
() / /

Instruction Scheduling for TriMedia

Jan Hoogerbrugge hoogerb@natlab.research.philips.com

Lex Augusteijn lex@natlab.research.philips.com

Philips Research Laboratories, Prof. Holstlaan 4,

5656 AA Eindhoven, The Netherlands

Abstract

Instruction scheduling is a crucial phase in a compiler for very long instruction word (VLIW)
processors. This paper describes the instruction scheduler of the second generation compiler
for the TriMedia VLIW mediaprocessor family as well as related compiler issues to increase
the size of a scheduling unit. The paper discusses the guarded decision tree scheduling
unit, how guarded decision trees are scheduled, register allocation and its interaction with
instruction scheduling, issue slot assignment, and scheduling of jump operations. Further-
more, the paper presents several experiments that quantify various aspects of scheduling.

Keywords: Instruction scheduling, register allocation, VLIW, TriMedia

1. Introduction

TM1000 is the �rst member of Philips Semiconductors' TriMedia embedded mediaprocessor
family [1] originating from the LIFE research project during the late eighties [2, 3]. The
heart of TM1000 is a �ve-issue very long instruction word (VLIW) processor that contains
28 functional units and a central 128�32-bit register �le. Its operation set contains a large
number of operations to accelerate computationally intensive parts of multimedia applica-
tions. Examples are operations for MPEG motion estimation and frame reconstruction, and
DSP operations such as saturating addition and multiply-add. Around TM1000's VLIW
core are a large number of on-chip peripherals and co-processors to reduce system cost.
TM1000's peripherals include video in/out, audio in/out, PCI, a modem front-end, and a
variable length decoder for MPEG decoding.

An essential element for VLIW performance is the instruction scheduler of the com-
piler. The instruction scheduler is responsible for translating the sequential code produced
by the core compiler into VLIW instructions each containing independent operations that
are issued in parallel by the VLIW. This paper describes TriMedia's second generation in-
struction scheduler, a machine description based instruction scheduler that is capable of
generating code for a large variety of TriMedia family members, including TM1000. The
paper introduces guarded decision trees, an extension of the decision tree scheduling unit
proposed by Hsu and Davidson [4]. Furthermore, it describes how issue slot allocation takes
places as well as how register allocation is implemented and how it interacts with instruction
scheduling.

This paper is organized as follows. Section 2 describes the aspects of TM1000 that
are necessary to understand the remainder of the paper. Section 3 describes instruction
scheduling for TM1000 based on guarded decision trees. Section 4 describes how register
allocation is performed. Section 5 describes several measurements that quantify various
aspects of the scheduler. Section 6 concludes the paper.

const

alu

const

alu

const

alu

const

alu

const

alu

shifter

dspalu

falu

shifter

dspmul

branch

ifmul

ftough

dspalu

dspmul

branch

ifmul

fcomp

dmem dmem

branch

falu

dmemspec

128 x 32 bit register file

issue slot #1 issue slot #2 issue slot #3 issue slot #4 issue slot #5

Figure 1: Organization of the VLIW core of TM1000

Name Latency Issue slots Operations

const 1 1 2 3 4 5 iimm, uimm
alu 1 1 2 3 4 5 iadd, isub, igtr, igeq, bitand, bitor, ...
dmem 3 4 5 ild8d, uld8d, ld32d, st8d, st16d, st32d, ...
dmemspec 3 5 dcb, dinvalid, prefd, prefr, allocd, ...
shifter 1 1 2 asli, roli, asri, lsri, asl, rol, ...
dspalu 2 1 3 ume8ii, dspiadd, dspisub, dspidualadd, ...
dspmul 3 2 3 ifir16, ufir16, ifir8ii, dspidualmul, ...
branch 4 2 3 4 jmpf, jmpt, ijmpf, ijmpt, ...
falu 3 1 4 fadd, fsub, fabsval, ifloat, ifixrz, ...
ifmul 3 2 3 fmul, imul, umul, imulm, dspimul, dspumul, ...
fcomp 1 3 fgtr, fgeq, feql, fneq, fsign, ...
ftough 17 2 fdiv, fsqrt, fdivflags, fsqrtflags

Table 1: Functional units of TM1000. All FUs except ftough are fully pipelined.

2. TM1000 from a Scheduling Point of View

TM1000 contains 28 functional units (FUs). All multi-cycle latency FUs, except the FU
that performs oating point divisions and square roots, are fully pipelined. Each FU is
accessible from only one of the 5 issue slots. Up to 5 results per cycle can be written to
the central register �le of 128�32-bit registers. There are no restrictions on combinations
of FUs that may produce results simultaneously. Figure 1 shows the relation between FUs,
issue slots, the central register �le, and write-back busses. Table 1 lists the FUs together
with their properties.

2

TM1000 supports guarded or predicated execution to facilitate scheduling and to reduce
branches. The least signi�cant bit of a guard operand controls whether the operation will
be issued or suppressed. All 128 registers of the cental register �le can be used for guarding.

Two load/store FUs are present to access memory. Instead of a truly dual-ported data
cache, which would make it twice as expensive as a single-ported cache, the data cache
is banked into 8 banks [5]. Low order interleaving is used to map words on banks. Two
memory operations can access the data cache in parallel as long as they access di�erent
banks, i.e., bits 2{4 of their addresses are di�erent. When two memory operations access
the same bank simultaneously the processor stalls for one cycle to serialize the accesses.
The compiler can attempt to reduce bank conicts by not scheduling memory operations
in the same instruction that are likely or guaranteed to access the same bank.

In order to reduce code size and to improve instruction cache performance, instructions
are stored compressed in the instruction cache and main memory. Compression is achieved
by compact encoding of unused issue slots (nops), compact encoding of always true guards,
compact encoding of the most frequently used opcodes, and a few other techniques. Decom-
pression is part of the instruction pipeline which results in a jump latency of four cycles,
i.e., three jump delay instructions.

TM1000 has no interlocking. The scheduler has to guarantee that values are not used
before the operation that computes them has been completed. Only cache misses and data
cache bank conicts stall the processor.

3. Guarded Decision Tree Scheduling

Global instruction schedulers di�er mainly in the scheduling unit on which they operate.
Well-known scheduling units from literature are traces [6], superblocks [7], regions [8], and
decision trees [4, 9, 10]. All these scheduling units have in common that they are acyclic
control ow graphs of basic blocks and that they have a single header basic block from
which all other blocks within the scheduling unit are reachable. The two main di�erences
between the above mentioned scheduling units are:

1. whether they contain a single control ow path (traces and superblocks) or multiple
control ow paths (regions and decision trees) and

2. whether they contain join points, i.e., basic blocks other than the header basic block
with multiple predecessors (traces and regions), or not (superblocks and decision
trees).

When choosing a scheduling unit one has to make a trade-o� between performance and engi-
neering complexity. For the best performance one does not want to restrict to single control
ow path scheduling units without join points. However, from an engineering complexity
point of view, join points are hard to handle since complex bookkeeping is required when
operations are scheduled above a join point [11, 12]. It is not clear whether including join
points is worth the e�ort that could otherwise be spent on other aspects of the scheduler.

For the TriMedia scheduler we have chosen decision trees as the scheduling unit mainly
because it is a good trade-o� between performance and engineering complexity. To make
a better match with TriMedia's hardware capabilities, we extended decision trees with

3

tree : tree (execution count) tree body endtree

tree body : oper* jump oper
oper : value guard opcode modi�er value* constraints ;
guard : if value /* guarded operation */

j empty /* unguarded operation */
modi�er : (integer) /* modi�er (= literal) */

j empty /* no modi�er */
constraints : after value+ /* reorder constraints due to mem. dep. */

j empty /* no reorder constraints */
jump oper : gotree label /* absolute jump */

j cgoto value /* computed jump */
j if value (probability) then tree body else tree body end

Figure 2: Simpli�ed syntax of scheduler input

guarded execution. Arbitrary acyclic control ow graphs without side-entries can be trans-
formed into guarded decision trees prior to scheduling by the core compiler by means of
if-conversion [13]. This makes it possible to have scheduling units that originally had join
points. This extension is similar to hyperblocks [14], which are superblocks containing
guarded operations. The di�erence between hyperblocks and guarded decision trees is that
for hyperblocks the result of if-conversion should be a linear sequence of basic blocks with-
out side-entries while for guarded decision trees the result should be a tree of basic blocks
without side-entries. The latter is more general.

Earlier work on decision tree scheduling is described by Hsu and Davidson [4] and Baner-
jia, Havanki, and Conte [9] . Hsu and Davidson introduced decision tree scheduling for scalar
deeply-pipelined machines and describe the basic concepts, the scheduling priority function
(Section 3.2.2), and the grafting code replication technique to increase ILP (Section 3.1).
Banerjia, Havanki, and Conte describe decision tree scheduling for a VLIW and compares
it with basic block scheduling and superblock scheduling. Our contributions to decision
tree scheduling research include: integration with register allocation (Section 4), optimistic
jump scheduling (Section 3.5), and controlling register pressure (Section 4.4).

3.1 Guarded Decision Trees Format

Guarded decision trees are maximally tree-shaped control ow graphs of basic blocks, where
each basic block consists of a sequence of possibly guarded operations followed by a jump
operation. Figure 2 shows a syntax description of the input of the scheduler. Besides
the actual sequential code, the input contains execution counts obtained from pro�ling,
execution probabilities, and reordering constraints between memory references resulting
from alias analysis performed by the core compiler.

Values in Figure 2 should be interpreted as pseudo registers that have to be assigned
by the scheduler to physical registers. Guarded decision trees have to be in static single
assignment [15] form, meaning that each value should be de�ned by precisely one operation.

4

A

B C

D

E F

A

B C

D D’

E F

A

B C

D D’

E FE’

Figure 3: Grafting to improve ILP along path A! B ! D ! E

Pseudo phi operations are provided to merge values. For example, the following code
fragment merges values 10 and 14 and stores the result.

10 if 11 iadd 12 13; /* if value 11 is true then store */

14 if 15 isub 12 13; /* the result of the iadd operation */

16 phi 10 14; /* otherwise store the result of */

17 st32 18 16; /* the isub operation. */

Values that are merged by phi operations should be de�ned by operations that have
mutually exclusive guards. In the example above, values 11 and 15 should not both be true
during a tree invocation.

A phi operations merges two values. A tree of phi operations is used to merge more
than two values (merging n values requires n� 1 phi operations). Again, all guards of the
operations that de�ne the values being merged should be mutual exclusive.

In practice, decision trees are often too small to contain su�cient ILP, especially in
control intensive applications. A technique called grafting attempts to improve this. Graft-
ing removes join basic blocks (that lead to decision tree boundaries) by duplicating them.
Figure 3 illustrates grafting. Assume that control ow path A! B ! D ! E is the most
likely path. Initially this path is part of two decision trees, which prevents ILP exploita-
tion between A&B and D&E. Applying grafting twice by �rst duplicating D followed by
duplicating E leads to code in which the path is contained within one decision tree. Graft-
ing is performed by the core compiler after global optimization and is steered by pro�ling
information and code expansion consequences.

Grafting is the counterpart of tail duplication of superblock scheduling, which transforms
traces into superblocks by duplicating code below join points. Decision tree determination
is pro�le independent and grafting is controlled by pro�ling, while in the case of superblock
scheduling, trace selection is pro�le dependent and tail duplication is pro�le independent.
Making the code expanding transformation pro�le dependent makes code expansion better
controllable, which is very important for embedded processors like the TM1000.

Currently both if-conversion and guarding have to be enabled by the user by means of
command-line options. Automatically deciding what is most optimal in a certain situation
is not yet completely understood.

5

y = ...

x = FALSEx = TRUE

y = TRUE y = FALSE

x = ...

b = x.y
c = x.!y

y = ...

x = FALSEx = TRUE

y = TRUE y = FALSE

x = ...

(a)(x)

(b) (c)

(−)
a = !x.

Figure 4: Assigning guards to basic blocks. Assigned guards are shown between parenthe-
ses.

3.2 Preprocessing Steps

Before scheduling, a number of preprocessing steps are performed. The two most important
ones are discussed in the following two sections: assigning guards to basic blocks and as-
signing priorities to operations. Other preprocessing steps, which are not further discussed,
include the lay-out of the basic blocks (the most likely control ow path will become the
fall-through path to improve instruction cache locality) and the elimination of rdreg and
wrreg pseudo operations (see Section 4.1).

3.2.1 Assigning guards to basic blocks

Parallelism studies have shown that speculative execution is one of the most successful
e�ective techniques for exploiting ILP [16]. In the case of decision trees, speculative exe-
cution means moving operations up in the tree in the direction of the tree entry. For most
operations this can be done without any problems, but for certain operations this is only
possible if the operations are guarded such that their guard evaluates true if and only if
the basic block from which they were moved will be executed. Among these operations
are stores, jumps, operations that de�ne o�-live values [17], and operations that produce
exceptions, such as divide and oating point operations on the TM10001. Load operations
do not generate exceptions on TM1000 and can therefore be executed speculatively without
guarding.

To achieve speculative execution of the above mentioned operations, the scheduler as-
signs a guard to each basic block in the decision tree except the entry basic block. This
guard operation produces value true if and only if the basic block it guards will be exe-
cuted. Figure 4 illustrates this process. The decision tree is traversed in pre-order. When
a basic block B is visited, it assigns to each successor S of B a guard which computes the
conjunction of the guard of B and the condition under which S will be executed after B.
TriMedia's bitand and bitandinv operations are used for this purpose. The entry basic
block of the decision tree is handled di�erently since no guard will be assigned to it.

1. Normally these exceptions are disabled; whenever an application requires them they should be enabled

by a compiler switch that prohibits speculation of divides and oating point operations without proper

guarding.

6

3.2.2 Priority calculation

Like other schedulers based on list scheduling, decision tree scheduling prioritizes operations.
The priority of an operation reects the urgency that it should be scheduled whenever it
becomes ready for scheduling. The TriMedia scheduler uses the priority function proposed
by Hsu and Davidson [4]. For each path p from the decision tree entry to an exit point,
the minimal completion time mincompl(p) for an in�nite resource machine is determined.
This �gure is based on dependences and operation latencies. Furthermore, we determine
for each operation o on path p the latest cycle latest(o; p) in which it can be placed in order
to achieve mincompl(p). Scheduling priority is computed from latest and mincompl by:

priority(o) =
X

p2paths(o)

probability(p) � (1�
latest(o; p)

mincompl(p)
);

where paths(o) is the set of control ow paths through o and probability(p) is the expected
probability that p is executed whenever the decision tree is invoked. This probability is
based on pro�ling information if available; otherwise it is estimated.

3.3 Scheduling a Decision Tree

A decision tree is scheduled by scheduling all its basic blocks in pre-order order. A basic
block B is scheduled using a top-down2, operation-based3 list scheduling algorithm that
considers both operations from B as well as operations from descendants of B. When all
operations of B are scheduled, B's �xed ag is set to indicate that it is not allowed to
add empty instructions to B. When operations from descendants of B are selected for
scheduling in B and its �xed ag is set and it is not possible to schedule them in B, then
these operations are marked as failed and they are not selected for scheduling in B again.
Basic block B is scheduled when no more operations can be added to it. In that case the
failed ags are cleared and the scheduler proceeds with scheduling the successors of B.

Jump operations are treated very similar to non-jump operations. They can be sched-
uled into ancestor basic blocks. However, for simplicity, it is not allowed to reorder jump
operations. Thus they can be scheduled next to or in delay instructions of jump operations
in ancestor basic blocks, but not above them. To simplify interrupt handling in the presence
of multi-cycle latency operations and pipelined execution of jump operations, the TriMedia
operation set distinguishes interruptible jumps and non-interruptible jumps [18]. Interrupts
are only handled when interruptible jumps are taken. At that moment FU pipelines should
be empty and there should be no outstanding jumps. Therefore the TriMedia scheduler
uses non-interruptible jumps for decision tree internal jumps and interruptible for jumps
between decision trees.

2. A top-down scheduler schedules an operation when all its predecessors have been scheduled; a bottom-up

scheduler schedules an operation when all its successors have been scheduled. A top-down approach is

more `natural' in combination with global instruction scheduling.

3. An operation-based scheduler repeatedly selects an operation and places it in the earliest possible in-

struction in which resource and dependence constraints are satis�ed. A cycle-based scheduler repeatedly

�lls an instruction with operations and moves on to the next instruction when no more operations can be

added to it. An operation-based scheduler is likely to give better results for machines like the TM1000

in which operations need resources for multiple cycles.

7

Operation Issue slot

1

2

3

4

5

ld32d

ijmpf

ijmpt

st32d

asli

Operation Issue slot

1

2

3

4

5

ld32d

ijmpf

ijmpt

st32d

asli

(a) A matching problem (b) A solution

Figure 5: Issue slot assignment via bipartite graph matching

3.4 Scheduling an Operation

Scheduling an operation consists of �nding the earliest possible instruction where free re-
sources are available for it and incoming dependence constraints are satis�ed. For TriMedia
the scheduler has to check whether issue slot assignment is possible, whether su�cient
write-back busses are available, and whether so-called crossovers exist (see Section 3.4.3).
Furthermore, the scheduler could try to avoid data cache bank conict as much as possible
by not scheduling in one instruction two memory references that are guaranteed to access
the same bank.

3.4.1 Issue slot assignment

The problem of whether and how an issue slot assignment is possible when an operation
is placed in a certain instruction in which several operations have already been scheduled
is solved by translating it into a bipartite graph matching problem for which e�cient al-
gorithms are available [19]. This problem has to be solved for every attempt the scheduler
makes to schedule an operation in a certain instruction in which already a number of op-
erations could have been scheduled. Let o1 : : : on be the operations for which an issue slot
assignment has to be found and i1 : : : im the available issue slots. A bipartite graph (V;E)
is constructed where V = fo1 : : : on; i1 : : : img and (o; i) 2 E if and only if o can be issued
from issue slot i. A matching M is a subset of E such that no two edges of M are adjacent.
Clearly, a matching of cardinality n corresponds to an issue slot assignment.

Figure 5 illustrates issue slot assignment via bipartite graph matching. An issue slot
assignment for �ve operations, namely a load, two jumps, a shift, and a store operation, on
TM1000 has to be found. Figure 5a shows the bipartite graph for this problem. Figure 5b
shows a matching of cardinality 5 which corresponds to an issue slot assignment.

Multi-cycle latency non-pipelined FUs lead to complications since issue slot assignment
cannot be performed for each instruction in isolation of other instructions. The TriMedia
scheduler handles this situation by inspecting Lmax instructions preceding and following
the instruction i for which the issue assignment problem has to be solved, where Lmax

is the maximal FU latency. If these instructions contain operations scheduled on non-
pipelined FUs then these FUs are not available for issue slot assignment in instruction i.
Furthermore, for reasons of simplicity, the issue slot assignment of an operation scheduled on
a non-pipelined FU is no longer changed after it has been scheduled. Due to the infrequent
occurrence of operations executed on non-pipelined FUs, this limitation has no signi�cant
performance impact.

8

3.4.2 Checking write-back busses

To check whether su�cient write-back busses are available for scheduling an operation o in
instruction i, the scheduler counts the number of values that are produced in the cycle that
o completes. This is implemented by inspecting i and a number of instructions preceding
and following i and counting how many result producing operations complete in the same
cycle as o. The number of instructions that have to be inspected is bounded by Lmax.
Currently the scheduler does not take guarding into account while checking write-back bus
constraints. Experiments have shown that write-back busses are currently not a serious
performance constraint.

3.4.3 Checking for crossovers

A crossover is a situation where a misspeculated operation is in ight during a transition
from one decision tree A to another decision tree B and produces a result after the �rst
instruction executed in B. It is misspeculated in the sense that it was originally not on
the executed path leading to B. From decision tree B's point of view this results in an
unexpected write-back bus usage and a register write which could lead to incorrect code.
Therefore, crossovers are not allowed and the scheduler has to check for them when schedul-
ing an operation. When a crossover situation is detected the scheduler attempts to handle
it by proper guarding. If this is not possible then the operation will be delayed until an
instruction where proper guarding is possible or past the last delay instruction of the jump
targeting B.

Hardware support that suppresses operations in ight between decision tree transitions
could make the task of the scheduler easier. This support is not available in TM1000.
However, in practice, the performance impact of the crossover scheduling constraint is very
small, less than 0.5% for control intensive applications.

3.4.4 Avoiding bank conflicts

As mentioned in Section 2, the data cache of TM1000 is banked into 8 banks and low
order interleaving is used to determine the bank. Successive words (four bytes) are mapped
in successive banks (modulo 8). When two memory accesses scheduled in the same cycle
access the same bank the machine stalls for one cycle to serialize the accesses. This is
called a bank conict. The scheduler employs a simple technique to reduce bank conicts.
When a memory access is scheduled in an instruction in which already a memory access has
been scheduled, and both memory operations have a common base pointer and a constant
o�set, the scheduler is able to estimate the probability that a bank conict will occur during
execution of the instruction. Possible probabilities are: 0%, 25%, 50%, 75%, and 100%. In
the case of a probability of 25% or more, the two memory accesses are not scheduled in the
same instruction. A few examples of combinations of memory accesses and bank conict
probabilities are given below:

ld32d(0) r4 -> ...

ld32d(8) r4 -> ...

)
0% bank conict probability

ld32d(32) r4 -> ...

ld16d(64) r4 -> ...

)
100% bank conict probability

9

O O O O O

O O O O O

O O O O O

J

O O O O O

O O O O O

O O O O O

J

O O O O

O O O O O

O O O O O

J

O

(a) Dependence graph (b) Naive jump scheduling (c) Optimistic jump scheduling

N N N N N

N N N N

N N N N N

N N N N N

N N N N

Figure 6: Scheduling jump operations. O: a non-jump, J : a jump, N : a nop.

ld8d(0) r4 -> ...

ld8d(3) r4 -> ...

)
25% bank conict probability

Notice that the operation name indicates the data size in bits and o�sets in bytes
are speci�ed between parentheses. Furthermore, n byte data should be n byte aligned in
memory.

3.5 Scheduling Jump Operations

A non-backtracking list scheduler can schedule jumps when all operations that should be
completed before the jump takes place are scheduled. This leads to dependences between
non-jump operations O and jump operations J with delay LO�LJ , where LO is the latency
of O and LJ is the latency of J . For TM1000 this often leads to negative dependence delays,
which are not handled well by list scheduling. This is illustrated in Figure 6. Figure 6a
shows a relatively parallel basic block of 15 operations O followed by a jump J . Assume
that J has four cycles latency (like TM1000) and the Os have single cycle latency. The
dependences between the Os and J with delay -3 result in a schedule as shown in Figure 6b
when a �ve issue uniform machine is assumed. Clearly, the delay slots of J are not �lled. To
obtain a schedule as shown in Figure 6c, the TriMedia scheduler does not make J dependent
on the Os and schedules J optimistically. Whenever it turns out that J was scheduled too
early, the scheduler unschedules J as well as all operations scheduled after J . To do this,
the scheduler time-stamps each operation and instruction when it is scheduled or created
respectively. To unschedule a jump operation J , the scheduler unschedules all operations
with a time stamp newer than J 's time stamp and deletes all instructions with a time stamp
newer than J 's. To prevent J from being scheduled in the same cycle again, the scheduler
records that J should be scheduled in a later cycle.

To reduce the amount of rescheduling and therefore compilation time, a lower bound
on the cycle in which a jump operation will be scheduled is computed. No jump will be
scheduled before this bound since this will lead inevitable to rescheduling. The lower bound
is based on resources and dependences of code that should complete before the jump takes
place. With this bound the average number of times an operation is unscheduled is 0.36
times. This is measured with the benchmarks used in Section 5 with grafting enabled.

10

4. Integrated Register Allocation

The combination of instruction scheduling and register allocation is a well-known phase
ordering problem. Performing register allocation before scheduling is likely to introduce
false dependences that restrict scheduling freedom; performing scheduling before register
allocation may lead to situations where the scheduler schedules too aggressively which
results in a register pressure that cannot be handled without severe spilling by the register
allocator. From a performance point of view the best solution is to combine scheduling
and register allocation. However, from an engineering point of view it is better to handle
the tasks in separate modules. In the TriMedia compiler we have made a compromise on
the basis of which we get most of the performance bene�t from integrated scheduling and
register allocation with only modest additional engineering e�ort.

4.1 Work division between core compiler and scheduler

The TriMedia compiler divides live ranges into local and global live ranges. Local live
ranges do not pass decision tree boundaries, while global live ranges do. Furthermore, by
convention, the register �le is divided into local and global registers. Global live ranges are
assigned by the core compiler to global registers using a graph-coloring-based algorithm.
Local live ranges are assigned to local registers by the scheduler while it is scheduling. The
motivation for this work division is that the scheduler is not able to reorder global live ranges
and therefore global live ranges can be allocated prior to scheduling without performance
problems. Local live ranges, on the other hand, are likely to be reordered by the scheduler
and are relatively easy to allocate while scheduling.

Access to global registers at the intermediate representation which is exchanged between
core compiler and scheduler takes place via rdreg and wrreg pseudo operations. For exam-
ple, consider the following decision tree, which corresponds to a function that returns the
sum of its two arguments:

tree (10)

1 rdreg(5); /* read global r5, function arg. #1 */

2 rdreg(6); /* read global r6, function arg. #2 */

3 iadd 1 2;

4 wrreg(5), 3; /* write global r5, function result */

5 rdreg(2); /* read global r2, return address */

6 cgoto 5

endtree

Prior to scheduling, the scheduler eliminates nearly all rdreg and wrreg pseudo opera-
tions by letting (real) operations access the global registers directly. The remaining oper-
ations are implemented by copy operations. The reason for not eliminating all rdreg and
wrreg pseudo operations is that doing this might introduce false dependences. Therefore,
the scheduler can trade o� resource usage for scheduling freedom. Consider the following
code:

...

1 rdreg(5);

2 iaddi(1) 1;

...

11

7 isubi(1) 6;

8 wrreg(5) 7 after 1;

...

Eliminating the rdreg and wrreg by letting operation 2 read directly from global register
r5 and letting operation 7 write directly to r5 will create an anti-dependence between
operations 2 and 7. This can limit the scheduling freedom of them as well as that of
operations that are related to them, e.g., operations that use value 7. To make the trade-o�
between scheduling freedom and resource usage, the TriMedia scheduler makes use of the
early value of an operation. This is the earliest cycle in which an operation can be scheduled
on an in�nite resource machine. The heuristic used for the trade-o� is that early values may
not be increased by false dependences. This heuristic tries to retain scheduling freedom as
much as possible.

4.2 Integrated local register allocation

The static single assignment form of local live ranges greatly simpli�es integrated local reg-
ister allocation. All live ranges are tree-shaped and de�nitions are scheduled before usages
are scheduled. The scheduler performs integrated local register allocation by assigning a
local register to a value produced by an operation at the moment the operation is sched-
uled. To do this the scheduler maintains the set of registers that are in use during each
instruction and the registers that are in use on the boundary between the scheduled part of
a basic block and the not yet scheduled part. The latter is used to initialize register usage
information for newly created instructions.

4.3 Register allocation in the presence of phi operations

Phi operations are used to create static single assignment in the presence of guarded op-
erations. Single assignment simpli�es the register allocator as well as other components of
the scheduler. The scheduler treats phi operations as normal operations except for the fact
that they do not consume resources and have zero cycle latency. Furthermore, the register
allocator must arrange that both source values and result value are assigned to the same
local register. The register allocator does this by checking whether a value de�ned by a
non-phi operation is used by a phi operation and if so whether one of the values that it
is merged with has already been assigned to a local register. If the same local register is
assigned. In case a value is de�ned by a phi operation, the register allocator assigns the
same register to it as the source values are assigned to.

Live ranges of values pass through phi operations. Therefore, if a register de�ned by
operation o1 is used by phi operation o2 and o2 de�nes a register that is used by operation
o3, then the register de�ned by o1 is live (in use) between o1 and o3.

Currently register allocation is not guard-aware which potentially results in more e�cient
register allocation [20]. Register allocation is seldom a problem for TM1000 in control
intensive code where if-conversion is applied. This unlike tuned multimedia kernels which
are usually not control intensive. Furthermore, in order to improve scheduling freedom and
reduce code size, guarding is only applied in situation where global state is a�ected or values
are merged. Therefore, de�nition points of overlapping mutual exclusive live ranges do not
have to be guarded which would be necessary to allocated them to the same register.

12

4.4 Controlling register pressure

Although TM1000 has 128 general purpose registers, which is much more than contem-
porary RISC architectures, registers are a precious resource in tuned key components of
multimedia applications like 2 dimensional IDCTs (inverse discrete cosine transforms). To
tune applications for TriMedia, application programmers use restrict pointers to aid alias
analysis and replace small arrays (usually 8 � 8 in the case of video algorithms) by scalar
variables which will be allocated to registers. The TriMedia scheduler has two mechanisms
to deal with code where plain list scheduling is creating too much register pressure such
that the register allocator has to spill heavily: dynamic scheduling priority and scheduling
oaters as late as possible. In the following we will describe the two mechanisms used by
the TriMedia scheduler to deal with register pressure.

4.4.1 Dynamic scheduling priority

The �rst mechanism is to keep track of the fraction of registers that are in use in the last
instruction I of the currently scheduled basic block. When this fraction exceeds 75% (an
empirically determined value), then an extra component is added to the priority function
described in Section 3.2.2. This component equals the increase of registers that would be
available in I if the operation where selected for scheduling. The e�ect of this priority
component is that extra priority will be given to operations that decrease register pressure
and less priority to operations that worsen it.

4.4.2 Scheduling floaters as late as possible

The second mechanism to keep register pressure under control involves the notion of oater
operations. Floaters are operations that have either no predecessors in the data dependence
graph of the decision tree or at most one predecessor that is also a oater4. Furthermore,
results of oaters are used only once. These operations are called oaters because they
tend to oat to the top of the decision tree when a list scheduler schedules them as-soon-
as-possible. Figure 7a shows a dependence graph in which oaters are marked. Scheduling
the code without treating oaters specially leads to a schedule as shown in Figure 7b;
all oaters are scheduled in the �rst two instructions. This schedule needs 5 registers. A
schedule using 3 registers as shown in Figure 7c is possible by scheduling oaters di�erently.
In the TriMedia scheduler this is realized as follows. First, oaters are not in the ready
list and are therefore not selected for scheduling. When a non-oater is scheduled, its
preceding oaters, if any, are scheduled as close as possible before it, i.e., as late as possible.
Whenever this is not possible, because the oater reached the �rst cycle of the decision
tree or no register is available for the result of the oater, the non-oater is delayed by
one cycle. This is repeated until the non-oater and all its preceding oaters are scheduled.
Although the reduction from 5 to 3 may seem small in this example, this technique can have
signi�cant impact on highly parallel decision trees of hundreds or thousands of operations,
amounts which are not unusual in tuned multimedia applications. For example, a tuned
8� 8 DCT function, including memory access functions, takes 830 operations on TM1000.

4. The restriction of one predecessor simpli�es the implementation. The concept could be generalized.

13

F F

O

O

O

O

F

F F

F F

F

1 2 3

4 5 6

7 8 9

10 11

12

F1 F2 F3

O4 F5

F6

O7

F8

F9

O10

F11

O12

F1 F2 F3

O4 F5 F6

O7 F8 F9

O10 F11

O12

(a) Data dependence graph (b) Scheduling w/o floaters (c) Scheduling with floaters

Figure 7: Data dependence graph and schedules to illustrate oaters. Ox are non-oaters,
Fx are oaters.

4.5 Spilling

When it turns out that there is no free register available for an operation o scheduled in
instruction i of basic block b, the scheduler has to decide whether to spill a register to
memory or not to schedule o in i but in a later instruction. The following decisions are
made by the scheduler. First, speculatively executed operations should not cause spilling.
These operations are scheduled in an instruction after i or not in b at all. Second, if there
is no register available for scheduling o in i but su�cient registers are available at the end
of b, then scheduling of o will be delayed until an instruction after i in which a free register
is available. If neither is the case, a register is selected as de�ned by an operation scheduled
before i. This register should have a live range such that when spilled to memory a free
register becomes available for o in an instruction after i. Selection is based on the number
of reload operations that have to be generated. Currently, only local live ranges are selected
for spilling to memory.

Because decision trees of the TriMedia compiler do not contain function calls, it is possi-
ble to spill registers to static memory; this simpli�es spilling. To spill and reload a register,
the scheduler generates a store at the de�nition point, and loads for each consumer of the
register which has not yet been scheduled. Each load and store has an associated uimm

operation that loads the static memory address which is used for spilling. Since a register is
required between the uimm operation and the actual spill and reload operations, four regis-
ters are reserved for operations that are related to spilling. Furthermore, dependences with
negative delays are introduced such that operations that use spilled values can be sched-
uled directly after associated reload operations are scheduled and are not keeping reserved
registers occupied. The uimm operations are oater operations. All these precautions are
necessary to prevent that the scheduler might get stuck during spilling.

14

SPECint92 SPECint95 Proprietary

008.espresso (1) 099.go (7) h261-encoder (11)
022.li (2) 124.m88ksim (8) line (12)
023.eqntott (3) 132.ijpeg (9) line3d (13)
026.compress (4) 134.perl (10) md5 (14)
072.sc (5) pharos (15)
085.gcc (6) mpeg-audio-dec (16)

mpeg-video-dec (17)
tristrip (18)

Table 2: Benchmarks used for evaluation. The numbers shown between parentheses are
used to refer to them.

5. Experiments

In this section we report on experiments that measure various aspects of instruction schedul-
ing. TM1000 as described in Section 2 and the TM1000 data book [18] is used as target.
TM1000's instruction and data caches are 32K byte and 16K byte respectively. Both caches
are 8-way set-associative, and have 64 byte cache lines, a 30 cycle miss penalty, and hierar-
chical LRU replacement policy. The data cache is copyback and allocate on write.

As benchmark set we used 6 benchmarks of SPECint92, 4 benchmarks of SPECint95,
and 8 proprietary benchmarks as listed in Table 2. Of the proprietary benchmarks h261-
encoder and mpeg-video-dec are compressed video decoders, line, line3d, and tristrip are
graphic benchmarks, md5 is a description benchmark, pharos is a PostScript interpreter,
and mpeg-audio-dec is compressed audio decoder. Most of the proprietary benchmarks are
tuned for the TriMedia architecture by means of restrict pointers and usage of multimedia
operations. For all experiments we used pro�ling and loop unrolling. Performance was
measured by a cycle true simulator of TM1000. With the exception of the experiment
described in Section 5.1, all measurements described in this paper are for �ve issue slots.

5.1 Speedup curves

First we were interested in measuring how the compiler is able to exploit the parallelism
o�ered by the hardware. We did this by restricting the number of operations that can be
issued per instruction. We varied this number from one to �ve5. In the case of one operation
per instruction, the machine corresponds to a scalar RISC machine except that its latencies
are somewhat larger (the dynamic average latency varies for the benchmarks between 1.21
for line and 1.91 for h261-encoder). In the case of �ve operations per instruction the machine
corresponds to TM1000.

Figure 8 shows the results for the 18 benchmarks when grafting was enabled. There
are several reasons why performance does not scale linearly with the issue-rate. (1) The

5. Currently we are unable to experiment with con�gurations of more than �ve issue slots because the

instruction format is currently �xed for �ve issue slots.

15

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Benchmark number

Spe
edu

p

Figure 8: Speedup for di�erent issue widths relative to single issue. The �ve bars per
benchmark correspond to one to �ve issue slots. The �rst 6 benchmarks are
from SPECint92, the next 4 are from SPECint95, and the last 8 are proprietary
benchmarks. The proprietary, multimedia, benchmarks have more exploitable
parallelism than the SPECint benchmarks.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Benchmark number

Tim
e d

istr
ibu

tion

Dcache stalls
Icache stalls
Computation

Figure 9: Fraction of time spent on cache stalls. Especially gcc (6) and go (7) spent a lot
of their execution time on instruction cache stalls.

16

amount of ILP in non-scienti�c applications is limited [16], and even more so when it has
to be scheduled statically. (2) A �ve issue machine is not �ve times as powerful as a single
issue machine since many resources are not duplicated �ve times, e.g., data cache ports.
(3) The time spent on cache misses remains the same and can easily become longer when
code is executed speculatively. To illustrate the time spent on cache misses, Figure 9 shows
how the execution time is decomposed in computation time and time needed for instruction
and data cache misses. Benchmarks such as go and gcc experience many instruction cache
misses and are therefore improving little from ILP exploitation.

5.2 Multi-path parallelization

In order to measure the gain of multi-path parallelization, we scheduled the benchmarks
such that operations are only speculated across the most likely branch directions. This was
intended to give an indication of how (guarded) decision trees compare to superblocks and
hyperblocks. The experiment was performed with grafting enabled, which corresponds to
some extent to tail duplication as explained in Section 3.1. Figure 10 shows the results.
The average bene�t on performance of multi-path parallelization is 13.4%. Most of the
improvement comes from eqntott. Its well known cmppt function, which is responsible for
most of the computation time, contains a loop with a few conditionals that are not clearly
biased to one direction. This kind of code bene�ts greatly from multi-path parallelization.

There are two cases in the benchmark set where multi-path parallelization results in
slightly lower performance, namely mpeg-audio-dec and tristrip. In both cases the instruc-
tion count is very similar but the miss rates for multi-path parallelization of both the
instruction and data cache are slightly higher. This is a well-known phenomenon; more ag-
gressive compilation can lead to more executed operations and data cache accesses, which
can result in more instruction and data cache stall cycles than saved computation cycles.

5.3 Grafting and if-conversion

Grafting and if-conversion both aim at the same goal: creating larger decision trees. Graft-
ing has the disadvantage that it increases code size and it puts more pressure on the instruc-
tion cache. If-conversion, on the other hand, does not have this problem, though additional
operations are generated to make if-conversion possible, but it has its own limitations.
Applying if-conversion too aggressively leads to the situation where frequently executed
code competes for resources with less frequently executed code, or the situation where less
frequently executed code determines the critical path length [21].

Figures 11 and 12 show the results of grafting and if-conversion respectively. Clearly,
grafting has more e�ect on performance than if-conversion. Grafting improves performance
by 24.4% on average and if-conversion improves performance by 9.0%. Both grafting and
if-conversion have cases where performance deteriorates. In the case of grafting this occurs
when the instruction cache cannot handle the increased code size, e.g., go. If-conversion
shows some performance degradation when early in the compilation process the heuristics
that determine what to if-convert make wrong decisions.

17

0.5

0.75

1

1.25

1.5

1.75

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Benchmark number

Spe
edu

p d
ue

to m
ulti

-pa
th p

ar.

Figure 10: Speedup of multi-path parallelization (decision tree) over single-path paralleliza-
tion (superblock). Eqntott (3), go (7), and m88ksim (8) show most improvement.
The average improvement is 13.4%.

0.5

0.75

1

1.25

1.5

1.75

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Benchmark number

Spe
edu

p d
ue

to g
raft

ing

Figure 11: Speedup due to grafting. In general grafting is very e�ective unless the extra
code leads to too much instruction cache pressure. This is happening in case of
go (7). The average improvement is 24.4%.

18

0.5

0.75

1

1.25

1.5

1.75

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Benchmark number

Spe
edu

p d
ue

to i
f-co

nve
rsio

n

Figure 12: Speedup due to if-conversion. If-conversion is clearly less e�ective than graft-
ing, but because substantially less code expansion is required it is a valuable
technique. The average improvement is 9.0%.

6. Conclusions

Developing a production quality instruction scheduler is in some sense a knapsack problem.
The developer has a number of design options at his disposal, each with certain engineering
cost and performance impact estimations. He has to maximize performance given certain
engineering costs.

For TriMedia's second generation instruction scheduler we made the following design
choices: guarded decision tree scheduling unit, integrated register allocation and instruction
scheduling with two mechanisms to deal with code where plain greedy list scheduling would
cause severe spilling, optimistic scheduling of jump operations, and issue slot assignment
by means of bipartite graph matching.

The described instruction scheduler will be shipped together with a new core compiler
for C and C++ in beta release to TriMedia customers in 1998.

References

[1] G. A. Slavenburg, S. Rathnam, and H. Dijkstra, \The TriMedia TM-1 PCI VLIW
Mediaprocessor," in Hot Chips 8, (Stanford, California), Aug. 1996.

[2] J. Labrousse and G. A. Slavenburg, \CREATE-LIFE: A Modular Design Approach for
High Performances ASIC's," in Proceedings of COMPCON '90, 1990.

[3] J. Labrousse and G. A. Slavenburg, \A 50MHz Microprocessor with a Very Long
Instruction Word Architecture," in Proceedings of ISSCC '90, Feb. 1990.

19

[4] P. Y. T. Hsu and E. S. Davidson, \Highly Concurrent Scalar Processing," in Proceedings
of the 13th Annual International Symposium on Computer Architecture, pp. 386{395,
June 1986.

[5] G. Sohi and M. Franklin, \High-Bandwidth Data Memory Systems for Superscalar
Processors," in Proceedings of the Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, (Santa Clara, California),
pp. 53{62, 1991.

[6] J. A. Fisher, \Trace Scheduling: A Technique for Global Microcode Compaction,"
IEEE Transactions on Computers, vol. C-30, pp. 478{490, July 1981.

[7] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann,
R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lavery,
\The Superblock: An E�ective Technique for VLIW and Superscalar Compilation,"
The Journal of Supercomputing, vol. 7, pp. 229{249, May 1993.

[8] D. Bernstein and M. Rodey, \Global Instruction Scheduling for Superscalar Machines,"
in Proceedings of the SIGPLAN '91 Conference on Programming Language Design and
Implementation, pp. 241{255, June 1991.

[9] S. Banerjia, W. A. Havanki, and T. M. Conte, \Treegion Scheduling for Highly Parallel
Processors," in Proceedings of the 3rd International Euro-Par Conference (Euro-Par
'97), (Passau, Germany), pp. 1074{1078, Aug. 1997.

[10] W. A. Havanki, S. Banerjia, and T. M. Conte, \Treegion Scheduling for Wide Issue
Processors," in Proceedings of the 4th International Symposium on High-Performance
Computer Architecture (HPCA-4), (Las Vegas), Feb. 1998.

[11] J. A. Fisher, \Global Code Generation for Instruction-Level Parallelism: Trace
Scheduling-2," Tech. Rep. HPL-93-43, Hewlett Packard Computer Systems Labora-
tory, Palo Alto, CA, June 1993.

[12] P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichtenstein, R. P. Nix, J. S.
O'Donnell, and J. C. Ruttenberg, \The Multiow Trace Scheduling Compiler," The
Journal of Supercomputing, vol. 7, pp. 51{142, May 1993.

[13] J. R. Allen, K. Kennedy, C. Porter�eld, and J. D. Warren, \Conversion of Control
Dependence to Data Dependence," in Proceedings of the 10th ACM Symposium on
Principles of Programming Languages, pp. 177{189, Jan. 1983.

[14] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann, \E�ective
Compiler Support for Predicated Execution Using the Hyperblock," in Proceedings of
the 25th Annual International Workshop on Microprogramming, (Portland, Oregon),
pp. 45{54, Dec. 1992.

[15] R. Cryton, J. Ferrante, B. K. Rosen, and M. N. Wegman, \An E�cient Method
of Computing Static Single Assignment Form," in Proceedings of the 16th ACM
SIGACT/SIGPLAN Symposium on Principles of Programming Languages, (Austin,
Texas), pp. 23{25, Jan. 1989.

20

[16] D. W. Wall, \Limits of Instruction-Level Parallelism," in Proceedings of the 4th Interna-
tional Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 176{188, Apr. 1991.

[17] J. R. Ellis, Bulldog: A Compiler for VLIW Architectures. ACM Doctoral Dissertation
Awards, Cambridge, Massachusetts: MIT Press, 1986.

[18] G. A. Slavenburg, TM1000 Databook. TriMedia Division, Philips Semiconduc-
tors, TriMedia Product Group, 811 E. Arques Avenue, Sunnyvale, CA 94088,
www.trimedia.philips.com, 1997.

[19] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, 1993.

[20] D. M. Gillies, D. R. Ju, R. Johnson, and M. Schlansker, \Global Predicate Analysis and
its Application to Register Allocation," in Proceedings of the 29th Annual International
Workshop on Microprogramming, (Paris, France), pp. 114{125, Nov. 1996.

[21] D. I. August, W. W. Hwu, and S. A. Mahlke, \A Framework for Balancing Control
Flow and Predication," in Proceedings of the 30th Annual International Symposium on
Microprogramming, (Research Triangle Park, North Carolina), pp. 92{103, Nov. 1997.

21

