DISTRIBITIO OF DCER IWHTERS
 OTTH MUSSIE MES

Man has been primarily a hunter during most of his time on earth. Modern sport hunting, perfonmed properly, reenacts a drama as old as man himself. In this day and age when many rely upon others to provide their sustenance through the killing of animals, hunting serves to keop man in closer touch with environmental realities and eniven his interest in his heritage as part of nature. (Portion of the Wildife Society's policy statement on Sport Hunting,)

DEER HUNTER SURVEY

Introduction

Each November over 300,000 hunters take to the forest and fammands of Minnesota in pursuit of the white-tailed deer. Within the boundaries of the MINESITE area, deer hunting is an important form of terrestrial recreation. (This is based on the number of persons involved and total man-days spent in the field.)

We investigated existing state-wide methods used by the MDNR to census hunters and hunting pressure and concluded that we required a more specific technique to delineate hunter concentration on specific portions of the study area.

Traditional methods currently used on a state-wide basis include the following (Karns, 1979); I) hunter report cards voluntarily required of all license holders; 2) teiephone census of randomly picked hunters to determine, among other things, the hunting success ratio. Other methods used (hunter check stations and pellet counts) or under

[^0]invest gubion (sumner track census and examination of does killed by vehicles to determine reproductive conditions) are techniques used to detemine the survivability, size, age structure, and condition of the deer herd, and are not direct statistics on hunting pressure for a given area.

Methods

The deer hunter survey we devised had five principle goals; 1) to detemine the number of vehicles (which was then expanded to the number of hunters) per mile of selected forest roads throughout the study area to provide hunter density estimates; 2) since hunters try to mexinize their success, we assumed that hunter derstties would provide another indirect method of assessing relative deer numbers on various portions of the study area; 3) to provide data for evaluating the potential loss of certain parcels of land to mining operations on the regional deer population; 4) to datermine the proportion of "local" to "non-Tocal" hunters to evaluate whether the potential loss of certain areas would affect recreation for residents only, or hunters from the entire state; 5) finally, the method had to fall within the limited manpower of the project.

Nineteen routes were established from the far northwestern portion of the study area to the extreme southeast (Figure D-1). Each route was established along accessable (improved gravel) USFS or county roads. In all, 164 km of roads were censused in a period of 6-7 hours for three consecutive days, with a total trip of 272 km required to return to base.

Page 3

Hunters were censused on opening weekend (Hovember 13 and 14) and the first Monday (November 15) of the state's rifle season. The number of vehicles observed and hunter density estimates are thus the maximum expected for the area. The 19 routes were censused from north-south on the 13th and 15th, and from south-north on the 14 th to reduce any time bias that may be present.

The main census technique employed was to record license plate numbers from ail vehicles observed. For each observation, the following information was recorded; road number, square mile number, license plate number, time seen, odometer reading and whether the vehicle was stopped (parked with no person(s) nearby or moving (Table D-1). License numbers were checked with the state to detemine where each vehicle was registered for the breakdown of "10cal" and "non-1oca?" hunters. Each vehicle parked was considered to be that of a deer hunter, since use of the study area by non-hunters during summer and fall was very limited. We then calculated the number of cars/kilometer route for the three days of the census, with an average for all three days.

The actual density of hunters per km and per hectare was determined by: 1) calculating the number of hunters per vehicle. This was done by counting hunters per moving vehicie and asking persons seen hunting near roads the size of their hunting party (person/vehicle); 2) calculating the number of hunters per hectare. Mech (1971) has estimated that the average distance hunters are willing to deer hunt from an access road in the Superior National Forest is one-quarter mile. The area hunted was calculated by multiplying the length of each route (to

Page 4
the nearest 0.1 km$) \times 80.4$ hectares (the area of a rectangular 1000 m long $\times 805$ wide (ta mile on either side of the road)).

In addition, when hunters were encountered near their vehtele they were asked whether they had hunted the area before or if this was the first time, and how they would rank the area as to deer seen per hunting effort (Table D-1).

A total of six man days (2 persons for 3 days) was required to complete this hunter survey.

Resulte

White tailed deer are associated with successional forest, primarily represented on the study area by the aspen community type. An area of approximately 115 square miles (29,500 hectares) adjacent to and south of the St. Louis River to County Road 16 contains the largest continous aspenstand on the study area. This area is represented on Figure D-1 by the land adjacent to and south of FR 120. The area has a variety of size and age classes and represents what we consider to be the most productive deer habitat in the MINESITE area.

Roads that provide access to this area and were censused during this survey are FR 420, 120, 569, 128, 130 and County Road 16 (TabTes D-2 and $0-3$). These roads were generally far above average with regard to vehicles/km (Table D-2) and estimated hunters/100 h (Table D-3). The only northern route that was used extensively was FR 181 (known as the Spruce Road, Figure D-1). This area is not as diverse and does

Page 5

not have nearly the aspen resource found it the southern area. However, habttat adjacent to FR. 181 is sone of the best deer habitat available in the northern portion of the area. The proximity of this road to Ely may also explain the high hunter density.

The northern area, represented by FR 181, 173, 178, and portions of 112 and 424 (Route 5), has a large percentage of confer forest (20-30 year old red and jack pine plantations and natural, extensive areas of black spruce) and are generally maturing forest types. The central portion of the area (FR 112 (Route 8) $, 1431,114,116$ and 113) has been heavily cut over and is groming back to red on jack pine plantation, stands of trenbling aspen or other upland shrub forest types.

Deer hunters encountered on the roads or near their vehicles were interviewed to determine whether they had hunted on the area before, or whether this was their first time on the area. A totak of 54 different persons were interviewed. Eleven of these (20 percent) used the area for the first time, while the majority (43, 80 percent) had hunted in the area before.

When asked to rank the area as good, fair or poor for deer hunting, 62 responses were divided as follows: (1) good (17, 27 percent); (2) fair (22, 36 percent); (3) poor (23, 37 percent). The majority of the "good" responses (12 of the 17) were on the southern one-fifth of the area.

Page 6

Conclustion

A deer hunter survey conducted during the first three days of the 1976 season (November 13, 13 and 15) provided information on the distribution and intensity of deer hunting on the MINESITE area. The heaviest concentration of hunters was in the southern portion of the study area., a region dominated by the aspen and aspen-birch ecosystems. Hunter densities in this area vere 5 to 10 times that found along most northern and central census routes (Tables D-2 and 0-3).

LITERATURE CITED

Karnes, P.D. 1971. Cansuses and Harvests. In The white-tailed deer in minnesota Sym. Proc., Edited by M.M. Telson. Minn. Dept. Hat. Resour. St. Paul, Minn. P. 16-18.

Mech, L.D. 1971. Wolves, coyotes and does. In The white-tailed deer in Mimesoty Symp. Proc. Edited by M. M, Melson. Minn. Dept. Nat. Resour., St. Paul, Min. P. 19-22.
\qquad
\qquad ETMESH \qquad
TORA MIIES \qquad

Figure D-1.
Route traveled during 1976 deer hunter survey. Route segments are numbered separately, along with the direction they were driven.

Table D-2.

The mmber of deer hunter vehicles per kilometer by route number and date for the 1976 scasona.

Road No:	Route No.	Route Length (km)	Nov. 13 (cars/km)	Nov. 14 (cars/km)	Nov. 15 (cars/km)	Average for 3 days (cars/km)
FRI81	I	8.2	4.4%	1.2	1.6\%	2.4\%
FRI73	2	9.9	0.8	0.0	0.2	0.3
FR4 24	3,7	16.6	1.4	0.6	0.3	0.8
FR178	4	12.5	1.5	0.2	0.6	0.8
FRII2	5,8	22.2	0.9	0.8	0.7	0.8
FPI431	6	6.2	1.2	0.4	0.4	0.7
FRI14, 116	9	8.3	0.9	0.9	0.3	0.7
FR113	10,12	16.8	1.1	0.6	0.1	0.6
FR420	11	5.6	1.8	1.4	0.9\%	1.4
FR120	13,15,17	11.8	1.5	2.0\%	1.3\%	1.6\%
FR 569	14	6.1	3.4\%	3.4\%	0.8	2. 5%
FR128	16	7.2	6.4%	5.3\%	2.1\%	4.6\%
FRI30	18	16.5	2. 2 \%	3.7*	1.7\%	2.5%
County Road 16	19	16.0	3.4*	4.5*	1.1*	3.0%
Totals \& Averages	$\begin{aligned} & 19 \\ & \text { routes } \end{aligned}$	163.9 km	$\begin{aligned} & 2.2 \\ & \text { cars } / \mathrm{km} \end{aligned}$	$\begin{aligned} & 1.8 \\ & \text { cars } / \mathrm{km} \end{aligned}$	$\begin{aligned} & 0.9 \\ & \text { cars } / \mathrm{km} \end{aligned}$	$\begin{aligned} & 1.6 \\ & \text { cars } / \mathrm{km} \end{aligned}$

a only parked vehicles used in these calculations.
b $E R$ is the Forest Road number designated by the USFS.
c see Figure D-I for location of route in study area.

* Routes at or above the average.

Table D-3.
The number of deer hunters per 100 hectame
by route number and date for the 1976 season.

Road No.	Route No.	Area of Route in Hectares a	Nov. 13 (hunters/100H)	Nov. 14 (hunters/100H)	Nov. 15 (hunters/100H) d	```Average for 3 days (hunters/100H)```
ER181	1	659.3	1.40\%	0.38	0.41%	0.73\%
FRI73	2	796.0	0.21	0.00	0.04	0.08
ER424	3,7	1334.6	0.22	0.09	0.04	0.12
FRI78	4	1005.0	0.31	0.04	0.10	0.15
FR112	5,8	1784.9	0.10	0.09	0.07	0.09
FR1431	6	498.5	0.51	0.17	0.14	0.27
FR114:116	9	667.3	0.28	0.28	0.08	0.21
FR113	10,12	1350.7	0.17	0.09	0.01	0.09
RR420	11	450.2	0.84\%	0.65%	0.34\%	$0.61 *$
ERI20	13,15,17	948.7	0.33	0.44	0.23%	0.33
PR569	14	490.4	1.46\%	1.46\%	0.28\%	1.07\%
RR228	36	578.9	2.32\%	1.92\%	0.62*	1.62\%
ER130	18	1326.6	0.35	0.53\%	0.22\%	0.38
County Poad 16	19	1286.4	0.55	0.73%	0.15	0.48\%
Totals \& Averages	19 routes	13177.5 hectares	$\begin{aligned} & 0.65 \\ & \text { hunters/ } 100 \mathrm{H} \end{aligned}$	$\begin{aligned} & 0.49 \\ & \text { hunters/100H } \end{aligned}$	$\begin{aligned} & 0.19 \\ & \text { hunters / 100H } \end{aligned}$	$\begin{aligned} & 0.44 \\ & \text { hunters/I00H } \end{aligned}$

a area calculated by route length(kn) x 80.4 hectares (the area of a rectangle 1000 m long x (804 m wide (one quarter mile hunted on either side of the road.). An average in area between routes was not describer
b 2.1 hunters/vehicle from Mov. 13 sample.
c 2.1 hunters/vehicle from Nov. 14 sample.
d 1.7 hunters/vehicle from Nov. 15 sample.
e 2.0 hunters/vehicle from Nov. 13, 14, and 15 sample, averaged.

* Routes at or above the average.

TERESSTRAL BTOLOU
ROGIOREL OOPER-NTCREL STTDY

BIS CAER FUHTER CHNSUS
SEASOM
DATE
ODOTETER EPADTHOS: STAR
Plam
TOMAL MTLES
\qquad
\qquad
\qquad

Pan has boon phinarily a huntor during most of his the on carth. hodem sport houtuo, perfomed properly, reenacts a dan as old as man hinself. In this day and aoe whon many rely umon ofthors to provide their sustennce through tho klling of antmals, hunting serves to keen man in olser touch whth enviromment realthes and entiven his interest in his herltage as part of noture. (Portion of the Hildife Society's policy statement on Sport Hunting)

DEER HUTER SUPVEY

Introduction

Each lovember over 300,000 hunters take to the forest and famlands of Mimesota in pursutt of the white-talled dear. Within the boundryes of the Thestre area, dear hunting is probably the single most froportant fom of termestrial recreation based on mumber of persons involed and man-days spent की the field.

Ve investigated existing methods used by the Moll to census hunters and hunting pressure and concluded thet we required a more specific technique to delineate hunter concentration on specific portions of the study area. Traditional methods currently used on a state-wide basis include the following (Karns, 1071); 1) hunter report cards volunteerily required of all license holders; 2) telephone census of randomly picked hunters to detemine, among other things, the hunting success ratio. Other rechods used (hunter check stations and pellet counts) under investigation (summer track census and examination of does killed by vehicles to detamine reproductive conditions) are tochniques used to determine the survivanility, size, age structure, and condition of the doer herd, and are not direct statistics on hunting pressure for a given area.
plate mober, tho seen, oromater readng and whother. the ventole was stopued (parked whth no mersortnearby) on roveng (Table n-T). Lfoense numbers will be cheched with the state to dotemine themered of pectutration for the breaksom of "local" and "non-local" hunters. Each vehicle parked was considered to be that of a deer hanter's, since use of the study area by non-hunters during sumer and fall was vory limted. We then claculated the number of bumans cars/kilometer/route for the three days of the census. Tarce with an average for all ALace days.

The actual dencity of hunter, per km sfoume and per hectare was determined by; i) calchating the number of haters per vehtic. This was done by counting hunters ner moving vehicle and asking persons seen huting near roads the size of their hanting party (person/veticle); 2) Calculating the number of hunters per hectare. Mech (1071) asa estimated the the average distance hunters are willm to deer hunt from an access road in the Superior Hational Forest is onemquater mile. The area hunted was calculated By mutarthes it de Lsust of ence roght
 hectares (the area of a rectangular $1000 \mathrm{mlong} x$ one hal f mile, 804 m , wide).

In addition, wen hunters were encountered near their vehicle they were asked Whether they had hunted the area before or if this was the first time, and
 how they would rank the area' as to whanuattay deer seen perfeffort (Table D-1).

A total of six man days (2 persons for 3 days) was required to complete this huntor survey.

Results

White tailed deer are associated with early successional forest, tryasan
 of approximatoly 115 squore miles $(29,50 n$ hectared adjacent to and south of the st. Louist to comty goad 16 contans the Targest contiguous aspen type on the study area. This area is ropresented on Fioure nal by the land adjacent to and south of F P 120 . The area has a vartety of size and ane classes and represents what we whocoty consider to be the most productive deer habtat on the Minesite area.

Roads that provide access to this area that were censused during this survey are F P $420,120,559,123,130$ and County Road 16 (Tables $0-2$ and [0-3). These roads vere generally for above tas average satatomatape Gmmato wh regard tommak vehicles/m (Table D-2) and estimated humbera/100 i (Table 0-3). The only morthem route that was used
 Bmenta, is not as duerse and dees not cu. an nearly the aspentas the southern

 in the northem portion of the area, tha nearness" to Ely may explain the high hunter density.

The northem area, represented by FP 181, 173, 424, 178 and 1120 (Route 5), have a large portion of the frefarec in contferes (20-30 year old red and. jack pine plantation and natural, extensive areas of black spruce) and a generally maturing forest type. The central portion of the area (FR 112 (noute 8), 1431, 114, 116 and 113) have been heavily cut over and ase efther orouing back to pine plantation or -twat a low growing, shrub forest type, weres

Dear hanters thayma encountered on tho roads or near their vehtelos were interviewed to dotemme whether they hed hunted on the area berore,
 of 54 different persons were intervioved. Eleven of these (20.4 percent) THE used the area for the first time, while targe majortty (43, 79.6 percent) had hunted here before.

When asked to compare the area as good, falr or poor for deen hunting, 62 responses vere divided as follows: (1) good (17, 27.4 percent);
(2) fair ($22,35.5$ percent); (3) poor ($23,37.1$ percent). The majority of the "good" responses (12 of the 17) vere on the southem one-fifth of the area.
 allow us to detemine the proportion of "local" vs "non-local" deer hunters on the area. The results of this check will be presented in future papers.

Conclusion

A deer hunter survey conducted during the first three days of the 1976 season (November 13, 14 and 15) provided information on the distribution and intensity of deer hunting on the Minesite area. The frequency of hunters was related to the distiribution of the aspen ecosystem on the study area. Most hunters were encountered in the southern one-fifth of the area, fith hunter densities in this area 5 to 10 times that found along most northem and central census routes (Tables 0-2 and 0-3).
为
（）

Literature cited

Karnes, P.0. 1971. Censuses and Harvests. In The white-tailed deer in Minnesota Symp. Proc., Edited by M.M. Nelson. Minn. Dept. Nat. Resour., St, Paul, Minn. P. 16-18.

Mech, L.D. 1971. Wolves, coyotes and does. In The white-tailed deer in Minnesota Symp. Proc., Edited by M.M. Nelson. Minn. Dept. Nat. Resour., St. Paul, Mimn. P. 19-22.

Route traveled during 1976. dear hunter survey. Poute scenents are numbered
separatcly, ziong with the direction they were driven.

Road No.		Vehicle License NO.		$\begin{aligned} & \text { Odometer } \\ & \text { Readings } \\ & (000.00) \end{aligned}$	Vehicle y 0 0 0 0 0 0 0		No. of: Hunters In or Near Vehtele		Hunter Eval, of grea 8
				.	- -	- -		-	- - -
									-
						- -			-
									- - -
					- -			- -	- - -
						$-\ldots-$		\ldots	$-\cdots$
					- -	$---$		$-$	$-\quad-\quad-$
					- .	$-\quad-\quad-$		$-$	----
					- -	- -- -	\square	$-$	$-\quad-\quad-$
						$--$			- - -
					- -	$-\cdots$	\qquad	- -	- - -
						$-\quad-$			$-\cdots-$
					$-\quad-$	$-\quad-\quad-$			- - -
						-- -			$\cdots-$
					- -	$-\quad-\quad-$			- - -
						$-\quad-\quad-$			$-\quad-\quad-$
						$\begin{aligned} & - \\ & - \\ & - \end{aligned}$		$-\quad-$	$\left\lvert\, \begin{array}{lll} - & - & - \\ - & - & - \end{array}\right.$

[^0]: * MINESITE Area--a 560 square mile area defined by the MDNR as the area having the highest potential for copper-nickel mining development.

