
AN ACCURATE EVALUATION OFMAURER'S UNIVERSAL TESTJean-S�ebastien Coron David NaccacheEcole Normale Sup�erieure Gemplus Card International45 rue d'Ulm 34 rue GuynemerParis, F-75230, France Issy-les-Moulineaux, F-92447, Francecoron@clipper.ens.fr naccache@compuserve.comAbstract. Maurer's universal test is a very common randomness test,capable of detecting a wide gamut of statistical defects. The algorithmis simple (a few Java code lines), 
exible (a variety of parameter combi-nations can be chosen by the tester) and fast.Although the test is based on sound probabilistic grounds, one of itscrucial parts uses the heuristic approximation :c(L;K) �= 0:7� 0:8L + �1:6 + 12:8L �K�4=LIn this work we compute the precise value of c(L;K) and show that theinaccuracy due to the heuristic estimate can make the test 2.67 timesmore permissive than what is theoretically admitted.Moreover, we establish a new asymptotic relation between the test pa-rameter and the source's entropy.1 IntroductionIn statistics, randomness refers to these situations where care is taken to see thateach individual has the same chance of being included in the sample group. Inpractice, random sampling is not easy : being after a random sample of people,it's not good enough to stand on a street corner and select every �fth personwho passes as this would exclude habitual motorists from the sample; call on 50homes in di�erent areas, and you may end up with only housewives' opinions,their husbands being at work; pin a set of names from a telephone directory, andyou exclude in limine those who do not have a telephone.Whilst the use of random samples proves helpful in literally thousands of�elds, non-random sampling is fatally disastrous in cryptography. Assessing therandomness of noisy sources is therefore crucial and a variety of tests for doingso exists. Interestingly, most if not all such tests are designed around a commonskeleton, called the monkey paradigm. Informally, the idea consists in measuringthe expectation at which a monkey playing with a typewriter would create ameaningful text. Although one can easily conclude that a complex text (e.g. theIACR's bylaws) has a negligible monkey probability, a simple word such as cat



is expected to appear more frequently (each �= 17; 576 keystrokes) and could beused as a basic (yet very insu�cient) randomness test.However, analyzing textual features is much more e�cient than pattern-scanning where inter-pattern information is wasted without being re-cycled forderiving additional monkeyness evidence.Usually, parameters such as the average inter-symbol distance or the lengthof sequences containing the complete alphabet are measured in a sample and aparameter is calculated from the di�erence between the measure and its corre-sponding expectation when a monkey, theorized as a binary symmetric source(BSS), is given control over the keyboard. A BSS is a random source whichoutputs statistically independent and symmetrically distributed binary randomvariables. Based on the expected distribution of the BSS' parameter, the testsucceeds or fails.We refer the reader to [2, 4] for a systematic treatment of randomness testsand focus the following sections on a particular test, suggested by Maurer in [5].2 Maurer's universal testMaurer's universal test [5] takes as input three integers fL;Q;Kg and a (Q +K)� L = N -bit sample sN = [s1; : : : ; sN ] generated by the tested source.Let B denote the set f0,1g. Denoting by bn(sN ) = [sL(n�1)+1; : : : ; sLn] then-th L-bit block of sN , the test function fTU : BN ! IR is de�ned by :fTU (sN ) = 1K Q+KXn=Q+1 log2An(sN ) (1)where,An(sN ) = 8<: n if 8i < n; bn�i(sN ) 6= bn(sN )minfi : i � 1; bn(sN ) = bn�i(sN )g otherwise.To tune the test's rejection rate, one must �rst know the distribution offTU (RN ), where RN denotes a sequence of N bits emitted by a BSS. A samplewould then be rejected if the number of standard deviations separating its fTUfrom E[fTU (RN )] exceeds a reasonable constant1.For statistically independent random variables the variance of a sum is thesum of variances but the An-terms in (1) are heavily inter-dependent; conse-quently, [5] introduces a corrective factor c(L;K) by which the standard devi-ation of fTU is reduced compared to what it would have been if the An-termswere independent :1 the precise value of E[fTU (RN )] is computed in [5] and recalled in section 3.3.



Var[fTU (RN )] = �2 = c(L;K)2 � Var[log2An(RN)]K (2)A heuristic estimate of c(L;K) is given for practical purposes in [5] :c(L;K) �= c0(L;K) = 0:7� 0:8L +�1:6 + 12:8L �K�4=LIn the next section we compute the precise value of c(L;K), under the ad-missible assumption that Q!1 (in practice, Q should be larger than 10�2L);this enables a much better tuning of the test's rejection rate (according to [5]the precise computation of c(L;K) should have required a considerable if notprohibitive computing e�ort).3 An accurate expression of c(L;K)3.1 Preliminary computationsFor any set of random variables, we have :Var[ nXi=1 Xi] = nXi=1 Var[Xi] + 2 X1�i<j�nCov[Xi; Xj ] (3)where Cov[Xi; Xj ] is the covariance of Xi and Xj :Cov[X1; X2] = E[X1X2]� E[X1]�E[X2] (4)Throughout this paper the notation ai = log2Ai will be extensively usedand, unless speci�ed otherwise, Ai will stand for Ai(RN ).Formulae (1), (2) and (3) yield :c(L;K)2 = 1 + 2K �Var[an] X1�i<j�K Cov[aQ+i; aQ+j ]Assuming that Q! 1 (in practice, Q > 10� 2L), the covariance of ai andaj is only a function of k = j � i and by the change of variables k = j � i weget : c(L;K)2 = 1 + 2Var[an] � K�1Xk=1 (1� kK )�Cov[an; an+k] (5)whereas (4) yields :Cov[an; an+k] = Xi; j�1 log2 i log2 j Pr[An+k = j; An = i] �E[an]2 (6)



Considering a source emitting the random variables UN = U1; U2; : : : ; UN ,and letting bn = bn(UN ), we get :Pr[An(UN ) = i] = Xb2BL Pr[bn = b; bn�1 6= b; : : : ; bn�i+1 6= b; bn�i = b]and, when the bn(UN )-blocks are statistically independent and uniformlydistributed,Pr[An(UN ) = i] = Xb2BL Pr[bn = b]2 � (1� Pr[bn = b])i�1For a BSS we thus have :Pr[An = i] = 2�L(1� 2�L)i�1 for i � 13.2 Expression of Pr[An+k = j;An = i]Deriving the BSS' Pr[An+k = j; An = i] for a �xed i � 1 and variable j � 1is somewhat more technical and requires the separate analysis of �ve distinctcases :� Disjoint blocks 1 � j � k � 1
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n+k-j n+kFig. 1. disjoint sequences.When 1 � j � k � 1, the events hAn+k = ji and hAn = ii are indepen-dent, as there is no overlap between [bn+k�j : : : bn+k] and [bn�i : : : bn] (�gure 1);consequently, Pr[An+k = j; An = i] = Pr[An+k = j]� Pr[An = i]Pr[An+k = j; An = i] = 2�2L(1� 2�L)i+j�2� Adjacent blocks j = kLetting b = bn+k = bn = bn�i and letting Ej=k [b] be the event (�gure 2) :
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n+knn-i

b b bFig. 2. adjacent sequences.Ej=k [b] = Pr[Ej=k [b]] =fbn+k = b; Pr[bn+k = b]�bn+k�1 6= b; : : : ; bn+1 6= b; Pr[bn+k�1 6= b; : : : ; bn+1 6= b]�bn = b; ) Pr[bn = b]�bn�1 6= b; : : : ; bn�i+1 6= b; Pr[bn�1 6= b; : : : ; bn�i+1 6= b]�bn�i = bg Pr[bn�i = b]we get,Pr[Ej=k[b]] = Pr[bn = b]3 � Pr[bn 6= b]k+i�2 = 2�3L(1� 2�L)k+i�2Pr[An+k = k;An = i] = Xb2BLPr[Ej=k [b]]Pr[An+k = k;An = i] = 2�2L(1� 2�L)i+k�2� Intersecting blocks k + 1 � j � k + i� 1
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n+knn-i n+k-j

b bb’ b’Fig. 3. intersecting sequences.For k+1 � j � k+i�1, the sequence [bn+k�j : : : bn+k] intersects [bn�i : : : bn]as illustrated in �gure 3. Letting b = bn+k = bn+k�j and b0 = bn = bn�i, we getthe following con�guration, denoted Ek+1�j�k+i�1 [b; b0] :Ek+1�j�k+i�1 [b; b0] = fbn+k = b;bn+k�1 6= b; : : : ; bn+1 6= b;bn = b0;bn�1 =2 fb; b0g; : : : ; bn+k�j+1 =2 fb; b0g;bn+k�j = b;bn+k�j�1 6= b0; : : : ; bn�i+1 6= b0;bn�i = b0g



whereby :Pr[An+k = j; An = i] = Xb;b02BLb6=b0 Pr[Ek+1�j�k+i�1 [b; b0]]for Pr[bn = b] = Pr[bn = b0] = 2�LPr[bn 6= b] = 1� 2�LPr[bn =2 fb; b0g] = 1� 2� 2�Land �nally :Pr[An+k = j; An = i] = 2�2L(1� 2�L)i+k�2 �1� 12L � 1�j�k�1� The forbidden case j = k + i
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n+knn-i

b b bFig. 4. the forbidden case.If An = i, An+k can not be equal to k + i, as shown in �gure 4.Pr[An+k = k + i; An = i] = 0� Inclusive blocks j � k + i+ 1
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n+knn-in+k-j

b’ b’b bFig. 5. inclusive sequences.For j � k + i + 1, the sequence [bn�i : : : bn] is included in [bn+k�j : : : bn+k].As depicted in �gure 5, the blocks of [bn+1 : : : bn+k�1] di�er from b, those of



[bn�i+1 : : : bn�1] di�er from both b and b0 and those of [bn+k�j+1 : : : bn�i�1] di�erfrom b. Letting Ej�k+i+1[b; b0] be the event :Ej�k+i+1[b; b0] = fbn+k = b;bn+k�1 6= b; : : : ; bn+1 6= b;bn = b0;bn�1 =2 fb; b0g; : : : ; bn�i+1 =2 fb; b0g;bn�i = b0;bn�i�1 6= b; : : : ; bn+k�j+1 6= b;bn+k�j = bgPr[An+k = j; An = i] = Xb;b02BLb6=b0 Pr[Ej�k+i+1[b; b0]]we obtain :Pr[An+k = j; An = i] = 2�2L(1� 2�L)j�2 �1� 12L � 1�i�13.3 Expression of c(L;K)Let us now de�ne the function :h(z; k) = (1� z) 1Xi=1 log2(i+ k)zi�1For a �xed z, the sequence nh(z; k)ok2IN has the inductive property :h(z; k) = (1� z) log2(k + 1) + z � h(z; k + 1) (7)Let u = 1� 2�L and v = 1� 12L � 1The expected value E[fTU (RN )] of the test parameter fTU (RN ) for a BSS isgiven by : E[fTU (RN )] = E[an] = 1Xi=1 log2 i� Pr[An = i] = h(u; 0)and the variance of an is :Var[an] = E[(an)2]� (E[an])2= 2�L 1Xi=1(log2 i)2(1� 2�L)i�1 � h(u; 0)2



From equation (6) and the expressions of Pr[An+k = j; An = i], one canderive the following expression :Cov[an; an+k] = uk h(u; 0)�h(v; k)� h(u; k)�+2�L 1Xi=1 log2 i ui�1vi�1�h(u; k + i)� h(v; k + i� 1)�!and, using equation (5), �nally obtain :c(L;K)2 = 1� 2Var[an]�p(L; 1)� p(L;K)� q(L; 1)� q(L;K)K �where :p(L;K) = uK�1 1Xl=1 F (l; L;K)ul�1 , q(L;K) = uK�1 1Xl=1 G(l; L;K)ul�1 ,F (l; L;K) = u2�h(v; l +K � 1)� h(u; l+K)��h(v; 0)� vlh(v; l)�+u� h(u; 0)�h(u; l+K � 1)� h(v; l +K � 1)�andG(l; L;K) = u�h(v; l +K � 1)� h(u; l +K)� u (l +K) �h(v; 0)� vlh(v; l)�� 2�L lXi=1 i log2 i vi�1!+u�l +K � 1�h(u; 0)�h(u; l +K � 1)� h(v; l +K � 1)�3.4 Computing c(L;K) in practiceThe functions h(u; k), h(v; k), p(L;K) and q(L;K) are all power series in u orv and converge rapidly (t = 33� 2L terms are experimentally su�cient).To speed things further,nh(u; k)o1�k�2t and nh(v; k)o1�k�2tcould be tabulated to compute c(L;K) in O(2L).For K � t, we get with an excellent approximation :



c(L;K)2 �= d(L) + e(L)� 2LK (8)where d(L) = 1� 2 p(L; 1)Var[an] and e(L) = q(L; 1)Var[an] � 2�L+1In most cases approximation (8) is su�cient, as [5] recommends to chooseK � 1000� 2L > 33� 2L.Although rather complicated to prove (ten pages omitted for lack of space),it is interesting to note that asymptotically :limL!1(E[fTU (RN )]� L) = C 4= Z 10 e�� log2 � d� �= �0:8327462limL!1Var[an] = �26 ln2 2 �= 3:4237147limL!1 d(L) = 1� 6�2 �= 0:3920729limL!1 e(L) = 2�2 (4 ln 2� 1) �= 0:3592016The distribution of fTU (RN ) can be approximated by the normal distributionof mean E[fTU (RN )] and standard deviation :� = c(L;K)pVar[an]=K (9)E[fTU (RN )], Var[an], d(L) and e(L) are listed in table 1 for 3 � L � 16 andL!1.4 How accurate is Maurer's test ?Let c0(L;K) be Maurer's approximation for c(L;K), and let �0 be the standarddeviation calculated under this approximation.c0(L;K) = 0:7� 0:8L +�1:6 + 12:8L �K� 4L (10)�0 = c0(L;K)pVar[an]=KLetting y0 be the approximated number of standard deviations away fromthe mean allowed for fTU (sN ), a device is rejected if and only if fTU (sN ) < t1or fTU (sN ) > t2, where t1 and t2 are de�ned by :t1 = E[fTU (RN )]� y0�0 and t2 = E[fTU (RN )] + y0�0



L E[fTU (RN)] Var[an] d(L) e(L)3 2.4016068 1.9013347 0.2732725 0.48908834 3.3112247 2.3577369 0.3045101 0.44353815 4.2534266 2.7045528 0.3296587 0.41371966 5.2177052 2.9540324 0.3489769 0.39413387 6.1962507 3.1253919 0.3631815 0.38132108 7.1836656 3.2386622 0.3732189 0.37301959 8.1764248 3.3112009 0.3800637 0.367711810 9.1723243 3.3564569 0.3845867 0.364369511 10.1700323 3.3840870 0.3874942 0.362297912 11.1687649 3.4006541 0.3893189 0.361033613 12.1680703 3.4104380 0.3904405 0.360273114 13.1676926 3.4161418 0.3911178 0.359821615 14.1674884 3.4194304 0.3915202 0.359557116 15.1673788 3.4213083 0.3917561 0.35940401 L� 0:8327462 3.4237147 0.3920729 0.3592016Table 1. E[fTU (RN)], Var[an], d(L) and e(L) for 3 � L � 16 and L!1y0 is chosen such that N (�y0) = �0=2, where �0 is the approximated rejectionrate. N (x) is the integral of the normal density function [3] de�ned as :N (x) = 1p2� Z x�1 e��2=2d�The actual number of allowed standard deviations is consequently given byy = y0 �0=�, yielding a rejection rate of � = 2N (�y) = 2N (�y0 �0=�).The worst and average rationes �0=� are listed in table 2 for 3 � L � 16 and1000� 2L � K � 4000� 2L and �0 = 0:001 (i.e. y0 = 3:30), as suggested in [5].Figures show that the inaccuracy due to (10) can make the test 2:67 times morepermissive than what is theoretically admitted.The correct thresholds t1 and t2 can now be precisely computed using for-mulae (8), (9) and :t1 = E[fTU (RN )]� y� and t2 = E[fTU (RN)] + y�where y is chosen such that N (�y) = �=2 and � is the rejection rate.5 The entropy conjectureMaurer's test parameter is closely related to the source's per-bit entropy, whichmeasures the e�ective key-size of a cryptosystem keyed by the source's output.[5] gives the following result, which applies to every binary ergodic stationarysource S with �nite memory :



L limK!1 c0(L;K) limK!1 c(L;K) worst �0=� average �0=�3 0.4333333 0.5227547 0.1541921 0.15473504 0.5000000 0.5518244 0.3462276 0.34645835 0.5400000 0.5741591 0.5058411 0.50976246 0.5666667 0.5907426 0.6245271 0.63947247 0.5857143 0.6026454 0.7215661 0.75656058 0.6000000 0.6109165 0.8118111 0.87759549 0.6111111 0.6164930 1.0607613 1.011799210 0.6200000 0.6201505 1.2317137 1.163427011 0.6272727 0.6224903 1.4245388 1.333768112 0.6333333 0.6239543 1.6386583 1.522372613 0.6384615 0.6248524 1.8723810 1.727813914 0.6428571 0.6253941 2.1234364 1.948190115 0.6466667 0.6257157 2.3893840 2.181485016 0.6500000 0.6259042 2.6678142 2.4257316Table 2. A comparison of Maurer's fc0; �0g and the actual fc; �g values.limL!1 E[fTU (UNS )]L = HS (11)where HS is the source's per-bit entropy. Moreover, [5] conjectures that (11)can be further re�ned as :limL!1 hE[fTU (UNS )]� LHSi c= C 4= Z 10 e�� log2 � d� �= �0:8327462In this section we show that the conjecture is false and that the correctasymptotic relation between E[fTU (UNS )] and the source's entropy is :limL!1 hE[fTU (UNS )]� LXi=1 Fii = Cwhere Fi is the entropy of the i-th order approximation of the source, and :limL!1FL = HS5.1 Statistical model for a random sourceConsider a source S emitting a sequence U1; U2; U3; : : : of binary random vari-ables. S is a �nite memory source if there exists a positive integer M such thatthe conditional probability distribution of Un, given U1; : : : ; Un�1, only dependson the last M emitted bits :



PUnjU1:::Un�1(unju1 : : : un�1) = PUnjUn�M :::Un�1(unjun�M : : : un�1)for n > M and for every binary sequence [u1; : : : ; un] 2 f0; 1gn. The smallestM is called the memory of the source. The probability distribution of Un is thusdetermined by the source's state �n = [Un�M ; : : : ; Un�1] at step n.The source is stationary if it satis�es :PUnj�n(uj�) = PU1j�1(uj�)for all n > M , for u 2 f0; 1g and � 2 f0; 1gM .The state-sequence of a stationary source with memory M forms a �niteMarkov chain : the source can be in a �nite number (actually 2M ) of states �i,0 � i � 2M �1, and there is a set of transition probabilities Pr[�j j�i], expressingthe odds that if the system is in state �i it will next go to state �j . For a generaltreatment of Markov chains, the reader is referred to [1].In the case of a source with memory M , each of the 2M states has at mosttwo successor states with non-zero probability, depending on whether a zero ora one is emitted. The transition probabilities are thus determined by the set ofconditional probabilities pi = Pr[1j�i], 0 � i � 2M � 1 of emitting a one fromeach state �i. The entropy of state �i is then Hi = H(pi), where H is the binaryentropy function : H(x) = �x log2 x� (1� x) log2(1� x)For the class of ergodic Markov processes the probabilities Pj(N) of being instate �j after N emitted bits, approach (as N !1) an equilibrium Pj whichmust satisfy the system of 2M linear equations :8>>>>><>>>>>: 2M�1Pj=0 Pj = 1Pj = 2M�1Pi=0 Pi Pr[�j j�i) for 0 � j � 2M � 2The source's entropy is then the average of the entropies Hi (of states �i)weighted by the state-probabilities Pi :HS =Xi PiHi (12)



5.2 Asymptotic relation between E[fTU (UNS )] and HSThe mean of fTU (UNS ) for S is given by :E[fTU (UNS )] =Xi�1 Pr[An(UNS ) = i] log2 i (13)withPr[An(UNS ) = i] = Xb2BL Pr[bn = b; bn�1 6= b; : : : ; bn�i+1 6= b; bn�i = b] (14)Following [6] (theorem 3), the sequences of length L can be looked upon asindependent for a su�ciently large L :Pr[An(UNS ) = i] = Xb2BL Pr[b]2(1� Pr[b])i�1and E[fTU (UNS )] = Xb2BLPr[b]2Xi�1 log2 i (1� Pr[b])i�1Re-using the function v(r) de�ned in [5],v(r) = r 1Xi=1(1� r)i�1 log2 i (15)we have E[fTU (UNS )] = Xb2BL Pr[b]v(Pr[b])wherefrom one can show that,limr!0[v(r) + log2 r] = Z 10 e�� log2 � d� 4= C �= �0:8327462 (16)which yields : limL!1 hE[fTU (UNS )] + Xb2BL Pr[b] log2 Pr[b]i = C (17)Let GL be the per-bit entropy of L-bit blocks :GL = � 1L Xb2BL Pr[b] log2 Pr[b]then, limL!1 hE[fTU (UNS )]� L�GLi = C



Shannon proved ([6], theorem 5) thatlimL!1GL = HSwhich implies that : limL!1 E[fTU (UNS )]L = HSLet Pr[b; j] be the probability of a binary sequence b followed by the bitj 2 f0; 1g and Pr[jjb] = Pr[b; j]=Pr[b] be the conditional probability of bit jafter b. Let, FL = �Xb;j Pr[b; j] log2 Pr[jjb] (18)where the sum is taken over all sequences b of length L� 1 and j 2 f0; 1g.We have : FL = Xb2BL�1 Pr[b]H(Pr[1jb])and, by virtue of Shannon's sixth theorem (op. cit.) :FL = L�GL � (L� 1)GL�1 , GL = 1L LXi=1 Fiand limL!1FL = HSwherefrom limL!1 hE[fTU (UNS )]� LXi=1 Fii = C5.3 Refuting the entropy conjectureFL is in fact the entropy of the L-th order approximation of S [1, 6]. Undersuch an approximation, only the statistics of binary sequences of length L areconsidered. After a sequence b of length L� 1 has been emitted, the probabilityof emitting the bit j 2 f0; 1g is Pr[jjb]. The L-th order approximation of a sourceis thus a binary stationary source with less than L�1 bits of memory, as de�nedin section 5.1. A source with M bits of memory is then equivalent to its L-thorder approximation for L > M , and thus 8i > M;Fi = HS , and :limL!1 hE[fTU (UNS )]� MXi=1 Fi � (L�M)HSi = C



For example, considering a BMSp (random binary source which emits oneswith probability p and zeroes with probability 1 � p and for which M = 0 andHS = H(p)), we get the following result given in [5] :limL!1 hE[fTU (UNS )]� LH(p)i = CThe conjecture is nevertheless refuted by considering an STPp which is arandom binary source where a bit is followed by its complement with probabilityp. An STPp is thus a source with one bit of memory and two equally-probablestates 0 and 1. It follows (12 and 18) that F1 = H(1=2) = 1, HS = H(p), and :limL!1 hE[fTU (UNS )]� (L� 1)HS � 1i = Cwhich contradicts Maurer's (7-years old) entropy conjecture :limL!1 hE[fTU (UNS )]� LHSi c= C6 Further researchAlthough the universal test is now precisely tuned, a deeper exploration of Mau-rer's paradigm still seems in order : for instance, it is possible to design a c(L;K)-less test by using a newly-sampled random sequence for each An(sN ) (since inthis setting the An(sN ) are truly independent, c(L;K) could be replaced byone). Note however that this approach increases considerably the total lengthof the random sequence; other theoretically interesting generalizations consistin extending the test to non-binary sources or designing tests for comparinggenerators to biased references (non-BSS ones).References1. R. Ash, Information theory, Dover publications, New-York, 1965.2. D. Knuth, The art of computer programming, Seminumerical algorithms, vol. 2,Addison-Wesley publishing company, Reading, pp. 2{160, 1969.3. R. Langley, Practical statistics, Dover publications, New-York, 1968.4. G. Marsaglia, Monkey tests for random number generators, Computers & mathe-matics with applications, vol. 9, pp. 1{10, 1993.5. U. Maurer, A universal statistical test for random bit generators, Journal of cryp-tology, vol. 5, no. 2, pp. 89{105, 1992.6. C. Shannon, A mathematical theory of communication, The Bell system technicaljournal, vol. 27, pp. 379{423, 623{656, July-October, 1948.
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