Scheduled Transfer Protocol on Linux

Pekka Pietikéinen
Pekka.Pietikainen@cern.ch

Abstract

Scheduled Transfer Protocol (STP?) is a new ANSI
specified connection-oriented data transfer protocol.
In STP small control messages are used to allocate
buffers on the remote host before any data transfer.
This reduces the workload of the receiver consid-
erably and makes hardware acceleration relatively
simple to implement. Applications for the proto-
col include network attached storage (SCSI running
over STP). The low-latency aspects of STP also
make it a very attractive protocol for for clustering.

In this paper, we describe problems seen in giga-
bit networking today and how how STP overcomes
these problems. We also describe the Linux imple-
mentation of STP, which supports zero-copy trans-
mits using the Linux 2.4 zero-copy framework and
receives using a modified Alteon Tigon-II firmware.
Finally, we compare the performance of STP and
TCP.

1 Introduction

In the last few years, gigabit networking has be-
come possible using commodity hardware, standard
PCs and Gigabit Ethernet (GigE). However, utiliz-
ing the full network bandwidth has proved to be a
complicated problem.

The main two problems seen in gigabit networking
seen today are unnecessary memory copies and in-
terrupts.

Excessive memory copies are a significant problem
as network speeds approach the speed of main mem-
ory. In current PCs, such is the case as the memory

1The abbreviation ST is also commonly used e.g. in the
ANSI standard, but the usage is discouraged since the same
abbreviation is also used by IETF to refer to the Internet
Stream Protocol defined in RFC 1819.

speeds are in the range of several hundred MB/s.
The theoretical maximum speed of GigE is 125MB/s

Most modern TCP implementations perform one
copy from user-space to kernel buffers, and a DMA
from the kernel to the NIC. With sufficiently ad-
vanced hardware that supports scatter-gather DMA
and hardware checksums, it is possible to avoid the
copy entirely and significantly lower CPU utiliza-
tion.

On the receiver, things are more complicated. Since
the packets need to be demultiplexed to the correct
applications, avoiding the copy is nearly impossible.
Performing the demultiplex operation in hardware
is possible, although the large amount of state infor-
mation required be TCP would require performing
the entire protocol in hardware, which is generally
considered a bad idea.

If the packet payload is a multiple of the page size
i.e. 4k or 8k, it is also possible to place the data
into a separate page and use the MMU to remap
the page into the correct place in the virtual address
space of the application. The page remapping oper-
ations have a cost, however, which does not neces-
sarily show in the microbenchmarks which are used
to measure network performance.

Interrupts are typically generated for each packed
received or transmitted. For low-speed networks
such as 10Mbps Ethernet this is not a significant
problem, since the amount of interrupts is still only
a few thousand per second even with small packets.
On Gigabit Ethernet using the standard 1500 byte
packets an interrupt per packet would cause nearly
90000 interrupts per second. With smaller packets
the problem is even worse.

The reason interrupts cause a problem is that hard-
ware interrupts usually have priority over every-
thing else running on the same system. When an
interrupt is raised, the machine has to save its cur-
rent state, run the interrupt handler, and then con-
tinue with previous task.

If the interrupt rate is high enough, the OS may
become live-locked by being so busy processing the
interrupts coming from the NIC that it has very
little time to handle anything else.

There are some ways of minimizing the amount of
interrupts generated, which is usually referred to as
interrupt mitigation or interrupt coalescing. One
approach is having the driver poll the card for sev-
eral new packets after each interrupt. Another pos-
sibility is is making the adapter wait for a specified
amount of time for more packets to arrive before in-
terrupting the host CPU. The interrupt service rou-
tine must then handle all the packets in the queue
every time it is called. The down-side of both ap-
proaches is that it increases latency for all applica-
tions, even ones that are latency-critical.

Another way of reducing the amount of interrupts is
reducing the amount of packets by increasing their
sizes. Unfortunately the Ethernet standard limits
the maximum size of a frame to 1500 bytes, which
was adequate for the hardware and networks used
20 years ago, but is insufficient for modern networks.
An extension called jumbo frames allows the use of
frames of up to 9k, which is supported by most new
NICs, but only a few switches. An added benefit
of jumbo frames is that they are large enough to
accommodate entire memory pages, which can used
to optimize implementations.

Scheduled Transfer Protocol is a new ANSI specified
connection-oriented data transfer protocol which
was designed to make it possible for protocol pro-
cessing to be placed partially placed into intelligent
hardware, making it possible to accomplish true
zero-copy transmits and receives with an extremely
low interrupt rate.

2 Scheduled Transfer Protocol

STP was originally designed to be the network pro-
tocol to be used with the GSN (Gigabyte System
Network), a 6.4Gbps successor to the aging HIPPI
network. As the standardization effort for GSN con-
tinued, it was noticed that STP would also be use-
ful on other networks such as Gigabit Ethernet, and
thus STP was separated into a separate standard.

The basic design principle of STP is that as much
work as possible should be performed by the trans-

mitter, and the receiver only needs to verify the in-
coming packet and place the data into the correct
buffer. Before any data transfer happens, small con-
trol messages are transmitted to pre-allocate buffers
at the receiver before the data movement begins.
The data can then be directly moved from the net-
work into host memory.

The main platform for STP is IRIX, where STP
has been demonstrated to run at speeds of 790MB/s
with a latency of 10 us over a single GSN link be-
tween two Origin 3000 servers. SGI has also re-
leased an implementation based on the TRIX code

for Linux. 3rd party versions are also available for
Solaris and Tru64 UNIX.

In STP, data is transmitted in Transfers, which
have a predetermined length. As shown in figure 1,
Transfers are divided into Blocks, which are the level
flow-control is performed on. Blocks are further di-
vided into STUs (Scheduled Transfer Unit), which
correspond to physical packets on the wire.

| | Transfer
1

CT T T st

| Bl ocks

Figure 1: STP data hierarchy.

When a STP connection is established, the end-
points negotiate the maximum STU data they can
accept as well as the buffer size they are using. Both
ends also assign the connection an unique identifier
which the other end must use for the duration of the
connection.

When a host wishes to send data, it issues a Re-
quest_To_Send, which contains the size of the Trans-
fer, the maximum Block size it can send as well as an
unique identifier for the Transfer. The receiver re-
serves buffers for a Block and issues a Clear_To_Send
for the Block. The sender then sends the data as
STUs, which contain the buffer id and offset inside
the buffer.

Receiving the data itself can then be implemented in
hardware efficiently, as the state information for the
protocol is very low. This makes zero-copy receives
possible. Also it is not necessary to interrupt the
host until the entire block has been received. With
a Block size of 64 STUs, the interrupt rate thus
drops by 98.4% (63/64).

STP is capable of striping a single Transfer across
multiple network interfaces. To do so, the receiver
only needs to issue the CTSs simultaneously on dif-
ferent physical network interfaces. Each Block will
then be sent to the interface from which the CTS
arrived.

For low-latency applications, the overhead involved
in reserving a buffer on the remote for every Transfer
is unacceptable. For these applications, STP also
allows hosts to request a persistent memory region
on which Remote DMA (RDMA) operations can be
performed.

2.1 Using STP

STP supports several Upper Layer Protocols (ULP),
including standard BSD sockets, SCSI and libst.
The easiest way to use STP in applications is with
the standard BSD socket API. A STP socket is cre-
ated with

socket (PF_INET,SOCK_SEQPACKET, IPPROTO_STP)

Every write becomes a separate STP Transfer, with
its own associated overhead. It is therefore neces-
sary to use large writes (128-512k on GigE) to get
good performance.

Due to the nature of STP, the receiver is required to
read the entire Transfer with each read system call.
If an application attempts to write more data than
the receiver is expecting, the receiver will refuse the
Transfer and the write() will return a “Message too
long” error.

While sockets are usable for bulk data transfer, they
are unable to expose the full functionality of STP,
such as persistent memory operations. For this pur-
pose, a low-level API for STP called libst has been
designed, which supports OS bypass by having di-
rect secure access to the NIC.

The SCSI over ST (SST) standard defines a method
of encapsulating SCSI packets inside STP, providing
a possibility for high-performance network-attached
storage. STP to SCSI and Fibre Channel bridges
are available commercially from some vendors.

There has also been some interest in using STP as
the wire-level protocol for Intel’s Virtual Interface

Architecture (VIA), but no implementations exist
currently.

2.2 STP on Linux

In May 2000, SGI released a Linux implementation
of STP for Linux under GPL, which was largely
based on the original IRIX code.

The basic design of the Linux implementation of
STP is shown in figure 2. The STP core com-
ponent is responsible for buffer management, and
the various finite-state-machines required for opera-
tions such as connection set-up and tear-down. Cur-
rently, the only Upper Layer Protocol implemented
is INET sockets.

To provide possibility for hardware acceleration
of the protocol, the STP core advertises a
stp_netdevice interface to the NICs and their device
drivers to support STP. The stvd module provides
a default sofware-based implementation for most of
these enhancements; this enables running STP us-
ing standard, unmodified drivers.

Pr ot ocol
| ayer

Upper Layer

(uLP)

STP core

STP Virtual Device

| (stvd)

network drivers

Figure 2: Structure of the Linux STP stack.

The Linux implementation includes a modified
driver and firmware for the Alteon Tigon-II chip,
which supports hardware acceleration of the proto-
col.

The driver modifications consists of about 500 lines
of code, which adds support for updating the list
of current buffers and connections in the NIC
firmware. The firmware modifications are about
1000 lines of code, mostly in the receive path to de-
tect incoming STP data packets, verify the headers
and copy data into its final location.

Some prelimenary code for mapping the RX/TX
rings into userspace for use with libstp exist, but
isn’t fully functional.

2.3 Benchmarks

In this section, we compare the performance of STP
with the Linux 2.4 zero-copy TCP.

The measurements were done between a dual
500MHz Pentium ITI transmitting to a dual 450MHz
Pentium IT with. The NIC used in both machines
are IMB DEC Gigabit Ethernet Adapters using the
Alteon Tigon-II chipset. The machines were run-
ning Linux-2.4.2-prel with the zero-copy patch and
STP 0.33.

The measurements were done with a small custom
network performance tester called yantt, which was
designed to be modular and easy to adapt for dif-
ferent kinds of tests. Yantt measures CPU usage by
comparing the CPU available for a low-priority pro-
cess running on the same system to the situation on
an unloaded system. A result of 100CPUs are fully
utilized. This approach is necessary as the standard
getrusage() system call does not account for time
spent in interrupt handlers, which accounts for a
large amount of the total CPU use. If getrusage() is
used, the CPU utilization is shown as only 4% CPU
on both the sender and receiver for STP.

The MSG_TRUNC results were obtained the copy
from kernel to user buffers is omitted on the receiver.
The results? are shown in table 1.

As can be seen from the results, on these machines,
TCP performance is limited by the receiver CPU.

When the receiver is not limiting performance (STP
and MSG_TRUNC TCP), the performance is still
far from the theoretical 125MB/s maximum. The
limiting factor appears to be the 32-bit PCI bus
used in these experiments.

Even when compared to TCP with MSG_TRUNC
the CPU load is significantly lower, which can be
attributed to the hardware acceleration mitigating
nearly 99% of the interrupts.

2In this paper a megabyte is 220 bytes. The 100MB/s
barrier could have been easily broken by playing around with
numbers, but the author chose not to.

test packet bw CPU | CPU
size | (MB/s) | rcv | snd
TCP write() 9000 75 55 48
MSG_TRUNC 9000 99 35 55
TCP sendfile() | 9000 74 55 12
MSG_TRUNC 9000 99 31 19
STP write() 4136 98 8 17
TCP write() 1500 52 55 | 50
MSG_TRUNC | 1500 70 52 70
TCP sendfile() | 1500 45 50 12
MSG_TRUNC | 1500 70 52 39
STP write() 1064 53 8 17

Table 1: TCP and STP performance

With standard frames, the limitations of hardware
are much more evident. The Tigon-II DMA hard-
ware has a limit on the rate of DMAs it can han-
dle, which is about 50000 packets/s. This especially
hurts STP, because it requires the payload to be of
a 2™ size.

It should be noted, that the measurements done
above fail to account for the beneficial side effect
of having the data in the cache as it is copied. To
measure the effect more accurately, the benchmark
software was modified to touch the data it received.
The results are summarized in 2.

test | packet bw CPU | CPU
size | (MB/s) | rev | snd

TCP | 9000 49 62 22
STP 4136 93 23 9
TCP | 1500 14 53 11
STP 1064 34 16 11

Table 2: Results when receiver touches the data

As can be seen from the results, performance drops
significantly for both protocols. With TCP, how-
ever, the performance drop is smaller due to the
data already being cached. Still, STP leaves plenty
of CPU to be used for actual processing of the data.
With standard frames, the TCP performance drops
to nearly 100baseT speeds due to the interrupt load.

3 Future Challenges

There is still a lot of work to be done on STP on
Linux. Although the basic implementation is com-

plete, the OS Bypass and SCSI encapsulation have
not been explored.

The greatest challenge remaining is finding a suit-
able replacement for the aging Tigon-II, as cur-
rently the trend seems to be towards cheap non-
programmable NE2000-style designs for GigE. For-
tunately, some new GigE designs include the possi-
bility for user-programmable firmware.

4 Acknowledgments

The author would like to thank CERN for funding
his Master’s thesis, which this paper is largely based
on, as well as SGI for providing the initial GPL
implementation of STP for Linux.

References

[1] ANSI NCITS 337-2000, Information Technol-
ogy - Scheduled Transfer (ST) (2000). Ameri-
can National Standards Institute, Inc., Wash-
ington DC, 112 p

[2] Project 1380-D, SCSI on Scheduled Transfer
Protocol (SST) working draft revision 05 (2000,
unpublished). National Committee for Infor-
mation Technology Standards T.10, 35 p.

[3] Bruggencate M., Lamb G., Voellm A. et al.
(2001, unpublished), Libst 2.0 design , 21 p.

