Further details 
on information visualization techniques are addressed in a text 
by Spence (2000). The classic papers in information visualiza- 
tion are collected in Card et a1 (1999). 

THE VISUALIZATION REFERENCE MODEL 

Mapping Data to Visual Form 

Despite then- seeming variability, information visualizations can 
be systematically analyzed. Visualizations can be thought of as 
adjustable mappings from data to visual form to the human per- 
ceiver. In fact, we can draw a simple Visualization Reference 
Model of these mappings (Fig. 26.10). Arrows follow from Raw 
Data (data in some idiosyncratic format) on the left, though a 
set of Data Tramfor~nations into Data Tables (canonical de- 
scriptions of data in a variables x cases format extended to in- 
clude metadata). The most important mapping is the arrow 
from Data Tables to Visual Structures (structures that combine 
values an available vocabulary of visual elements-spatial sub- 
strates, marks, and graphical properties). Visual Structures can 
be further transformed by View Trumformations, such as vi- 
sual distortion or 3D viewing angle, until it finally forms a Vieiu 
that can be perceived by human users. Thus, Raw Data might 
start out as text represented as indexed strings or arrays. These 

sfoi-med into document vectors, normalized vec- 
e with dimensionality as large as the number of 

Data 

words Document vectors, in turn, might be reduced by multi- 
dimensional scaling to create the analytic abstraction to be vi- 
sualized, expressed as a Data Table of x, y, 2 coordinates that 
could be displayed. These coordinates might be transformed 
into a Visual Structure-that is, a surface on an information 
landscape-which is then viewed at a certain angle. 

Similar final effects can be achieved by transformations at dif- 
ferent places in the model: When a point is deleted from the vi- 
sualization, has the point been deleted from the dataset? Or is it 
still in the data merely not displayed? Chi and Riedl (1998) called 
this the uiew-value distinction, and it is an example of just one 
issue where identifying the locus of a transformation using the 
Visualization Reference Model helps to avoid confusion. 

Information visualization is about the not just creation of vi- 
sual images, but also the interaction with those images in the 
service of some problem. In the Visualization Reference Model, 
another set of arrows flow back from the human at the right into 
the transformations tl~enlselves, indicating the adjustment of 
these transformations by user-operated controls. It is the rapid 
reciprocal reaction between the generation of images by ma- 
chine and the selection and parametric adjustment of those im- 
ages, giving rise to new images that gives rise to the attractive 
power of interactive information visualization. 

Data Structures 

It is convenient to express Data Tables as tables of objects and 
their attributes, as in Table 26.3. For example, in the FilmFinder, 
the basic objects (or "cases") are films. Each film is associated 
with a number of attributes or variables, such as title, stars, year 
of release, genre type, and so forth. The vertical double black 
line in the table separates data in the table to the left of the line 

Visual Form 

Human Interaction 

Raw Data: idiosyncratic formats 
Data Tables: relations (cases by variables) -1- meta-data 
Visual Structures: spatial substrates + marks + graphical properties 
Views: graphical parameters (position, scaling, clipping, . . .) 

FIGURE 26 10 Reference model for visualization (Card et a1 , 1999) Visualization can be 
described as the mapping of data to visual form that supports human interaction in a workplace 
for visual sense making. 
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TABLE 26 3 A Data Table About Films 

FilmID 230 105 540 

Title Goldfinger Ben Hur Ben Hur 
Director Hamilton Wyler Niblo 
Actor Connery Heston NOvarro 
Actress Blackman Harareet McAvoy 
Year 1964 1959 1926 
Length 112  2 12 133 
Popularity 7 7 8 2 7 4 
Rating PG G G 
FilmType Action Action Drama 
Source (Card et al , 1999) 

from the metadata, expressed as variable names, to the left of 
the line. The horizontal black line across the table separates in- 
put variables from output variables-that is, the table can be 
thought of as a function, 

/(input variables) = output variables. 

Year (FilmID = 105) = 1959. 

Variables imply a scale of measurement, and it is important to 
keep these straight. The most important to distinguish are 

N = Nominal (are only = or # to other values) 
0 = Ordinal (obeys a < relation) 
Q = Quantitative (can do arithmetic on them) 

A nominal variable N is an unordered set, such as film titles 
{Goldfinger, Ben Hur, Star Wars}. An ordinal variable 0 is a tu- 
ple (ordered set), such as film ratings (G, PG, PG-13, R). A quan- 
titative variable Q is a numeric range, such as film length [ O ,  3601. 

In addition to the three basic types of variables, subtypes 
represent important properties of the world associated with 
specialized visual conventions. We sometimes distinguish the 
subtype Quantitative Spatial (Qg) for intrinsically spatial vari- 
ables common in scientific visualization and the subtype Quan- 
titative Geographical (Qp) for spatial variables that are specifi- 
cally geophysical coordinates. Other important subtypes are 
similarity metrics Quantitative Similarity (Q,,,), and the tempo- 
ral variables Quantitative Time (Q) and Ordinal Time (0,). We 
can also distinguish Interval Scales (I) (like Quantitative Scales, 
but since there is not a natural zero point, it is not meaningful to 
take ratios). An example would be dates. It is meaningful to sub- 
tract two dates (June 5 ,  2002 - June 3,  2002 = 2 days), but it 
does not make sense to divide them (June 5,2002 + June 23, 
2002 = Undefined). Finally, we can define an Unstructured 
Scale (4, whose only value is present or absent (e.g., an error 
flag). The scales are summarized in Table 26.4. 

Scale types can be altered by transformations, and this prac- 
tice is sometimes convenient. For example, quantitative variables 
can be mapped by data transformations into ordinal variables 

by dividing them into ranges. For example, film lengths [ O ,  3601 
minutes (type Q) can be broken into the ranges (type O), 

[0,360]  minutes Ã‘ (SHORT, MEDIUM, LONG). 

This common transformation is called "classing," because it 
maps values onto classes of values. It creates an accessible sum- 
mary of the data, although it loses information. In the other di- 
rection, nominal variables can be transformed to ordinal values 

based on their name. For example, film titles {GOLDFINGER, BEN 
HUR, STAR WARS} can be sorted lexicographically 

Strictly speaking, we have not transfornlecl their values, but in 
many uses (e.g., building alphabetically arranged dictionaries of 
words or sliders in the FilmFinder), we can act as if we had. 

Variable scale types form an important class of metadata that, 
as we shall see, is important for proper information visualiza- 
tion. We can add scale type to our Data Table in Table 26.3 to- 
gether with cardinality or range of the data to give us essentially 
a codebook of variables as in Table 26.5. 

Visual Structures 

Information visualization maps data relations into visual form. At 
first, it might seem that a hopelessly open set of visual forms can 
result. Careful reflection, however, reveals what every artist 
knows: that visual form is subject to strong constraints. Visual 
form that reflects the systematic mappmg of data relations onto 
visual form, as in information visualization or data graphics, is 
subject to even more constraints. It is a genuinely surprising 
fact, therefore, that most information visualization involves the 
mapping data relations onto only a half dozen components of 
visual encoding: 

1. Spatialsubstrate 
2. Marks 
3.  Connection 
4. Enclosure 
5.  Retinalproperties, or 
6.  Temporal encoding 

Of these mappings, the most powerful is how data are 
mapped onto the spatial substrate-that is, how data are 
mapped into spatial position. In fact, one might say that the de- 
sign of an information visualization consists first of deciding 
which variables are going to get the spatial mappings, and then 
how the rest of the variables are going to make do with the cod- 
ing mappings that are left. 

Spatial substrate. As we have just said, the most impor- 
tant choice in designing an information visualization is which 
variables are going to map onto spatial position. This decision 
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TABLE 26 4. Classes of Data and Visual Elements 

Data Classes Visual Classes 

Class Description Example Description Example 

U Unstructured (can only distinguish ErrorFlag Unstructured (no axis, indicated merely Dot 
presence or absence) whether something is present or absent) 

N Nominal (can only distinguish whether {Gold finger, Nominal Grid (a region is divided into Colored circle 
two values are equal) Ben Hur, subregions, in which something can be 

Star Wars} present or absent) 
0 Ordinal (can distinguish whether one (Small, Medium, Ordinal Grid (order of the subregions is Alpha slider 

value is less or greater but not Large) meaningful) 
difference or ratio) 

I Interval (can do subtraction on values, 110 Dec 1978- Interval Grid (region has a metric but no Year axis 
but no natural zero and can't compute 4 lun 19821 distinguished origin) 
ratios) 

Q Quantitative (can do arithmetic on values) 10-1 00) kg Quantitative Grid (a region has a metric) Time slider 
QS -Spatial variables 10-201 m -Spatial grid 
Qlll -Similarity 10-1 I -Similarity space 
0 9  -Geographical coord 130Â°N-500NlLa -Geographical cood 
01 -Time variable 11 0-201 psec -Time grid 

TABLE 26 5 Data Table with Meta-Data 
Describing the Types of the Variables 

Title N 
Director N 
Actor N 
Actress N 
Year QI 

Length Q 
Popularity Q 
Rating 0 
Filrnvpe N 

Source (Card et al 1999) 

Goldfinger 
Hamilton 
Connery 
Blackman 
1964 
1 2  
7 7 
PG 
Action 

Ben Hur 
Wyler 
Heston 
Harareet 
1959 
2 12 
8 2 
G 
Action 

gives importance to spatially encoded variables at the expense 
of variables encoded using other mappings. Space is perceptu- 
ally dominant (MacEachren, 1995); it is good for discriminating 
values and picking out patterns. It is easier, for example, to iden- 
tify the difference between a sine and a tangent curve when en- 
coded as a sequence of spatial positions than as a sequence of 
color hues. 

Empty space itself, as a container, can be treated as if it had 
metric sti-LICLUI-e. Just as we classified variables according to their 
scale type, we can think of the properties of space in terms of 
the scale type of an axis of space (cf. Engelhardt, Bruin, Janssen, 
& Scha, 1996). Axis scale types correspond to the variable scale 
types (see Table 26.4). The most important axes are 

U = Unstructured (no axis, indicated merely whether some- 
thing is present or absent) 

N = Nominal Grid (a region is divided into subregions, in 
which soniething can be present or absent) 

0 = Ordinal Grid (the ordering of these subregions is mean- 
ingful), and 

Q = Quantitative Grid (a region has a metric). 

Besides these, it is convenient to make additional distinctions 
for frequently used subtypes, such as Spatial axes (Qs) 

Axes can be linear or radial; essentially, they can involve any 
of the various coordinate systems for describing space. Axes are 
an important building block for developing Visual Structures. 
Based on the Data Table for the FilmFinder in Table 26.5, we rep- 
resent the scatterplot of as composed of two orthogonal quan- 
titative axes: 

Year -+ Qy, 
Popularity Ã‘ Q,,. 

The notation states that the Year variable is mapped to a 
quantitative X-axis and the Popularity variable is mapped to a 
quantitative Y-axis. Other axes are used for the FilmFinder query 
widgets. For example, an ordinal axis is used in the radio but- 
tons for film ratings, 

Ratings Ã‘ O,,. 

and a nominal axis is used in the radio buttons for film type, 

Marks.  Marks are the visible things that occur in space. 
There are four elementary types of marks (Fig. 26.11): 

1. P = Points (OD), 
2. L = Lines (ID), 
3. A = Areas (2D), and 
4. V = Volumes (3D). 

Area marks include surfaces in three dimensions, as well as 2D- 
bounded regions. 

Unlike their mathematical counterpart, point and line marks 
actually take up space (otherwise, they would be invisible) and 
may have properties such as shape. 
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Points 

Lines 

Areas 

Volumes 

FIGURE 26 1 1 Types of marks 

Connection and enclosure. Point marks and line marks 
can be used to signify other sorts of topological structure: graphs 
and trees. These allow showing relations among objects with- 
out the geometrical constraints implicit in mapping variables 
onto spatial axes. Instead, we draw explicit lines. Hierarchies and 
other relationships can also be encoded using enclosure. En- 
closing lines can be drawn around subsets of items. Enclosure 
can be used for trees, contour maps, and Venn Diagrams. 

Retinal properties. Other graphical properties were 
called retinal properties by Bertin (1967/1983), because the 
retina of the eye is sensitive to them independent of position. 
For example, the FilmFinder in Fig. 26.1 uses color to encode in- 
formation in the scatterplot: 

This notation says that the FilmType attribute for any FilmID 
case is visually mapped onto the color of a point. 

Figure 26.12 shows Bertin's six "retinal variables" separated 
into spatial properties and object properties according to which 
area of the brain they are believed to be processed (Kosslyn, 
1994). They are sorted according to whether the property is 
good for expressing the extent of a scale (has a natural zero 
point), or whether its principal use is for differentiating marks 
(Bertin, 1977/1981). Spatial position, discussed earlier as basic 
visual substrate, is shown in the position it would occupy in this 
classification. 

Other graphical properties have also been proposed for en- 
coding information. MacEachsen (1995) has proposed (a) crisp- 
ness (the inverse of the amount of distance used to blend two 
areas or a line into an area), (b) resolution (grain with raster or 
vector data will be displayed), (c) transparency, and (d) arrange- 
ment (e.g., different ways of configuring dots). He further pro- 
posed dividing color into (a) value (essentially, the gray level of 
Fig. 26 12), (b) hue, and (c) saturation. Graphical properties 
from the perception literature that can support preattentive 
processing have been suggested candidates for coding variables 
such as curvature, lighting direction, or direction of motion (see 
Healey, Booth, and Enns, 1995). All of these suggestions require 
further research. 

Temporal encoding. Visual Structures can also tempo- 
rally encode information; human perception is very sensitive 

Spatial Object 

Extent (Position) -I-\-\ Gray Scale 

Size 0 

FIGURE 26 12. Retinal properties (Card et a]., 1999). The six 
retinal properties can be grouped by whether they form a scale 
with a natural zero point (extend) and whether they deal with 
spatial distance or orientation (spatial) 

to changes in mark position and the mark's retinal properties. 
We need to distinguish between temporal data variables to be 
visualized 

Qt -+some visual represe?ztation 

and animation, that is, mapping a variable into time, 

some variable -+ Time. 

Time as animation could encode any type of data (whether it 
would be an effective encoding is another matter). Time as ani- 
mation, of course, can be used to visualize time as data. 

Q,+ Time. 

This is natural, but not always the most effective encoding. Map- 
ping time data into space allows comparisons between two points 
in time. For example, if we map time and a function of time into 
space (e.g., time and accumulated rainfall), 

Qi + Qx [make time be the X-axis] 
f (Q)  -+ Qy, [make accumulated rairzfall be the lkccis, 

then we can directly experience rates as visual linear slope, and 
we can experience changes in rates as curves. This encoding of 
time into space for display allows us to make much more pre- 
cise judgments about rates than would be possible from encod- 
ing time as time. Another use of time as animation is similar to 
the unstructured axes of space. Animation can be used to en- 
hance the ability of the user to keep track changes of view or 
visualization. If the user clicks on some structure, causing it to 
enlarge and other structures to become smaller, animation can 
effectively convey the change and the identity of objects across 
the change, whereas simply viewing the two end states is con- 
fusing. Another use is to enhance a visual effect. Rotating a com- 
plicated object, for example, will induce 3D effects (hence, allow 
better reading of some visual mappings). 
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Expressiveness and Effectiveness 

Visual mappings transform Data Tables into Visual Structure and 
then into a visual image. This image is not just an arbitrary im- 
age. It is an image that has a particular meaning it must express. 
That meaning is the data relation of which it is the visual trans- 
formation. We can think of the image as a sentence in a visual 
language (Mackinlay, 1986b) that expresses the relations in the 
Data Table To be a good information visualization, the map- 
pings must satisfy some constraints. The first constraint is that 
the mapping must be expressive. A visualization is said to be 
expressive if and only if it encodes all the data relations intended 
and no other data relations. The first part of expressiveness 
turns out to be easier than the second. Suppose we plot Film- 
Type against Year using the data-to-visual mapping in Fig. 26.13. 
The problem of this mapping is that the nominal movie rating 
data are expressed by a quantitative axis. That is, we have tried 
to map 

In so doing, we have visually expressed all the data relation, 
but the visualization also implies relationships that do not ex- 
ist. For example, the 1959 version of Ben Hur does not have 
a film type that is five times greater than the 1926 version of 
Ben Hur, as implied in the figure. Wisely, the authors of the 
FilmFinder chose the mapping 

Of course, there are circumstances in which color could be 
read as ordinal, or even possibly quantitative, but the miscella- 
neous order of the buttons in Fig. 26.1 discourages such an in- 
terpretation and the relatively low effectiveness of color for this 
purpose in Table 26.7 also discourages this interpretation. 

Table 26.6 shows the mappings chosen by authors of the 
FilmFinder. The figure shows the Data Table's metadata and data 

Horror 

SF 

War 

1920 1930 1940 1950 1960 1970 

Year 

FIGURE 26.13. Mapping from data to visual form that violates 
expressiveness criterion 

and how they are mapped onto the Visual Structure. Note that 
the nominal data of the PG ratings is mapped onto a nominal 
visualization technique (colors) Note also, that names of direc- 
tors and stars (nominal variables) are raised to ordinal variables 
(through alphabetization), and then mapped onto an ordinal 
axis. This is, of course, a common way to handle searching 
among a large number of nominal items. 

Some properties are more effective than others for encoding 
information. Position is by far the most effective all-around rep- 
resentation Many properties are more effective for some types 
of data than for others. Table 26.7 gives an approximate evalua- 
tion for the relative effectiveness of some encoding techniques 
based on (MacEachren, 1995). We note that spatial position is ef- 
fective for all scale types of data. Shape, on the other hand, is 
only effective for nominal data. Gray scale is most effective for 
ordinal data. Such a chart can suggest representations to a vi- 
sualization designer. 

Taxonomy of Information Visualizations 

We have shown that the properties of data and visual repre- 
sentation generally constrain the set of mappings that form the 
basis for information visualizations. Taken together, these con- 
straints form the basis of a taxonomy of information visualiza- 
tions. Such a taxonomy is given in Table 26.8. Visualizations are 
grouped into four categories. First are Simple Visual Struc- 
tures, the static mapping of data onto multiple spatial dimen- 
sions, trees, or networks plus retinal variables, depicted in Fig. 
26.10. Here it is worth distinguishing two cases There is a per- 
ceptual barrier at three (or, in special cases, four) variables, a 
limit of the amount of data that can be perceived as an imme- 
diate whole. Bertin (1977, 1981) called this elementary unit of 
visual data perception the "image". Although this limit has not 
been definitively established in information visualization by em- 
pirical research, there must be a limit somewhere or else peo- 
ple could simultaneously comprehend a thousand variables. 
We therefore divide visualizations into those that can be com- 
prehended in an elementary perceptual grasp (three, or in spe- 
cial cases, four variables)-let us call these direct reading 
visualizations-and those more complex than that barrier- 
which we call articulated reading visualizations, in which 
multiple actions are required. 

Beyond the perceptual barrier, direct composition of data re- 
lationships in terms of 1, 2, or 3 spatial dimensions plus re- 
maining retinal variables is still possible, but rapidly diminishes 
in effectiveness. In fact, the main problem of information visual- 
ization as a discipline can be seen as devising techniques for ac- 
celerating the comprehension of these more complex n-variable 
data relations. Several classes of techniques for n-variable visu- 
alization, which we call Composed Visual Structures, are based 
on composing Simple Visual Structures together by reusing 
their spatial axes. A third class of Visual Structures-Jnterac- 
tiue Visual Structures-comes from using the rapid interaction 
capabilities of the computer. These visualizations invoke the 
parameter-controlling arrows of Fig. 26.10. Finally, a fourth class 
of visualizations-Anention-Reactive Visual Structures-comes 
from interactive displays where the system reacts to user actions 



TABLE 26.6. Meta-Data and Mappings of Data onto Visual Structure in the FilmFinder 

Data Visual Form 
Visual Tra n&torrnation 

Variable Type Range Case, Case, Casei . . Type Structure Control Aiiocted 

N Pants Button All (dsta115l 

*sort 0 

+sort 0 

Comedy, M u s c ~ 1  1 1 1 1 
Action, Was, SF. 
Western, Horror} 

Alpnasluu 

Alpliasluer 

Alpliaslder 

Alpnaslwu 

AM5 

Two-sid~d sinter 

Ads 

Radio buttons 

RadD buttons 

Setactcases 

Setact cases 

Select cases 

Setart C35B5 

Clip range 

Clip range 

Clip range 

Select cases 

Select casas 

Source (Card et al , 1999) 

TABLE 26 7 Relative Effectiveness of Position and Retinal Encodings 

Spatial Q 0 N Object Q 0 N 

Extent (Position) Â Â Â Gray Scale Q Â 0 
Size Â Â Â Color Q C Â 

Differential Orientation Q Q Â Texture 0 Q Â 
Shape 0 0 0 

Source (Card et al , 1999) 

by changing the display, even anticipating new displays, to lower 
to cost of information access and sensemaking to the user. To 
summarize, 

cases), while another was used to encode the objects' values. Ex- 
amples of this notation appear in Table 26.8 and Fig. 26.21, 

I Simple Visual Structures 
Direct Reading 
Articulated Reading 

11. Composed Visual Structures 
Single-Axis Composition 
Double-Axis Composition 
Recursive Composition 

Ill Interactive Visual Structure 
IV Attention-Reactive Viszial Structure 

These classes of techniques may be combined LO produce vi- 
sualizations that are more complex. To help us keep track of the 
variable mapping into visual structure, we will use a simple short- 
hand notation for listing the element of the Visual Structure that 
the Data Table has mapped into. We will write, for example, 
[xYR~] to note that variables map onto the X-axis, the Y-axis, and 
two retinal encodings. [OX] will indicate that the variables map 
onto one spatial axis used to arrange the objects (that is, the 

SIMPLE VISUAL STRUCTURES 

The design of information visualizations begins with mappings 
from variables of the Data Table into the Visual Structure The 
basic strategy for the visualization designer could be described 
as follows: 

1. Determine which varzables of the Analytic Abstraction to 
map into spatial position in the Visz~al Structure 

2 .  Combine these mappings to increase dimensionality (eg , 
by folding). 

3. Use retinal variables as a n  overlay to add more dimemions 
4 Add controls for interaction. 
5 .  Consider attention-reactive features to expand space and 

manage aftention. 

We start by considering some of the ways in which variables can 
be mapped into space. 
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TABLE 26.8. Taxonomy of Information Visualization Techniques 

Direct Reading 
1-Variable [XI 

Lists 
ID object charts 
ID scatterplots 
Pie charts 
Folded Dimensions 
Distributions 
Box Plots 

2-Variable [XY] 
2D object charts 
2D scatterplots 

3-Variable 
[XYRI 

Retinal scatterplot 
Kahonen diagrams 
Retinal topographies 

[(XVZI 
Information landscapes 
Information surfaces 

[XYZI 
3D scatterplots 

4-Variable 
[XYZR] 

3D retinal scatterplots 
3D topographies 

-Barrier of Perception- 
Articulated Reading 
n-Variable 

[xYR"-~] 
2D Retinal scatterplots 

[xYzR"'~] 
2D Retinal scatterplots 

Trees 
Node and link trees 
Enclosure trees 
TreeMaps 
Cone trees 

Networks 
Time 

II. COMPOSED 
VISUAL STRUCTURES 

Singles-Axis 
Composition [XYn] 

Permutation matrices 
Parallel coordinates 

Double-Axis 
Composition [XY] 

Graphs 
Recursive Composition 

2D in 2D [ ( x Y ) ~ ~ ]  
Scatterplot matrices 
Prosection matrices 
Hierarchical axes 

Marks in 2D [(xY)~] 
Stick figures 
Color icons 
Shape coding 
Keiin spirals 

3D in 3D [ ( x Y z ) ~ ~ ~ ]  
Worlds within worlds 

One-variable visual displays may actually use more than one vi- 
sual dimension. This is because the data variable or attribute is 
displayed against some set of objects using some mark and be- 
cause the mark itself takes space. Or, more subtly, it may be  be- 
cause one  of the dimensions is used for arranging the objects 
and another for encoding via position the variable. A simple ex- 
ample would be  when the data are just visually mapped into a 
simple text list as in Fig. 26.14(a). The objects form a sequence 
on  the Y-dimension, and the width of the marks (the text de- 
scriptor) takes space in the X-dimension. By contrast, a one-di- 
mensional scattergraph (Fig. 26.14fbI) does not use a climen- 
sion for the objects. Here, t h e  Y-axis is used to display the 
attribute variable (suppose these are  distances from home of 
gas stations); the objects are encoded in the mark (which takes 
a little bit of the X-dimension). 

IIL INTERACTIVE 
VISUAL STRUCTURES 

Dynamic queries 
Magic lens 
Overview+detail 
Linking and brushing 
Extraction & comparison 
Attribute xxplorer 

IV. FOCUS+CONTEXTATTENTION- 
REACTIVE 

VISUAL ABSTRACTION 

Data-based Methods 
Filtering 
Selective aggregation 

View-based methods 
Micro-macro readings 
Highlighting 
Visual transfer functions 
Perspective distortion 
Alternate geometries 

More generally, many single-variable visualizations are in the 
form u = f(o), where u is a variable attribute and o is the object. 
Figure 26.14(c) is of this form and uses the Y-axis to encode the 
variable and the X-axis for the objects. Note that if the objects 
are, as usual, nominal, then they are reorderable: sorting the ob- 
jects on  the variable produces easily perceivable visual patterns. 
For convenience, we have used rectangular coordinates, but any 
other orthogonal coordinates could be  used as the basis of de- 
composing space. Figure 26.14(d) uses 0 from polar coordinates 
to encode, say, percentage voting for different presidential can- 
didates. In Fig. 26.14(e), a transformation on the data side has 
transformed variable o into a variable representing the distribu- 
tion, then mapped that onto points on  t h e  Y-axis. In Fig. 
26.14(f), another transformation on  the data side has mapped 
this distribution into 2nd quartiles, 3rd quartiles, and outlier 
points, which is then mapped on  the visual side into a box plot 
on  the Y-axis. Simple as they are, these techniques can be  very 
useful, especially in combination with other techniques. 
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FIGURE 26 14 1 -vanable visual abstractions 

One special, but common, problem is how to visualize very 
large dimensions. This problem occurs for single-variable visu- 
alizations, but may also occur for one dimension of a multi-vari- 
able visualization. Figure 26.15 shows several techniques for 
handing the problem. In Fig. 26.15(a) (Freeman & Fertig, 1995), 
the visual dimension is laid out in perspective. Even though 
each object may take only one or a few pixels on the axis, the 
objects are actually fairly large and selectable in the diagram. In 
Fig, 26.15@) pick, Steffen, & Sumner, 1992), the objects (rep- 
resenting lines of code) are laid out on afolded'y-axis. When the 
Y-axis reaches the bottom of the page, it continues offset at the 
top. In Fig. 26.15(c) (Keim & Kriegel, 19941, the axis is wrapped 
in a square spiral. Each object is a single pixel, and its value is 
coded as the retinal variable color hue. The objects have been 
sorted on another variable; hence, the rings show the correla- 
tion of this attribute with that of the sorting attribute. 

One-variable visualizations are also good parts of controls. 
Controls, in the form of slides, also consume considerable space 
on the display (for example, the controls in Fig. 26.1) that could 
be used for additional information communication. Figure 
26.15(d) shows a slider on whose surface is a distribution rep- 
resentation of the number of objects for each value of the in- 
put variable, thereby communicating information about the 
slider's sensitivity in different data ranges. The slider on the left 

of Fig. 26.150) has a one-variable visualization that serves as a 
legend for the main visualization: it associates color hues with 
dates and allows the selection of date ranges. 

As we increase the number of variables, it is apparent that their 
mappings form a combinatorial design space. Figure 26.16 
schematically plots the structure of this space, leaving out the 
use of multiple lower variable diagrams to plot higher variable 
combinations. Two-variable visualizations can be thought of 
as a composition of two elementary axes (Bertin, 1977, 1981; 
Mackinlay, 1986b), which use a single mark to encode the posi- 
tion on both those axes. Mackinlay called this mark composi- 
tion, and it results in a 2D scattergraph (Fig. 26.16[g]). Note that 
instead of mapping onto two positional visual encodings, one 
positional axis could be used for the objects, and the data vari- 
ables could be mapped onto a position encoding and a retinal 
encoding (size), as in Fig. 26.16(f). 

3-Variables and Information Landscapes 

By the time we get to three data variables, a visualization ca be 
produced in several ways. We can use three separate visual di- 
mensions to encode the three data variables in a 3D scatter- 
graph (Fig. 26.16[j]). We could also use two spatial dimensions 
and one retinal variable in a 2D retinal scattergraph (Fig 
26.16[k]). Or we could use one spatial dimension as an object 
dimension, one as a data attribute dimension, and one two reti- 
nal encodings for the other variables, as in an object chart such 
as in Fig 26.16(i). Because Fig. 26.16(i) uses multiple retinal en- 
coding~, however, it may not be as effective as other techniques. 
Notice that because they all encode three data variables, we 
have classified 2D and 3D displays together. In fact, one popular 
3-variable information visualization that lies between 2D and 3D 
is the information landscape (Fig. 26.16[m]). This is essentially 
a 2D scattergraph with one datavariable extruded into the third 
spatial dimension. Its essence is that two of the spatial dimen- 
sions are more tightly coupled and often relate to a 2D visual- 
ization. For example, the two dimensions might form a map 
with the bars showing the GDP of each region. 

Another special type of 3-variable information visualization is 
a 2D i?rformation topography. In an information typography, 
space is partly defined by reference to external structure. For ex- 
ample, the topography of Fig. 26.17(a) is a map of San Francisco, 
requiring two spatial variables. The size of blue dots indexes 
the number of domain names registered to San Francisco street 
addresses. Looking at the patterns in the visualization shows 
that Internet addresses have especially concentrated in the Mis- 
sion and South of Mission districts. Figure 26.17(a) uses a topog- 
raphy derived from real geographical space. Various techniques, 
such as multidimensional scaling, factor analysis, or connec- 
tionist self-organizing algorithms, can create abstract spaces 
based on the similarities among collections of documents or 
other objects. These abstract similarity spaces can function like 
a topography. An example can be seen in Fig. 26.17@), where 
the pages in a website are depicted as regions in a similarity 



(a) Off-axis 1 -variable visual abstraction: 
LifeLines (Freeman & Ferlig, 1995). 

abstraction: VisDB (Keim & Krieeel. 

space. To create this diagram2, a web crawler crawls the site and 
indexes all the words and pages on the site. Each page is then 
turned into a document vector to represent the semantic con- 
tent of that page. The regions are created using a neural net- 
work learning algorithm (see Lin, Soesgel, & Maschionini (1991)). 
This algorithm organizes the set of web pages into regions. A 
visualization algorithm then draws boundaries around the re- 
gions, colors them, and names them. The result, called aKahonen 
diagram after its original inventor, is a type of retinalsimilarity 
topograp by. 

Information landscapes can also use marks that are surfaces. 
In Fig. 26.18(a), topics are clustered on a similarity surface, and 
the strength of each topic is indicated by a 3D contour. A more 
extreme case is Fig. 26.18(b), where an information landscape is 
established in spherical coordinates, and the amount of ozone 
is plotted as a semitransparent overlay on the p-axis. 

(b) Folded long 1 -variable visual 
abstraction: SccSoft (Eick, Stcffen, & 
Sumner, 1992). ! 
[dl. 1-variable visual abstraction used as 
a control. (Eick, 19931. 

FIGURE 26 15. Uses of 1 -vanable visual abstractions 

Beyond three variables, direct extensions of the methods we 
have discussed become less effective. It is possible, of course 
to make plots using two spatial variables and 72-2 retinal vari- 

ables, and the possibilities for four variables are shown in Fig. 
26.16. These diagrams can be understood, but at the cost of pro- 
gressively more effort as the number of variables increases. It 
would be very difficult to understand an [XYR20] retinal scatter- 
graph, for example. 

Trees 

An interesting alternative to showing variable values by spatial 
positioning is to use explicitly drawn linkages of some kind. 
Trees are the simplest form of these. Trees map cases into sub- 
cases. One of the data variables in a Data Table (for example, the 
variable ReportsTo in an organization chart) is used to define 
the tree. There are two basic methods for visualizing a tree: (a) 
Connection and (b) Enclosures. 

Connection. Connection uses lines to connect marks sig- 
nifying the nodes of the tree. Logically, a tree could be drawn 
merely by drawing lines between objects located randomly po- 
sitioned on the plane, but such a tree would be visually unread- 
able. Positioning in space is important. Figure 26.20(a) is a tree 
from Charles Darwin's notebook (Robin, 1992) drawn to help 

?his figure is produced bya program called SiteMap by Xa Lin and associates See http~//facultycis drexel edu/s~temap/inclex html 
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FIGURE 26.16 Simple Visual Structures. 

528 



26 Information Visualization 529 

(a) XIYIR Retinal topography - -.... I 

(b) X,Y& Retinal similarity topography 

FIGURE 26.17. Retinal information topographies. 

him work out the theory of evolution. Lines proceed from an- 
cestor species to new species. Note that even in this informal 
setting intended for personal use that the tree uses space sys- 
tematically (and opportunistically). There are no crossed lines. 
A common way of laying out trees is to have the depth in the 
tree map onto one ordinal access as in Fig. 26.20@), while the 
other axis is nominal and used to separate nodes. Of course, 
trees could also be mapped into other coordinate systems: for 
example, there can be circular trees in which the r-axis repre- 
sents depth and the 9-axis is used to separate nodes as in the 
representation ofthe evolution species in Fig. 26 .20(~) .~  It is be- 
cause trees have no cycles that one of the spatial dimensions 
can be used to encode tree depth. This partial correlation of 

(a) News stones based on I hemescapes (Wise el a1 . 1995) C ourlesy NewsMaps coin 

(b) Ozone layer sun'ou~~dina earth. L. Trcinish. Courtesy IBM 

FIGURE 26 18 3D information surface topographies 

tree structure and space makes trees relatively easy to lay out 
and interpret, compared to generalized networks. Hierarchical 
displays are important not only because many interesting col- 
lections of information, such as organization charts or tax- 
onomies, are hierarchical data, but also because important col- 
lections of information, such as websites, are approximately 
hierarchical. Whereas practical methods exist for displaying 
trees up to several thousand nodes, no good methods exist for 
displaying general graphs of this size. If a visualization problem 
involves the displaying of network data, a practical design 
heuristic is to see whether the data might not be forced into a 
display as a modified tree, such as a tree with a few non-tree 
links. A significant disadvantage of trees is that as they get large, 
they acquire an extreme aspect ratio, because the nodes expand 
exponentially as a function with depth. Consequently, any suffi- 
ciently large tree (say, >I000 nodes) resembles a straight line. 
Circular trees such as Fig. 26.20Cc) are one way of trying to buy 
more space to mitigate this problem. Another disadvantage of 
trees is the significant empty space between nodes to make 
their organization easily readable. Various tricks can be used to 

figure is from David 1-Iillis, University of Texas 



530 CARD 

(a) Tree tromDarwin's notes, m m  
(Robin, 1992) Courtesy Syndics of 
Cambndgc University Library, 

(c) Circular tree of evolution orlife. 

Texas. 

(b) Typical link and node tree layout 

(d) Tree in (a) drawn using enclosure. 

FIGURE 26.19. Trees 

wrap parts of the tree into this empty space, but at the expense 
of the tree's virtues of readability. 

Enclosure. Enclosure uses lines to hierarchically enclose 
nested subsets of the tree. Figure 26.20cd) is an enclosure tree 
encoding of Darwin's tree in Fig. 26.20(a). We have already seen 
one attempt to use tree enclosure, TreeMaps (Fig. 26.5). 
TreeMaps make use of all the space and stays within prescribed 
space boundaries, but they do not represent the nonterminal 
nodes of the tree very well and similar leaves can have wildly dif- 
ferent aspect ratios. Recent variations on TreeMaps found ways 
to "squarify" nodes (Shneiderman & Wattenberg, 2001), miti- 
gating this problem. 

Networks 

Networks are more general than trees and may contain cycles. 
Networks may have directional links. They are useful for de- 
scribing communication relationships among people, traffic in a 
telephone network, and the organization of the Internet. Con- 
tainment is difficult to use as a visual encoding for network re- 
lationships, so most networks are laid out as node and link dia- 
grams. Unfortunately, straightforward layouts of large node and 
link diagrams tend to resemble a large wad of tangled string. 

We can distinguish the same types of nodes and links in net- 
work Visual Structures that we did for spatial axes: (a) Unstruc- 
tured (unlabeled), (b) Nominal (labeled), (c) Ordinal (labeled 

(c) Line shortening ~ i & ,  & Wills, 1997), 

FIGURE 26.20. Network methods 

& 
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with an ordinal quantity), or (d) Quantitative (weighted links). 
Retinal properties, such as size or color, can be used to encode 
information about links and nodes. As in the case of trees, spa- 
tial positioning of the nodes is extremely important. Network vi- 
sualizations escape from the strong spatial constraints of sim- 
ple Visual Structures only to encounter another set of strong 
spatial constraints of node links crossing and routing. Networks 
and trees are not so much an alternative of direct of the direct 
graphical mappings we have discussed so far as they are another 
set of techniques that can be overlaid on these mappings. Small 
node and link diagrams can be laid out opportunistically by 
hand or by using graph drawing algorithms that have been de- 
veloped (Battista, Eades, Tamassia, & Tollis, 1994; Cruz & Tamas- 
sia, 1998; Tamassia, 1996) to optimize minimal link crossing, 
symmetry, and other aesthetic principles. 

For very large node and link diagrams, additional organizing 
principles are needed. If there is an external topographic struc- 
ture, it is sometimes possible to use the spatial variables associ- 
ated with the nodes. Figure 26.20(a) shows a network based on 
call traffic between cities in the United States (Becker, Eick, & 
Wilks, 1995). The geographical location of the cities is used to 
lay out the nodes of the network. Another way to position 
nodes is by associating nodes with positions in a similarity 
space, such the nodes that have the strongest linkages to each 
other are closest together. There are several methods for com- 
puting node nearness in this way. One is to use multidimen- 
sional scaling (MDS) (Fairchild, Poltrock, & Furnas, 1988). An- 
other is to use a "spring" technique, in which each link is 
associated with a Hooke's Law spring weighted by strength of 
association and the system of springs is solved to obtain node 
position. Eick and Willis (1993) have argued that the MDS tech- 
nique places too much emphasis on smaller links. They have de- 
rived an alternative that gives clumpier (and hence, more visu- 
ally structured) clusters of nodes. If positioning of nodes 
corresponds perfectly with linkage information, then the links 
do not add more visual information. If positioning does not cor- 
respond at all with linkage information, then the diagram is ran- 
dom and obscure. In large graphs, node positions must have a 
partially correlated relationship to linkage in order to allow the 
emergence of visual structure. Note that this is what happens 
in the telephone traffic diagram Fig. 26.20(a). Cities are posi- 
tioned by geographical location. Communication might be ex- 
pected to be higher among closer cities, so the fact that com- 
munications is heavy between coasts stands out. 

A major problem in a network such as Fig. 26.20(a) is that 
links may obscure the structure of the graph. One solution is 
to route the links so that they do not obscure each other. The 
links could even be drawn outside the plane in the third di- 
mension; however, there are limits to the effectiveness of this 
technique. Another solution is to use thresholding, as in Fig. 
26.20(b). Only those links representing traffic greater than a cer- 
tain threshold are included; the others are elided allowing us 
to see the most important structure. Another technique is line 
shortening, as in Fig. 26.20Cc). Only the portion of the line near 
the nodes is drawn. At the cost of giving up the precise linkage, 
it is possible to read the density of linkages for the different 
nodes. Figure 26.20(d) is a technique used to find patterns in an 
extremely large network. Telephone subscribers are repre- 
sented as nodes on a hexagonal array. Frequent pairs are located 

near each other on the array. Suspicious patterns are visible be- 
cause of the sparseness of the network. 

The insightful display of large networks is difficult enough 
that many information visualization techniques depend on in- 
teractivity. One important technique, for example, is node ag- 
gregation. Nodes can be aggregated to reduce the number of 
links that have to be drawn on the screen. Which nodes are ag- 
gregated can depend on the portion of the network on which 
the user is drilling down. Similarly, the sets of nodes can be in- 
teractively restricted (e.g., telephone calls greater than a cer- 
tain volume) to reduce the visualization problem to one within 
the capability of current techniques. 

COMPOSED VISUAL STRUCTURES 

So far, we have discussed simple mappings from data into spa- 
tial position axes, connections and enclosures, and retinal vasi- 
ables. These methods begin to run into a barrier around three 
variables as the spatial dimensions are used up and as multiple 
of the less efficient retinal variables needed. Most interesting 
problems involve many variables. We shall therefore look at a 
class of methods that reuse precious spatial axes to encodevasi- 
ables. This is done by composing a compound Visual Structure 
out of several simple Visual Structures. We will consider five sub- 
classes of such composition: (a) mark composition, (b) case 
composition, (c) single-axis composition, (d) double-axis com- 
position, and (e) recursive composition. Schematically, we il- 
lustrate these possibilities in Fig. 26.21. 

Single-axis composition. In single-axis composition, 
multiple variables that share a single axis are aligned using that 
axis, as illustrated in Fig. 26.21(a). An example of single-axis 
composition is a method due to Bertin called permutation 
matrices (Bertin, 1977/1981). In a permutation matrix (Fig. 
26.16[0], for example), one of the spatial axes is used to repre- 
sent the cases and the other a series of bar charts (or rows of cir- 
cles of different size or some other depiction of the value of 
each variable) to represent the values. In addition, bars for val- 
ues below average may be given a different color, as in Fig. 26.7, 
in order to enhance the visual patterns. The order of the objects 
and the order of the variables may both be permuted until pat- 
terns come into play. Permutation matrices were used in our 110- 
tel analysis example. They give up direct reading of the data 
space in order to handle a larger number of variables. Of course, 
as the number of variables (or objects) increases, manipulation 
of the matrices becomes more time-consuming and visual in- 
terpretation more complex. Still, permutation matrices or their 
variants are one of the most practical ways of representing 
multi-variable data. 

If we superimpose the bar charts of the permutation matrix 
atop one another, and then replace the bar chart with a line link- 
ing together the tops of the bars, we get another method for 
handling multiple variables by single-axis composition-paral- 
lei coordinates (Inselberg, 1997; Inselberg & Dimsdale, 1990), 
as shown in Fig. 26.22. A problem is analyzed in parallel coordi- 
nates by interactively restricting the objects displayed (the lines) 
in order to look at cases with common cl~aracteristics. In Fig. 
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FIGURE 26 22 S~ngle-axis composition parallel coordinates 

26.22 , parallel coordinates are used to analyze the problem of 
yield from a certain processor chip. X l  is chip yield, X2 is qual- 
ity, X3 through XI2 are defects, and the rest of the variables are 
physical parameters. The analysis, looking at those subsets of 
data with high yield and noticing the distribution of lines on 
the other parameters, was able to solve a significant problem in 
chip processing. 

Both permutation matrices and parallel coordinates allow 
analyses in multi-dimensional space, because they are efficient 
in the use (and reuse) of spatial position and the plane. Actually, 
they also derive part of their power from being interactive. In 
the case of permutation matrices, interactivity comes in re- 
ordering the matrices. In the case of parallel coordinates, inter- 
activity comes in selecting subsets of cases to display 

composition. In double-axis composition, 
two visual axes must be in correspondence, in which case the 
cases are plotted on the same axes as a multivanable graph (fig. 
26.21 [b]). Care must be taken that the variables are plotted on a 
comparable scale. For this reason, the separate scales of the vari- 
ables are often transformed to a common proportion change 
scale. An example would be change in price for various stocks. 
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The cases would be the years, and the variables would be the 
different stocks. 

Mark composition and case composition. Coniposi- 
tion can also fuse diagrams. We discussed that each dimension 
of visual space can be said to have properties as summarized in 
Table 26.4. The visual space of a diagram is composed from the 
properties of its axis. In mark co?nposition (Fig. 26.2l[c]), the 
mark on one axis can fuse with the corresponding mark on an- 
other axis to form a single mark in the space formed by the two 
axes. Similarly, two object charts can be fused into a single dia- 
gram by having a single mark for each case. We call this latter 
form case composition Fig. 26.2 1 (d) . 

Recursive composition. Recursive composition divides 
the plane (or 3D space) into regions, placing a subvisualization 

(a) 2D-in-2D: Attribute Explorer (Tweedie, 
Spence, Dawkes, & Su, 1996). 

(c) Visualization of stick figures showing 
weather around Lake Ontario. 

in each region (Fig. 26.21[e]). We use the term somewhat 
loosely, since regions have different types of subvisualizations. 
The FilmFinder in Fig. 26.1 is a good example of a recursive vi- 
sualization. The screen breaks down into a series of simple Vi- 
sual Structures and controls: (a) a 3-variable retinal scattergraph 
(Year, Rating, FilmType) + (b) a 1-variable slider (Title) + (c) a 
1-variable slider (Actors) + (d) a 1-variable slider (Actresses) + 
(e) a 1-variable slider (Director) + (f) a 1-variable slider (Film- 
Length) + (g) a 1-variable radio button control (Rating) + 
(h) a 1-variable button-set (FilmType). 

Three types of recursive conlposition deserve special men- 
tion: (a)2D-in-2D, @) marks-in-2D, and (c) 3D-in-3D. An exam- 
ple of 2D-in-2D composition is the "prosection matrix" 
(Tweedie, Spence, Dawkes, & Su, 1996) shown in Fig. 26.23(a). 
Each smaller square in the prosection matrix represents a pair of 
parameters plotted against each other. The coloring shows 

(b) Marks-in-2D. Composition of a stick figure 
mark (Pickett & Grinstein, 1988). 

(d) 3D-in-3D: Worlds-within-worlds (Feiner & 
Beshers, 1990). 

FIGURE 26 23. Recursive composition. 
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which values of the plotted pair give excellent (red region) or 
partly good (gray regions) performance for the design of some 
device. The arrangement of the individual matrices into a su- 
permatrix redefines the spatial dimensions (that is, associates 
it with different variables) within each of the cells, and the cells 
themselves are arranged in an overall scheme that systematically 
uses space. In this way, the precious spatial dimension is effec- 
tively expanded to where all the variables can reuse it. An im- 
portant property of techniques similar to this one is that space 
is defined at more than onegrain size, and these levels of grain 
become the basis for a macro-micro reading. 

An example of inarks-in-2D composition in the use of "stick 
figure" displays. This is an unusual type of visualization in which 
the recursion is within the mark instead of within the use of 
space. Figure 26.23(b) shows a mark that is itself composed of 
submarks. The mark is a line segment with four smaller line seg- 
ments protruding from the ends. Four variables are mapped 
onto angle of these smaller line segments and a fifth onto the 
angle of the main line segment. Two additional variables are 
mapped onto the position of this mark in a 2D display. A typi- 
cal result is the visualization in Fig. 26.23(c), which shows five 
weather variables around Lake Ontario, the outline of which 
clearly appears in the figure. 

Feiner and Bes11e1-s (1990) provided an example of the third 
recursive composition technique, 3D-in-3D composition. Sup- 
pose a dependent variable is a function of six continuous vari- 
a b l e s , ~ ~  = f(x, y, z, w, s). Three of these variables are mapped 
onto a 3D coordinate system. A position is chosen in that space, 
say, x l , y l ,  zl At that position, a new 3D coordinate system is 
presented with a surface defined by the other three variables 
(Fig, 26.23[d]). The user can thus viewy = f (x l ,y l , z l ,  w, < s). 
The user can slide the seconcl-order coordinate system to any 
location in the first, causing the surface to change appropriately. 
Note that this technique combines a composed visual inter- 
action with interactivity on the composition. Multiple second- 
order coordinate systems can be displayed at the space simul- 
taneously, as long as they do not overlap by much. 

INTERACTIVE VISUAL STRUCTURES 

In the examples we have considered so far, we have often seen 
that information visualization techniques were enhanced by be- 
ing interactive. Interactivity is what makes visualization a new 
medium, separating it from generations of excellent work on 
scientific diagrams and data graphics. Interactivity means con- 
trolling the parameters in the visualization reference model (Fig. 
26.10). This naturally means that there are different types of in- 
teractivity, because the user could control the parameters to data 
transformations, to visual mappings, or to view transformations. 
It also means that there are different forms of interactivity based 
on the response cycle of the interaction. As an approximation, 
we can think of there being three time constants that govern in- 
teractivity, which we take to be 0.1 sec, 1 sec, and 10 sec (Card, 
Moran, & Newell, 1986) (although the ideal value of these may 
be somewhat less, say, 0.07 sec, 0.7 sec, and 7 sec). The first time 
constant is the time in which a system response must be made, if 
the user is to feel that there is a direct physical manipulation of 

the visualization. If the user clicks on a button or moves a slider, 
the system needs to update the display in less than 0.1 sec. Ani- 
mation frames need to take less than 0.1 sec. The second time 
constant, 1 sec, is the time to complete an immediate action, for 
example, an animated sequence such as zooming in to the data 
or rotating a tree branch. The third time constant 10 sec (mean- 
ing somewhere in the 5 to 30 sec interval) is the time for com- 
pleting some cognitive action, for example deleting an element 
from the display. Let us consider a few well-known techniques for 
interactive information visualizations 

Dynamic queries. A general paradigm for visualization 
interaction is dynamic queries, the interaction technique used 
by the FilmFinder in Fig. 26.1. The user has a visualization of the 
data and a set of controls, such as sliders, by which subsets of 
the Data Table can be selected. For example, Table 26.9 shows 
the mappings of the Data Table and controls for the FilmFinder. 
The sliders and other controls will select which subset of the 
data is going to be displayed. In the FilmFinder, the control for 
Length is a two-sided slider. Setting one end to 90 minutes and 
the other end to 120 minutes will select for display only those 
cases of the Data Table whose year variable lies between these 
limits. The display needs to change within the 0.1 sec of chang- 
ing the slider. 

Magic lens (movable filter). Dynamic queries is one 
type of interactive filter. Another type is a movable filter that can 
be moved across the display, as in Fig. 26.24(a). These magic 
lenses are useful when it is desired to filter only some of the 
display. For example, a magic lens could be used with a map that 
showed the population of any city it was moved over. Multiple 
magic lenses can be used to cascade filters. 

Overview + detail. We can think of an overview + detail 
display (Fig. 26.24[b]) as a particular type of magic lens, one that 
magnifies the display and has the magnified region off to the 
side so as not to occlude the region. Displays have information 
at different grain sizes. A GIS map may have information at the 
level of a continent as well as at the level of a city. If the shape 
of the continent can be seen, the display is too coarse to see 
the roadways of a city Overview + detail displays show that data 
at more than one level, but they also show where the finer grain 
display fits into the larger grain clisplay. In Fig. 26.24(b), from 
SeeSoft (Eick et a]., 1992), a system for visualizing large software 
systems, the amount of magnification in the detail view is large 
enough that two concatenated overview 4- detail displays are re- 
quired. Overview + detail displays are thus very helpful for data 
navigation. Their main disadvantage is that the require coordi- 
nation of two visual domains. 

Linking and brushing. Overview + detail is an exam- 
ple of coordinating dual representations of the same data. 
These can be coordinated interactively with linking a n d  brush- 
ing. Suppose, for example, we wish to show power consump- 
tion on an airplane, both in terms of the physical representation 
of the airplane and a logical circuit diagram. The two views 
could be shown and linked by using the same color for the 
same component types Interactivity itself can be used for a dy- 
namic form of linking called brushing. In brushing, running the 



TABLE 26 9. Visual Marks and Controls for FilmFinder 

Data Visua! Form 
Visual Tran~itonnation 

Type Range Case, Case, Caseh Typo Structure Control Atiected 

Alpliaslua' Select casas 

~ ~ p n a s ~ u e r  sbctcases 

-. Q hn-sldau alder Clip range 

+ Q Y-ax15 AM$ Clip range 

4 0 Radio buttons Select casm 

N Ctllcr Radio buttons Sslectcases 

(a) Magic Lens (Bier, Stone, Pier, Buxlon, & 
DeRose, 1993): Detail of map. Courtesy Xerox 
Corp. 

(c) Extract and compare: SDM (Roth, Chuah, & 
Mattis, 1995). 

(b) Cascading overview + detail: SeeSoft (Eick 
ct &I., 1992).. 

(d) Attribute Explorer: (Tweedie el al., 1996). 
Courtesy Robert Spence.. 

FIGURE 26 24 Interaction techniques. 
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cursor over a part of one of the views causes highlighting both 
in that view and in the other view. 

Extraction and comparison. We can also use interac- 
tion to extract a subset of the data to compare with another sub- 
set. An example of this is in the SDM system (Chuah, Roth, Mat- 
tis, & Kolojejchick, 1995) in Fig. 26.24(c). The data are displayed 
in a 3D information landscape, but the perspective interferes 
with the ability to compare it. Inforn~ation is therefore extracted 
from the display (leaving ghosts behind) and placed in an or- 
thogonal viewing position where it can be compared using 2D. 
It could also be dropped into another display. Interactivity 
makes possible these manipulations, while keeping them coor- 
dinated with the original representations. 

Attribute explorer. Several of these interactive tech- 
niques are combined in the Attribute Explorer (Tweedie et al., 
1996). Figure 26.24(d) shows information on four attributes of 
houses. Each attribute is displayed by a histogram, where each 
square making up the histogram represents an individual 
house. The user selects a range of some attribute, say price. 
Those pixels making up the histogram on price have their cor- 
responding pixels linked representing houses highlighted on 
the other attributes. Those houses meeting all the criteria are 
highlighted in one color; those houses meeting, say, all but one 
are highlighted in another color. In this way, the user can tell 
about the "near misses." If the users were to relax one of the cri- 
teria only a little (say, reducing price by $loo), then the user 
might be able to gain more on another criterion (say, reducing 
a commute by 20 miles). 

FOCUS + CONTEXT ATTENTION-REACTIVE 
ABSTRACTIONS 

So far, we have considered visualizations that are static map- 
pings from Data Table to Visual Structure and those where the 
mappings Data Table to Visual Structure are interactively con- 
trolled by the user. We now consider visualizations in which the 
machine is no longer passive, but its mappings from Visual 
Structure to View are altered by the computer according to the 
its model of the user's degree of interest. We can, in principle, 
associate a cost of access with every element in the Data Table. 
Take the FilmFinder in Figure 26.3. Details about the movie 
'Murder on the Orient Express" are accessible at low cost in 
terms of time because they are presently visible on the screen. 
Details of "Goldfinger," a movie with only a mark on the dis- 
play, take more time to find. Details of "Last Year at Marienbad," 
a movie with no mark on the display, would take much more 
time. The idea is that with a model for predicting users' changes 
in interest, the system can adjust its displays to make costs lower 
for information access. For example, if the user wants some de- 
tail about a movie, such as the director, the system can antici- 
pate that the user is more likely to want other details about the 
movie as well and therefore display them all at the same time: 
The user does not have execute a separate command; the cost 
is therefore reduced. 

Focusi-context views are based on several premises: First, 
the user needs both overview (context) and detail information 
(focus) during information access, and providing these in sepa- 
rate screens or separate displays is likely to cost more in user 
time. Second, information needed in the overview may be dif- 
ferent from that needed in the detail. The information of the 
overview needs to provide enough information the user to de- 
cide where to examine next or to give a context to the detailed 
information rather than the detailed information itself. As Fur- 
nas (1981) has argued, the user's interest in detail seems to fall 
away in a systematic way with distance as information objects 
become farther from current interest. Third, these two types of 
information can be combined within a single dynamic display, 
much as human vision uses a two-level focus and context strat- 
egy. Information broken into nlultiple displays (separate leg- 
ends for a graph, for example) seem to degrade performance 
due to reasons of visual search and working memory. 

Furnas (1981) was the first to articulate these ideas system- 
atically in his theory offisheye views. The essence of focusi-con- 
text displays is that the average cost of accessing information is 
reduced by placing the most likely needed information for nav- 
igation and detail where it is fastest to access. This can be ac- 
complished by working on either the data side or the visual side 
of the visual reference model, Fig 26.10. We now consider these 
techniques in more detail. 

Data-Based Methods 

Filtering. On the data side, focus+context effects can be 
achieved by filtering out which items from the Data Table are ac- 
tually displayed on the screen. Suppose we have a tree of cate- 
gories taken from Roget's Thesaurus, and we are interacting 
with one of these, "Hardness." 

Matter 
ORGANIC 

Vitality 
Vitality in gene& 
Specific vitality 

Sensation 
Sensation in general 
Specific sensation 

INORGANIC 
Solid 

Hardness 
Softness 

Fluid 
Fluids in general 
Specific fluids 

Of course, this is a small example for illustration. A tree rep- 
resenting a program listing or a computer directory or a taxon- 
omy could easily have thousands of lines, a number that would 
vastly exceed what could fit on the display and hence would 
have a high cost of accessing. We calculate a degree-of-interest 
(DOI) for each item of the tree, given that the focus is on the 
node Hardness. To do this, we split the DO1 into an intrinsic 
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part and a part that varies with distance from the current cen- 
ter of interest and use a formula from Furnas (1981). 

DO1 = Intrinsic DOI + Distance DO1 

Figure 26.25 shows schen~atically how to perform this com- 
putation for our example. We assume that the intrinsic DO1 of 
a node is just its distance of the root (Fig. 26.25 [a]). The dis- 
tance part of the DO1 is just the traversal distance to a node 
from the current focus node (Fig. 26.25[b]; it turns out to be 
convenient to use negative numbers for this computation, so 
that the maximum amount of interest is bounded, but not the 
minimum amount of interest). We add these two numbers to- 
gether (Fig. 26.25 [c]) to get the DO1 of each node in the tree. 
Then we apply a minimum threshold of interest (-5 in this 
case) and only show nodes more interesting than that thresh- 
old. The result is the reduced tree: 

Matter 
INORGANIC 
ORGANIC 
Solid 

Hardness 
Softness 

Fluid 

The reduced tree gives local context around the focus node and 
progressively less detail farther away. But it does seem to give 
the important context. 

Selective aggregation. Another focus-I-context tech- 
nique from the data side is selective aggregation. Selective ag- 
gregation creates new cases in the Data Table that are aggre- 
gates of other cases. For example, in a visualization of voting 

FIGURE 26 25 Degree-of-Interest calculation for fish-eye visu- 
alization 

behavior in a presidential election, voters could be broken 
down by sex, precinct, income, and party affiliation. As the user 
drills down on, say, male Democrats earning between $25,000 
and $50,000, other categories could be aggregated, providing 
screen space and contextual reference for the categories of im- 
mediate interest. 

View-Based Methods 

Micro-macro readings. Micro-macro readings are dia- 
grams in which "detail cumulates into larger coherent struc- 
tures" (Tufte, 1990). The diagram can be graphically read at the 
level of larger contextual structure or at the detail level. An ex- 
ample is Fig. 26.26. The micro reading of this diagram shows 
three million observations of the sleep (lines), wake (spaces), 
and feeding (dots) activity of a newborn infant. Each day's ac- 
tivity is repeated three times on a line to make the cyclical as- 
pect of the activity more clearly visible. The macro reading of 
the diagram, emphasized the thick lines, shows the infant tran- 
sitioning from the natural human 25-hour cycle at birth to the 
24-hour solar day. The macro reading serves as context and in- 
dex into the micro reading. 

Highlighting. Highlighting is a special form of micro- 
macro reading in which focal items are made visually distinc- 
tive in some way. The overall set of items provides a context for 
the changing focal elements. 

Visual transferfinctions. We can also warp the view 
with viewing transformations. An example is a visualization 
called the bifocal lens (Spence & Apperley, 1982). Fig. 26.27(a) 
shows a set of documents the user would like to view, but which 
is too large to fit on the screen. In a bifocal lens, documents not 
in a central focal region are compressed down to a smaller size. 
This could be a strict visual compression. It could also involve a 
change in representation. We can talk about the visual com- 
pression in terms of a visual transfer function Fig. 26.27@), 
sometimes conveniently represented in terms of its first deriva- 
tive in Fig. 26.27(c). This function shows how many units of an 

FIGURE 26 26. Micro-macro reading (Winfree, 1987). Courtesy 
Scientific American Library 
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axis in the original display are mapped into how many units in 
the resultant display The result could be compression or en- 
largement of a section of the display As a result of applying this 
visual transfer function to Fig. 26.27(a), the display is com- 
pressed to Fig. 26.27(d). Actually, the documents in the com- 
pressed region have been further altered by using a semantic 
zooming function to give them a simplified visual form. The 
form of Fig. 26.27(c) shows h a t  this is essentially a step function 
of two different slopes. An example of a two-dimensional step 
function is the Table Lens (Fig. 26,28[a]). The Table Lens is a 
spreadsheet in which the columns of selected cells are ex- 
paneled to full size in X and the rows of selected cells are ex- 
panded to full size in Y All other cells are compressed, and their 
content represented only by a graphic As a consequence, 
spreadsheets up to a couple orders of magnitude larger can be 
represented. 

By varying the visual transfer function (see, for example, the 
review by Leung and Apperley (1994), a wide variety of distorted 
views can be generated. Figure 26 28(b) shows an application in 
which a visual transfer function is used to expand a bubble 
around a local region on a map. The expanded space in the re- 
gion is used to show additional information about that region. 

Distorted views must be designed carefully so as not to clam- 
age important visual relationships. Bubble distortions of maps 
may change whether roads appear parallel to each other. How- 
ever, distorted views can be designed with "flat" and "transition" 
regions to address this problem. Figure 26.27(a) does not have 
curvilinear distortions. Focus+context visualizations can be 
used as part of compact user controls. Keahey (2001) has cre- 
ated an interactive scheme in which the bubble is used to "pre- 
view" a region. When the user releases a button over the region, 
the system zooms in far enough to flatten out the bubble. Becl- 
erson has developed a focus+context pull-down menu (Beder- 
son, 2000) that allows the viewing and selection of large lists of 
typefaces in text editor Fig. 26.27(c). 

Perspective distortion. One interesting form of distort- 
ing visual transfer functions is 3D perspective. Although it can 
be described with a 2D distorting visual transfer function, it is 
usually not experienced as distorting by users due to the spe- 
cial perceptual mechanisms humans have for processing 3D. 
Figure 26.28(c) shows the Perspective Wall (Mackinlay, Robert- 
son, & Card, 1991). Touching any place on the walls animates 
its transition into the central focal area. The user perceives the 
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(a) Table Lens. Courtesy of Inxight Software. 

fc) Fisheye menus (Bederson. 2000). 

(b) Nonlinear distortion of UK.. Courtesy Alan Keahey 

(d) Perspective Wall (Mackinlay, Robertson, & Card, 
1991). 

FIGURE 26.28, Attention-Reactive Visualizations 

context area of the wall as an undistorted 2D image in a 3D 
space, rather than as a distorted 2D image; however, the same 
sort of compression is still achieved in the nonfocus area. 

Alternate geometries. Instead of altering the size of 
components, focus+context effects can also be achieved by 
changing the geometry of the spatial substrate itself. One ex- 
ample is the hyperbolic tree (Lamping & Rao, 1994). A visual- 
ization such as a tree is laid out in hyperbolic space (which it- 
self expands exponentially, just like the tree does), and then 
projected on to the Euclidean plane. The result is that the tree 
seems to expand around the focal nodes and to be compressed 
elsewhere. Selecting another node in the tree animates that por- 

tion to the focal area. Munzner (Munzner & Burchard, 1995) has 
extended this notion to 3D hyperbolic trees and used them to 
visualize portions of the Internet. 

SENSEMAKING WITH VISUALIZATION 

Knowledge Crystallization 

The purpose of information visualization is to amplify cognitive 
performance, not just to create interesting pictures. Informa- 
tion visualizations should d o  for the mind what automobiles do 



for tlie feet. So here, we return to the higher level cognitive op- 
erations of which information visualization is a means and a com- 
ponent. A recurrent pattern of cognitive activity to which infor- 
mation visualization would be useful (though not the only one!) 
is "knowledge crystallization." In knowledge ciystallization tasks, 
there is a goal (sometimes ill-structured) that requires the ac- 
quisitioi1 and making sense of a body of information, as well as 
the creative formulation of a knowledge product, decision, or ac- 
tion. Examples would be writing a scientific paper, business or 
military intelligence, weather forecasting, or buying a laptop 
computer. For these tasks, there is usually a concrete outcome of 
the task-the submitted manuscript of a paper, a delivered brief- 
ing, or a purchase. Knowledge crystallization does have charac- 
teristic processes, however, and it is by amplifying these that in- 
formation visualization seeks to intervene and amplify the user's 
cognitive powers. Understanding of this process is still tentative, 
but the basic parts can be outlined: 

Acquire information. Make sense of it. Create something new Act on it. 

In Table 26.10, we have listed some of the more detailed ac- 
tivities these entail. We can see examples of these in our initial 
examples. 

Acquire information. The FilmFinder is concentrated 
largely on acquiring information about films. Search is one of 
the methods of acquiring information in Table 26.10, and the 
FilmFinder is an instance of the use of information visualization 
in search. In fact, Shneiderman (Card et al., 1999) has identi- 
fied a heuristic for designing such systems: 

Overview first, zoom and filter, then details-on-den~and 

The user starts with an overview of the films, and then uses 
sliders to filter the movies, causing the overview to zoom in on 
the remaining films. Popping up a box gives details on the par- 
ticular films. The user could use this system as part of a knowl- 
edge crystallization process, but the other activities would take 
place outside the system. The SmartMoney system also uses the 
TreeMap visualization for acquiring information, but this time 
the system is oriented toward monitoring, another of the meth- 
ods in Table 26.10. A glance at the sort of chart in Fig. 26.5 allows 
an experienced user to notice interesting trends among the 
hundreds of stocks and industries monitored. Another method 

TABLE 26 10 Knowledge Crystallization Operators 

Acquire Information Monitor 
Search, 
Capture (make implicit knowledge explicit) 

Make sense of it Extract information 
Fuse different sources 
Find schema 
Recode information into schema 

Create something new Organize for creation 
Author 

Act on i t  Distribute 
Apply 
Act 

of acquiring information, capture, refers to acquiring informa- 
tion that is tacit or implicit. For example, when users browse the 
World Wide Web, their paths contain information about their 
goals. This information can be captured in logs, analyzed, and vi- 
sualized (Chi & Card, 1999). It is worth making the point that ac- 
quiring information is not something that the user must neces- 
sarily do explicitly. Search, monitoring, and capture can be 
implicitly triggered by the system. 

Make sense of it. The heart of knowledge crystallization 
is sensemaking This process is by no means as mysterious as it 
might appear. Because sensemaking involving large amounts 
of information must be externalized, tlie costs of finding, orga- 
nizing, and moving information around have a major impact on 
its effectiveness. The actions of sensemaking itself can be ana- 
lyzed. One process is extraction Information must be got out 
of its sources. In our hotel example, the hotel manager ex- 
tracted information from hotel records. A more subtle issue is 
that information from different sources must be fused-that is, 
registered in some common correspondence. If there are six 
called-in reports of traffic accidents, does this mean six different 
accidents, one accident called in six times, or two accidents i-e- 
ported by multiple callers? If one report merely gives the county, 
while another just gives the highway, it may not be easy to tell. 
Sensemaking involves finding some schema-that is, some de- 
scriptive language-in terms of which information can be com- 
pactly expressed (Russell, Stefik, Pirolli, & Card, 1993). In our 
hotel example, permuting the matrices brought patterns to the 
attention of the manager. These patterns formed a schema she 
used to organize and represent hotel stays compactly In the 
case of buying a laptop computer, the schema may be a table 
of features by models. Having a common schema then permits 
compact description. Instances are recoded into the schema. 
Residual information that does not fit the schema is noted and 
can be used to adlust the schema. 

Create something new. Using the schema, information 
can be reorganized to create something new. It must be orga- 
nized into a form suitable for the output product and that prod- 
uct must be authored In tlie case of the hotel example, the 
manager created the presentation of Fig. 26.7(c). 

Act on it. Finally, there is some consequential output of 
the knowledge crystallization task. That action may be to dis- 
tribute a report or give a briefing, to act directly in some way, 
such as setting up a new promotion program for the hotel or 
buying a laptop on the basis of the analysis, or by giving direc- 
tives to an organization. 

Levels for Applying Information Visualization 

Information visualization can be applied to facilitate the vari- 
ous subprocesses of knowledge crystallization just described. 
It can also be applied at different architectural levels in a system. 
These have been depicted in Fig. 26.29. At one level is the use of 
visualization to help users access information outside the im- 
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mediate environment-the infosphere-such as information on 
the Internet or from corporate digital libraries. Figure 26.30(a) 
shows such a visualization of the Internet (Bray, 1996). websites 
are laid out in a space such that sites closer to each other in the 
visualization tend to have more traffic. The size of the disk rep- 
resents the number of pages in the site. The globe size repre- 
sents the number of out-links. The globe height shows the num- 

RMATION WORKS ber of in-links. 
The second level is the information workspace. The infor- 

mation workspace is like a desk or workbench. It is a staging 
area for the  integration of information from different sources. 
An information workspace might contain several visualizations 
related to one or  several tasks. Part of the purpose of an infor- 
mation workspace is to make the cost of access low for infor- 
mation in active use. Figure 26.30(b) shows a 3D workspace for 
the Internet, the Web Forager (Card, Robertson, & York, 1996). 

Manipulate Pages from the World Wide Web, accessed by users through 
Perceive 

clicking on URLs or searches, appear in the space. These can 
be organized into piles or books related to different topics. Fig- 
ure 26.30 (c) shows another document workspace, STARLIGHT 
(Risch et al., 1997). Documents are represented as galaxies of 
points in space such that similar documents are near each other. 
In the workspace, various tools allow linking the documents to 

FIGURE 26.29. Levels of use for information visualization. maps and other information and analytical resources. 

(a) Infosphcrc: (Bray, 1996). 
(b) Workspace: Web Forager (Card, 
Robertson, & York, 1996). 

(c) Workspace: STARLIGHT: (Risch et al., (d) Visually-enhanced object: Voxcl-Man. 

1997). Courtesy of University of Hamburg. 

FIGURE 26 30. Information visualization applications 



The third level is visual knowledge tools. These are tools 
that allow schema forming and rerepresencation of information. 
The permutation matrices in Fig. 26.7, the SeeSoft system for 
analyzing software in Fig. 26.15@), and the Table Lens in Fig. 
26.27(a) are examples ofvisual knowledge tools. The focus is on 
determining and extracting the relationships. 

The final level is visually enhanced objects, coherent infor- 
mation objects enhanced by the addition of information visual- 
ization techniques. An example is Fig. 26.30(d), in which voxel 
data of the brain have been enhanced through automatic sur- 
face rendition, coloring, slicing, and labeling. Abstract data 
structures representing neural projects and anatomical labels 
have been integrated into a display of the data. Visually en- 
hanced objects focus on revealing more information from some 
object of intrinsic visual form. 

Information visualization is a set of technologies that use vt- 
sual computing to amplify human cognition with abstract infor- 
mation. The future of this field will depend on  the uses to  which 
it is put and how much advantage it gives to  these. Information 
visualization promises to  help us speed our  understanding and 
action in a world of increasing information volumes. It is a core 
part of a new technology of human interfaces to  networks of de- 
vices, data, and documents. 
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