
Plat_Forms 2011: Finding Emergent Properties of Web
Application Development Platforms

Ulrich Stärk
Institut für Informatik

Freie Universität Berlin
Berlin, Germany

ustaerk@inf.fu-berlin.de

Lutz Prechelt
Institut für Informatik

Freie Universität Berlin
Berlin, Germany

prechelt@inf.fu-berlin.de

Ilija Jolevski
Technical Faculty Bitola

University St. Kliment Ohridski
Bitola, FYR of Macedonia

ilija.jolevski@uklo.edu.mk

ABSTRACT
Empirical evidence on emergent properties of different web
development platforms when used in a non-trivial setting is
rare to non-existent. In this paper we report on an exper-
iment called Plat Forms 2011 where teams of professional
software developers implemented the same specification of a
small to medium sized web application using different web
development platforms, with 3 to 4 teams per platform. We
define platforms by the main programming language used,
in our case Java, Perl, PHP, or Ruby. In order to find prop-
erties that are similar within a web development platform
but different across platforms, we analyzed several charac-
teristics of the teams and their solutions, such as complete-
ness, robustness, structure and aspects of the team’s devel-
opment process. We found certain characteristics that can
be attributed to the platforms used but others that cannot.
Our findings also indicate that for some characteristics the
programming language might not be the best attribute by
which to define the platform anymore.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General

General Terms
Experimentation, Measurement, Languages

Keywords
Experiment, Web Development, Platforms, Comparison, Emer-
gent Properties, Languages, Empirical Software Engineering

1. INTRODUCTION
A large part of applications developed today are web based

applications. The possibility to deploy a web application on
a web server and serve large number of clients has made
the web one of the dominant platforms for software devel-
opment.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEM’12, September 19–20, 2012, Lund, Sweden.
Copyright 2012 ACM 978-1-4503-1056-7/12/09 ...$10.00.

For building web applications, many different technologies
exist. But it is not only the technology (that is: the main
programming language, HTML, CSS, JavaScript, frameworks,
libraries, development tools) that defines a web develop-
ment platform. Each platform also has it’s own platform
culture such as programming styles, preferred development
processes, etc. We call the combination of those two aspects
a web development platform.

When selecting the web development platform to be used
for a project, there is however little to no objective evidence
on when to use which platform. Depending on the plat-
form they prefer, most people asked will claim that their
respective platform is the best or make claims about alleged
properties of some other platform. Examples of such claims
are

• Ruby applications are slow

• Java teams are less productive

• Perl code tends to be small in size

• PHP is insecure

• Ruby does not scale well

• Java applications are well maintainable

• Perl code is hard to read

However, most of these claims are not based on strong ev-
idence. They may be based on personal experience (perhaps
exaggerated) or just be hearsay. The little evidence that is
presented for such claims is either of dubious validity (e.g.
comparing projects of different kinds) or limited relevance
(e.g. focusing on a very narrow set of aspects only, such as
pure performance benchmarks).

In order to provide objective empirical evidence about the
real, rather then the alleged properties of different web de-
velopment platforms, exhibited when used on a project level
(if small), we conducted a quasi experiment where teams of
professional software developers implemented the same spec-
ification under controlled conditions, each using a different
web application platform.

This paper will investigate whether there are aspects in
the development process or its results that can be attributed
to the web development platform used.

119



2. STUDY SETUP

2.1 Methodology
When trying to determine the emergent properties of web

development platforms, it is not enough to only look at the
platforms’ technologies. Rather, an empirical approach is
needed: we need to observe the different web development
platforms when used in a realistic, i.e. a project level, set-
ting. We could have done this with a case study. It would
however be hard to attribute observed differences to the web
development platform used because we then could not exer-
cise control over other variables that might be responsible
for the effects we see. We therefore chose an experimental
design.

We let teams of 3 professional software developers each im-
plement the same small to medium sized specification. The
complexity of the task (see below for details) and the fact
that we let teams instead of individuals handle it ensured a
setting as close to a real world project as feasible.

In a truly controlled experiment one would randomly as-
sign the teams to the independent variable (the web devel-
opment platform) while keeping everything else the same.
While this ensures that human factors like experience don’t
influence the dependent variables (here: aspects of the de-
velopment process) it is completely unrealistic in our case.
A project manager wouldn’t assign a team randomly to a
platform. Rather he would either chose a team that is ex-
perienced with the given platform or chose a platform that
a given team is most experienced with.

We had 4 teams each for the platforms Java, PHP and
Ruby and 3 teams for the Perl platform. In addition we
had one team working with JavaScript only, on the client
as well as on the server side, which we believe will become
a major trend in the coming years and therefore considered
an interesting glimpse of the future. The JavaScript team’s
results will be treated separately in our evaluation.

All teams had to implement the same specification for
a small to medium sized web application. The teams all
worked in two large rooms of the same building on two con-
secutive days. During the experiment we conducted mini-
mally invasive micro-interviews with all participants every
15 minutes to capture what type of activity each team mem-
ber was doing how often.

In addition, the participants were allowed to ask the first
author, acting as an on-site customer, questions regarding
the specification document. Only questions regarding clari-
fication of the meaning of requirements were answered.

2.2 Participants
Participants for the experiment were found by marketing

the experiment as a contest, where teams of top class profes-
sional software developers would compete to implement the
same specification for a web application, each using their
preferred platform. By limiting admittance to high-class
professional software developers we tried to keep within-
platform variation between the teams low. Strong variation
between the teams would make it hard to identify platform
differences but the performance of high-class teams is likely
to be similar.

Participation in the contest was rewarded by giving the
teams an evaluation of their performance in comparison to
other top-class teams. This evaluation provided well-performing
teams with the best marketing material one can think of:

neutral, objective, fair and believable. Apart from the sci-
entific evaluation, no other rewards were promised. With the
help of sponsors, we eventually gave a prize of 1.000 EUR to
one team per platform. This had not been announced be-
fore the contest, but had happened similarly after the 2007
instance of Plat Forms, too.

We announced Plat Forms three months before the ac-
tual experiment took place, i.e. in October 2010, and asked
teams of three professional software developers to apply for
admittance to the contest. Out of 24 applications we chose
the following 16 participating teams under the condition
that all platforms present at the contest would have at least
3 and at most 4 teams (with the exception of JavaScript as
mentioned above).

The teams and their technologies were

• For Java:

– Accenture with Spring Roo and Hibernate

– Cordys (now Crealogix) with abaXX.Components
including Hibernate

– SIB Visions with JVx and JVx WebUI

– Kayak.com with Spring MVC and Hibernate

• For Perl:

– #austria.pm with Catalyst and DBIx::Class

– Perl Ecosystem Group with Catalyst

– Shadowcat Systems with Task::Kensho (built on
top of Catalyst)

• For PHP:

– Globalpark with Zend Framework

– Mayflower with Zend Framework

– Mindworks with Symfony

– TYPO3 Association with FLOW3

• For Ruby:

– Infopark with Rails

– LessCode with Rails

– makandra with Rails

– tmp8 with Rails

• For JavaScript:

– Upstream Agile with Node.js, express.js and
sammy.js

The participants were between 22 and 45 years old (Java
mean 34, JavaScript mean 28, Perl mean 31, PHP mean 31
and Ruby mean 34), and the majority spent 75% or more
of their work time in the past 12 months with technical
software development activities (as opposed to project man-
agement etc.). The participant’s overall experience as pro-
fessional software developers ranged from 4 to 19 years for
Java (mean 11), from 3 to 6 years for JavaScript (mean 4.7),
from 3 to 20 years for perl (mean 8.8), from 3 to 15 years
for PHP (mean 8.6), and from 2 to 25 years for Ruby (mean
11).

A possibly more useful indicator for a participant’s skill
however is the number of programming languages that per-
son has used, which assumes that more capable developers

120



take the burden of learning a new language more often. We
asked the participants to list the languages they have at
some point regularly used and those that they have tried out
at least once. Table 1 shows that the majority of our par-
ticipants has regularly used 4 to 5 programming languages,
that many of them know 9 or more, and that we likely have
sufficient skill balance across platforms1.

Platform min max median
Java 4 (2) 12 (6) 9 (5)
Perl 7 (4) 17 (8) 9 (5)
PHP 6 (1) 12 (7) 9 (5)
Ruby 5 (3) 14 (10) 10 (5)
(JavaScript) 6 (3) 7 (4) 7 (4)

Table 1: number of all languages ever used (in
parens: languages used regularly) per developer for
each platform

The team characteristics also suggest that we achieved our
goal of recruiting rather capable developers.

2.3 Task
The participating teams where all tasked with implement-

ing the same specification for a web portal called CaP: Con-
ferences and Participants. CaP is an application for organiz-
ing conferences, allowing unregistered users to browse con-
ferences by categories and search for conferences. Registered
users are able to create conferences, make friends with other
users, and invite friends and others (whether signed up or
not) to conferences. Official, verified organizers for confer-
ence series may create conferences in a conference series like
ESEM, admin users can modify all data in the system.

The specification was divided in four parts. The first
part dealt with the requirements for a HTML user inter-
face and was organized around 9 use cases, each posing a
number of requirements. Some of the use cases contained
not-so-common requirements such as distance calculations
based on a user’s GPS coordinates, a simple query language
for finding conferences and output of data in formats other
than HTML, i.e. iCalendar, PDF and RSS. The second part
specified a RESTful web service interface using HTTP for
data transfer and JavaScript Object Notation (JSON) for
the data exchange format. The third and fourth part dealt
with non-functional requirements and development rules, re-
spectively.

Requirements were all marked with one of three prior-
ity levels. MUST requirements represented functionality
without which the system would be considered inacceptable.
SHOULD marked important requirements without which
the system would be considered incomplete but acceptable.
Requirements marked as MAY were optional. Overall there
were 204 requirements (114 MUST, 34 SHOULD, 56 MAY).
The HTML user interface had 143 functional requirements,
the web service interface 32. In addition, there were 23 non-
functional requirements and 6 requirements regarding devel-
opment rules and solution delivery. We strived to make the
document precise and unambiguous as best we could. The
participants confirmed that we were successful with this far
beyond what they usually (or even ever) see in practice. This

1Remember the JavaScript team is noncompetitive, so it is
not a problem that it appears a bit more junior

high requirements quality arguably makes the contest a bit
less realistic but on the other hand avoids many mishaps
and results interpretation ambiguities that might otherwise
occur.

2.4 Execution
The experiment took place on January 18th and 19th 2011

at the CongressCenter Nürnberg in Nuremberg, Germany.
12 of the 16 teams worked in one large room, the other 4
teams worked in an adjacent smaller room. The contest
started at 09:00 on January 18th with a short presentation
on the task. Actual work began around 09:30. During 00:00
and 08:00 the next day, the teams were not supposed to
work and the rooms were locked up for the night. This is
contrary to what we did in the pilot study in 2007 were
teams were free how they spent the night. In talks with the
participants after the experiment in 2007 the wish for an
explicit night break was expressed. Some participants did
not feel reasonably well rested on the second day and felt
that they could have delivered better results if a mandatory
night break had forced them to have some sleep. Discussions
with the 2011 participants revealed that the night break was
perceived sensible because it forced them to get some needed
rest.

On the second day, teams had time until 18:00 to finish
their implementations and hand over their solutions. For
the experiment each team was provided with about 18 m2

of space, 4 tables, chairs, a multi strip for power and one eth-
ernet cable for internet access. All other equipment, such as
computers for development, additional power strips, desk-
top ethernet switches, etc. had to be brought by the teams
themselves and were set up the day before the contest.

At the end of the experiment the teams handed over (on a
USB stick) a virtual machine running their solution, a source
code archive containing the sources for their solutions, and
the complete version control archive created during the con-
test.

3. THREATS TO VALIDITY
The biggest threat to validity stems from the team selec-

tion. If we failed to recruit comparable teams, we cannot
be sure if our observations are due to variations of the in-
dependent variable – the platform – or some artifact of the
team selection. From a capability point of view it seems that
we managed to find equally experienced teams. Two teams,
however, are worth noting.

Team Java I told us after the contest, that they were using
a technology that they don’t regularily use in their projects
and just recently started using for rapid prototyping. In ad-
dtion, the analysis of their development process showed that
they spent a lot of time with up-front design and manage-
ment activities, in particular with transferring requirements
into their internal bug tracking system. This we believe re-
duced the completeness of their solution.

Team Perl O characterized itself in conversations after the
contest as a team of three backend developers with no affin-
ity towards HTML GUIs. This fact will most likely have
had an effect on the team’s solution’s level of completeness
which is measured in terms of requirements implemented on
the HTML GUI.

Due to the nature of the task and the given time con-
straints, our results reflect a rapid prototyping work mode.
It is unclear how well they generalize to production-quality

121



software development. But given that we observed teams of
professional software developers instead of students or indi-
viduals and that the assignment was much bigger than usu-
ally found in experiments, we believe that generalizability is
higher than in most other controlled scientific studies.

The strong heterogeneity of technologies and frameworks
makes it hard to effectively treat all solutions alike. This
needs to be kept in mind for the size comparison.

4. RESULTS
The following subsections present an extract of some of

the evaluations we have performed on the teams’ solutions,
namely

• Completeness: How many requirements (per priority
level) did the teams manage to implement in the given
time?

• Robustness: How well do the solutions react to weird,
difficult, or dangerous inputs?

• Development process: How frequent are which types
of development activities during the two days?

• Size and structure: How many files of which size and
type comprise each team’s solution?

Each subsection will start with a description of how we eval-
uated the corresponding characteristic, followed by the re-
spective results.

We evaluated further charateristics, such as the team’s
version history, the origin and role of source files, more de-
tailed characteristics of the development process, and many
more. Due to space restrictions we will however only fo-
cus on the evaluations mentioned above. Some analyses, in
particular a performance analysis, couldn’t be carried out
due to the varying level of the solutions’ completeness (see
the next section for details). A thorough security analysis is
currently under way and a modularity and maintainability
evaluation is in planning.

4.1 Completeness
We checked the implementation of each requirement twice

for each team (by different judges). In order to avoid bias
during the evaluation from changing the evaluation crite-
ria over time, the requirements as specified in the require-
ments document were divided into blocks, each correspond-
ing roughly to one of the nine use cases. Each block was then
duplicated so that for the 16 solutions we got 288 blocks.
These blocks were then randomly assigned to judges, such
that each block would be evaluated by one judge but no
judge would evaluate the same requirements for the same
team twice.

The judges were graduate and PhD students with expe-
rience in web application development in Java, Perl, PHP,
and Ruby.

They compared the teams’ solutions with the expected be-
havior based on the requirements document and for each re-
quirement assigned a value for its completeness with 0 mean-
ing “not implemented”, 1 “partially implemented”, 2 “imple-
mented, but in an especially bad way”, 3 “implemented” and
4 “implemented, and particularly well done”. Usually, a re-
quirement would get a rating of 0 or 3 with 1, 2 and 4 being
the exception.

For the 143 requirements concerning the HTML user in-
terface, each evaluated by two judges for each of the 16 so-
lutions, 4576 requirement implementations were compared
to their expected behavior. In case the two judges came
to a different rating for a requirement, they had to get to-
gether and discuss the implementation of the corresponding
requirement until an unanimous rating was found. This hap-
pened in about 19% of the cases.

The 32 requirements concerning the web service interface
were evaluated by a fully automated web service testing
client comparing the actual implementation to the specifi-
cation laid down in the requirements document and judging
the differences by fixed criteria.

Figure 1 shows the number of all fully implemented re-
quirements, i.e. those with a rating of 2, 3 or 4, by re-
quirement priority. It includes requirements concerning the
HTML user interface as well as those concerning the web
service interface. Notably, of the six most complete solu-
tions, four were delivered by Ruby teams. With the excep-
tion of Java team I, the Java teams showed similarly good
results. Team I stated that they spent too much time with
management tasks such as splitting up work and giving out
work packages and were therefore lacking time in the end.
Observations during the experiment and a relatively high
number of incompletely implemented requirements (rating
of 1) corroborate this.

Other notable outliers within their respective platforms
are Perl team O and PHP team M. Team O was made up
of three developers that classified themselves as back-end
rather than front-end developers. According to information
provided by this team, they finished most of the require-
ments on the back-end side but didn’t spend enough time
to wire everything together on the front-end side. Figure
2 shows that team O implemented almost as many require-
ments concerning the web service interface as concerning
the user interface. This, plus the relatively high number of
source lines of code (SLOC) per implemented requirement
(see figure 6), corroborate the team’s statement.

Team M used the Symfony framework, which borrows a
lot of concepts from Ruby on Rails, and performed as well
as the Ruby teams which were all using Ruby on Rails.

Figure 2 shows the same data as figure 1 but grouped
by requirements category, i.e. user interface or web service
interface. The results indicate that there is no platform-
specific preference whether to implement a web service in-
terface or a HTML user interface first for the same business
logic. We expected that it would be easy for the teams to do
both given that frameworks exist for each platform that help
in automatically generating web service interfaces. But the
decision what to focus on rather seems to be a team pref-
erence. One team (Perl team C) decided not to implement
the web service interface at all and one team (Java team E)
only implemented 1 of the 32 requirements.

4.2 Robustness
All solutions were tested on how they behaved when unex-

pected, erroneous or malicious input was provided and how
they handled special situations. These tests comprised

• a naive test for cross-site-scripting attacks,

• a test how the solutions reacted to very long input,

• a test with multi-byte unicode characters for the input,

122



nu
m

be
r o

f f
ul

ly
 im

pl
em

en
te

d 
re

qu
ire

m
en

ts

0

50

100

150

Ja
va

 A

Ja
va

 D

Ja
va

 E

Ja
va

 I

Ja
va

S
cr

ip
t B

Pe
rl 

C

Pe
rl 

J

Pe
rl 

O

P
H

P
 F

P
H

P
 G

P
H

P
 L

P
H

P
 M

R
ub

y 
H

R
ub

y 
K

R
ub

y 
N

R
ub

y 
P

MAY
SHOULD
MUST

Figure 1: Number of fully implemented requirements by priority.

nu
m

be
r o

f f
ul

ly
 im

pl
em

en
te

d 
re

qu
ire

m
en

ts

0

50

100

150

Ja
va

 A

Ja
va

 D

Ja
va

 E

Ja
va

 I

Ja
va

S
cr

ip
t B

Pe
rl 

C

Pe
rl 

J

Pe
rl 

O

P
H

P
 F

P
H

P
 G

P
H

P
 L

P
H

P
 M

R
ub

y 
H

R
ub

y 
K

R
ub

y 
N

R
ub

y 
P

Webservice
UI

Figure 2: Number of fully implemented requirements by requirements category

123



</
...

>

lo
ng in
t'l

em
ai

l

S
Q

L

co
ok

ie

Java A

Java D

Java E

Java I

JavaScript B

Perl C

Perl J

Perl O

PHP F

PHP G

PHP L

PHP M

Ruby H

Ruby K

Ruby N

Ruby P

77 3 url

msg 1 exc rej

lay err msg 1 rej

err 1 url

3 rej

128 3 rej

lay msg 3 rej

msg − −

4 rej

rem msg 4 rej

4 rej

msg 0 rej

255 3 rej

255 3 rej

255 err 3 rej

msg 0 rej

Figure 3: Solution Robustness. Solutions marked green are considered OK, yellow acceptable, soft red broken
and bright red critical. Tests that could not be performed due to missing functionality are marked white.

• a test of email address validation,

• a naive SQL injection test, and

• a test how the solutions reacted when cookies are turned
off in the user’s browser.

For the naive cross-site-scripting (XSS) test, two small
HTML fragments were used for input on the user registra-
tion form. The first would, if not properly escaped, result
in the input being displayed in bold. The second fragment
consisted of various closing tags, resulting in a layout break
if not escaped properly. While the first fragment might be
considered acceptable since it doesn’t pose any security risk
and it might be a design decision to allow simple HTML
for formatting purposes, a solution allowing for a successful
manipulation of its layout most likely also allows for more
harmful content to be injected into the HTML page, allow-
ing for cross-site scripting attacks. Figure 3 shows in the
“</. . .>” column, that 2 of the 16 solutions were vulnerable
to our attack.

The long input test consisted of two strings, each 50,000
non-space characters long, separated by a space character.

The concatenated string was used as input on the user regis-
tration form. Solutions that accepted the input and returned
it as entered were considered OK. Solutions that silently
truncated the input or rejected it with a user-oriented vali-
dation message were considered acceptable. Solutions that
generated unhelpful technical error messages were consid-
ered broken. The “long” column in figure 3 shows that two
of the Java solutions but no solution on any other platform
was broken in this respect.

For the unicode test, several multi-byte unicode characters
were input into the user registration form. Solutions that
after registration correctly displayed the characters on the
user interface were considered OK, those that did not or
displayed a technical error message, were considered broken.
All but one Ruby and one Java solution passed this test (see
the “unicode” column in figure 3).

The email test aimed at testing the solution’s email val-
idation capabilities. We entered 5 different invalid email
addresses during user registration: one was missing the do-
main part altogether, one was missing the top-level domain,
and one was missing the second level domain. These three
can all be detected using static tests, for example with reg-

124



ular expressions. Another two invalid email addresses were
one with an invalid top-level domain and one with an unreg-
istered second-level domain. The first can be detected using
a static list of known top-level domains while the latter re-
quires a DNS lookup. Solutions that rejected at least the
three statically testable addresses were considered OK. If a
solution did not reject at least those three, it was considered
broken. The “email” column of figure 3 shows that three of
the four Java solutions, one of the Ruby and one of the PHP
solutions failed the email validation tests.

The“SQL”column in figure 3 shows the results of a simple
test for a SQL injection vulnerability. For this test, a string
containing SQL control characters was used as the input
for different form fields, including fields where values from
a drop-down box etc. were expected. If a solution simply
escaped the input and displayed it as entered in the output,
it was considered OK. Solutions that display a technical er-
ror message stemming from the underlying database system
were considered broken. Only the solution of Java team D
showed signs of a possible SQL injection vulnerability using
this simplistic testing procedure.

The last test we performed was a login attempt with cook-
ies turned off in the user’s browser. All solutions either re-
jected the login or did URL rewriting for the session ID. Al-
though the latter poses a higher risk for inadvertent session
stealing by sharing a link containing the user’s session ID
with someone else, we considered that an acceptable trade-
off between security and usability and considered both, login
rejection as well as URL rewriting, acceptable. No solutions
failed with an error message which would have been consid-
ered broken behavior.

It is noteworthy that with the exception of the team A
solution, the Java solutions displayed the most robustness
flaws. While the solutions on all other platforms show at
most one severe flaw, all Java solutions except team A show
at least two. Team Java E’s solution even exhibits flaws in
four categories, the highest value across all platforms.

4.3 Development Process
As mentioned before, the observation method used in the

2007 pilot study didn’t reveal any platform specific char-
acteristics of the development process because it was too
coarse grained. We therefore conducted a micro-interview
with each participant every 15 minutes. The participants
were asked a single question: “What were you doing at the
moment I arrived?” and answered using a fixed answering
scheme.

The scheme allowed for 10 possible activities: program de-
sign, coding, debugging, testing, reading, discussing, absent,
pausing, non-Plat Forms work and other. For some activ-
ities, details were recorded: what file the participant was
working on or what document he was reading and whether
the activity was performed alone or together with a partner.

The interviews were characterized with one of 21 labels,
such as “readtask”, “design”, “code”, “mantest”, “codeau-
totest”, “runautotest” and “debug”, resulting in 4656 data
points overall, one for each of the 97 interviews conducted
with each participant. The 97 interviews gave us a relatively
fine-grained and detailed insight into how much time each
participant spent with a certain type of activity.

The most interesting result is in the way the teams tested
the behavior of their implementations. Figure 4 shows that
an average Ruby team spent more time writing automated

tests than an average Java, Perl, and PHP team combined.
On the other hand, the average Java team spent more time
doing manual tests, i.e. manually testing the application in
a web browser, than the average Perl, PHP, and Ruby team
combined.

The high completeness of the Ruby teams’ solutions (in
comparison to teams on platforms that do not do less auto-
mated testing) also indicate that automated testing at least
did not negatively influence productivity. It is remarkable
also because automated testing is equally well supported
on all other platforms. There really seems to be a cultural
difference with regard to automated testing between Ruby
teams and teams from the other platforms.

m
ea

n 
nu

m
be

r o
f q

ue
st

io
ns

 a
sk

ed
0

5

10

15

Ja
va

Ja
va

S
cr

ip
t

Pe
rl

P
H

P

R
ub

y

Figure 5: Mean number of questions posted to the
on-site customer by platform. The bars indicate the
standard error of the mean.

The Ruby teams also behaved remarkably in another way.
During the contest, the participants were allowed to ask the
first author (acting as an on-site customer) questions regard-
ing the clarification of the requirements document. Figure
5 shows that the Ruby teams on average asked as many
questions as the average Java, Perl, and PHP team com-
bined. Note there is a correlation between number of ques-
tions asked and number of implemented requirements, so the
many questions from the Ruby teams could indicate a cul-
tural difference or reflect the additional questions that arise
when delving deeper into implementing the requirements or
some combination of both.

4.4 Size and Structure
From the source code and version archives turned in for

each solution, we built file lists and classified each file accord-
ing to its origin: manually written, generated, generated and
subsequently modified, reused, and reused and subsequently
modified. The teams were required to state the origin in the
header of each file they touched. In combination with data
from the version control systems we are confident that we
assessed the origin of almost all files accurately.

Additionally, we classified the files according to their role:
program code (server-side, client-side), binary files (e.g. im-
ages), templates, auxiliary files (such as build scripts), and
data files (such as configuration files or files with sample
data). External libraries that were included in the source
distribution and that have not been modified during the ex-
periment were ignored.

125



m
ea

n 
la

be
l c

ou
nt

0

5

10

15

20

25

30

m
an

te
st

co
de

au
to

te
st

ru
na

ut
ot

es
t

Java

m
an

te
st

co
de

au
to

te
st

ru
na

ut
ot

es
t

Perl

m
an

te
st

co
de

au
to

te
st

ru
na

ut
ot

es
t

PHP

m
an

te
st

co
de

au
to

te
st

ru
na

ut
ot

es
t

Ruby

Figure 4: Mean count for activities concerning testing, per platform. The red bar indicates the frequency
with which the interview determined manual testing, the blue bar indicates the frequency of writing an
automated test and the orange bar the frequency of running an automated test.

We were not able to identify systematic platform-specific
differences in the origin or role of the source files, with one
exception: The Ruby teams and the teams using frameworks
inspired by Ruby on Rails made extensive use of program
code generation.

o

o

o

oo

o

o

oo

o
oo

o

o

o

o

0 20 40 60 80 100 120 140

0
20

00
60

00
10

00
0

number of implemented requirements

to
ta

l S
LO

C
 o

f m
od

ifi
ed

 fi
le

s Java A

JavaScript B

Perl C

Java DJava E

PHP F

PHP G

Ruby HJava I

Perl J
Ruby KPHP L

PHP M

Ruby N

Perl O

Ruby P

Figure 6: Source lines of code per implemented re-
quirement. Includes files that were modified during
the experiment (i.e. manually written, generated
and subsequently modified, or reused and modified)
and that were classified as either program code, tem-
plate, or data files. The dashed line is a linear re-
gression line.

We were, however, able to find a difference in the compact-
ness of the solutions, as represented by the average number
of lines of code needed to implement one requirement. Fig-
ure 6 shows that the Perl and Ruby solutions were more
compact (i.e. required fewer lines of code per fully imple-
mented requirement) than the Java and PHP solutions. The
Java solutions tend to be bigger while the PHP solutions
don’t provide a clear picture with some being more compact
and others less.

5. RELATED WORK
There are many informal comparisons of web development

platforms which compare properties and programming styles
mainly theoretically. For example, a broad comparison of
Java- and Python-based frameworks can be found at [2]
and [8]. Only few of the comparisons involve actual pro-
gramming, and even if they do, they are different from the
Plat Forms setup in several aspects:

• They involve much less controlled conditions for the
production of the solutions. In particular, authors can
often put in an arbitrary amount of work during the
course of several weeks.

• They often focus on only a single evaluation criterion,
such as performance, length of the program code or
expected maintainability.

• Some are prepared by a single author only, which raises
the question whether we can assume that a similar level
of platform-specific skills was applied for each plat-
form.

Examples for such limited types of study are performance
contests like the Heise Database contest [4] which compare
only the performance aspect of the solutions and allow al-
most unlimited preparation time. Others are one-man shows

126



like Sean Kelly’s video [3] comparing specifically the develop-
ment process for a (rather trivial) application for Zope/Plone,
Django, TurboGears (all from the Python world), Ruby-on-
Rails, J2EE light (using Hibernate), and full-fledged J2EE
(with EJB). This comparison, while impressive, is neces-
sarily superficial and also visibly biased. The list could be
extended, but none of these studies have the ambition to
provide an evaluation that is scientifically sound, and few of
them even attempt to review many of the relevant criteria
at once.

An somewhat similar approach was used at Simula Labo-
ratories in Norway: They hired multiple professional teams
from different companies to perform the same complete cus-
tom software development project four times over [1]. Even
though their goal was to investigate the reproducibility of SE
projects, their setup is comparable to our setup for a single
platform, except for their variable project duration. Since
the systematically manipulated platform variable is missing,
the Simula study is framed as a comparative case study. As
a pronounced difference to Plat Forms, the Simula study did
not strive for the most similar teams, but rather picked four
rather different project bids with respect to cost and then
looked for predictable differences rather than for similarities.

The only work with which a direct results comparison is
useful is the previous instance of Plat Forms from 2007
[5, 6]. This execution used only three teams each per plat-
form (for three platforms: Java, Perl, PHP) and also found
some platform properties and many non-consistent prop-
erties. The 2011 setup incorporates two important learn-
ings from 2007: First, having only three teams per plat-
form makes the study vulnerable against individual, non-
platform-related problems with any one team. This issue hit
the 2007 Java results and we have hence opted for preferably
four teams per platform in 2011. Second, the 2007 process
observation was passive and could not discriminate enough
interesting activity types to obtain any process-related re-
sult worth speaking of. We have hence opted for the micro-
interviews in 2011 – with good success but also to the disgust
of some of our participants.

As for the actual results, the findings of 2007 are only
partially in line with those of 2011, which we will discuss in
the next section.

6. DISCUSSION AND CONCLUSION
The goal of this work was identifying emerging properties

of web development platforms, that is, characteristics that
are largely consistent within the platform, yet different from
other platforms. We have indeed found some of these:

• Ruby solutions tend to be compact (that is, have a
relatively small source code).

• The same is true of Perl solutions.

• Java solutions tend to have large source code.

• Ruby teams spend much work on testing and have a
strong preference for automated testing.

• Java teams also spend much work on testing, yet ex-
hibit a strong preference for manual testing.

• The Ruby teams were consistently highly productive.

• The Perl teams were consistently less productive.

The compactness results can be partially attributed to the
expressiveness of language and frameworks and partially may
represent cultural differences in design style and program-
ming style. The testing results are a fascinating cultural
difference. The productivity results are an impressive proof
of the Ruby platform’s qualities at least for this type of
small-scale, rapid-production project.

On the other hand, there are several lacks of platform
consistency as well:

• The productivity of the Java and the PHP teams was
rather non-uniform.

• The compactness of the PHP solutions was rather non-
uniform.

• The robustness results were rather non-uniform for all
platforms.

• The results are not fully in line with the results of the
2007 instance of Plat Forms . In particular, PHP had
then shown a very high and impressively consistent
level of productivity, which is in obvious contrast to
the 2011 results.

Our interpretation of these results is that the main pro-
gramming language may no longer be a good indicator of
platform: On all platforms (somewhat less for Ruby) there
is a growing multitude of different frameworks with quite
different characteristics in the last few years. On the other
hand, there are groups of such frameworks that share similar
ideas and approaches.

This may mean that similar frameworks in different lan-
guages provide more platform similarity than dissimilar frame-
works in the same language. A convincing sign that this may
be the case is the result of team PHP M: They use Symfony,
a PHP framework that borrows heavily from the concepts
of Ruby on Rails, and their productivity was much like that
of the Ruby teams and much unlike that of the other PHP
teams (which used different PHP frameworks).

This observation suggests it may be useful to perform the
analysis with a different grouping of the solutions, namely by
framework similarity rather than by main language. Unfor-
tunately, (a) framework similarity is a gradual rather than
a binary criterion and (b) it is unclear how to determine it
or even which dimensions are even relevant for it.

We intend to perform such framework classification and
re-analysis in the future. We will also perform a some-
what more sophisticated analysis of the security properties
of our solutions, targeting the OWASP Top-10 [7] vulnera-
bility types.

Acknowledgments
This work was possible only due to a grant from DFG. We
thank all Plat Forms participants for taking part in our
experiment. We thank our student helpers who did the
bulk evaluation work. For their financial support we thank
our co-organizer Open Source Business Foundation and our
sponsors Accenture, ICANS, and Microsoft.

7. REFERENCES
[1] Bente Anda, Dag I. K. Sjøberg, and Audris Mockus.

Variability and reproducibility in software engineering:
A study of four companies that developed the same

127



system. IEEE Trans. Software Eng., 35(3):407–429,
2009.

[2] Rick Grehan. Pillars of python: Six python web
frameworks compared, August 2011.
http://www.infoworld.com/d/application-
development/pillars-python-six-python-web-
frameworks-compared-169442.

[3] Sean Kelly. Better web app development. 2006. Video
on http://oodt.jpl.nasa.gov/better-web-app.mov, or on
http://vimeo.com/12650821.

[4] Michael Kunze and Hajo Schulz. Gute Nachbarschaft:
c’t lädt zum Datenbank-Contest ein. c’t, 20/2005:156,
2005. see also http://www.heise.de/ct/05/20/156/,
english translation on
http://firebird.sourceforge.net/connect/ct-
dbContest.html, overview on
http://www.heise.de/ct/dbcontest/ (all accessed
2007-05-01), results in issue 13/2006.

[5] Lutz Prechelt. Plat Forms 2007: The web development
platform comparison — evaluation and results.
Technical Report TR-B-07-10, Freie Universität Berlin,
Institut für Informatik, Germany, April 2007.
www.plat-forms.org.

[6] Lutz Prechelt. Plat Forms: A web development
platform comparison by an exploratory experiment
searching for emergent platform properties. IEEE
Transactions on Software Engineering, 37(1):95–108,
January/February 2011.

[7] J. Williams and D. Wichers. Owasp Top 10 – 2010.
OWASP Foundation, 2010.

[8] Kelby Zorgdrager. Choosing the right java web
development framework, July 2010.
http://olex.openlogic.com/wazi/2010/choosing-the-
right-java-web-development-framework.

128




