CN 017

This document is made available electronically by the Minnesota Legislative Reference Library as part of an ongoing digital archiving project. http://www.leg.state.mn.us/lrl/lrl.asp

REGIONAL COPPER-NICKEL STUDY WATER SUPPLY AND WASTEWATER DISPOSAL IN NORTHEAST MINNESOTA

Minnesota Environmental Quality Board

Author: Peter Ashbrook June 6, 1978

٢

TABLE OF CONTENTS

PAGE

з

)

.

A	BSTRACT	i
I	NTRODUCTION TO THE REGIONAL COPPER-NICKEL STUDY	ii
Ι	NTRODUCTION	1
W	ASTEWATER DISPOSAL	2
D	ISCUSSION	3
T	able 1	6
Т	able 2	7
F	igure 1	8
. F	igure 2	9
F	igure 3	10
F	igure 4	11
R	EFERENCES	12
А	ppendix 1	13
А	ppendix 2	20

ABSTRACT

The importance of water to human health dictates the need for an adequate supply of drinking water of satisfactory quality and the proper disposal of wastewater. In general, municipal water and wastewater systems are preferable to individual systems; however, in many instances municipal systems are not available and individual systems must be employed.

Drinking water may be derived from either surface or groundwater sources. Surface water sources are generally more susceptible to intermittent pollution. In the four-county region of Carlton, Cook, Lake, and St. Louis an estimated 72 percent of the population is served by municipal supplies. Based on this estimate there are approximately 24,000 private wells in regular use and an undetermined number in seasonal use.

Municipal wastewater treatment plants may employ primary (sedimentation), secondary (biological), or tertiary (chemical) treatment. An estimated 74 percent of the four-county population is served by municipal systems. Based on this estimate there are approximately 22,000 individual systems in regular use and an undetermined number in seasonal use.

Drinking water may be contaminated directly or indirectly by industrial wastes, or by overloading of wastewater treatment systems. Surface sources of drinking water are most likely to be affected.

Comprehensive lists of municipal water and wastewater systems in the fourcounty area are included as appendices.

i

INTRODUCTION TO THE REGIONAL COPPER-NICKEL STUDY

The Reg 11 Copper-Nickel Environmental Impact Study is a comprehensive examination of the potential cumulative environmental, social, and economic impacts of copper-nickel mineral development in northeastern Minnesota. This study is being conducted for the Minnesota Legislature and state Executive Branch agencies, under the direction of the Minnesota Environmental Quality Board (MEQB) and with the funding, review, and concurrence of the Legislative Commission on Minnesota Resources.

A region along the surface contact of the Duluth Complex in St. Louis and Lake counties in northeastern Minnesota contains a major domestic resource of copper-nickel sulfide mineralization. This region has been explored by several mineral resource development companies for more than twenty years, and recently two firms, AMAX and International Nickel Company, have considered commercial operations. These exploration and mine planning activities indicate the potential establishment of a new mining and processing industry in Minnesota. In addition, these activities indicate the need for a comprehensive environmental, social, and economic analysis by the state in order to consider the cumulative regional implications of this new industry and to provide adequate information for future state policy review and development. In January, 1976, the MEQB organized and initiated the Regional Copper-Nickel Study.

The major objectives of the Regional Copper-Nickel Study are: 1) to characterize the region in its pre-copper-nickel development state; 2) to identify and describe the probable technologies which may be used to exploit the mineral resource and to convert it into salable commodities; 3) to identify and assess the impacts of primary copper-nickel development and secondary regional growth; 4) to conceptualize alternative degrees of regional copper-nickel development; and 5) to assess the cumulative environmental, social, and economic impacts of such hypothetical developments. The Regional Study is a scientific information gathering and analysis effort and will not present subjective social judgements on whether, where, when, or how copper-nickel development should or should not proceed. In addition, the Study will not make or propose state policy pertaining to copper-nickel development.

The Minnesota Environmental Quality Board is a state agency responsible for the implementation of the Minnesota Environmental Policy Act and promotes cooperation between state agencies on environmental matters. The Regional Copper-Nickel Study is an ad hoc effort of the MEQB and future regulatory and site specific environmental impact studies will most likely be the responsibility of the Minnesota Department of Natural Resources and the Minnesota Pollution Control Agency.

INTRODUCTION

Water i. major component of the environmental factors which affect human health. It is therefore important that both the supply of water be adequate and of satisfactory sanitary quality, and the disposal of wastewater be conducted in a proper manner. In general, municipal water and sewage systems are preferable to individual systems (such as wells and septic tanks) because municipal systems usually have competent supervision (Salvato 1972). However, in many instances municipal systems are not available, or economically feasible, so individual systems must be employed. In these cases it is crucial to the protection of public health that these systems be constructed and operated properly.

This paper will identify and discuss the existing municipal water and sewer systems in Carlton, Cook, Lake, and St. Louis counties. Estimates of the populations served by municipal systems and individual systems will be made. Additional information about water supply and wastewater disposal has been prepared by the Water and Socio-economic sections of the Regional Copper-Nickel Study.

WATER SUPPLY

Sources of water can be divided into two major categories: surface and underground. Underground sources are generally preferable to surface water sources because they are less subject to intermittent pollution and fluctuations in quantity. In northeastern Minnesota the sources of municipal water supplies may be divided into five groups: groundwater (drilled wells); surface water; combined—groundwater and surface water; combined—drilled wells and mine shaft; and those which obtain water from a nearby municipal water system (Figures 1 and 2). Information concerning type of treatment, population served, average daily consumption, and the State Plumbing Code is shown for each of these municipal supplies in Appendix 1.

Most of the municipal water supplies in the region use groundwater sources. However, surface water sources are used by several municipalities, including Aurora, Ely, Hoyt Lakes, and Winton, which are all in close proximity to the Duluth Gabbro Contact, and Beaver Bay, Duluth, Eveleth, Grand Marais, Silver Bay, and Two Harbors, which are somewhat farther away from the Contact.

Estimates of the population served by municipal supplies and by individual systems are given in Table 1. The proportion of the population served by municipal supplies ranges from 38 percent in Cook County to 77 percent in St. Louis County. These figures indicate that about 28 percent of the people in this four-county region have individual systems. Assuming that there is one well for every three persons not served by a municipal supply, it is estimated that this region has over 24,000 wells in regular use. In addition, there are many seasonal residences in the region which would also be served by wells; however, the number of wells and the size of the population in this category are not known.

WASTEWATER DISPOSAL

Sewage treatment plants are generally divided into three groups, depending on the amount of treatment given to the wastewater: primary, secondary, and tertiary. Primary treatment may be thought of as gross removal of solids by physical processes such as screens and settling tanks (sedimentation). Secondary treatment consists of biological processes. Trickling filters

Page 3

and/or activated sludge aerobically decompose waste materials and eliminate most of the biochemical oxygen demand (BOD) and suspended solids (SS), after the sewage has undergone primary treatment. Tertiary treatment, applied to the effluent of secondary treatment, generally consists of chemical treatment to further remove specific undesireable substances usually phosphorus and nitrogen. Locations of municipal wastewater disposal facilities are shown in Figures 3 and 4. Information about population served, age of the system, and type of treatment provided are presented in Appendix 2.

Estimates of the populations served by municipal wastewater treatment systems and by individual systems are given in Table 2. The proportion of the population served by municipal systems ranges from 38 percent in Cook County to 78 percent in St. Louis County. These figures indicate that 26 percent of the population in the four-county region are served by individual (or on-site) systems. Assuming there is one individual system (septic tank, cesspool, or privy) for every three persons not served by a municipal system, it is estimated there are over 22,000 individual systems in use. Again, this figure does not include seasonal residents, whose numbers would greatly increase the estimated number of individual systems.

DISCUSSION

Several aspects pertaining to water supply and wastewater disposal need to be addressed in assessing potential impacts on public health. First is whether the sources of water supplies are adequately protected both in terms of quality and quantity of water. Surface water sources are most susceptible to intermittent pollution and should be most carefully monitored

Page 4

(this would apply predominantly to Aurora, Ely, Hoyt Lakes, and Winton). If groundwater aquifers could be affected, groundwater supplies may need monitoring as well. When a source of drinking water becomes contaminated several steps may be taken: 1) find another source of water which is not contaminated; 2) provide additional treatment of the water; or 3) find the source of contamination and eliminate it.

If new construction occurs outside of areas with municipal systems care must be taken that individual systems are properly installed. Septic tanks located too close or hydraulically above wells may cause contamination of the wells. Certain soils are not suitable for septic tanks and other soils place great limitations on septic tank design and land requirements. Similarly, if two wells are constructed too close to each other, sufficient groundwater may not be present to supply the users' needs. Adequate legal mechanisms to ensure proper installation of individual systems exist at both the state and county level; however, rapid development may strain local resources so that regulations are not enforced.

Evaluation of potential impacts on health from copper-nickel development for water supply and wastewater disposal should begin with an examination of whether the quality of surface sources of drinking water may be affected. Next, the possibility of impacts on groundwater sources, including private wells, should be examined. Contamination of drinking water may occur either directly from industrial sources or indirectly from municipal or individual sources of wastes. Early identification of potential impacts should provide sufficient time to institute measures for the protection of public health. Analyses of community needs and abilities to provide these services, and water quality and quantity have been addressed in reports prepared by the Socio-economic and water sections of the Regional Copper-Nickel Study.

	ESTIMATED POPULATION SERVED BY	ESTIMATED POPULATION SERVED	ESTIMATED NUMBER OF PRIVATE WELLS IN
COUNTY	MUNICIPAL SYSTEM*	BY PRIVATE WELLS**	REGULAR USE***
Carlton	13,300 (46%)	15,400 (54%)	5,133
Cook	1,400 (38%)	2,300 (62%)	767
Lake	8,300 (60%)	5,500 (40%)	1,833
St. Louis	166,600 (77%)	49,600 (23%)	16,533
TOTAL	189,600 (72%)	72,800 (28%)	24,266

Table 1. Proportion of population served by municipal and individual water supplies in northeastern Minnesota 1975.

*Information from Appendix 1. Population is rounded to the nearest 100. Estimates of total population in 1975 are from the U.S. Bureau of the Census (1977).

**Population is rounded to the nearest 100. Assumes everyone not on a municipal system is served by private wells.

***Assumes one private well for every three persons not on a municipal system.

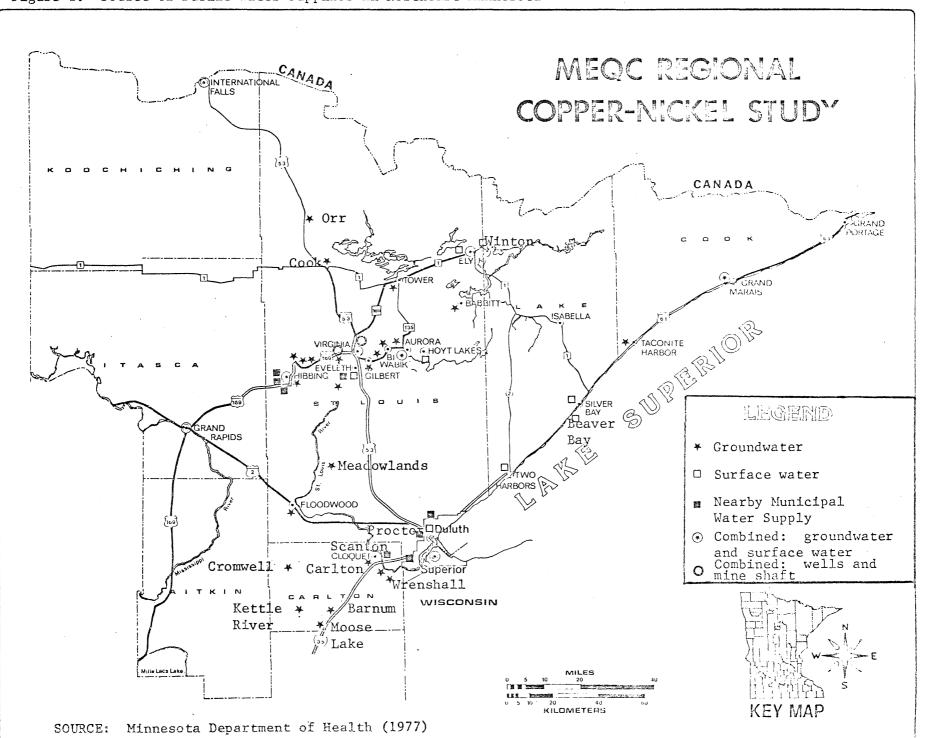

COUNTY	ESTIMATED POPULATION SERVED BY MUNICIPAL SEWER SYSTEM*	ESTIMATED POPULATION SERVED BY INDIVIDUAL (On-Site) SYSTEM**	ESTIMATED NUMBER OF INDIVIDUAL (On-Site) SYSTEMS IN REGULAR USE***
Carlton	15,700 (55%)	13,000 (45%)	4,333
Cook	1,400 (38%)	2,300 (62%)	767
Lake	7,900 (57%)	5,900 (43%)	1,967
St. Louis	169,100 (78%)	47,100 (22%)	15,700
TOTAL	194,100 (74%)	68,300 (26%)	22,767

Table 2.	Proportion	of popul	lation ser	ved by mu	nicipal and	individual
waste	ewater disp	osal fac:	ilities in	northeast	tern Minnes	ota 1975.

*Information from Appendix 2. Populations is rounded to the nearest 100. Estimates of the total population in 1975 are from the U.S. Bureau of Census (1975).

**Population is rounded to the nearest 100. Assumes everyone not on a municipal system is served by an individual system.

***Assumes one individual system for every three persons not on a municipal system.

Page

 ∞

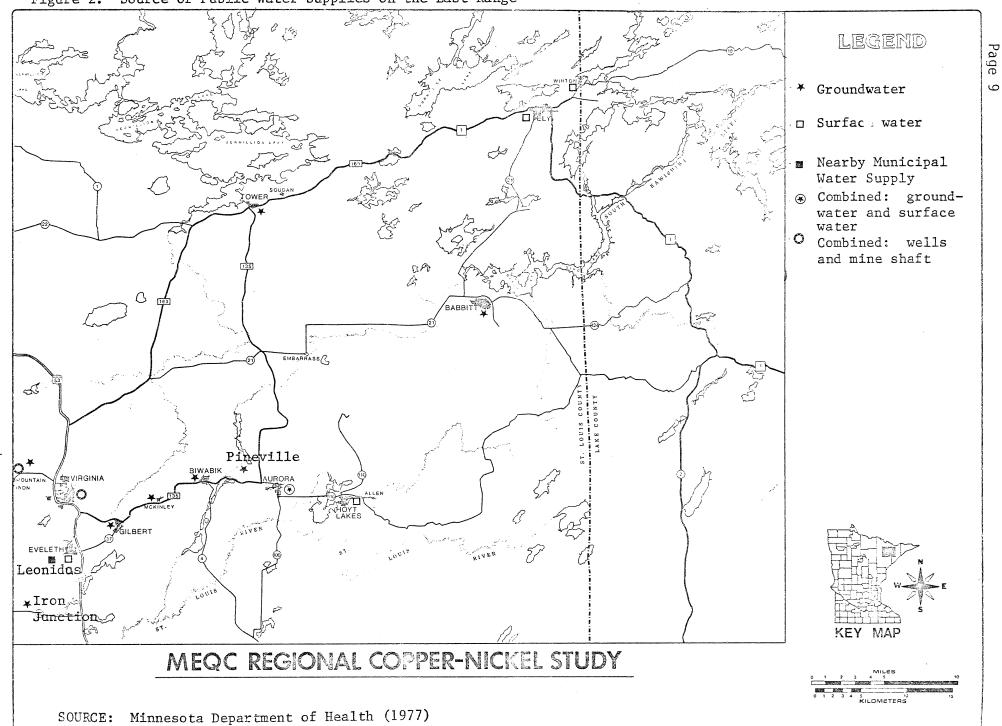
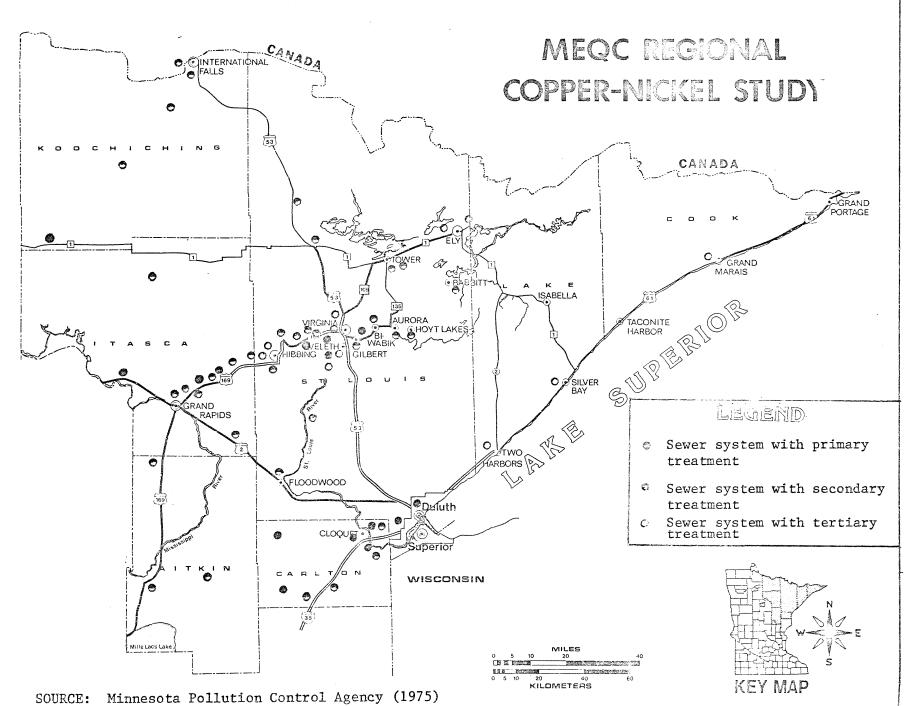



Figure 2. Source of Public Water Supplies on the East Range

Page

10

Figure 3. Municipal Wastewater Disposal Facilities in Northeast Minnesota

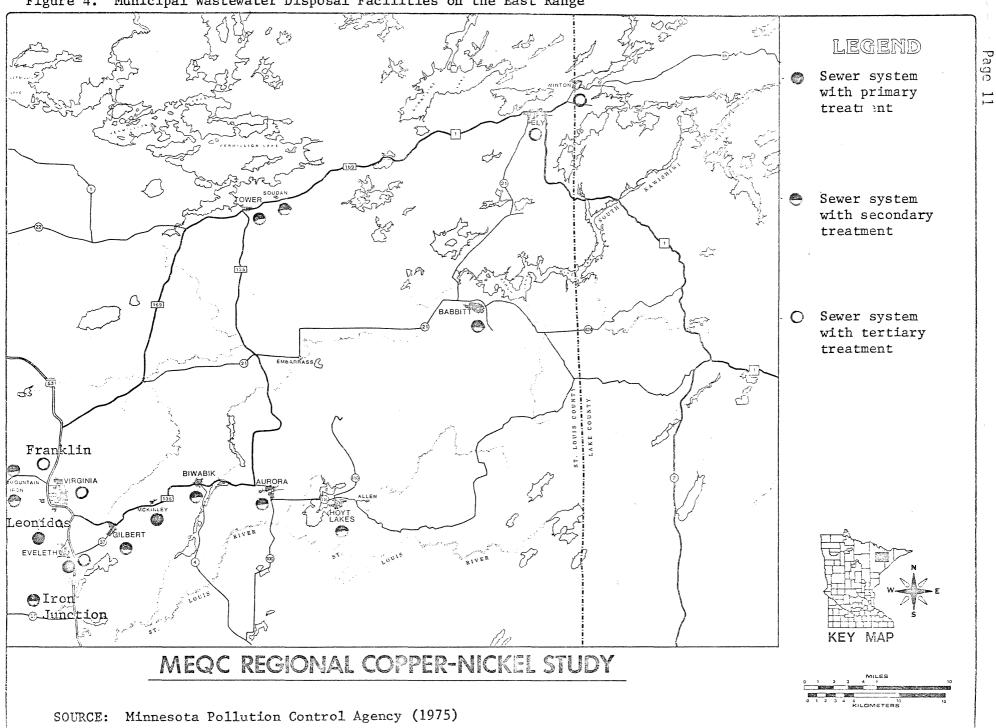


Figure 4. Municipal Wastewater Disposal Facilities on the East Range

Page 12

REFERENCES

- Minnesota Department of Health. 1977. Personal communication from David Geise, Assistant Director, Division of Environmental Health, daceu February 25, 1977. Information was abstracted from the most recent reports of municipal water supply investigations.
- Minnesota Pollution Control Agency. 1975. Wastewater disposal facilities inventory. State of Minnesota. July 1, 1975. Division of Water Quality, Facilities Section, Minnesota Pollution Control Agency.
- Salvato, J.A. 1972. Environmental engineering and sanitation. Wiley-Interscience. New York.
- United States Bureau of the Census. 1977. Population estimates and projections. 1973 (revised) and 1975 population estimates and 1972 (revised) and 1974 per capita income estimates for counties, incorporated places, and selected minor civil divisions in Minnesota. Series P-25. No. 671. United States Government Printing Office. Washington, D.C.

COUNTY	COMMUNITY	WATER SOURCE	TREATMENT	POPULATION SERVED	NUMBER OF SERVICE CONNECTIONS	AVERAGE DAILY CONSUMPTION (gallons)	STATE PLUMBING CODE
Carlton	Barnum	Drilled Well	Fluoridation	420	120	49,000	Not Adopted
	Carlton	Drilled Well	Disinfection Aeration Filtration Fluoridation	1000	200	80,000	Adopted
	Cloquet	Drilled Wells	Disinfection Aeration Fluoridation	9831*	2977*	950,000	Adopted
	Cromwell	Drilled Wells	Fluoridation	187	31	8,000	Not Adopted
	Kettle River	Drilled Well	Disinfection Aeration Filtration Fluoridation	179	85	25,000	Not Adopted
	Moose Lake	Drilled Wells	Fluoridation	1500	420	170,000	Adopted
	Scanlon	Drilled Wells (from Cloquet)	Disinfection Fluoridation	1132*	350*	67,000	Adopted
	Wrenshall	Well	None	147	6		
Cook	Grand Marais	Drilled Well Lake Superior	Filtration Disinfection Fluoridation	1299	400	150,000	
	Taconite Harbor	Drilled Wells		100	24		

		<u></u>			1 	AVERAGE	
COUNTY	COMMUNITY	WATER SOURCE	TREATMENT	POPULATION SERVED	NUMBER OF SERVICE CONNECTIONS	DAILY CONSUMPTION (gallons)	STATE PLUMBING CODE
Lake	Beaver Bay	Lake Superior	Filtration Disinfection Fluoridation	359	80	40,000	
	Silver Bay	Lake Superior	Filtration Disinfection Fluoridation	3504	850	780,000	
	Two Harbors	Lake Superior	Disinfection	4437	1800	810,000	
St. Louís	Anne's Acres (Mt. Iron)	Drilled Wells	Fluoridation	300	68	26,667(est)	
	Aurora	Well St. James Pit (surface)	Disinfection Filtration Softening Sedimentation Fluoridation	2725	840	375,000	Adopted With Permits and Inspectio
	Babbitt	Drilled Wells	Disinfection Fluoridation Corrosion Control	3038	630	280,000	Not Adopted
	Biwabik	Drilled Wells	Disinfection Fluoridation Corrosion Control	1483	539	170,000	Adopted With Permits & Inspectio

						AVERAGE	
COUNTY	COMMUNITY	WATER SOURCE	TREATMENT	POPULATION SERVED	NUMBER OF SERVICE CONNECTIONS	DAILY CONSUMPTION (gallons)	STATE PLUMBING CODE
St. Louis	Buhl	Drilled Well	Aeration Fluoridation	1330	420	160,000	Not Adopted
	Chisholm	Wells	Disinfection Aeration Filtration Coagulation Recarbonation Softening Sedimentation Fluoridation Corrosion Control	6400	2400	500,000	Adopted With Permits and Inspection
	Cook	Drilled Wells	Disinfection Aeration Filtration Fluoridation	687	302	100,000	Not Adopted
	Duluth	Lake Superior	Disinfection Ammoniation Fluoridation Filtration Coagulation Sedimentation	113,790**	25,453**	15,000,000	

Page 15

COUNTY	COMMUNITY	WATER SOURCE	TREATMENT	POPULATION SERVED	NUMBER OF SERVICE CONNECTIONS	AVERAGE DAILY CONSUMPTION (gallons)	STATE PLI BING CODE
St. Louis	Ely	Burntside Lake Shagawa Lake (stand-by)	Disinfection Aeration Filtration Taste & Odor Ammoniation Sedimentation Fluoridation Corrosion Control & Stabilization	5000	1882	600,000	Adopted
	Eveleth	St. Mary's Lake	Disinfection Filtration Taste & Odor Fluoridation	4900***	1800***	750,000	Adopted
	Floodwood	Drilled Wells	None	650	325	42,000	Not Adopted
	Gilbert	Ground Water	Disinfection Aeration Filtration Coagulation Softening Sedimentation Fluoridation Corrosion Control & Stabilization	 .	1000	350,000	Not Adopted
	Herman Township	Duluth Munic. Water System		**	**		

COUNTY	COMMUNITY	WATER SOURCE	TREATMENT	POPULATION SERVED	NUMBER OF SERVICE CONNECTIONS	AVERAGE DAILY CONSUMPTION (gallons)	STATE PLL IBING CODE
St. Louis	Hibbing	Drilled Wells	Disinfection Fluoridation	20,000****	5417***	1,900,000	Adopted w/Permits & Inspections
	Hoyt Lakes	Colby Lake	Disinfection Aeration Filtration Coagulation Sedimentation Fluoridation	3,634	900	350,000	Not Adopted
	Iron Junc.	Drilled Well	None	90	20	6,000	Not Adopted
	Kelly Lake	Hibbing Munic. Water System	Disinfection Fluoridation	1,000****	338****		Not Adopted
	Kerr Location	Hibbing Munic. Water System	Disinfection Fluoridation	65****	20****		Not Adopted
	Kinney	Drilled Well	Aeration Filtration Taste & Odor Fluoridation Pyrolusite Ore-catalytic Bed	360	135	32,000	Not Adopted
	Leetonia	Hibbing Munic. Water System	Disinfection Fluoridation	120****	30****	·	Not Adopted
	Leonidas	Eveleth Munic. Water System	Disinfection Filtration Sedimentation Fluoridation	150***	30***		Not Adopted

Fluoridation

COUNTY	COMMUNITY	WATER SOURCE	TREATMENT	POPULATION SERVED	NUMBER OF SERVICE CONNECTIONS	AVERAGE DAILY CONSUMPTION (gallons)	STATE PLUMBING CODE
St. Louis	McKinley	Drilled Well	None	317	112	50,000	
	Meadowlands	Drilled Wells	Fluoridation	128	56	13,000	Not Adopted
	Mt. Iron	Mine Shaft	Disinfection Fluoridation	3294	500	225,000	Not Adopted
	Orr	Drilled Well	Disinfection Fluoridation	313	100	70,000 (May-Sept.) 40,000 (SeptMay)	Not Adopted
	Pineville	Drilled Well	None	35	14		Not Adopted
	Proctor	Duluth Munic. Water System	Disinfection Ammoniation Fluoridation	3000**	1060**	436,000	Adopted w/Permits & Inspections
	Rice Lake Township	11 17		**	**		
	Tower- Soudan	Drilled Wells	Disinfection Fluoridation Corrision Contr & Stabilization			165,000	Not Adopted

Page 18

COUNTY	COMMUNITY	WATER SOURCE	TREATMENT	POPULATION SERVED	NUMBER OF SERVICE CONNECTIONS	AVERAGE DAILY CONSUMPTION (gallons)	STATE PLUNBING CODE
St. Louis	Virginia	Mine Shaft Drilled Well	Disinfection Filtration Coagulation Sedimentation Fluoridation Corrosion Contr & Stabilization		4,250	2,500,000	Adopted
	Winton	Fall Lake	Disinfection Filtration Coagulation Sedimentation	290	107	20,000	Not Adopted

SOURCE: Minnesota Department of Health (1977).

*Totals for Cloquet include Scanlon.

**Totals for Duluth include Herman Township, Proctor, and Rice Lake Township.

***Totals for Eveleth include Leonidas.

****Totals for Hibbing include Kelly Lake, Kerr Location, and Leetonia.

--No information.

COUNTY	COMMUNITY	POPULATION (1975)*	YEAR CONSTRUCTION OF SANITARY SEWER SYSTEM COMMENCED	YEAR WASTEWATER TREATMENT WORKS CONSTRUCTED	TREATMENT
Carlton	Barnum	358	1923	1963	Activated sludge extended aeration, Final settling tank, Sludge storage tank for hauling by truck, Chlorination.
	Carlton	939	1914	1955	Primary settling, Chlorination, Digester, Open sludge bed.
	Cloquet	11,296	1905	1957	Grit chamber, Primary settling, Chlorination, Digester.
	Cromwell	173	1952	1953	Imhoff tank, Open sludge bed.
	Kettle River	168	. 1951	1952	Imhoff tank, Open sludge beds.
	Moose Lake	1,371	1919	1966	Stabilization Pond.
	Scanlon	1,245	1941	1941,1953	Imhoff tank, Open sludge beds, Chlorinati
	Thomson Township (Esko Corner)	N.A.	1964	1964	Cutting screen, Activated sludge extended aeration, Final settling, Activated sludge, Digester, Chlorination.
	Wrenshall	163	1964	1964	Stabilization Ponds.
ook	Grand Marais	1,420	1933	1940,1960,1975	Primary Settling, Activated sludge complete mix, Final settling, Aerobic sludge digestion, Chlorination, Chemical treatment (removal of phosphates, BOD, and/or SS), Sludge hauling by tank truck.
ake	Silver Bay	3,429	1953	1953,1975	Cutting screens, Grit chamber, Coarse screens, Primary settling, High-rate trickling filter, Final settling, Digester, Chlorination, Open sludge beds, Chemical treatment (removal of phosphate, BOD, and/or SS).

COUNTY	COMMUNITY	POPULATION (1975)*	YEAR CONSTRUCTION OF SANITARY SEWER SYSTEM COMMENCED	YEAR WASTEWATER TREATMENT WORKS CONSTRUCTED	TREATMENT
Lake	Two Harbors	4,465	1894	1959,1974	Mechanical bar screens, Cutting screen, Activated sludge complete mix, Final settling, Aerobic sludge digestion, Mixed media gravity filters, Sludge storage tank, Sludge thickening, Vacuum filtration, Chemical treatment (removal of phosphates, BOD, and/or SS).
St. Louis	Aurora	2,750	1936	1958	Cutting screen, Primary settling tank, High-rate trickling filter, Final settling tank, Chlorination, Digester, Open sludge bed.
	Babbitt	1,880	1953	1953	Combination primary settling tank/sludge digestion, Activated sludge, Final settling tank, Chlorination, Open sludge bed.
	Biwabik	1,483	1916	1966	Stabilization Ponds.
	Breitung Township (Soudan)	N.A.	N.A.	1946	Imhoff tank, Low-rate trickling filter, Final settling, Chlorination, Open sludge beds.
	Buh1	1,333	1909	1961	Primary settling, High-rate trickling filter, Final settling, Chlorination, Digester, Open sludge bed.
	Chisholm	6,074	1905	1955	Grit chamber, Primary settling tank, High-rate trickling filter, Final settli Chlorination, Digester, Open sludge bed.
	Cook	696	1938	1964	Cutting screen, Activated sludge extende aeration, Final settling, Chlorination, Sludge storage tank for hauling by truck

COUNTY	COMMUNITY	POPULATION (1975)*	YEAR CONSTRUCTION OF SANITARY SEWER SYSTEM COMMENCED	YEAR WASTEWATER TREATMENT WORKS CONSTRUCTED	TREATMENT
St. Louis	Duluth: -Main Plant	93,971	1883	1940	Grit chamber, Flocculation, Primary settling, Digester, Chlorination, Vacuum filtration, Incineration.
	-Fairmont Park		1883	1960	Grit chamber, Pre-aeration, Primary settling, Sludge storage tank, Chlorination.
	-Gray-New Duluth				Same as Fairmont Park
	-Smithville				Same as Fairmont Park
	Ely	4,931	1901	1954,1963,1972	Cutting screens, Grit chamber, Coarse screens, Primary settling, High-rate trickling filter, Fine screens, Chlorination, Digester, Open sludge beds, Chemical treatment (removal of phosphates BOD, and/or SS), Mixed media gravity filters, Sludge thickening.
	Eveleth: -Main Plant	4,522	1900	1972	Cutting screen, Grit chamber, Activated sludge complete mix, Final settling, Aerobic sludge digestion, Retention tank, Chemical treatment (removal of phosphates BOD, and/or SS).
	-West Eveleth Plant		N.A.	N.A.	Imhoff tank, Open sludge bed.
	Floodwood	613	1941	1970	Stabilization Ponds.
	Franklin	36	1923	N.A.	Virginia Sewer System.

COUNTY	COMMUNITY	POPULATION (1975)*	YEAR CONSTRUCTION OF SANITARY SEWER SYSTEM COMMENCED	YEAR WASTEWATER TREATMENT WORKS CONSTRUCTED	TREATMENT
St. Louis	Gilbert	2,553	1912	1957	Grit chamber, Primary settling, High- rate trickling filter, Chlorination, Digester, Open sludge beds.
	Hermantown	6,689	1970	N.A.	Duluth Sewer System, Main Plant.
	Hibbing: -North Plant	16,123	1900	1940,1972	Cutting Screen, Grit chamber, Primary settling, High-rate trickling filter, Chlorination, Intermediate and final settling, Digester, Open sludge bed, Chemical treatment (removal of phosphates, BOD, and/or SS).
	-South Plant		1970	1970,1972	Activated sludge complete mix, Aerobic sludge digestion, Final settling, Chlo- rination, Aerated Pond, Effluent polishing pond, Chemical treatment (removal of phosphates, BOD, and/or SS).
	Hoyt Lakes	3,734	1954	1957	Cutting screen, Primary settling, High- rate trickling filter, Final settling, Chlorination, Digester, Vacuum filtration.
	Iron Junction	n 132	Unknown	1963	Septic tank, Chlorination.
	Kinney	446	1920	1920	Imhoff tank, Open sludge beds.
	Leonidas	154	N.A.	1935	Imhoff tank, Open sludge beds.
	McKinley	240	1920	1918	Imhoff tank, Open sludge beds.
	Meadowlands	153	Unknown	1964	Stabilization Pond.

						pa
COUNTY	COMMUNITY	POPULATION (1975)*	YEAR CONSTRUCTION OF SANITARY SEWER SYSTEM COMMENCED	YEAR WASTEWATER TREATMENT WORKS CONSTRUCTED	TREATMENT	Page 24
St.Louis	Mountain Iron -Main Plant	a 3,574	1920	1954	Primary settling, High-rate trickling filter, Final settling, Open sludge beds.	
	-Nichols Plan	it	1963	1964	Stabilization Pond.	
	Orr	365	1949	1949,1965	Imhoff tank, Low-rate truckling filter, Final settling, Chlorination.	
	Proctor	3,079	1911	N.A.	Duluth Sewer System, Fairmont Park Plant.	
	Stuntz Township (Kelly Lake)	N.A.	1940	1940	Imhoff tank, Low-rate trickling filter, Final settling, Chlorination, Open sludge beds.	
	Tower	713	1937	1959	Imhoff tank, Low-rate trickling filter, Final settling, Chlorination, Open sludge beds.	
	Virginia	11,588	1907	1952, Under Construction	Mechanical bar screens, Grit chamber, Aeration, Activated Sludge, Final settlin Mixed media gravity filtration, Chlorinat Chemical treatment (removal of phosphates BOD, and/or SS), Sludge thickening, Sludg lagoon.	ion, ,
	Winton	269	1960	1961	Activated sludge extended aeration, Final settling, Chlorination.	

1

SOURCE: Minnesota Pollution Control Agency (1975). N.A. = Not available. BOD = Biochemical oxygen demand. SS = Suspended solids.

*Estimates of the United States Bureau of Census (1977).

2

€