The Unicode. Standard

Version 9.0 — Core Specification

The Unicode Consortium

Y| Unicode Consortium

Mountain View, CA

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc., in the United States and
other countries.

The authors and publisher have taken care in the preparation of this specification, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out of the
use of the information or programs contained herein.

The Unicode Character Database and other files are provided as-is by Unicode, Inc. No claims are
made as to fitness for any particular purpose. No warranties of any kind are expressed or implied. The
recipient agrees to determine applicability of information provided.

© 2016 Unicode, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction. For information regarding permissions, inquire
at http://www.unicode.org/reporting.html. For information about the Unicode terms of use, please

see http://www.unicode.org/copyright.html.

The Unicode Standard / the Unicode Consortium; edited by the Unicode Consortium. — Version 9.0.
Includes bibliographical references and index.
ISBN 978-1-936213-13-9 (http://www.unicode.org/versions/Unicode9.0.0/)
1. Unicode (Computer character set) 1. Unicode Consortium.
QA268.U545 2016

ISBN 978-1-936213-13-9
Published in Mountain View, CA
July 2016

http://www.unicode.org/versions/Unicode9.0.0
http://www.unicode.org/reporting.html
http://www.unicode.org/copyright.html

1l

Contents

1

Figureso xxi
Tables XXV
Preface. xxxi
Why Unicode? e XXx1
What's New? ... e XXX1
Organization of This Standardo it xxxii
Unicode Standard ANNexesceeeiiiiiiiiieneeeenennnnn Xxxiii
The Unicode Character Database XXXV
Unicode Code Chartsooiiiiiiiiiiiiiiiiiiiiinnenn... XXXV
Unicode Technical Standards and Unicode Technical Reports XXXV
Updatesand Errataooiiiiiiiiiiiieeeenn XXXVi
Acknowledgements XXXVi
Introduction. 1
Ll COVerageouuimniiiiiie e 3
Standards Coverageouiiiiiiiii i 3
New Charactersoviiiiiii ittt 3
1.2 DesignGoals.............oooiiiiiiiiiiiiiiii 4
1.3 TextHandling..................... i, 6
Charactersand Glyphs i i i 6
TextElementsooiiiiiiiiiiiiii i 6
General Structure 9
2.1 Architectural Context......................oooiiiiiiiiii.. 10
Basic Text Processesouuuieeeetiin i, 10
Text Elements, Characters, and Text Processeso.uveeenenen... 10
Text Processesand Encoding, 11
2.2 Unicode Design Principles.................................... 14
Universalityoootitiiii ittt 14
Efficiencyoouuiiiii 15
Characters, Not Glyphs 15
Semanticst 18
Plain TeXt « oo vv ettt e e e e 18
Logical Orderottt 19
Unificationo vvttttt et e 21
Dynamic Compositiont 22
Stability ... 23

Convertibility o 23

2.3

24

2.5

2.6
2.7
2.8

2.9

2.10
2.11

2.12

2.13

2.14

v

Compatibility Characters..................................... 25
Compatibility Variantsoo ittt 26
Compatibility Decomposable Characters 26
Code Points and Characters.........................ooiii.. 29
Types of Code PoINtsovtiiiiiiiii i, 30
EncodingForms........... i 33
U -3 e e e e e 35
UTEF-16 « oot e e e ettt e 36
U -8 et e e e e 36
Comparison of the Advantages of UTF-32, UTF-16,and UTF-8.......... 38
EncodingSchemes 40
Unicode Strings.................ooiiiiiiiiiii 43
Unicode Allocation ..., 44
Planes .« ottt e 44
Allocation Areas and Character Blocks oot 45
Assignment of Code Pointsoouuiiiiiiiiiiiiiiiiiie... 46
Details of Allocation ... 48
Plane 0 (BMP) ..ottt it it et ettt e et e e e 49
Plane 1 (S P) ..ttt e e et e e e 51
Plane 2 (SIP) oottt e e e e 52
Other Planes it e 52
Writing Direction................ i 53
Combining Characters..........................coo it 55
Sequence of Base Characters and Diacriticsoviviinn.... 56
Multiple Combining Charactersoouiiieeenieeeeennnn. 57
Ligated Multiple Base Charactersccoviiiiiiueeennnnnn. 59
Exhibiting Nonspacing Marks in Isolationo.... 60
“Characters” and Grapheme Clusterscouiiiininnnnnnnn.. 60
Equivalent Sequences 62
Normalizationouuuuiiii i 62
DecompoOSItIONS ..o vvuu ettt 63
Non-decomposition of Certain Diacriticscccoiiiieeeenann. 65
Special Characters ..., 67
Special Noncharacter Code Points, 67
Byte Order Mark (BOM)oiiinnt e 67
Layout and Format Control Characters 68
The Replacement Character ..., 68
Control Codeso e 68
Conforming to the Unicode Standard......................... 69
Characteristics of Conformant Implementations 69
Unacceptable Behavior ... 70
Acceptable Behavioruuuu 70

Supported Subsets 71

3 Conformance................oouuiiiiiiiiiiiiiiii i 73
3.1 Versions of the Unicode Standard 74
Stability ... e 74
Version Numberingo.uueiiiiiiiiiiiiiiiiiii .. 75
Errataand Corrigenda it 76
References to the Unicode Standard oot 76
Precisionin Version Citationo 77
References to Unicode Character Properties 77
References to Unicode Algorithms, 78

3.2 Conformance Requirements.................................. 79
Code Points Unassigned to Abstract Characters 79
INLerpretationcuuu ettt ettt 80
MOdIfICationvee ettt e 81
Character Encoding Formsot 82
Character Encoding Schemeso, 83
Bidirectional TeXtouunttttt it 84
Normalization Formsooiiiiiiii e 84
Normative Referencescoiiiiiiiiiii i, 84
Unicode Algorithmst 84
Default Casing Algorithms ..., 85
Unicode Standard ANNEXESvutiteeennniieeniiiiieennnnn 85

33 Semantics ... 87
Definitionso.uutii i 87
Character Identity and Semantics oo iiiiiiiiiiiinn... 87

3.4 CharactersandEncodingl 90
3.5 Properties............... i 94
Types of Propertiesuueeinnn i 94
Property Valuesoueiiinii e e 95
Default Property Values ..ottt 96
Classification of Properties by Their Values 97
Property Status 98
Context Dependencettt ... 101
Stability of Propertiesuuuuiteiniiiiiii e 101

Simple and Derived Properties, 103
Property Aliasesttt 103

Private Useot 104

3.6 Combination................ ... 105
Combining Character SEqUeNCEsovvveeeeeeeeeeeeeeeenenn... 105
Grapheme Clustersttt 107
Application of Combining Marks, 109

3.7 Decomposition.oiuiiiiiiiii 115
Compatibility Decomposition ..., 115

Canonical Decompositionoiiiiiiiiiiiiiiniiian.... 116

Vi

3.8 Surrogates......... ... 118
3.9 Unicode EncodingForms................................ ... 119
UT -3 oo e e e e e e 123
UTEF-16 . oot e e e e et e 124
U -8 o e e e e 124
Encoding Form Conversionccouvuiuiieeeennnnueeennnnnn 126
Constraints on Conversion Processes 126
3.10 Unicode Encoding Schemes.................................. 130
3.11 NormalizationForms................................oo... 134
Normalization Stability o i i 134
Combining Classesouiiiiiiiiiniiniiiiiineeaannn.. 135
Specification of Unicode Normalization Forms 136
Starters o 136
Canonical Ordering Algorithm o it 137
Canonical Composition Algorithm oo, 138
Definition of Normalization Forms, 140
3.12 Conjoining Jamo Behavior........................ ... 142
DefInitionsvvttt e e 142
Hangul Syllable Decompositionc.cceeiiiiiiieeennnnn. 144
Hangul Syllable Compositioncoiiiiiiiiniiiieeennnn. 146
Hangul Syllable Name Generationcccovviiiieeeennnnn. 147
Sample Code for Hangul Algorithms 148
3.13 Default Case Algorithms..................................... 152
Definitions .« ..ottt et e e 152
Default Case CONVEISIONvvvtnnnntteteennaieee e, 154
Default Case Foldingttt 155
Default Case Detectionvvvtetnti et naaieeens 156
Default Caseless Matchingccoiiiiiiiiiiiiiene... 157
Character Properties i, 159
4.1 Unicode Character Database................................. 161
4.2 CaSe . . 164
Definitions of Case and Casingccouiuuiieeennnnunneennn. 164
Case Mappingovviiiiiii i 166
4.3 CombiningClasses.....................ccoiiiiiiiiiiiiii, 168
Reordrant, Split, and Subjoined Combining Marks 168
44 Directionality 173
4.5 General Categorycoiiiiiiiiiii 174
46 NumericValue............. 177
Ideographic Numeric Values oo ... 178
4.7 BidiMirrored 180
4.8 Name...... ... 182

vii

CodePoint Labelso, 187
Use of Character Names in APIs and User Interfaces 188
49 Unicode 1.ONames..............c.oiiiiiiiiiiiiiiinain. 189
4.10 Letters, Alphabetic, and Ideographic......................... 190
4.11 Properties Related to Text Boundaries....................... 191
4.12 Characters with Unusual Properties......................... 192
Implementation Guidelines 197
5.1 Data Structures for Character Conversion................... 198
ISSUeS ottt e 198
Multistage Tablesuuutiiiii e 198
5.2 Programming Languages and Data Types 201
Unicode Data Typesfor Co, 201
5.3 Unknown and Missing Characters........................... 203
5.4 Handling Surrogate Pairs in UTF-16......................... 205
5.5 HandlingNumbers 207
5.6 Normalization0iiiiiiiiiiii, 208
5.7 COmPIesSiON.ooiiuiiiiiiii i, 210
5.8 Newline Guidelines 211
Definitions . ..ottt ettt et e 211
Line Separator and Paragraph Separator, 212
Recommendationsuuueeeeeiuinnneeeeunnnneeeennnnnn. 213
5.9 Regular Expressions ..., 216
5.10 Language InformationinPlainText......................... 217
Requirements for Language Taggingcooviiiieeennnn. 217
Language Tags and Han Unificationo, 217
5.11 Editingand Selection 219
Consistent Text Elements 219
5.12 Strategies for Handling NonspacingMarks.................. 221
Keyboard Input ... 222
Truncationuui ittt e 222
5.13 Rendering NonspacingMarks 224
Canonical Equivalence i i 227
PositioningMethods o i i i 228
5.14 Locating Text Element Boundaries 230
5.15 Identifiers........... ...ttt 231
5.16 Sortingand Searching.................. L 232
Culturally Expected Sorting and Searching 232
Language-Insensitive Sortingo i i i i il 232
Searchingoiiiii e 233

Sublinear Searching i i i i i 233

Viii

5.17 BinaryOrder........... ... i 235
UTF-8in UTF-16 Orderttt 235
UTF-16 in UTF-8Order 236

5.18 Case Mappings............oouiuiiuiiiiiiiiiiiiiaiaininn. 238
Titlecasinguurtet et e 238
Complications for Case Mappingoueueeeeenninneeennnnnn 239
Reversibilityoounu i e 241
Caseless Matchingcoiiiii i e 242
Normalization and Casingc.ueeiiiiieennnnnnneenenn. 244

5.19 Mapping Compatibility Variants 246

5.20 Unicode Security........... ...t 248

5.21 Ignoring Charactersin Processing........................... 251
Characters Ignored in Text Segmentationccovvnan. 251
Characters Ignored in Line Breaking, 252
Characters Ignored in Cursive Joiningcccvvviiieeennnn. 252
Characters Ignored in Identifierso an, 252
Characters Ignored in Searching and Sorting 253
Characters Ignored for Display, 253

5.22 Best Practice for U+FFFD Substitution...................... 257

6 Writing Systems and Punctuation................................. 259

6.1 WritingSystems 260

6.2 General Punctuation..................... ... 265
Blocks Devoted to Punctuationoouiueeeiniieeennnnn. 266
Format Control Charactersccoiiuiiiiiinniieeennnnn. 267
Space Charactersoieeiiiunine et 268
Dashes and Hyphensttt 269
Paired Punctuation i i i 271
Language-Based Usage of Quotation Marks, 272
APOSITOPRES . . . e 276
Other PUNctuationouiuttieeinniii e, 276
Archaic Punctuation and Editorial Marks 281
Indic PUnctuationcoouiinntieeenniiii e 284
CIJK PUNCEUALION &« vttt ettt e e e e e e e e e et e 286
Unknown or Unavailable Ideographsc.ooiii... 287
CJK Compatibility Formsoouein e 288

7 Europe-I... 291

Modern and Liturgical Scripts

70 Latin ... 293
Letters of Basic Latin: U+0041-U+007Accoviiiiiiieeennnnn. 297
Letters of the Latin-1 Supplement: U+00CO-U+00FF 297
Latin Extended-A: U+0100-U+017Fciiiiiiiieeennnnn. 297
Latin Extended-B: U+0180-U+024F 298

IPA Extensions: U+0250-U+02AF i i 300

X

Phonetic Extensions: U+1D00-U+IDBFan. 302
Latin Extended Additional: U+1E00-U+1EFF 303
Latin Extended-C: U+2C60-U+2C7Ft 303
Latin Extended-D: U+A720-U+A7FFcoiiiiiiiiiennnnn, 304
Latin Extended-E: U+AB30-U+AB6F 305
Latin Ligatures: U+FBOO-U+FB06t 305
72 Greek.... ... 306
Greek: U+0370-U+03FF 306
Greek Extended: U+1FO0-U+1FFFot 310
Ancient Greek Numbers: U+10140-U+1018F 311
7.3 COPtiC.o 313
74 Cyrillic.... ... 316
Cyrillic: U+0400-U+04FF i 316
Cyrillic Supplement: U+0500-U+052F, 318
Cyrillic Extended-A: U+2DE0-U+2DFF iiiiiiiinan, 318
Cyrillic Extended-B: U+A640-U+A69Fccoiiiiiiieennnn. 319
7.5 Glagolitic................ 320
7.6 Armenian ... 321
7.7 GEOYGIANot 323
7.8 Modifier Letters. ...ttt 325
Spacing Modifier Letters: U+02B0-U+02FF 326
Modifier Tone Letters: U+A700-U+A71Ft 328
7.9 CombiningMarks........................ 329
Combining Diacritical Marks: U+0300-U+036F 334
Combining Diacritical Marks Extended: U+1ABO-U+1AFF 335
Combining Diacritical Marks Supplement: U+1DC0-U+1DFF 336
Combining Marks for Symbols: U+20D0-U+20FF 336
Combining Half Marks: U+FE20-U+FE2F 337
Combining Marks in Other Blocks it 337
Europe-IL. o 339
Ancient and Other Scripts
8.1 Linmear A... 341
82 LinearB........ 342
Linear B Syllabary: U+10000-U+1007Fccoiiiiiieeennnn. 342
Linear B Ideograms: U+10080—-U+100FFo.... 342
Aegean Numbers: U+10100-U+1013F, 342
83 CypriotSyllabary 344
8.4 Ancient Anatolian Alphabets 345
Lycian: U+10280-U~+1029Fo i 345
Carian: U+102A0-U+102DF 345
Lydian: U+10920-U+1093Fottt e e n 345
85 OldItalic............ ... 347

10

8.6 RUNIC.......... .. i 350
87 OIldHungarian.................... ..o i 353
88 Gothic......... 354
89 Elbasan............ 355
8.10 CaucasianAlbanian.. 356
8.11 OIdPermic......... ..ot 357
812 Ogham....... 358
8.13 Shavian............ 359
Middle East-I...... ... 361
Modern and Liturgical Scripts
9.1 Hebrew... 363
Hebrew: U+0590-U+05FF oottt 363
Alphabetic Presentation Forms: U+FBID-U+FB4F 367
9.2 Arabic.......... .. 369
Arabic: U+0600-U~+06FF it 369
Arabic Cursive JOININgGvuttttt i 377
Arabic Ligaturesvuutt e 380
Arabic Joining Groupseuuteutteteeinneeenns 381
Arabic Supplement: U+0750-U+077F, 389
Arabic Extended-A: U+08AO0-U+08FFot 389
Arabic Presentation Forms-A: U+FB50-U+FDFF 389
Arabic Presentation Forms-B: U+FE70-U+FEFF 391
9.3 SYIIAC ... o 392
Syriac: U+0700-U+074F 392
Syriac Shapingt 396
9.4 Samaritan................. ... 401
9.5 Mandaic............o 403
Middle East-IL 407
Ancient Scripts
10.1 OldNorthArabian............. 409
10.2 OldSouthArabian... 410
10.3 Phoenician........... o i 412
10.4 Imperial Aramaic i 414
10.5 Manichaean............... 416
10.6 PahlaviandParthian... 420
Inscriptional Parthian: U+10B40-U+10B5F 420
Inscriptional Pahlavi: U+10B60-U+10B7F 420
Psalter Pahlavi: U+10B80—U+10BAF ..., 421
10.7 AVeStan. o 422
10.8 Nabataean.................... ..., 424

11

12

xi

109 Palmyrene.........o 425
10.10 Hatran ... o 426
Cuneiform and Hieroglyphs...................... ... 427
11.1 Sumero-Akkadian.................. ... 428
Cuneiform: U+12000-U+123FF ittt 428
Cuneiform Numbers and Punctuation: U+12400-U+1247F 431
Early Dynastic Cuneiform: U+12480-U+1254F 431
11.2 Ugaritic ... 432
11.3 OldPersiano, 433
11.4 Egyptian Hieroglyphs.. 434
11.5 MeroitiC.ooiii e 439
11.6 Anatolian Hieroglyphs.............. ..., 441
South and Central Asia-I...................., 443
Official Scripts of India
12.1 Devanagari..............oouiiniiiiiii i 445
Devanagari: U+0900-U+097F it 445
Principles of the Devanagari Script ..., 446
Rendering Devanagarieeeiiiiiiieeennnnneeeennnnn 452
Devanagari Digits, Punctuation, and Symbols 461
Extensions in the Main Devanagari Block 462
Devanagari Extended: U+A8E0-U+AS8FFt 464
Vedic Extensions: U+1CDO-U+1CFFoiiiiiiiiina... 465
12.2 Bengali(Bangla) 467
123 Gurmukhi....... 473
124 Gujarati...........ooiiii 478
12,5 Oriya (Odia)oooii 480
126 Tamil..... 483
Tamil: U+0B80-U~+0BFF 483
Tamil VOwels e 484
Tamil Ligaturesouuuuutienini i 485
Tamil Named Character Sequences, 489
12.7 Telugu.o 492
128 Kannada 495
Kannada: U+0C80-U+O0CFFot 495
Principles of the Kannada Script 495
RenderingKannada L. 497
129 Malayalam 499
Malayalam Orthographic Reform oot 500
Rendering Malayalam i 501

Malayalam Numbers and Punctuationccooiiee. ... 505

13

14

15

xii

Southand Central Asia-II ... 507
Other Modern Scripts
13.1 Thaana......... ... 509
13.2 Sinhala....... 511
Sinhala Archaic Numbers: U+111E0-U+111FF 512
13.3 NeWa . ..o 513
13.4 Tibetan. 515
13.5 Mongolian 527
13.6 Limbu........ 536
13.7 MeeteiMayek 540
13.8 MO ... 542
139 WarangCiti............. i 543
1310 O1ChiKi. ... 544
13.11 Chakma 546
1312 Lepcha . ..o 547
13.13 Saurashtra 550
South and Central Asia-IIT .. 551
Ancient Scripts
14.1 Brahmi. 552
142 Kharoshthi............ 556
Kharoshthi: U+10A00-U+10A5F ...ttt 556
Rendering Kharoshthi......... ... o o i i i 558
143 Bhaiksuki 562
14.4 Phags-pa......... 564
145 Marchen 571
14.6 OIdTurKic 572
Southand Central Asia-IV .. 573
Other Historic Scripts
15.1 SylotiNagri ... 575
152 Kaithi 577
153 Sharada 580
15,4 TaKri.o 582
155 Siddham 584
15,6 Mahajani............... 586
15.7 KhojKi.o 588
158 Khudawadi................. 590
159 Multani 592
1510 Tirhuta. 593

15.11 MOAI .. oo 596

xiii

1512 Grantha 599
Rendering Behavior i i i 599

1513 Ahom 602
15.14 SoraSompeng. i 604
16 Southeast Asia............. i, 605
16.1 Thai...... ... 607
16.2 Laoo 611
16.3 Myanmar.............o.iuininiiii e 614
Myanmar: U+1000-U+109F oo, 614
Myanmar Extended-A: U+AA60-U+AA7Ft 618
KhamtiShan e 618
Aitonand Phake e 620
Myanmar Extended-B: U+A9E0-U+A9FF 620

16.4 Khmer.. 621
Khmer: U+1780-U+17FF it 621
Principles of the Khmer Scripto i i, 621
Khmer Symbols: U+19E0-U+19FF i 631

165 Taile ... 632
16,6 NewTailue................ . i, 634
16.7 TaiTham....... 637
16.8 TaiViet. o 640
169 KayahLi....... 643
16.10 Cham. 644
16.11 PahawhHmong...................., 646
1612 PauCin Hau i, 648
17 Indonesiaand Oceaniaciiiiiiiiiiin... 649
17.1 Philippine Scripts............. ... 650
Tagalog: U+1700-U~+171Fot 650
Hanundo: U+1720-U+173F ... ittt e i 650
Buhid: U+1740-U+175F ...ttt it et e 650
Tagbanwa: U+1760-U+177Fo i 650
Principles of the Philippine Scriptso i i ... 650

17.2 BUGINeSeottt 653
17.3 Balineset 655
17.4 JavanesSe. 661
17.5 ReJang. 665
17.6 Batak........... 666
17.7 Sundamese................o i 667
Sundanese: U+1B80—U+1BBFttt it iiieeen 667

Sundanese Supplement: U+1CCO-U+ICCF 668

Xiv

18 EBast ASia.o 669
18.1 Han ... 671
CJK Unified Ideographsottt 671

Blocks Containing Han Ideographscooiiiiiiiiian, 672
General Characteristics of Han Ideographs 674
Principles of Han Unificationo i, 678
Unification Rules e 679
AbBStract Shape 680

Han Ideograph Arrangemento oot iiiiieennnnn. 682
Radical-Stroke Indicesoouiiiiiiiiiiiiiiiiiiiiii 683
Mappings for Han Ideographso, 684

CJK Unified Ideographs Extension B: U+20000-U+2A6D6 685

CJK Unified Ideographs Extension C: U+2A700-U+2B734 685

CJK Unified Ideographs Extension D: U+2B740-U+2B81D 685

CJK Unified Ideographs Extension E: U+2B820-U+2CEA1 685

CJK Compatibility Ideographs: U+F900-U+FAFF 685

CJK Compatibility Supplement: U+2F800-U+2FAID 686
Kanbun: U+3190-U+319F e e 686
Symbols Derived from Han Ideographs 687

CJK and KangXi Radicals: U+2E80-U+2FD5ccovvnnn. 687

CJK Additions from HKSCS and GB 18030o, 688

CJK Strokes: U+31C0-U431EF ..ot iti ettt et et e eens 688

18.2 Ideographic Description Characters......................... 689
18.3 Bopomofo......... ... 693
18.4 HiraganaandKatakana...................................... 696
Hiragana: U+3040-U+309F o it 696
Katakana: U+30A0-U+30FFottt 696
Katakana Phonetic Extensions: U+31F0-U+31FF..................... 697

Kana Supplement U+1B000-U+1BOFF 697

18.5 Halfwidth and Fullwidth Forms 698
186 Hangul....... 699
Hangul Jamo: U+1100-U+11FF o i i, 699
Hangul Jamo Extended-A: U+A960-U+A97F 700
Hangul Jamo Extended-B: U+D7B0-U+D7FF 700
Hangul Compatibility Jamo: U+3130-U+318F 700
Hangul Syllables: U+AC00-U+D7A3, 701

18.7 Y. .o o 703
18.8 Lisu ... 706
189 Miao ... 709
18.10 Tangut o 711
Tangut: U+17000-U+187FF i 711

Tangut Components: U+18800-U+18AFF 712

19

20

21

22

XV

Africa. ... o 713
19.1 Ethiopic....... ... 714
Ethiopic: U+1200-U+137Fo 714
Ethiopic Extensionso i 716
19.2 Osmanya.................iiiiiiiiii 718
193 Tifinagh.... 719
194 NKO o oot 722
195 Vai oo 727
19.6 Bamum. 729
Bamum: U+A6A0-U+AG6FF 729
Bamum Supplement: U+16800-U+16A3F 729
19.7 BassaVah i 731
19.8 MendeKikakui................... ... 732
199 Adlam.... ... 734
AIMETICAS . ..o 737
20.1 Cherokee................. i 738
20.2 Canadian Aboriginal Syllabics............................... 740
Canadian Aboriginal Syllabics: U+1400-U+167F 740
Canadian Aboriginal Syllabics Extended: U+18B0-U+18FF 741
203 08age. ... 742
204 Deseret....... ...t 743
Notational Systems...................... i, 747
21.1 Braille.......... 748
21.2 Western Musical Symbols............................ 750
21.3 Byzantine Musical Symbols.................... 755
21.4 Ancient Greek Musical Notation............................. 756
21.5 Duployan ... 759
Shorthand Format Controls: U+1BCAO-U+1BCAF 760
21.6 Sutton SignWriting 761
Symbols ... 763
22.1 CurrencySymbols 765
22.2 LetterlikeSymbols 768
Letterlike Symbols: U+2100-U+214Ft 768
Mathematical Alphanumeric Symbols: U+1D400-U+1D7FF 769
Mathematical Alphabets o i 770
Fonts Used for Mathematical Alphabets 772
Arabic Mathematical Alphabetic Symbols: U+1EE00-U+1EEFF 774
223 Numerals................ 775
Decimal Digitsouvnn e e e 775

Other DIgIts vvtt e e e 777

22.4

22.5

22.6
22.7

22.8

22.9

xvi

Non-Decimal Radix Systemsccoiiiiiiiieinnineen... 779
Acrophonic Systems and Other Letter-based Numbers 780
Coptic Epact Numbers: U+102E0-U+102FF 781
Rumi Numeral Symbols: U+10E60-U+10E7E 782
CIKNUMETals ..ottt e e e e e e e e e e e 783
Fractionsoooiiiiiiiiiii i i 784
Common Indic Number Forms: U+A830-U+A83F 785
Superscript and Subscript Symbols................. ... 786
Superscripts and Subscripts: U+2070-U+209F 786
Mathematical Symbols..................... ... 788
Mathematical Operators: U+2200-U+22FF 789
Supplements to Mathematical Symbols and Arrows 792
Supplemental Mathematical Operators: U+2A00-U+2AFF............. 792
Miscellaneous Mathematical Symbols-A: U+27C0-U+27EF 792
Miscellaneous Mathematical Symbols-B: U+2980-U+29FF 793
Miscellaneous Symbols and Arrows: U+2B00-U+2B7F 794
Arrows: U+2190-U+21FF 794
Supplemental ATrows 794
Standardized Variants of Mathematical Symbols 795
Invisible Mathematical Operators 796
Technical Symbols 797
Control Pictures: U+2400-U+243F oo, 797
Miscellaneous Technical: U+2300-U+23FF 797
Optical Character Recognition: U+2440-U+245F 801
Geometrical Symbols ... 802
Box Drawing and Block Elementsccoiiiiiiieinnn. 802
Geometric Shapes: U+25A0-U+25FF, 803
Geometric Shapes Extended: U+1F780-U+1F7FF 804
Miscellaneous Symbols 805
Miscellaneous Symbols and Pictographs 806
Emoticons: U+1F600-U+1F64Fo oot 809
Transport and Map Symbols: U+1F680-U+1F6FF 809
Dingbats: U+2700-U+27BF oo 809
Ornamental Dingbats: U+1F650-U+1F67Fcooiiaan, 811
Alchemical Symbols: U+1F700-U+1F77F ..., 811
Mahjong Tiles: U+1F000-U+1F02Fcooiiiiiiiiia.... 812
Domino Tiles: U+1F030-U+1F09Foiiiiiiiiienn... 812
Playing Cards: U+1FOAO-U+1FOFFcoiiiiiiieennnn, 812
Yijing Hexagram Symbols: U+4DCO-U+4DFF 813
Tai Xuan Jing Symbols: U+1D300-U+1D356ccvvvinnnenn... 814
Ancient Symbols: U+10190-U+101CFot 814

Phaistos Disc Symbols: U+101D0-U+101FF 815

23

24

xvii

22.10 Enclosedand Square 816
Enclosed Alphanumerics: U+2460-U+24FF 818
Enclosed CJK Letters and Months: U+3200-U+32FF 818
CJK Compatibility: U+3300-U+33FFoouuuiiennnann... 819
Enclosed Alphanumeric Supplement: U+1F100-U+1F1FF 819
Enclosed Ideographic Supplement: U+1F200-U+1F2FF 820

Special Areas and Format Characters 821

23.1 ControlCodes............c.oiiuiiiiiiii i 822
Representing Control Sequences ..., 822
Specification of Control Code Semantics 823

23.2 LayoutControls.............. i 825
Lineand Word Breaking oo, 825
Cursive Connection and Ligatureso, 827
Combining Grapheme Joiner........... .. .o i, 831
Bidirectional Ordering Controlst 833
Stateful Format Controls i i i 834

23.3 Deprecated Format Characters 836

23.4 Variation Selectors.................. ... i 838

23.5 Private-Use Characters.......................oociiiiiiiiii.. 841
Private Use Area: U+E000-U+F8FF, 842
Supplementary Private Use Areasc.ooiiiiiiiiiiennan.... 843

23.6 SurrogatesArea.....................iiiiiiiiiiiiiiii 844

23.7 Noncharactersooiiiiiiiiiiiiiiiiiin i, 845

23.8 Specials ... 847
Byte Order Mark (BOM): U+FEFFo oo ... 847
Specials: U+FFFO-U+FFF8 i, 849
Annotation Characters: U+FFFO-U+FFFB, 849
Replacement Characters: U+FFFC-U+FFFD 851

23.9 TagCharacters...............cooviiiiiiiiiiiiiiinaiiiinn... 852
Tag Characters: U+E0000-U+E007Fcooiiiiineoe... 852
Deprecated Use for Language Taggingccovviirueeeennnnn. 852
Syntax for Embedding Tagsccoviiiiiiiininiiiiennnnn, 852
Working with Language Tagsoooiiiiiiiiiieinnnnnn.. 854
Unicode Conformance Issuesc.cceviiiiiieennnnnnen.. 856
Formal Tag Syntaxcoiiuuuiiiieiiiiiiiiee e 856

Aboutthe CodeCharts.................... ..., 857

24.1 Character Names List 858
Images in the Code Charts and Character Lists 858
Special Characters and Code Points oL, 860
Character Namesottt e 862
Informative Aliasesooiuiii i 862
Normative ALIaseso.uutttinii e e 863

Cross Referencesovuinin e 864

xviii

Information About Languagesccovviiieiiniiiiiennnn, 865

Case Mappingsooviiiiiiiitit e 866
DecOmMPOSILIONS .« o v v vttt et ettt ettt 866
Standardized Variation Sequences 867
Subheads ... e 869

24.2 CJKIdeographs.................oiiiiiiiiiiiiiiiiii 870
CJK Unified Ideographsoo ittt 870
Compatibility Ideographso i i 872

24.3 HangulSyllables 873
A Notational Conventions....................c.oiiiiiiiiiiiiiiiin... 875
Code POInts ...ttt e 875
Character Nameso oottt 875
Character BIocksoouutiii i e e 875
SEQUENCES . . vttt e 876
ReNderingvvvtit e e e 876
Properties and Property Values ..., 877
Miscellaneouscounnnttt it e 877
Extended BNF o i e e 877
OPCTatOrS v vttt ettt et ettt et e 879

B Unicode Publications and Resources............................... 881
B.1 The Unicode Consortium...................ccoovviiiiiinn... 882
The Unicode Technical Committeecoeviiiiinee ... 882

Other ACHIVIHIES . ..o vttt e e 882

B.2 Unicode Publications 883
B.3 Unicode Technical Standards................................ 884
UTS #6: A Standard Compression Scheme for Unicode 884

UTS #10: Unicode Collation Algorithm 884

UTS #18: Unicode Regular Expressionscooiiia.... 884

UTS #22: Character Mapping Markup Language (CharMapML) 884

UTS #35: Unicode Locale Data Markup Language (LDML) 884

UTS #37: Unicode Ideographic Variation Database 884

UTS #39: Unicode Security Mechanisms, 884

UTS #46: Unicode IDNA Compatibility Processing 885

B.4 Unicode Technical Reports 886
UTR#16: UTF-EBCDIC i i e 886

UTR #17: Unicode Character EncodingModel 886

UTR #23: The Unicode Character Property Model 886

UTR #25: Unicode Support for Mathematics 886

UTR #26: Compatibility Encoding Scheme for UTF-16: 8-Bit (CESU-8) . . 886

UTR #33: Unicode Conformance Model 886

UTR #36: Unicode Security Considerationsc..oouee.... 887

UTR #50: Unicode Vertical Text Layoutccovviineo.... 887

UTR#51: Unicode Emoji vvviiiii i 887

m g

I

Xix

B.5 Unicode TechnicalNotes..................................... 888
B.6 Other Unicode OnlineResources 889

Unicode Online RESOUICES ..o vvvvi ettt it iie i iie e iaeenns 889

How to Contact the Unicode Consortiumcovvevun..... 891
Relationship to ISO/IEC 10646................ccoiiiiiiiiiiinn .. 893
Cl HIStOTY. ... 894
C.2 Encoding Formsin ISO/IEC10646. 900

Zero Extendingoiii e 900
C3 UTF-8andUTF-16................., 901

UTE-8 oo e e ettt 901

U016 oo e e e e e e e e e e e 901
C.4 Synchronization of the Standards............................ 902
C.5 Identification of Features for Unicode....................... 903
C.6 CharacterNames................., 904
C.7 Character Functional Specifications 905
Version History of the Standard............................... ... 907
Han UnificationHistory, 913
E.1 Developmentofthe URO 914
E.2 Ideographic Rapporteur Group.............................. 916
E3 CJKSources....... ..o 918
Documentation of CJK Strokes. ... 923
References 931
R.1 Source Standards and Specifications......................... 932
R.2 Source DictionariesforHan 941
R.3 OtherScriptSources.................ccooiiiiiiiiiiiii 942
R.4 Selected Resources: Technical................................ 970
R.5 Selected Resources:Other.................................... 973
Index 979

Figures

Figure 1-1.
Figure 1-2.
Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 2-10.
Figure 2-11.
Figure 2-12.
Figure 2-13.
Figure 2-14.
Figure 2-15.
Figure 2-16.
Figure 2-17.
Figure 2-18.
Figure 2-19.
Figure 2-20.
Figure 2-21.
Figure 2-22.
Figure 2-23.
Figure 2-24.
Figure 2-25.
Figure 3-1.
Figure 4-1.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.
Figure 5-8.
Figure 5-9.
Figure 5-10.
Figure 5-11.

xxi

Wide ASCIL . ..o 2
Unicode Compared to the 2022 Framework. 5
Text Elements and Characterscooiiiiiiieen.nn. 11
Characters Versus Glyphso 16
Unicode Character Code to Rendered Glyphs 17
Bidirectional Orderingcooiiiiiiiiiiiiiiiennnnnn. 20
Writing Direction and Numberso, 20
Typeface Variation for the Bone Character....................... 22
Dynamic Compositionoveuuniineeeiinneeeennnnnn.. 23
Abstract and Encoded Charactersccovviinee.... 29
Overlap in Legacy Mixed-Width Encodings...................... 33
Boundaries and Interpretation.c..uuuueiiennnenan. 34
Unicode Encoding Forms, 35
Unicode Encoding Schemescooiiiiiiiiiiiia... 41
Unicode Allocationouuurttiiiiiiiii e 48
Allocationonthe BMP i 49
AllocationonPlane 1.........oo i 51
Writing Directions. o i i i 53
Combining Enclosing Marks for Symbols. 56
Sequence of Base Characters and Diacriticsccoeeee.. 56
Reordered Indic Vowel Signs, 57
Properties and Combining Character Sequences 57
Stacking SeqUENCesuutteetnniiii e 57
Ligated Multiple Base Characters..............c.c.ooiiieiinn.. 60
Equivalent SEqUENCesuuuuueeiiiiiia 62
Canonical Ordering.vueiiiiiiii i, 63
Types of Decomposables.o, 64
Enclosing Marks.ot e 112
Positions of Common Combining Marks....................... 168
Two-Stage Tables.oviiiin e e 199
Normalizationutee ettt 208
Consistent Character Boundaries.ooiiiiaa.. 219
Dead Keys Versus Handwriting Sequence.ooo. ... 222
Truncating Grapheme Clustersccoviiiiee.... 223
Inside-OutRulet e 224
Fallback Renderingcooiiiiiiiiiiiiiieennnnn. 225
Bidirectional Placement, 226
JUSHIICAtION. « o v ottt e e e e e e e e 226
Positioning with Ligatureso .. 228
Positioning with Contextual Forms.t 229

Figures

Figure 5-12.
Figure 5-13.
Figure 5-14.
Figure 5-15.
Figure 5-16.

Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.
Figure 6-6.
Figure 6-7.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7-8.
Figure 7-9.

Figure 7-10.
Figure 7-11.
Figure 7-12.
Figure 7-13.
Figure 7-14.
Figure 7-15.

Figure 8-1.
Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.
Figure 9-5.
Figure 9-6.
Figure 9-7.
Figure 9-8.

Figure 11-1.
Figure 12-1.
Figure 12-2.
Figure 12-3.
Figure 12-4.
Figure 12-5.
Figure 12-6.
Figure 12-7.
Figure 12-8.

XXii
Positioning with Enhanced Kerning 229
Sublinear Searching.............cooiiiiiiiiii i, 234
Uppercase Mapping for Turkish I 240
Lowercase Mapping for Turkish I, 240
Casing of German Sharp S i i 241
Overriding Inherent Vowels, 262
Forms of CJK PUNCEUAtION .+« v vt vt ettt e e e e e e e 266
European Quotation Marks i 273
Asian Quotation Marks. oottt e 275
Examples of Ancient Greek Editorial Marks..................... 283
Use of Greek Paragraphos. 283
CIK Parentheses . . v oo vttt e e e e e e e 286
Alternative Glyphsin Latin.o i, 293
Diacriticsoniand j.......ooeiinii i e 296
Vietnamese Letters and Tone Marks 296
Variations in Greek Capital Letter Upsilon...................... 308
Coptic Numeralsoututitiiiii ittt 315
Combination of Titlo Letterscoeeeiiiiiiieeennn.. 319
Georgian Scriptsand Casing.viiii i 323
ToneLetters ...t 328
Double DIacritics . . oo vvve ettt e 332
Positioning of Double Diacriticsoooeiiiiiie. .. 332
Use of CGJ with Double Diacritics. .. oo vt en e 332
Interaction of Combining Marks with Ligatures 334
Positioning of Combining Parentheses 335
Use of Vertical Line Overlay for Negation. 336
Double Diacriticsand Half Marks oot 337
Distribution of Old Italic. 349
Directionality and Cursive Connection.ovuuuee.... 369
USING @ JOINET . . vttt ettt e e 371
Using @ NON-JOINeTrttt 371
Combinations of Joiners and Non-joiners 372
Placementof Harakat i . 372
Arabic Year Sign. .. .coounntt i e 376
Syriac Abbreviation 394
UsSe Of SAM . . . ettt it e 394
Interpretation of Hieroglyphic Markup. 436
Dead Consonants in Devanagaricceeviiunnene. .. 449
Conjunct Formations in Devanagari................ ... 449
Preventing Conjunct Forms in Devanagari...................... 450
Half-Consonants in Devanagari..............oooeeiiinneee. .. 451
Independent Half-Forms in Devanagari 451
Half-Consonants in Oriya.veeeiiieennnee... 451
Consonant Forms in Devanagariand Oriya..................... 452
Rendering Order in Devanagari.............coovviiueeennn.. 457

Figures

Figure 12-9.

Figure 12-10.
Figure 12-11.
Figure 12-12.
Figure 12-13.
Figure 12-14.
Figure 12-15.
Figure 12-16.
Figure 12-17.
Figure 12-18.
Figure 12-19.
Figure 12-20.
Figure 12-21.
Figure 12-22.
Figure 12-23.
Figure 12-24.
Figure 12-25.
Figure 12-26.

Figure 13-1.
Figure 13-2.
Figure 13-3.
Figure 13-4.
Figure 13-5.
Figure 13-6.
Figure 13-7.
Figure 13-8.
Figure 14-1.
Figure 14-2.
Figure 14-3.
Figure 14-4.
Figure 14-5.
Figure 14-6.
Figure 15-1.
Figure 15-2.
Figure 15-3.
Figure 16-1.
Figure 16-2.
Figure 16-3.
Figure 16-4.
Figure 16-5.
Figure 17-1.
Figure 17-2.
Figure 17-3.
Figure 18-1.
Figure 18-2.

XXiii
Use of Apostrophe in Bodo, Dogri and Maithili.................. 462
Use of Avagrahain Dogrit 463
Requesting Bengali Consonant-Vowel Ligature 470
Blocking Bengali Consonant-Vowel Ligature.................... 470
Bengali Syllable tta.cooiinn e 471
Kssa Ligature in Tamil. o e 483
Tamil Vowel Reordering.coiiiiiiiiiie .. 484
Tamil Two-Part Vowelso, 484
Tamil Vowel Splitting and Reordering 485
Vowel Reordering Around a Tamil Conjunct. 485
Tamil Ligatures with i ... 486
Spacing Forms of Tamil u......... 487
Tamil Ligatures withra...........oooiiiiiiiii ... 487
Traditional Tamil Ligatures withaa............................ 487
Traditional Tamil Ligatureswitho 488
Traditional Tamil Ligatureswithai............................ 488
Vowel aiin Modern Tamilo L. 488
Indicating Retroflexion in Badaga Vowels. 497
Tibetan Syllable Structure., 516
Justifying Tibetan Tseksoueiiiiiiiiiiiee... 525
Mongolian Glyph Convergenceccevviiiieeennn.. 529
Mongolian Consonant Ligationccoviiiieeean... 530
Mongolian Positional Forms 530
Mongolian Free Variation Selectorcoo.... 531
Mongolian Gender Forms.o 533
Mongolian Vowel Separator...........c.oovuiuiiiinninnee. .. 534
Consonant Ligatures in Brahmi............. 553
Geographical Extent of the Kharoshthi Script 556
Kharoshthi Number 1996 oot 557
Kharoshthi Rendering Example, 558
Phags-paSyllable Omo 566
Phags-pa Reversed Shaping.coooiiiiiiiiie. .. 569
Siddham Consonant Cluster., 585
Modi Shaping forra........coooiuuuiiiiiiiiii e 597
Splitting Large Conjunct Stacks in Grantha 600
Common Ligatures in Khmer.................o i, 628
Common Multiple Formsin Khmero.... 628
Examples of Syllabic Order in Khmer 630
Ligation in Muul Stylein Khmer 631
Pahawh Hmong Syllable Structure.cooiio... 646
Buginese Ligature.o 653
Writing dharmain Balineseot 658
Representation of Javanese Two-Part Vowels. 662
Han Spelling. oot e 676
Semantic Context for Han Characters.......................... 676

Figures

Figure 18-3.
Figure 18-4.
Figure 18-5.
Figure 18-6.
Figure 18-7.
Figure 18-8.
Figure 18-9.
Figure 19-1.
Figure 19-2.
Figure 19-3.
Figure 20-1.
Figure 21-1.
Figure 21-2.
Figure 21-3.
Figure 21-4.
Figure 22-1.
Figure 22-2.
Figure 22-3.
Figure 22-4.
Figure 22-5.
Figure 22-6.
Figure 22-7.
Figure 22-8.
Figure 22-9.
Figure 22-10.
Figure 23-1.
Figure 23-2.
Figure 23-3.
Figure 23-4.
Figure 23-5.
Figure 24-1.
Figure 24-2.
Figure 24-3.
Figure 24-4.
Figure 24-5.
Figure A-1.

XX1V
Three-Dimensional Conceptual Model. 678
CJK Source Separationoeeeiuunneeeeunnnnneennnn. 679
Not Cognates, Not Unified...........ccooiiiiiiinn... 680
Ideographic Component Structurecceeviuiuuneee... 681
The Most Superior Node of an Ideographic Component 681
Using the Ideographic Description Characters. 691
Japanese Historic Kanaforeandye.................... 697
Tifinagh Contextual Shapingo i . 720
Tifinagh Consonant Joiner and Bi-consonants. 721
Examples of N’Ko Ordinals, 724
Short Words Equivalent to Deseret Letter Names 744
Examples of Specialized Music Layout 752
Precomposed Note Characters.ouuuiiinnnnnnnnnnnnn.. 753
Alternative Noteheads. ..., 753
Augmentation Dots and Articulation Symbols. 753
Alternative Glyphs for Dollar Sign.......... ..., 765
Alternative Glyphs for Numero Sign...................ooooo... 768
Wide Mathematical Accents.........o.vveeiieennnnnnen... 771
Style Variants and Semantic Distinctions in Mathematics 771
Easily Confused Shapes for Mathematical Glyphs 773
CJK Ideographic Numbersooiiiiii .. 777
Regular and Old Style Digits.coovieeeiiiiiennn. 779
Alternate Forms of Vulgar Fractionso... 784
Usage of Crops and Quine COInerseeeenuuuuueen .. 798
Usage of the Decimal Exponent Symbol 800
Prevention of JOINING.ovvvunuttt it 829
Exhibition of Joining Glyphs in Isolation 829
Effect of Intervening JOINers.oovuuuuueeeennnnnnenn... 830
Annotation Characterso.ouueeeiinnieeennnnnen.. 850
Tag Charactersvuutt et e e 854
CJK Chart Format for the Main CJKBlock., 871
CJK Chart Format for CJK EXtension Aovuvnininnnnennn. 871
CJK Chart Format for CJK Extension Bcoviiinn... 871
CJK Chart Format for Compatibility Ideographs................. 872
Annotations Identifying CJK Unifed Ideographs................. 872
Example of Rendering............ ..., 876

Tables

Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.
Table 2-6.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 3-8.
Table 3-9.
Table 3-10.
Table 3-11.
Table 3-12.
Table 3-13.
Table 3-14.
Table 3-15.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.
Table 4-8.
Table 4-9.
Table 4-10.
Table 4-11.
Table 4-12.
Table 4-13.
Table 4-14.
Table 4-15.
Table 5-1.
Table 5-2.
Table 5-3.
Table 5-4.

XXy

The 10 Unicode Design Principlesccooiiiieo.... 14
User-Perceived Characters with Multiple Code Points 16
Types of Code PoIntsuuuun i 30
The Seven Unicode Encoding Schemes 41
Interaction of Combining Charactersccovviuna.. 58
Nondefault Stackingoiiiiiiiiiiii i 59
Named Unicode Algorithms, 93
Normative Character Propertiesooiiiiiiinn... 99
Informative Character Propertiesc.ccciiiiiinenenn. 100
Examples of Unicode Encoding Forms 123
UTF-16 Bit Distributioncooviiiiiiiiiiie .. 124
UTF-8 Bit Distributionceiiiiiiiiiieeinnin... 125
Well-Formed UTEF-8 Byte Sequencescccovuunnen.. 125
Use of U+FFFD in UTF-8 Conversionccovuuuuee.... 128
Summary of UTF-16BE, UTF-16LE, and UTF-16 131
Summary of UTF-32BE, UTF-32LE,and UTF-32 132
Combining Marks and Starter Status 137
Reorderable Pairsccoiiiiiiiiiiiiiiii 138
Hangul Characters Used in Examples 144
Context Specification for Casing, 153
Case Detection Examplesuuuuiiiiiiiinnn.. 157
Relationship of Casing Definitions 165
Case Function Values for Strings, 166
Sources for Case Mapping Information 166
Class Zero Combining Marks—Reordrant 169
Thai, Lao, and Other Logical Order Exceptions 170
Class Zero Combining Marks—Split 171
Class Zero Combining Marks—Subjoined 172
Class Zero Combining Marks—Strikethrough 172
General Categoryvv v vttt e 175
Primary Numeric Ideographs, 178
Ideographs Used as Accounting Numbers 178
Types of Character Name Aliasesccovviiieeennnn. 183
Name Derivation Rule Prefix Strings 186
Construction of Code Point Labels 188
Unusual Properties 192
Hex Values for ACcronymscooviiuiieeennnnnnneen... 211
NLF Platform Correlationsc..ooiiiiiiiiinee... 212
Typing Order Differing from Canonical Order 227

Permuting Combining Class Weights 227

Tables

Table 5-5.
Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.
Table 6-6.
Table 6-7.
Table 6-8.
Table 7-1.
Table 7-2.
Table 7-3.
Table 8-1.
Table 8-2.
Table 9-1.
Table 9-2.
Table 9-3.
Table 9-4.
Table 9-5.
Table 9-6.
Table 9-7.
Table 9-8.
Table 9-9.
Table 9-10.
Table 9-11.
Table 9-12.
Table 9-13.
Table 9-14.
Table 9-15.
Table 9-16.
Table 9-17.
Table 9-18.
Table 9-19.
Table 9-20.
Table 10-1.
Table 10-2.
Table 10-3.
Table 10-4.
Table 10-5.
Table 10-6.
Table 10-7.
Table 10-8.
Table 10-9.
Table 10-10.
Table 11-1.

XXVi
Casing and Normalization in Stringsccoevnnn.. 244
Typology of Scripts in the Unicode Standard 264
Unicode Space Characterso.oiiiiiiiiiniinnnnnn.. 268
Unicode Dash Characterscooviiiiiiiinee... 270
Models of Visual Relationship between Quote Glyphs 273
East Asian Quotation Markscoiiiiiiiiiiin. 274
Opening and Closing Forms, 275
Namesforthe @ oo i, 280
Unicode Danda Charactersccoovuiiiieininnnnenn... 284
Preferred Rendering of Cedilla versus Comma Below 294
Nonspacing Marks Used with Greek 306
Greek Spacing and Nonspacing Pairs 311
Similar Characters in Linear B and Cypriot 344
Combining Marks Used in Old Permic 357
Arabic Digit Namesvetenii e 373
Glyph Variation in Eastern Arabic-Indic Digits 374
Primary Arabic Joining Typesccooiuiiiiiiiiien .. 377
Derived Arabic Joining Typescoviiuiieeeinnnneen... 378
Arabic Glyph Types . .. oo 379
Arabic Obligatory Ligature Joining Groups 380
Arabic Ligature Notationo ... 381
Dual-Joining Arabic Characterscccvviiuuneen... 382
Right-Joining Arabic Charactersccvviinee.... 384
Forms of the Arabic Letteryeh, 385
Arabic Letters With Hamza Abovecoio... 388
Miscellaneous Syriac DiacriticUseccoviiiinnnen.... 396
Syriac Final Alaph Glyph Typesooiiiiiiiiiinnn. 397
Dual-Joining Syriac Charactersceeiiiiinnnn... 398
Right-Joining Syriac Charactersccoviiiuunee. .. 399
Syriac Alaph Glyph Forms, 399
Syriac Ligaturesuuuuuueniiiiii e 400
Samaritan Performative Punctuation Marks 402
Dual-Joining Mandaic Charactersccoviiuunee.. .. 404
Right-Joining Mandaic Characterscooeeeenn.. 405
Old South Arabian Numeric Characters 411
Number Formation in Old South Arabian 411
Number Formation in Aramaicovuutieeeennnnneen .. 414
Dual-Joining Manichaean Letterscooiee.... 417
Right-Joining Manichaean Letterscoouee. .. 417
Left-Joining Manichaean Lettersccoviiuueee. .. 418
Non-Joining Manichaean Letterscccoviiuuuee.... 418
Manichaean Ligaturesuuetteiiiiieeenniee.. 418
Inscriptional Parthian Shaping Behavior 421
Avestan Shaping Behavior it 422

Cuneiform Script Usageottt 429

Tables

Table 11-2.
Table 12-1.
Table 12-2.
Table 12-3.
Table 12-4.
Table 12-5.
Table 12-6.
Table 12-7.
Table 12-8.
Table 12-9.

Table 12-10.
Table 12-11.
Table 12-12.
Table 12-13.
Table 12-14.
Table 12-15.
Table 12-16.
Table 12-17.
Table 12-18.
Table 12-19.
Table 12-20.
Table 12-21.
Table 12-22.
Table 12-23.
Table 12-24.
Table 12-25.
Table 12-26.
Table 12-27.
Table 12-28.
Table 12-29.
Table 12-30.
Table 12-31.
Table 12-32.
Table 12-33.
Table 12-34.
Table 12-35.
Table 12-36.
Table 12-37.

Table 13-1.
Table 13-2.
Table 13-3.
Table 13-4.
Table 13-5.
Table 14-1.
Table 14-2.

XXVii
Hieroglyphic Character Sequenceccovviuueee. .. 435
Devanagari Vowel Lettersveiiiiii .. 448
Sample Devanagari Half-Formsoiua.. 458
Sample Devanagari Ligaturesccovviiiiieeennn.. 459
RA + Vocalic Letter Ligature Formsoooei. ... 460
Sample Devanagari Half-Ligature Forms 460
Marathi and Nepali Allographsccoiiiiiiiie. .. 461
Devanagari Vowels Used in Bihari Languages 463
Prishthamatra Orthography o it 464
Bengali Vowel Lettersouuuuieiiniiieiniiee.n. 467
Diphthong Vowel Letters in Kokborok 468
Assamese Consonant-Vowel Combinations 468
Bengali Consonant-Vowel Combinations 469
Use of ApostropheinBangla 472
Gurmukhi Vowel Lettersc.oviiniieeiiniiiieennnnn. 474
Gurmukhi Conjunctsccoiiiiteenniiiiiieennnnn. 475
Additional Pairin and Addha Forms in Gurmukhi 476
Use of Joinersin Gurmukhi o et ittt 476
Gujarati Vowel Lettersoeeeiiiieenniiiieennnnn. 478
Gujarati CONJUNCES ... vvvvtttttte e iaanns 479
Oriya Vowel Letterso.uuteeiniiieeiiiiiieennnnn 480
Oriya CONJUINCES .. vt vttt eeans 481
Oriya Vowel Placement ..., 481
Ligation for the Syllableom, 482
Tamil Ligatures withuo i, 486
Tamil Vowels, Consonants, and Syllables 490
Telugu Vowel Lettersouuuieiiiiiiieiniiiieen.n. 492
Rendering of Teluguna + viramacccvvviinnne.... 493
Kannada Vowel Lettersoouuueieiniiii ... 495
Rendering of Kannadana + virama 498
Malayalam Vowel Letterscoviiinieeennnnenn... 499
Malayalam Orthographic Reform 500
Malayalam COnjunctsouuueeeennnnuneeeennnnnneennn. 501
Candrakkala Examplesuuuuuuiiiiiiiiinnnnn 501
Use of Joiners in Malayalam 502
Malayalam /rara/ and /tta/o 504
Malayalam /nr/and /nt/ o o 504
Atomic Encoding of Malayalam Chillus 505
Thaana Glyph Placementcoiiiiiiiiian. 509
Sinhala Vowel Letterscouiiiitiieeenniiiiieennnnn. 511
Murmured Resonants in Nepal Bhasa 514
Positions of Limbu Combining Characters 538
Lepcha Syllabic Structureot 548
Brahmi Vowel Lettersoeeeiiiiiiiiiiiiiennnn. 552

Brahmi Positional Digitsccoviiiiiiiiiiee. .. 555

Tables

Table 14-3.
Table 14-4.
Table 14-5.
Table 14-6.
Table 14-7.
Table 14-8.
Table 14-9.
Table 15-1.
Table 15-2.
Table 15-3.
Table 15-4.
Table 15-5.
Table 15-6.
Table 15-7.
Table 15-8.
Table 16-1.
Table 16-2.
Table 16-3.
Table 16-4.
Table 16-5.
Table 16-6.
Table 16-7.
Table 16-8.
Table 16-9.
Table 16-10.
Table 16-11.
Table 16-12.
Table 16-13.
Table 16-14.
Table 16-15.
Table 17-1.
Table 17-2.
Table 17-3.
Table 17-4.
Table 17-5.
Table 18-1.
Table 18-2.
Table 18-3.
Table 18-4.
Table 18-5.
Table 18-6.
Table 18-7.
Table 18-8.
Table 18-9.
Table 18-10.

XXViii
Kharoshthi Vowel Signs 558
Kharoshthi Vowel Modifiers 560
Kharoshthi Consonant Modifiersooe.... 560
Examples of Kharoshthi Virama, 561
Phags-pa Positional Forms of , U,E,and O 567
Contextual Glyph Mirroring in Phags-pa....................... 568
Phags-pa Standardized Variants oo, 569
Takri Vowel Lettersovvrint i aiaiiieee 583
Siddham Punctuation Charactersc.cooiieeeenn.. 585
Khudawadi Vowel Lettersccoviiuiiiiiennnnnnne... 590
Representation of Arabic Sounds in Khudawadi 591
Tirhuta Vowel Lettersoeiiiiieinnnenn... 594
Modi Vowel Lettersvvvetni et eiaiiiee 597
Rendering of Explicit Virama Forms in Grantha 600
Additional Svara Marks used in Grantha 601
Glyph Positions in Thai Syllables 608
Glyph Positions in Lao Syllablesoociin... 611
Modern Burmese Syllabic Structure 616
Khamti Shan Tone Marks 619
Independent Khmer Vowel Characters 622
Two Registers of Khmer Consonantso.... 623
Khmer Subscript Consonant Signsccovviuuueee. .. 624
Khmer Composite Dependent Vowel Signs with Nikahit.......... 626
Khmer Subscript Independent Vowel Signs 627
TaiLe Tone Markscouiuuuuiiiiniiiii e 632
Myanmar Digitsin Taile 633
New Tai Lue Vowel Placementccciiiee... 635
New Tai Lue Registers and Tonesccovviinnneen... 636
Tai Viet Symbols and Punctuationooo.... 641
Cham Syllabic Structuret 645
Hanundéo and Buhid Vowel Sign Combinations 651
Balinese Base Consonants and Conjunct Forms 655
Sasak Extensions for Balinese, 657
Balinese Consonant Clusters withuandu: 659
Modern Sundanese Syllabic Structure 668
Blocks Containing Han Ideographs 672
Small Extensionstothe URO ..., 672
Common Han Characterscoeeeiiiiieeeennnnn. 674
Source Encoding for Sword Variants 680
Ideographs Not Unifiedccciiiiiiiiiiiiie... 682
Ideographs Unifiedc..oouiiiiiiiiiiiiiiiiiiiee. 682
Han Ideograph Arrangementoouutuueeeennnnnneen... 683
Mandarin Tone Markso, 693
Minnan and Hakka Tone Marksooiio... 694

Separating Jamo Charactersouueeeiiiiieeeennnn. 700

Tables

Table 18-11.
Table 18-12.
Table 18-13.
Table 19-1.
Table 19-2.
Table 19-3.
Table 19-4.
Table 19-5.
Table 19-6.
Table 20-1.
Table 20-2.
Table 21-1.
Table 21-2.
Table 22-1.
Table 22-2.
Table 22-3.
Table 22-4.
Table 22-5.
Table 22-6.
Table 22-7.
Table 22-8.
Table 23-1.
Table 23-2.
Table 23-3.
Table 23-4.
Table 23-5.
Table 23-6.
Table 23-7.
Table 24-1.
Table A-1.
Table A-2.
Table A-3.
Table C-1.
Table C-2.
Table D-1.
Table D-2.
Table D-3.
Table D-4.
Table D-5.
Table E-1.
Table E-2.
Table E-3.
Table E-4.
Table E-5.
Table E-6.

XXiX
Line-Based Placement of Jungseongccooiuiuee.... 702
LisuTone Letters 707
Punctuation Adopted in Lisu Orthography 708
Labialized Forms in Ethiopic -WAA, 715
Labialized Forms in Ethiopic -WE, 715
N’Ko Diacritic USage ... vvvvvvnnnne e 723
N’Ko Tone Diacriticson Vowels ..., 724
N’Ko Letter Shapingoouuuitieiiiiii i, 725
Number Formation in Mende Kikakui 732
Combining Marks usedin Osagecccoviiiieeennnn.. 742
IPA Transcription of Deseret 745
Examples of Ornamentationoooiiiiinnnnnnnn.. 754
Representation of Ancient Greek Vocal and Instrumental Notation 756
Currency Symbols Encoded in Other Blocks 766
Mathematical Alphanumeric Symbols 772
Script-Specific Decimal Digitscooviiiiiin... 776
Compatibility Digitsooutteiii i 778
Mathematical Operators Disunified from Punctuation 790
Use of Mathematical Symbol Pieces, 799
Geometric Shape Collectionsuuuuuuuuuuuunennnnnns 804
Japanese EraNamescooiiiiiiiiii i 819
Control Codes Specified in the Unicode Standard 823
Letter SPacingttt ettt 826
Bidirectional Ordering Controlsccoviiiee.... 833
Paired Stateful Controlsccoiiiiiiiiiiiiie .. 834
Paired Stateful Controls (Deprecated) 835
Unicode Encoding Scheme Signatures 848
U+FEFF Signature in Other Charsets 849
IRGSources ... 870
Extended BNF e 877
Character Class Examplesoiiiiiiiiiiiiiiinna... 879
OPCIALOrS & o vttt et ettt et et et e 879
Timelineo e 895
Zero Extending ..ottt e 900
Versions of Unicode and ISO/IEC 10646c.uo... 907
Allocation of Code Points by Type (Versions 1.0.0t03.0) 908
Allocation of Code Points by Type (Versions 3.1t0 5.1) 909
Allocation of Code Points by Type (Versions 5.2t0 7.0) 910
Allocation of Code Points by Type (Versions 8.0t09.0) 911
G Source Documentationuuuuiiiiiiiiiaaann 919
H Source Documentationcoiiiiiiiiiiiiiia... 920
M Source Documentationoiiiiiiiiiiiiiia... 920
T Source Documentationooiiiiiiiiiiiiinnnnnnnn.. 920
J Source Documentationvtinii i 921
K Source Documentationc.oouuuuuienunnnnnn. 921

Tables

Table E-7.
Table E-8.
Table E-9.
Table F-1.

XXX

KP Source Documentationooeiiuineninenennnnnnn. 921
V Source Documentationoviiin it it i 922
U Source Documentationooeuiiuininiininrnenen.. 922

CIR StEOKES o v vttt et et e e e e e e e e e e e e e 924

Xxx1

Preface

This is The Unicode Standard, Version 9.0. It supersedes all earlier versions of the Unicode
Standard.

Why Unicode?

The Unicode Standard and its associated specifications provide programmers with a single
universal character encoding, extensive descriptions, and a vast amount of data about how
characters function. The specifications and data describe how to form words and break
lines; how to sort text in different languages; how to format numbers, dates, times, and
other elements appropriate to different languages; how to display languages whose written
form flows from right to left, such as Arabic and Hebrew, or whose written form splits,
combines, and reorders, such as languages of South Asia. These specifications include
descriptions of how to deal with security concerns regarding the many “look-alike” charac-
ters from alphabets around the world. Without the properties and algorithms in the Uni-
code Standard and its associated specifications, interoperability between different
implementations would be impossible, and much of the vast breadth of the world’s lan-
guages would lie outside the reach of modern software.

What’s New?

Unicode 9.0 adds exactly 7,500 characters, for a total of 128,172 characters. These additions
include 72 new emoji characters. Other important updates in Unicode Version 9.0 include:

+ Improvements in the charts for the Mongolian script
+ Significant updates to segmentation algorithms

Support for Languages and Symbol Sets. The following new scripts were added in Version
9.0:

Adlam Marchen Osage
Bhaiksuki Newa Tangut

With the new scripts and characters added in Version 9.0, support for lesser-used languages
was extended worldwide, including:

+ Osage, a Native American language

+ Fulani and other African languages

+ Nepal Bhasa, a language of Nepal

+ The Bravanese dialect of Swahili, used in Somalia

Preface xXxxii

+ The Warsh orthography for Arabic, used North and West Africa
+ Tangut script, a major historic script of China
Important symbol additions include:

+ Emoji characters, including 22 new smilies and people, 14 for animals and
nature, and 18 for food and drink

+ Symbols to support the new 4K TV standard

Property and Behavioral Updates. The core data files of the Unicode Character Database
were updated for the new additions in Version 9.0.

Detailed Change Information. See Appendix D, Version History of the Standard and http:/
[www.unicode.org/versions/Unicode9.0.0/ for detailed information about the changes
from the previous versions of the standard, including character counts, and significant
changes to the Unicode Character Database and Unicode Standard Annexes.

Organization of This Standard

This core specification, together with the Unicode code charts, the Unicode Character
Database, and the Unicode Standard Annexes, defines Version 9.0 of the Unicode Standard.
The core specification contains the general principles, requirements for conformance, and
guidelines for implementers. The character code charts and names are available online.

Concepts, Architecture, Conformance, and Guidelines. The first five chapters of Version
9.0 introduce the Unicode Standard and provide the fundamental information needed to
produce a conforming implementation. Basic text processing, working with combining
marks, encoding forms, and normalization are all described. A special chapter on imple-
mentation guidelines answers many common questions that arise when implementing
Unicode.

Chapter 1 introduces the standard’s basic concepts, design basis, and
coverage and discusses basic text handling requirements.

Chapter 2 sets forth the fundamental principles underlying the Unicode
Standard and covers specific topics such as text processes, overall charac-
ter properties, and the use of combining marks.

Chapter 3 constitutes the formal statement of conformance. This chapter
also presents the normative algorithms for several processes, including
normalization, Korean syllable boundary determination, and default
casing.

Chapter 4 describes character properties in detail, both normative
(required) and informative. Additional character property information
appears in Unicode Standard Annex #44, “Unicode Character Database.”

http://www.unicode.org/versions/Unicode9.0.0/

Preface Xxxifi

Chapter 5 discusses implementation issues, including compression,
strategies for dealing with unknown and unsupported characters, and
transcoding to other standards.

Character Block Descriptions. Chapters 6 through 23 contain the character block descrip-
tions that provide basic information about each script or group of symbols and may dis-
cuss specific characters or pertinent layout information. Some of this information is
required to produce conformant implementations of these scripts and other collections of
characters.

Code Charts. Chapter 24 describes the conventions used in the code charts and the list of
character names. The code charts contain the normative character encoding assignments,
and the names list contains normative information, as well as useful cross references and
informational notes.

Appendices. The appendices contain additional information.
Appendix A documents the notational conventions used by the standard.

Appendix B provides abstracts of Unicode Technical Reports and lists
other important Unicode resources.

Appendix C details the relationship between the Unicode Standard and
ISO/IEC 10646.

Appendix D lists version history and details code point allocation history.

Appendix E describes the history of Han unification in the Unicode Stan-
dard.

Appendix F provides additional documentation for characters encoded
in the CJK Strokes block (U+31C0..U+31EF).

References and Index. The appendices are followed by a bibliography and an index to the
text of this core specification.

Glossary and Character Index. A glossary of Unicode terms and the Unicode Character
Name Index may be found at:

http://www.unicode.org/glossary/

http://www.unicode.org/charts/charindex.html

Unicode Standard Annexes

The Unicode Standard Annexes form an integral part of the Unicode Standard. Confor-
mance to a version of the Unicode Standard includes conformance to its Unicode Standard
Annexes. All versions, including the most up-to-date versions of all Unicode Standard
Annexes, are available at:

http://www.unicode.org/reports/index.html#annexes

http://www.unicode.org/glossary/
http://www.unicode.org/charts/charindex.html
http://www.unicode.org/reports/index.html#annexes

Preface

XXXIV

The following is the list of Unicode Standard Annexes:

Unicode Standard Annex #9, “Unicode Bidirectional Algorithm,”
describes specifications for the positioning of characters in text contain-
ing characters flowing from right to left, such as Arabic or Hebrew.

Unicode Standard Annex #11, “East Asian Width,” presents the specifi-
cation of an informative property for Unicode characters that is useful
when interoperating with East Asian legacy character sets.

Unicode Standard Annex #14, “Unicode Line Breaking Algorithm,” pres-
ents the specification of line breaking properties for Unicode characters.

Unicode Standard Annex #15, “Unicode Normalization Forms,’
describes Unicode normalization and provides examples and implemen-
tation strategies for it.

Unicode Standard Annex #24, “Unicode Script Property,” describes two
related Unicode code point properties. Both properties share the use of
Script property values. The Script property itself assigns single script
values to all Unicode code points, identifying a primary script associa-
tion, where possible. The Script_Extensions property assigns sets of
Script property values, providing more detail for cases where characters
are commonly used with multiple scripts.

Unicode Standard Annex #29, “Unicode Text Segmentation,” describes
algorithms for determining default boundaries between certain signifi-
cant text elements: grapheme clusters (“user-perceived characters”),
words, and sentences.

Unicode Standard Annex #31, “Unicode Identifier and Pattern Syntax,”
describes specifications for recommended defaults for the use of Uni-
code in the definitions of identifiers and in pattern-based syntax.

Unicode Standard Annex #34, “Unicode Named Character Sequences,”
defines the concept of a Unicode named character sequence.

Unicode Standard Annex #38, “Unicode Han Database (Unihan),”
describes the organization and content of the Unihan database.

Unicode Standard Annex #41, “Common References for Unicode Stan-
dard Annexes,” contains the listing of references shared by other Unicode
Standard Annexes.

Unicode Standard Annex #42, “Unicode Character Database in XML,”
describes an XML representation of the Unicode Character Database.

Unicode Standard Annex #44, “Unicode Character Database,” provides
the core documentation for the Unicode Character Database (UCD). It
describes the layout and organization of the Unicode Character Data-

Preface XXXV

base and how the UCD specifies the formal definition of Unicode char-
acter properties.

Unicode Standard Annex #45, “U-Source Ideographs,” describes U-
source ideographs as used by the Ideographic Rapporteur Group (IRG)
in its CJK ideograph unification work.

The Unicode Character Database

The Unicode Character Database (UCD) is a collection of data files containing character
code points, character names, and character property data. It is described more fully in
Section 4.1, Unicode Character Database and in Unicode Standard Annex #44, “Unicode
Character Database.” All versions, including the most up-to-date version of the Unicode
Character Database, are found at:

http://www.unicode.org/ucd/

Information on versioning and on all versions of the Unicode Standard can be found at:

http://www.unicode.org/versions/

Unicode Code Charts

The Unicode code charts contain the character encoding assignments and the names list.
The archival, reference set of versioned 9.0 code charts may be found at:

http://www.unicode.org/charts/PDF/Unicode-9.0/

For easy lookup of characters, see the current code charts:

http://www.unicode.org/charts/

An interactive radical-stroke index to CJK ideographs is located at:

http://www.unicode.org/charts/unihanrsindex.html

Unicode Technical Standards and Unicode Technical Reports

Unicode Technical Reports and Unicode Technical Standards are separate publications and
do not form part of the Unicode Standard.

All versions of all Unicode Technical Reports and Unicode Technical Standards are avail-
able at:

http://www.unicode.org/reports/

See Appendix B, Unicode Publications and Resources, for a summary overview of important
Unicode Technical Standards and Unicode Technical Reports.

http://www.unicode.org/ucd/
http://www.unicode.org/versions/
http://www.unicode.org/charts/PDF/Unicode-9.0/
http://www.unicode.org/charts/
http://www.unicode.org/charts/unihanrsindex.html
http://www.unicode.org/reports/

Preface XXxVi

Updates and Errata

Reports of errors in the Unicode Standard, including the Unicode Character Database and
the Unicode Standard Annexes, may be reported using the reporting form:

http://www.unicode.org/reporting.html

A list of known errata is maintained at:

http://www.unicode.org/errata/

Any currently listed errata will be fixed in subsequent versions of the standard.

Acknowledgements

The Unicode Standard, Version 9.0 is the result of the dedication and contributions of
many people over several years. We would like to acknowledge the individuals whose con-
tributions were central to the design, authorship, and review of this standard. A complete
listing of acknowledgements can be found at:

http://www.unicode.org/acknowledgements/

Current editorial contributors can be found at:

http://www.unicode.org/consortium/edcom.html

http://www.unicode.org/acknowledgements/
http://www.unicode.org/reporting.html
http://www.unicode.org/errata/
http://www.unicode.org/consortium/edcom.html

Chapter 1

Introduction

The Unicode Standard is the universal character encoding standard for written characters
and text. It defines a consistent way of encoding multilingual text that enables the exchange
of text data internationally and creates the foundation for global software. As the default
encoding of HTML and XML, the Unicode Standard provides the underpinning for the
World Wide Web and the global business environments of today. Required in new Internet
protocols and implemented in all modern operating systems and computer languages such
as Java and C#, Unicode is the basis of software that must function all around the world.

With Unicode, the information technology industry has replaced proliferating character
sets with data stability, global interoperability and data interchange, simplified software,
and reduced development costs.

While taking the ASCII character set as its starting point, the Unicode Standard goes far
beyond ASCIT’s limited ability to encode only the upper- and lowercase letters A through Z.
It provides the capacity to encode all characters used for the written languages of the
world—more than 1 million characters can be encoded. No escape sequence or control
code is required to specify any character in any language. The Unicode character encoding
treats alphabetic characters, ideographic characters, and symbols equivalently, which
means they can be used in any mixture and with equal facility (see Figure 1-1).

The Unicode Standard specifies a numeric value (code point) and a name for each of its
characters. In this respect, it is similar to other character encoding standards from ASCII
onward. In addition to character codes and names, other information is crucial to ensure
legible text: a character’s case, directionality, and alphabetic properties must be well
defined. The Unicode Standard defines these and other semantic values, and it includes
application data such as case mapping tables and character property tables as part of the
Unicode Character Database. Character properties define a character’s identity and behav-
ior; they ensure consistency in the processing and interchange of Unicode data. See
Section 4.1, Unicode Character Database.

Unicode characters are represented in one of three encoding forms: a 32-bit form (UTF-
32), a 16-bit form (UTF-16), and an 8-bit form (UTF-8). The 8-bit, byte-oriented form,
UTEF-38, has been designed for ease of use with existing ASCII-based systems.

The Unicode Standard is code-for-code identical with International Standard ISO/IEC
10646. Any implementation that is conformant to Unicode is therefore conformant to ISO/
IEC 10646.

The Unicode Standard contains 1,114,112 code points, most of which are available for
encoding of characters. The majority of the common characters used in the major lan-
guages of the world are encoded in the first 65,536 code points, also known as the Basic

Introduction 2

Figure 1-1. Wide ASCII

ASCII/8859-1 Text Unicode Text
A 0100 0001 A 0000 0000 0100 0001
S 0101 0011 S 0000 0000 0101 0011
C 0100 0011 C 0000 0000 0100 0011
I 0100 1001 I 0000 0000 0100 1001
I 0100 1001 1 0000 0000 0100 1001
/ 0010 1111 0000 0000 0010 0000
8 0011 1000 K 0101 1001 0010 1001
8 0011 1000 Hh 0101 0111 0011 0000
5 0011 0101 0000 0000 0010 0000
9 0011 1001 J 0000 0110 0011 0011
- 0010 1101 J 0000 0110 0100 0100
1 0011 0001 \ 0000 0110 0010 O111
0010 0000 r 0000 0110 0100 0101
t 0111 0100 0000 0000 0010 0000
e 0110 0101 a 0000 0011 1011 0001
X 0111 1000 $ 0010 0010 0111 0000
t 0111 0100 Y 0000 0011 1011 0011

Multilingual Plane (BMP). The overall capacity for more than 1 million characters is more
than sufficient for all known character encoding requirements, including full coverage of
all minority and historic scripts of the world.

Introduction 3 1.1 Coverage

1.1 Coverage

The Unicode Standard, Version 9.0, contains 128,172 characters from the world’s scripts.
These characters are more than sufficient not only for modern communication for the
world’s languages, but also to represent the classical forms of many languages. The standard
includes the European alphabetic scripts, Middle Eastern right-to-left scripts, and scripts of
Asia and Africa. Many archaic and historic scripts are encoded. The Han script includes
80,388 unified ideographic characters defined by national, international, and industry
standards of China, Japan, Korea, Taiwan, Vietnam, and Singapore. In addition, the Uni-
code Standard contains many important symbol sets, including currency symbols, punctu-
ation marks, mathematical symbols, technical symbols, geometric shapes, dingbats, and
emoji. For overall character and code range information, see Chapter 2, General Structure.

Note, however, that the Unicode Standard does not encode idiosyncratic, personal, novel,
or private-use characters, nor does it encode logos or graphics. Graphologies unrelated to
text, such as dance notations, are likewise outside the scope of the Unicode Standard. Font
variants are explicitly not encoded. The Unicode Standard reserves 6,400 code points in the
BMP for private use, which may be used to assign codes to characters not included in the
repertoire of the Unicode Standard. Another 131,068 private-use code points are available
outside the BMP, should 6,400 prove insufficient for particular applications.

Standards Coverage

The Unicode Standard is a superset of all characters in widespread use today. It contains the
characters from major international and national standards as well as prominent industry
character sets. For example, Unicode incorporates the ISO/IEC 6937 and ISO/IEC 8859
families of standards, the SGML standard ISO/IEC 8879, and bibliographic standards such
as ISO 5426. Important national standards contained within Unicode include ANSI
739.64, KS X 1001, JIS X 0208, JIS X 0212, JIS X 0213, GB 2312, GB 18030, HKSCS, and
CNS 11643. Industry code pages and character sets from Adobe, Apple, Fujitsu, Hewlett-
Packard, IBM, Lotus, Microsoft, NEC, and Xerox are fully represented as well.

For a complete list of ISO and national standards used as sources, see References.

The Unicode Standard is fully conformant with the International Standard ISO/IEC
10646:2014, Information Technology— Universal Coded Character Set (UCS), known as the
Universal Character Set (UCS). For more information, see Appendix C, Relationship to ISO/
IEC 10646.

New Characters

The Unicode Standard continues to respond to new and changing industry demands by
encoding important new characters. As the universal character encoding, the Unicode
Standard also responds to scholarly needs. To preserve world cultural heritage, important
archaic scripts are encoded as consensus about the encoding is developed.

Introduction 4 1.2 Design Goals

1.2 Design Goals

The Unicode Standard began with a simple goal: to unify the many hundreds of conflicting
ways to encode characters, replacing them with a single, universal standard. The pre-exist-
ing legacy character encodings were both inconsistent and incomplete—two encodings
could use the same codes for two different characters and use different codes for the same
characters, while none of the encodings handled any more than a small fraction of the
world’s languages. Whenever textual data was converted between different programs or
platforms, there was a substantial risk of corruption. Programs often were written only to
support particular encodings, making development of international versions expensive. As
aresult, developing countries were particularly hard-hit, as it was not economically feasible
to adapt specific versions of programs for smaller markets. Technical fields such as mathe-
matics were also disadvantaged, because they were forced to use special fonts to represent
arbitrary characters, often leading to garbled content.

The designers of the Unicode Standard envisioned a uniform method of character identifi-
cation that would be more efficient and flexible than previous encoding systems. The new
system would satisfy the needs of technical and multilingual computing and would encode
a broad range of characters for all purposes, including worldwide publication.

The Unicode Standard was designed to be:

+ Universal. The repertoire must be large enough to encompass all characters that
are likely to be used in general text interchange, including those in major inter-
national, national, and industry character sets.

* Efficient. Plain text is simple to parse: software does not have to maintain state
or look for special escape sequences, and character synchronization from any
point in a character stream is quick and unambiguous. A fixed character code
allows for efficient sorting, searching, display, and editing of text.

+ Unambiguous. Any given Unicode code point always represents the same char-
acter.

Figure 1-2 demonstrates some of these features, contrasting the Unicode encoding with
mixtures of single-byte character sets with escape sequences to shift the meanings of bytes
in the ISO/IEC 2022 framework using multiple character encoding standards.

Introduction

1.2 Design Goals

Figure 1-2. Unicode Compared to the 2022 Framework

Unicode

A

0041

o

d

00ES

0645

03B5

0131

65E5

2022 + 8859 +JIS

2D

47

2D

46

2D

43

B9

2D

4D

S\<\

24

42

46

Introduction 6 1.3 TextHandling

1.3 Text Handling

The assignment of characters is only a small fraction of what the Unicode Standard and its
associated specifications provide. The specifications give programmers extensive descrip-
tions and a vast amount of data about the handling of text, including how to:

+ divide words and break lines
+ sort text in different languages

+ format numbers, dates, times, and other elements appropriate to different
locales

+ display text for languages whose written form flows from right to left, such as
Arabic or Hebrew

+ display text in which the written form splits, combines, and reorders, such as
for the languages of South Asia

+ deal with security concerns regarding the many look-alike characters from
writing systems around the world

Without the properties, algorithms, and other specifications in the Unicode Standard and
its associated specifications, interoperability between different implementations would be
impossible. With the Unicode Standard as the foundation of text representation, all of the
text on the Web can be stored, searched, and matched with the same program code.

Characters and Glyphs

The difference between identifying a character and rendering it on screen or paper is cru-
cial to understanding the Unicode Standard’s role in text processing. The character identi-
fied by a Unicode code point is an abstract entity, such as “LATIN CAPITAL LETTER A” Or
“BENGALI DIGIT FIVE . The mark made on screen or paper, called a glyph, is a visual repre-
sentation of the character.

The Unicode Standard does not define glyph images. That is, the standard defines how
characters are interpreted, not how glyphs are rendered. Ultimately, the software or hard-
ware rendering engine of a computer is responsible for the appearance of the characters on
the screen. The Unicode Standard does not specify the precise shape, size, or orientation of
on-screen characters.

Text Elements

The successful encoding, processing, and interpretation of text requires appropriate defini-
tion of useful elements of text and the basic rules for interpreting text. The definition of
text elements often changes depending on the process that handles the text. For example,
when searching for a particular word or character written with the Latin script, one often
wishes to ignore differences of case. However, correct spelling within a document requires
case sensitivity.

Introduction 7 1.3 TextHandling

The Unicode Standard does not define what is and is not a text element in different pro-
cesses; instead, it defines elements called encoded characters. An encoded character is repre-
sented by a number from 0 to 10FFFF 4, called a code point. A text element, in turn, is
represented by a sequence of one or more encoded characters.

Introduction 8 1.3 TextHandling

Chapter 2

General Structure

This chapter describes the fundamental principles governing the design of the Unicode
Standard and presents an informal overview of its main features. The chapter starts by
placing the Unicode Standard in an architectural context by discussing the nature of text
representation and text processing and its bearing on character encoding decisions. Next,
the Unicode Design Principles are introduced—ten basic principles that convey the essence
of the standard. The Unicode Design Principles serve as a tutorial framework for under-
standing the Unicode Standard.

The chapter then moves on to the Unicode character encoding model, introducing the con-
cepts of character, code point, and encoding forms, and diagramming the relationships
between them. This provides an explanation of the encoding forms UTF-8, UTF-16, and
UTF-32 and some general guidelines regarding the circumstances under which one form
would be preferable to another.

The sections on Unicode allocation then describe the overall structure of the Unicode
codespace, showing a summary of the code charts and the locations of blocks of characters
associated with different scripts or sets of symbols.

Next, the chapter discusses the issue of writing direction and introduces several special
types of characters important for understanding the Unicode Standard. In particular, the
use of combining characters, the byte order mark, and other special characters is explored
in some detail.

The section on equivalent sequences and normalization describes the issue of multiple
equivalent representations of Unicode text and explains how text can be transformed to use
a unique and preferred representation for each character sequence.

Finally, there is an informal statement of the conformance requirements for the Unicode
Standard. This informal statement, with a number of easy-to-understand examples, gives a
general sense of what conformance to the Unicode Standard means. The rigorous, formal
definition of conformance is given in the subsequent Chapter 3, Conformance.

General Structure 10 2.1 Architectural Context

2.1 Architectural Context

A character code standard such as the Unicode Standard enables the implementation of
useful processes operating on textual data. The interesting end products are not the charac-
ter codes but rather the text processes, because these directly serve the needs of a system’s
users. Character codes are like nuts and bolts—minor, but essential and ubiquitous com-
ponents used in many different ways in the construction of computer software systems. No
single design of a character set can be optimal for all uses, so the architecture of the Uni-
code Standard strikes a balance among several competing requirements.

Basic Text Processes

Most computer systems provide low-level functionality for a small number of basic text
processes from which more sophisticated text-processing capabilities are built. The follow-
ing text processes are supported by most computer systems to some degree:

+ Rendering characters visible (including ligatures, contextual forms, and so on)
+ Breaking lines while rendering (including hyphenation)

+ Modifying appearance, such as point size, kerning, underlining, slant, and
weight (light, demi, bold, and so on)

+ Determining units such as “word” and “sentence”
+ Interacting with users in processes such as selecting and highlighting text
+ Accepting keyboard input and editing stored text through insertion and deletion

+ Comparing text in operations such as in searching or determining the sort
order of two strings

+ Analyzing text content in operations such as spell-checking, hyphenation, and
parsing morphology (that is, determining word roots, stems, and affixes)

+ Treating text as bulk data for operations such as compressing and decompress-
ing, truncating, transmitting, and receiving

Text Elements, Characters, and Text Processes

One of the more profound challenges in designing a character encoding stems from the fact
that there is no universal set of fundamental units of text. Instead, the division of text into
text elements necessarily varies by language and text process.

For example, in traditional German orthography, the letter combination “ck” is a text ele-
ment for the process of hyphenation (where it appears as “k-k”), but not for the process of
sorting. In Spanish, the combination “II” may be a text element for the traditional process
of sorting (where it is sorted between “I” and “m”), but not for the process of rendering. In
English, the letters “A” and “a” are usually distinct text elements for the process of render-
ing, but generally not distinct for the process of searching text. The text elements in a given

General Structure 11 2.1 Architectural Context

language depend upon the specific text process; a text element for spell-checking may have
different boundaries from a text element for sorting purposes. For example, in the phrase
“the quick brown fox,” the sequence “fox” is a text element for the purpose of spell-check-
ing.

In contrast, a character encoding standard provides a single set of fundamental units of
encoding, to which it uniquely assigns numerical code points. These units, called assigned
characters, are the smallest interpretable units of stored text. Text elements are then repre-
sented by a sequence of one or more characters.

Figure 2-1 illustrates the relationship between several different types of text elements and
the characters used to represent those text elements.

Figure 2-1. Text Elements and Characters

Text Elements Characters

G

Composite: C

Collation Unit: ch —» |c|h| (Slovak)

Syllable: &g | —» || |9 |f

Word: cat | —» |c|a|t

The design of the character encoding must provide precisely the set of characters that
allows programmers to design applications capable of implementing a variety of text pro-
cesses in the desired languages. Therefore, the text elements encountered in most text pro-
cesses are represented as sequences of character codes. See Unicode Standard Annex #29,
“Unicode Text Segmentation,” for detailed information on how to segment character
strings into common types of text elements. Certain text elements correspond to what
users perceive as single characters. These are called grapheme clusters.

Text Processes and Encoding

In the case of English text using an encoding scheme such as ASCII, the relationships
between the encoding and the basic text processes built on it are seemingly straightforward:
characters are generally rendered visible one by one in distinct rectangles from left to right

General Structure 12 2.1 Architectural Context

in linear order. Thus one character code inside the computer corresponds to one logical
character in a process such as simple English rendering.

When designing an international and multilingual text encoding such as the Unicode Stan-
dard, the relationship between the encoding and implementation of basic text processes
must be considered explicitly, for several reasons:

+ Many assumptions about character rendering that hold true for the English
alphabet fail for other writing systems. Characters in these other writing sys-
tems are not necessarily rendered visible one by one in rectangles from left to
right. In many cases, character positioning is quite complex and does not pro-
ceed in a linear fashion. See Section 9.2, Arabic, and Section 12.1, Devanagari,
for detailed examples of this situation.

« It is not always obvious that one set of text characters is an optimal encoding
for a given language. For example, two approaches exist for the encoding of
accented characters commonly used in French or Swedish: ISO/IEC 8859
defines letters such as “4” and “0” as individual characters, whereas ISO 5426
represents them by composition with diacritics instead. In the Swedish lan-
guage, both are considered distinct letters of the alphabet, following the letter

z”. In French, the diaeresis on a vowel merely marks it as being pronounced in
isolation. In practice, both approaches can be used to implement either lan-

guage.

+ No encoding can support all basic text processes equally well. As a result, some
trade-offs are necessary. For example, following common practice, Unicode
defines separate codes for uppercase and lowercase letters. This choice causes
some text processes, such as rendering, to be carried out more easily, but other
processes, such as comparison, to become more difficult. A different encoding
design for English, such as case-shift control codes, would have the opposite
effect. In designing a new encoding scheme for complex scripts, such trade-offs
must be evaluated and decisions made explicitly.

For these reasons, design of the Unicode Standard is not specific to the design of particular
basic text-processing algorithms. Instead, it provides an encoding that can be used with a
wide variety of algorithms. In particular, sorting and string comparison algorithms cannot
assume that the assignment of Unicode character code numbers provides an alphabetical
ordering for lexicographic string comparison. Culturally expected sorting orders require
arbitrarily complex sorting algorithms. The expected sort sequence for the same characters
differs across languages; thus, in general, no single acceptable lexicographic ordering exists.
See Unicode Technical Standard #10, “Unicode Collation Algorithm,” for the standard
default mechanism for comparing Unicode strings.

Text processes supporting many languages are often more complex than they are for Eng-
lish. The character encoding design of the Unicode Standard strives to minimize this addi-
tional complexity, enabling modern computer systems to interchange, render, and
manipulate text in a user’s own script and language—and possibly in other languages as
well.

General Structure 13 2.1 Architectural Context

Character Identity. Whenever Unicode makes statements about the default layout behav-
ior of characters, it is done to ensure that users and implementers face no ambiguities as to
which characters or character sequences to use for a given purpose. For bidirectional writ-
ing systems, this includes the specification of the sequence in which characters are to be
encoded so as to correspond to a specific reading order when displayed. See Section 2.10,
Writing Direction.

The actual layout in an implementation may differ in detail. A mathematical layout system,
for example, will have many additional, domain-specific rules for layout, but a well-
designed system leaves no ambiguities as to which character codes are to be used for a given
aspect of the mathematical expression being encoded.

The purpose of defining Unicode default layout behavior is not to enforce a single and spe-
cific aesthetic layout for each script, but rather to encourage uniformity in encoding. In
that way implementers of layout systems can rely on the fact that users would have chosen
a particular character sequence for a given purpose, and users can rely on the fact that
implementers will create a layout for a particular character sequence that matches the
intent of the user to within the capabilities or technical limitations of the implementation.

In other words, two users who are familiar with the standard and who are presented with
the same text ideally will choose the same sequence of character codes to encode the text. In
actual practice there are many limitations, so this goal cannot always be realized.

General Structure 14 2.2 Unicode Design Principles

2.2 Unicode Design Principles

The design of the Unicode Standard reflects the 10 fundamental principles stated in
Table 2-1. Not all of these principles can be satisfied simultaneously. The design strikes a
balance between maintaining consistency for the sake of simplicity and efficiency and
maintaining compatibility for interchange with existing standards.

Table 2-1. The 10 Unicode Design Principles

Principle Statement

Universality The Unicode Standard provides a single, universal repertoire.

Efficiency Unicode text is simple to parse and process.

Characters, not glyphs The Unicode Standard encodes characters, not glyphs.

Semantics Characters have well-defined semantics.

Plain text Unicode characters represent plain text.

Logical order The default for memory representation is logical order.

Unification The Unicode Standard unifies duplicate characters within scripts
across languages.

Dynamic composition Accented forms can be dynamically composed.

Stability Characters, once assigned, cannot be reassigned and key properties are
immutable.

Convertibility Accurate convertibility is guaranteed between the Unicode Standard

and other widely accepted standards.

Universality

The Unicode Standard encodes a single, very large set of characters, encompassing all the
characters needed for worldwide use. This single repertoire is intended to be universal in
coverage, containing all the characters for textual representation in all modern writing sys-
tems, in most historic writing systems, and for symbols used in plain text.

The Unicode Standard is designed to meet the needs of diverse user communities within
each language, serving business, educational, liturgical and scientific users, and covering
the needs of both modern and historical texts.

Despite its aim of universality, the Unicode Standard considers the following to be outside
its scope: writing systems for which insufficient information is available to enable reliable
encoding of characters, writing systems that have not become standardized through use,
and writing systems that are nontextual in nature.

Because the universal repertoire is known and well defined in the standard, it is possible to
specify a rich set of character semantics. By relying on those character semantics, imple-
mentations can provide detailed support for complex operations on text in a portable way.
See “Semantics” later in this section.

General Structure 15 2.2 Unicode Design Principles

Efficiency

The Unicode Standard is designed to make efficient implementation possible. There are no
escape characters or shift states in the Unicode character encoding model. Each character
code has the same status as any other character code; all codes are equally accessible.

All Unicode encoding forms are self-synchronizing and non-overlapping. This makes ran-
domly accessing and searching inside streams of characters efficient.

By convention, characters of a script are grouped together as far as is practical. Not only is
this practice convenient for looking up characters in the code charts, but it makes imple-
mentations more compact and compression methods more efficient. The common punc-
tuation characters are shared.

Format characters are given specific and unambiguous functions in the Unicode Standard.
This design simplifies the support of subsets. To keep implementations simple and effi-
cient, stateful controls and format characters are avoided wherever possible.

Characters, Not Glyphs

The Unicode Standard draws a distinction between characters and glyphs. Characters are
the abstract representations of the smallest components of written language that have
semantic value. They represent primarily, but not exclusively, the letters, punctuation, and
other signs that constitute natural language text and technical notation. The letters used in
natural language text are grouped into scripts—sets of letters that are used together in writ-
ing languages. Letters in different scripts, even when they correspond either semantically or
graphically, are represented in Unicode by distinct characters. This is true even in those
instances where they correspond in semantics, pronunciation, or appearance.

Characters are represented by code points that reside only in a memory representation, as
strings in memory, on disk, or in data transmission. The Unicode Standard deals only with
character codes.

Glyphs represent the shapes that characters can have when they are rendered or displayed.
In contrast to characters, glyphs appear on the screen or paper as particular representations
of one or more characters. A repertoire of glyphs makes up a font. Glyph shape and meth-
ods of identifying and selecting glyphs are the responsibility of individual font vendors and
of appropriate standards and are not part of the Unicode Standard.

Various relationships may exist between character and glyph: a single glyph may corre-
spond to a single character or to a number of characters, or multiple glyphs may result
from a single character. The distinction between characters and glyphs is illustrated in
Figure 2-2.

«_» «_»

Even the letter “a” has a wide variety of glyphs that can represent it. A lowercase Cyrillic “n
also has a variety of glyphs; the second glyph for U+043F CYRILLIC SMALL LETTER PE shown
in Figure 2-2 is customary for italic in Russia, while the third is customary for italic in Ser-
bia. Arabic letters are displayed with different glyphs, depending on their position in a

General Structure 16 2.2 Unicode Design Principles

Figure 2-2. Characters Versus Glyphs

Glyphs Unicode Characters
AN A A AAAA U+0041 LATIN CAPITAL LETTER A
ala.adaca U+0061 LATIN SMALL LETTER A
o n u U+043F CYRILLIC SMALL LETTER PE
&4 A 4 U+0647 ARABIC LETTER HEH
6 fi U+0066 LATIN SMALL LETTER F

+ U+0069 LATIN SMALL LETTER I
word; the glyphs in Figure 2-2 show independent, final, initial, and medial forms. Sequences
such as “fi” may be displayed with two independent glyphs or with a ligature glyph.

What the user thinks of as a single character—which may or may not be represented by a

single glyph—may be represented in the Unicode Standard as multiple code points. See
Table 2-2 for additional examples.

Table 2-2. User-Perceived Characters with Multiple Code Points

Character Code Points Linguistic Usage

ch 0063 0068 Slovak, traditional Spanish
th 0074 02B0

X 0078 0323 Na'ltive American

d anguages

/8 019B 0313

a 00E1 0328))

= Lithuanian

1 0069 0307 0301

F 30C8 309A Ainu (in kana transcription)

For certain scripts, such as Arabic and the various Indic scripts, the number of glyphs
needed to display a given script may be significantly larger than the number of characters
encoding the basic units of that script. The number of glyphs may also depend on the
orthographic style supported by the font. For example, an Arabic font intended to support
the Nastaliq style of Arabic script may possess many thousands of glyphs. However, the

character encoding employs the same few dozen letters regardless of the font style used to
depict the character data in context.

A font and its associated rendering process define an arbitrary mapping from Unicode
characters to glyphs. Some of the glyphs in a font may be independent forms for individual

General Structure 17 2.2 Unicode Design Principles

characters; others may be rendering forms that do not directly correspond to any single
character.

Text rendering requires that characters in memory be mapped to glyphs. The final appear-
ance of rendered text may depend on context (neighboring characters in the memory rep-
resentation), variations in typographic design of the fonts used, and formatting
information (point size, superscript, subscript, and so on). The results on screen or paper
can differ considerably from the prototypical shape of a letter or character, as shown in
Figure 2-3.

Figure 2-3. Unicode Character Code to Rendered Glyphs

Text Character Sequence

0000 1001 0010 0100
000010010011 1111

® [T] [0000 1001 0010 1010

® || [0000 1001 0100 0010

® [T] [0000 1001 0011 0000 Font
@ | <] [0000 10010100 1101 (Glyph Source)
o|d

® [f

Text
Rendering
Process

® ©®

N
&)

®

For the Latin script, this relationship between character code sequence and glyph is rela-
tively simple and well known; for several other scripts, it is documented in this standard.
However, in all cases, fine typography requires a more elaborate set of rules than given here.
The Unicode Standard documents the default relationship between character sequences

General Structure 18 2.2 Unicode Design Principles

and glyphic appearance for the purpose of ensuring that the same text content can be
stored with the same, and therefore interchangeable, sequence of character codes.

Semantics

Characters have well-defined semantics. These semantics are defined by explicitly assigned
character properties, rather than implied through the character name or the position of a
character in the code tables (see Section 3.5, Properties). The Unicode Character Database
provides machine-readable character property tables for use in implementations of pars-
ing, sorting, and other algorithms requiring semantic knowledge about the code points.
These properties are supplemented by the description of script and character behavior in
this standard. See also Unicode Technical Report #23, “The Unicode Character Property
Model”

The Unicode Standard identifies more than 100 different character properties, including
numeric, casing, combination, and directionality properties (see Chapter 4, Character
Properties). Additional properties may be defined as needed from time to time. Where
characters are used in different ways in different languages, the relevant properties are nor-
mally defined outside the Unicode Standard. For example, Unicode Technical Standard
#10, “Unicode Collation Algorithm,” defines a set of default collation weights that can be
used with a standard algorithm. Tailorings for each language are provided in the Unicode
Common Locale Data Repository (CLDR); see Section B.6, Other Unicode Online Resources.

The Unicode Standard, by supplying a universal repertoire associated with well-defined
character semantics, does not require the code set independent model of internationaliza-
tion and text handling. That model abstracts away string handling as manipulation of byte
streams of unknown semantics to protect implementations from the details of hundreds of
different character encodings and selectively late-binds locale-specific character properties
to characters. Of course, it is always possible for code set independent implementations to
retain their model and to treat Unicode characters as just another character set in that con-
text. It is not at all unusual for Unix implementations to simply add UTF-8 as another char-
acter set, parallel to all the other character sets they support. By contrast, the Unicode
approach—because it is associated with a universal repertoire—assumes that characters
and their properties are inherently and inextricably associated. If an internationalized
application can be structured to work directly in terms of Unicode characters, all levels of
the implementation can reliably and efficiently access character storage and be assured of
the universal applicability of character property semantics.

Plain Text

Plain text is a pure sequence of character codes; plain Unicode-encoded text is therefore a
sequence of Unicode character codes. In contrast, styled text, also known as rich text, is any
text representation consisting of plain text plus added information such as a language iden-
tifier, font size, color, hypertext links, and so on. For example, the text of this specification,
a multi-font text as formatted by a book editing system, is rich text.

General Structure 19 2.2 Unicode Design Principles

The simplicity of plain text gives it a natural role as a major structural element of rich text.
SGML, RTE, HTML, XML, and TpX are examples of rich text fully represented as plain text
streams, interspersing plain text data with sequences of characters that represent the addi-
tional data structures. They use special conventions embedded within the plain text file,
such as “<p>7, to distinguish the markup or tags from the “real” content. Many popular
word processing packages rely on a buffer of plain text to represent the content and imple-
ment links to a parallel store of formatting data.

The relative functional roles of both plain text and rich text are well established:
+ Plain text is the underlying content stream to which formatting can be applied.
+ Rich text carries complex formatting information as well as text context.
+ Plain text is public, standardized, and universally readable.
+ Rich text representation may be implementation-specific or proprietary.

Although some rich text formats have been standardized or made public, the majority of
rich text designs are vehicles for particular implementations and are not necessarily read-
able by other implementations. Given that rich text equals plain text plus added informa-
tion, the extra information in rich text can always be stripped away to reveal the “pure” text
underneath. This operation is often employed, for example, in word processing systems
that use both their own private rich text format and plain text file format as a universal, if
limited, means of exchange. Thus, by default, plain text represents the basic, interchange-
able content of text.

Plain text represents character content only, not its appearance. It can be displayed in a var-
ity of ways and requires a rendering process to make it visible with a particular appearance.
If the same plain text sequence is given to disparate rendering processes, there is no expec-
tation that rendered text in each instance should have the same appearance. Instead, the
disparate rendering processes are simply required to make the text legible according to the
intended reading. This legibility criterion constrains the range of possible appearances. The
relationship between appearance and content of plain text may be summarized as follows:

Plain text must contain enough information to permit the text to be rendered legibly,
and nothing more.

The Unicode Standard encodes plain text. The distinction between plain text and other
forms of data in the same data stream is the function of a higher-level protocol and is not
specified by the Unicode Standard itself.

Logical Order

The order in which Unicode text is stored in the memory representation is called logical
order. This order roughly corresponds to the order in which text is typed in via the key-
board; it also roughly corresponds to phonetic order. For decimal numbers, the logical
order consistently corresponds to the most significant digit first, which is the order
expected by number-parsing software.

General Structure 20 2.2 Unicode Design Principles

When displayed, this logical order often corresponds to a simple linear progression of char-
acters in one direction, such as from left to right, right to left, or top to bottom. In other
circumstances, text is displayed or printed in an order that differs from a single linear pro-
gression. Some of the clearest examples are situations where a right-to-left script (such as
Arabic or Hebrew) is mixed with a left-to-right script (such as Latin or Greek). For exam-
ple, when the text in Figure 2-4 is ordered for display the glyph that represents the first
character of the English text appears at the left. The logical start character of the Hebrew
text, however, is represented by the Hebrew glyph closest to the right margin. The succeed-
ing Hebrew glyphs are laid out to the left.

Figure 2-4. Bidirectional Ordering

Gli|d|i|_|s|a|i|d]|,|_|“|s[g||8| [1]=I8]2] =2 |=n]"|=]5]

Gidi said, | °7 ™ D I N ON| 7,
> | < — >

In logical order, numbers are encoded with most significant digit first, but are displayed in
different writing directions. As shown in Figure 2-5 these writing directions do not always
correspond to the writing direction of the surrounding text. The first example shows N’Ko,
a right-to-left script with digits that also render right to left. Examples 2 and 3 show
Hebrew and Arabic, in which the numbers are rendered left to right, resulting in bidirec-
tional layout. In left-to-right scripts, such as Latin and Hiragana and Katakana (for Japa-
nese), numbers follow the predominant left-to-right direction of the script, as shown in
Examples 4 and 5. When Japanese is laid out vertically, numbers are either laid out verti-
cally or may be rotated clockwise 90 degrees to follow the layout direction of the lines, as
shown in Example 6.

Figure 2-5. Writing Direction and Numbers

@ .94 4PII AYSH W T ® # =
® 1123 TV AKX K] S8
@ -dllimb e VYT daia aal g:’]\
@ Please see page 1123. W %

® 11238—IBHTIEEN,

The Unicode Standard precisely defines the conversion of Unicode text from logical order
to the order of readable (displayed) text so as to ensure consistent legibility. Properties of
directionality inherent in characters generally determine the correct display order of text.
The Unicode Bidirectional Algorithm specifies how these properties are used to resolve
directional interactions when characters of right-to-left and left-to-right directionality are

General Structure 21 2.2 Unicode Design Principles

mixed. (See Unicode Standard Annex #9, “Unicode Bidirectional Algorithm.”) However,
when characters of different directionality are mixed, inherent directionality alone is occa-
sionally insufficient to render plain text legibly. The Unicode Standard therefore includes
characters to explicitly specify changes in direction when necessary. The Bidirectional
Algorithm uses these directional layout control characters together with the inherent direc-
tional properties of characters to exert exact control over the display ordering for legible
interchange. By requiring the use of this algorithm, the Unicode Standard ensures that
plain text used for simple items like file names or labels can always be correctly ordered for
display.

Besides mixing runs of differing overall text direction, there are many other cases where the
logical order does not correspond to a linear progression of characters. Combining charac-
ters (such as accents) are stored following the base character to which they apply, but are
positioned relative to that base character and thus do not follow a simple linear progression
in the final rendered text. For example, the Latin letter “x” is stored as “x” followed by com-
bining “::”; the accent appears below, not to the right of the base. This position with
respect to the base holds even where the overall text progression is from top to bottom—for
example, with “x” appearing upright within a vertical Japanese line. Characters may also
combine into ligatures or conjuncts or otherwise change positions of their components

radically, as shown in Figure 2-3 and Figure 2-19.

There is one particular exception to the usual practice of logical order paralleling phonetic
order. With the Thai, Lao, Tai Viet, and New Tai Lue scripts, users traditionally type in
visual order rather than phonetic order, resulting in some vowel letters being stored ahead
of consonants, even though they are pronounced after them.

Unification

The Unicode Standard avoids duplicate encoding of characters by unifying them within
scripts across language. Common letters are given one code each, regardless of language, as
are common Chinese/Japanese/Korean (CJK) ideographs. (See Section 18.1, Han.)

Punctuation marks, symbols, and diacritics are handled in a similar manner as letters. If
they can be clearly identified with a particular script, they are encoded once for that script
and are unified across any languages that may use that script. See, for example, U+1362
ETHIOPIC FULL STOP, U+060F ARABIC SIGN MISRA, and U+0592 HEBREW ACCENT SEGOL.
However, some punctuation or diacritical marks may be shared in common across a num-
ber of scripts—the obvious example being Western-style punctuation characters, which are
often recently added to the writing systems of scripts other than Latin. In such cases, char-
acters are encoded only once and are intended for use with multiple scripts. Common sym-
bols are also encoded only once and are not associated with any script in particular.

It is quite normal for many characters to have different usages, such as comma < for either
thousands-separator (English) or decimal-separator (French). The Unicode Standard
avoids duplication of characters due to specific usage in different languages; rather, it
duplicates characters only to support compatibility with base standards. Avoidance of
duplicate encoding of characters is important to avoid visual ambiguity.

General Structure 22 2.2 Unicode Design Principles

There are a few notable instances in the standard where visual ambiguity between different
characters is tolerated, however. For example, in most fonts there is little or no distinction
visible between Latin “0”, Cyrillic “0”, and Greek “0” (omicron). These are not unified
because they are characters from three different scripts, and many legacy character encod-
ings distinguish between them. As another example, there are three characters whose glyph
is the same uppercase barred D shape, but they correspond to three distinct lowercase
forms. Unifying these uppercase characters would have resulted in unnecessary complica-

tions for case mapping.

The Unicode Standard does not attempt to encode features such as language, font, size,
positioning, glyphs, and so forth. For example, it does not preserve language as a part of
character encoding: just as French i grec, German ypsilon, and English wye are all repre-
sented by the same character code, U+0059 “Y”, so too are Chinese zi, Japanese ji, and
Korean ja all represented as the same character code, U+5B57 .

In determining whether to unify variant CJK ideograph forms across standards, the Uni-
code Standard follows the principles described in Section 18.1, Han. Where these principles
determine that two forms constitute a trivial difference, the Unicode Standard assigns a
single code. Just as for the Latin and other scripts, typeface distinctions or local preferences
in glyph shapes alone are not sufficient grounds for disunification of a character. Figure 2-6
illustrates the well-known example of the CJK ideograph for “bone,” which shows signifi-
cant shape differences from typeface to typeface, with some forms preferred in China and
some in Japan. All of these forms are considered to be the same character, encoded at
U+9AAS in the Unicode Standard.

Figure 2-6. Typeface Variation for the Bone Character

B

Many characters in the Unicode Standard could have been unified with existing visually
similar Unicode characters or could have been omitted in favor of some other Unicode
mechanism for maintaining the kinds of text distinctions for which they were intended.
However, considerations of interoperability with other standards and systems often require
that such compatibility characters be included in the Unicode Standard. See Section 2.3,
Compatibility Characters. In particular, whenever font style, size, positioning or precise
glyph shape carry a specific meaning and are used in distinction to the ordinary charac-
ter—for example, in phonetic or mathematical notation—the characters are not unified.

Dynamic Composition

The Unicode Standard allows for the dynamic composition of accented forms and Hangul
syllables. Combining characters used to create composite forms are productive. Because the
process of character composition is open-ended, new forms with modifying marks may be
created from a combination of base characters followed by combining characters. For

General Structure 23 2.2 Unicode Design Principles

example, the diaeresis “*” may be combined with all vowels and a number of consonants in
languages using the Latin script and several other scripts, as shown in Figure 2-7.

Figure 2-7. Dynamic Composition

A+o > A

0041 0308

Equivalent Sequences. Some text elements can be encoded either as static precomposed
forms or by dynamic composition. Common precomposed forms such as U+00DC “U”
LATIN CAPITAL LETTER U WITH DIAERESIS are included for compatibility with current stan-
dards. For static precomposed forms, the standard provides a mapping to an equivalent
dynamically composed sequence of characters. (See also Section 3.7, Decomposition.) Thus
different sequences of Unicode characters are considered equivalent. A precomposed char-
acter may be represented as an equivalent composed character sequence (see Section 2.12,
Equivalent Sequences).

Stability

Certain aspects of the Unicode Standard must be absolutely stable between versions, so that
implementers and users can be guaranteed that text data, once encoded, retains the same
meaning. Most importantly, this means that once Unicode characters are assigned, their
code point assignments cannot be changed, nor can characters be removed.

Characters are retained in the standard, so that previously conforming data stay confor-
mant in future versions of the standard. Sometimes characters are deprecated—that is,
their use in new documents is strongly discouraged. While implementations should con-
tinue to recognize such characters when they are encountered, spell-checkers or editors
could warn users of their presence and suggest replacements. For more about deprecated
characters, see D13 in Section 3.4, Characters and Encoding.

Unicode character names are also never changed, so that they can be used as identifiers that
are valid across versions. See Section 4.8, Name.

Similar stability guarantees exist for certain important properties. For example, the decom-
positions are kept stable, so that it is possible to normalize a Unicode text once and have it
remain normalized in all future versions.

The most current versions of the character encoding stability policies for the Unicode Stan-
dard are maintained online at:

http://www.unicode.org/policies/stability policy.html

Convertibility

Character identity is preserved for interchange with a number of different base standards,
including national, international, and vendor standards. Where variant forms (or even the

http://www.unicode.org/policies/stability_policy.html

General Structure 24 2.2 Unicode Design Principles

same form) are given separate codes within one base standard, they are also kept separate
within the Unicode Standard. This choice guarantees the existence of a mapping between
the Unicode Standard and base standards.

Accurate convertibility is guaranteed between the Unicode Standard and other standards in
wide usage as of May 1993. Characters have also been added to allow convertibility to sev-
eral important East Asian character sets created after that date—for example, GB 18030. In
general, a single code point in another standard will correspond to a single code point in
the Unicode Standard. Sometimes, however, a single code point in another standard corre-
sponds to a sequence of code points in the Unicode Standard, or vice versa. Conversion
between Unicode text and text in other character codes must, in general, be done by explicit
table-mapping processes. (See also Section 5.1, Data Structures for Character Conversion.)

General Structure 25 2.3 Compatibility Characters

2.3 Compatibility Characters

Conceptually, compatibility characters are characters that would not have been encoded in
the Unicode Standard except for compatibility and round-trip convertibility with other
standards. Such standards include international, national, and vendor character encoding
standards. For the most part, these are widely used standards that pre-dated Unicode, but
because continued interoperability with new standards and data sources is one of the pri-
mary design goals of the Unicode Standard, additional compatibility characters are added
as the situation warrants.

Compatibility characters can be contrasted with ordinary (or non-compatibility) characters
in the standard—ones that are generally consistent with the Unicode text model and which
would have been accepted for encoding to represent various scripts and sets of symbols,
regardless of whether those characters also existed in other character encoding standards.

For example, in the Unicode model of Arabic text the logical representation of text uses
basic Arabic letters. Rather than being directly represented in the encoded characters, the
cursive presentation of Arabic text for display is determined in context by a rendering sys-
tem. (See Section 9.2, Arabic.) However, some earlier character encodings for Arabic were
intended for use with rendering systems that required separate characters for initial,
medial, final, and isolated presentation forms of Arabic letters. To allow one-to-one map-
ping to these character sets, the Unicode Standard includes Arabic presentation forms as
compatibility characters.

The purpose for the inclusion of compatibility characters like these is not to implement or
emulate alternative text models, nor to encourage the use of plain text distinctions in char-
acters which would otherwise be better represented by higher-level protocols or other mech-
anisms. Rather, the main function of compatibility characters is to simplify interoperability
of Unicode-based systems with other data sources, and to ensure convertibility of data.

Interoperability does not require that all external characters can be mapped to single Uni-
code characters; encoding a compatibility character is not necessary when a character in
another standard can be represented as a sequence of existing Unicode characters. For
example the Shift-JIS encoding 0x839E for JIS X 0213 katakana letter ainu to can simply be
mapped to the Unicode character sequence <U+30C8, U+309A>. However, in cases where
no appropriate mapping is available, the requirement for interoperability and convertibil-
ity may be met by encoding a compatibility character for one-to-one mapping to another
standard.

Usage. The fact that a particular character is considered a compatibility character does not
mean that that character is deprecated in the standard. The use of most compatibility char-
acters in general text interchange is unproblematic. Some, however, such as the Arabic
positional forms or other compatibility characters which assume information about partic-
ular layout conventions, such as presentation forms for vertical text, can lead to problems
when used in general interchange. Caution is advised for their use. See also the discussion
of compatibility characters in the W3C specification, “Unicode and Markup Languages.”

General Structure 26 2.3 Compatibility Characters

Allocation. The Compatibility and Specials Area contains a large number of compatibility
characters, but the Unicode Standard also contains many compatibility characters that do
not appear in that area. These include examples such as U+2163 “IV” ROMAN NUMERAL
FOUR, U+2007 FIGURE SPACE, U+00B2 “*” SUPERSCRIPT TwO, U+2502 BOX DRAWINGS
LIGHT VERTICAL, and U+32D0 CIRCLED KATAKANA A.

There is no formal listing of all compatibility characters in the Unicode Standard. This fol-
lows from the nature of the definition of compatibility characters. It is a judgement call as
to whether any particular character would have been accepted for encoding if it had not
been required for interoperability with a particular standard. Different participants in
character encoding often disagree about the appropriateness of encoding particular charac-
ters, and sometimes there are multiple justifications for encoding a given character.

Compatibility Variants

Compatibility variants are a subset of compatibility characters, and have the further charac-
teristic that they represent variants of existing, ordinary, Unicode characters.

For example, compatibility variants might represent various presentation or styled forms
of basic letters: superscript or subscript forms, variant glyph shapes, or vertical presenta-
tion forms. They also include halfwidth or fullwidth characters from East Asian character
encoding standards, Arabic contextual form glyphs from preexisting Arabic code pages,
Arabic ligatures and ligatures from other scripts, and so on. Compatibility variants also
include CJK compatibility ideographs, many of which are minor glyph variants of an
encoded unified CJK ideograph.

In contrast to compatibility variants there are the numerous compatibility characters, such
as U+2502 BOX DRAWINGS LIGHT VERTICAL, U+263A WHITE SMILING FACE, or U+2701
UPPER BLADE SCISSORS, which are not variants of ordinary Unicode characters. However, it
is not always possible to determine unequivocally whether a compatibility character is a
variant or not.

Compatibility Decomposable Characters

The term compatibility is further applied to Unicode characters in a different, strictly
defined sense. The concept of a compatibility decomposable character is formally defined as
any Unicode character whose compatibility decomposition is not identical to its canonical
decomposition. (See Definition D66 in Section 3.7, Decomposition, and the discussion in
Section 2.2, Unicode Design Principles.)

The list of compatibility decomposable characters is precisely defined by property values in
the Unicode Character Database, and by the rules of Unicode Normalization. (See
Section 3.11, Normalization Forms.) Because of their use in Unicode Normalization, com-
patibility decompositions are stable and cannot be changed once a character has been
encoded; the list of compatibility decomposable characters for any version of the Unicode
Standard is thus also stable.

General Structure 27 2.3 Compatibility Characters

Compatibility decomposable characters have also been referred to in earlier versions of the
Unicode Standard as compatibility composite characters or compatibility composites for
short, but the full term, compatibility decomposable character is preferred.

Compatibility Character Versus Compatibility Decomposable Character. In informal
discussions of the Unicode Standard, compatibility decomposable characters have also
often been referred to simply as “compatibility characters.” This is understandable, in part
because the two sets of characters largely overlap, but the concepts are actually distinct.
There are compatibility characters which are not compatibility decomposable characters,
and there are compatibility decomposable characters which are not compatibility charac-
ters.

For example, the deprecated alternate format characters such as U+206C INHIBIT ARABIC
FORM SHAPING are considered compatibility characters, but they have no decomposition
mapping, and thus by definition cannot be compatibility decomposable characters. Like-
wise for such other compatibility characters as U+2502 BOX DRAWINGS LIGHT VERTICAL O
U+263A WHITE SMILING FACE.

There are also instances of compatibility variants which clearly are variants of other Uni-
code characters, but which have no decomposition mapping. For example, U+2EAF c¢jk
RADICAL SILK is a compatibility variant of U+2F77 KANGXI RADICAL SILK, as well as being a
compatibility variant of U+7CF9 cJK UNIFIED IDEOGRAPH-7CE9, but has no compatibility
decomposition. The numerous compatibility variants like this in the CJK Radicals Supple-
ment block were encoded for compatibility with encodings that distinguished and sepa-
rately encoded various forms of CJK radicals as symbols.

A different case is illustrated by the CJK compatibility ideographs, such as U+FAO0C cjk
COMPATIBILITY IDEOGRAPH-FAOC. Those compatibility characters have a decomposition
mapping, but for historical reasons it is always a canonical decomposition, so they are
canonical decomposable characters, but not compatibility decomposable characters.

By way of contrast, some compatibility decomposable characters, such as modifier letters
used in phonetic orthographies, for example, U+02B0 MODIFIER LETTER SMALL H, are not
considered to be compatibility characters. They would have been accepted for encoding in
the standard on their own merits, regardless of their need for mapping to IPA. A large
number of compatibility decomposable characters like this are actually distinct symbols
used in specialized notations, whether phonetic or mathematical. In such cases, their com-
patibility mappings express their historical derivation from styled forms of standard letters.

Other compatibility decomposable characters are widely used characters serving essential
functions. U+00A0 NO-BREAK SPACE is one example. In these and similar cases, such as
fixed-width space characters, the compatibility decompositions define possible fallback
representations.

The Unicode Character Database supplies identification and mapping information only for
compatibility decomposable characters, while compatibility variants are not formally iden-
tified or documented. Because the two sets substantially overlap, many specifications are
written in terms of compatibility decomposable characters first; if necessary, such specifi-

General Structure 28 2.3 Compatibility Characters

cations may be extended to handle other, non-decomposable compatibility variants as
required. (See also the discussion in Section 5.19, Mapping Compatibility Variants.)

General Structure 29 2.4 Code Points and Characters

2.4 Code Points and Characters

On a computer, abstract characters are encoded internally as numbers. To create a complete
character encoding, it is necessary to define the list of all characters to be encoded and to
establish systematic rules for how the numbers represent the characters.

The range of integers used to code the abstract characters is called the codespace. A particu-
lar integer in this set is called a code point. When an abstract character is mapped or
assigned to a particular code point in the codespace, it is then referred to as an encoded char-
actet.

In the Unicode Standard, the codespace consists of the integers from 0 to 10FFFF;4, com-
prising 1,114,112 code points available for assigning the repertoire of abstract characters.

There are constraints on how the codespace is organized, and particular areas of the
codespace have been set aside for encoding of certain kinds of abstract characters or for
other uses in the standard. For more on the allocation of the Unicode codespace, see
Section 2.8, Unicode Allocation.

Figure 2-8 illustrates the relationship between abstract characters and code points, which
together constitute encoded characters. Note that some abstract characters may be associ-
ated with multiple, separately encoded characters (that is, be encoded “twice”). In other
instances, an abstract character may be represented by a sequence of two (or more) other
encoded characters. The solid arrows connect encoded characters with the abstract charac-
ters that they represent and encode.

Figure 2-8. Abstract and Encoded Characters

Abstract Encoded

< 00C5
\

212B

O T
~——1 0041 || 0304

O

When referring to code points in the Unicode Standard, the usual practice is to refer to
them by their numeric value expressed in hexadecimal, with a “U+” prefix. (See
Appendix A, Notational Conventions.) Encoded characters can also be referred to by their

General Structure 30 2.4 Code Points and Characters

code points only. To prevent ambiguity, the official Unicode name of the character is often
added; this clearly identifies the abstract character that is encoded. For example:

U+0061 LATIN SMALL LETTER A
U+10330 GOTHIC LETTER AHSA
U+201DF cjk UNIFIED IDEOGRAPH-201DF

Such citations refer only to the encoded character per se, associating the code point (as an
integral value) with the abstract character that is encoded.

Types of Code Points

There are many ways to categorize code points. Table 2-3 illustrates some of the categoriza-
tions and basic terminology used in the Unicode Standard. The seven basic types of code
points are formally defined in Section 3.4, Characters and Encoding. (See Definition D10a,
Code Point Type.)

Table 2-3. Types of Code Points

General Character Code Point

Basic Type | Brief Description Category Status Status

Letter, mark, number,
Graphic punctuation, symbol,and |L, M, N, P, S, Zs
spaces

Invisible but affects neigh-
boring characters;
includes line/paragraph
separators

Format Cft, 71, Zp
Assigned to abstract

character

Usage defined by protocols
Control or standards outside the |Cc Designated

Unicode Standard (assigned) code
Usage defined by private point
Private-use agreement outside the Co

Unicode Standard
Permanently reserved for Cannot be assigned
Surrogate UTE-16; restricted inter- |Cs to abstract
change character

Permanently reserved for
Noncharacter | internal usage; restricted

interchange Not assigned to

- Cn abstract .
Reserved for future assign- character Undesignated

Reserved ment; restricted inter- (unassigned)
change code point

Not all assigned code points represent abstract characters; only Graphic, Format, Control
and Private-use do. Surrogates and Noncharacters are assigned code points but are not
assigned to abstract characters. Reserved code points are assignable: any may be assigned in

General Structure 31 2.4 Code Points and Characters

a future version of the standard. The General Category provides a finer breakdown of
Graphic characters and also distinguishes between the other basic types (except between
Noncharacter and Reserved). Other properties defined in the Unicode Character Database
provide for different categorizations of Unicode code points.

Control Codes. Sixty-five code points (U+0000..U+001F and U+007E.U+009F) are
defined specifically as control codes, for compatibility with the C0 and C1 control codes of
the ISO/IEC 2022 framework. A few of these control codes are given specific interpreta-
tions by the Unicode Standard. (See Section 23.1, Control Codes.)

Noncharacters. Sixty-six code points are not used to encode characters. Noncharacters
consist of U+FDDO..U+FDEF and any code point ending in the value FFFE 4 or FFFF;s—
that is, U+FFFE, U+FFFF, U+1FFFE, U+1FFFE, ... U+10FFFE, U+10FFFE. (See
Section 23.7, Noncharacters.)

Private Use. Three ranges of code points have been set aside for private use. Characters in
these areas will never be defined by the Unicode Standard. These code points can be freely
used for characters of any purpose, but successful interchange requires an agreement
between sender and receiver on their interpretation. (See Section 23.5, Private-Use Charac-
ters.)

Surrogates. Some 2,048 code points have been allocated as surrogate code points, which
are used in the UTF-16 encoding form. (See Section 23.6, Surrogates Area.)

Restricted Interchange. Code points that are not assigned to abstract characters are subject
to restrictions in interchange.

+ Surrogate code points cannot be conformantly interchanged using Unicode
encoding forms. They do not correspond to Unicode scalar values and thus do
not have well-formed representations in any Unicode encoding form. (See
Section 3.8, Surrogates.)

+ Noncharacter code points are reserved for internal use, such as for sentinel val-
ues. They have well-formed representations in Unicode encoding forms and
survive conversions between encoding forms. This allows sentinel values to be
preserved internally across Unicode encoding forms, even though they are not
designed to be used in open interchange.

+ All implementations need to preserve reserved code points because they may
originate in implementations that use a future version of the Unicode Standard.
For example, suppose that one person is using a Unicode 7.0 system and a sec-
ond person is using a Unicode 6.0 system. The first person sends the second
person a document containing some code points newly assigned in Unicode
7.0; these code points were unassigned in Unicode 6.0. The second person may
edit the document, not changing the reserved codes, and send it on. In that case
the second person is interchanging what are, as far as the second person knows,
reserved code points.

General Structure 32 2.4 Code Points and Characters

Code Point Semantics. The semantics of most code points are established by this standard;
the exceptions are Controls, Private-use, and Noncharacters. Control codes generally have
semantics determined by other standards or protocols (such as ISO/IEC 6429), but there
are a small number of control codes for which the Unicode Standard specifies particular
semantics. See Table 23-1 in Section 23.1, Control Codes, for the exact list of those control
codes. The semantics of private-use characters are outside the scope of the Unicode Stan-
dard; their use is determined by private agreement, as, for example, between vendors. Non-
characters have semantics in internal use only.

General Structure 33 2.5 EncodingForms

2.5 Encoding Forms

Computers handle numbers not simply as abstract mathematical objects, but as combina-
tions of fixed-size units like bytes and 32-bit words. A character encoding model must take
this fact into account when determining how to associate numbers with the characters.

Actual implementations in computer systems represent integers in specific code units of
particular size—usually 8-bit (= byte), 16-bit, or 32-bit. In the Unicode character encoding
model, precisely defined encoding forms specify how each integer (code point) for a Uni-
code character is to be expressed as a sequence of one or more code units. The Unicode
Standard provides three distinct encoding forms for Unicode characters, using 8-bit, 16-
bit, and 32-bit units. These are named UTF-8, UTF-16, and UTF-32, respectively. The
“UTF” is a carryover from earlier terminology meaning Unicode (or UCS) Transformation
Format. Each of these three encoding forms is an equally legitimate mechanism for repre-
senting Unicode characters; each has advantages in different environments.

All three encoding forms can be used to represent the full range of encoded characters in
the Unicode Standard; they are thus fully interoperable for implementations that may
choose different encoding forms for various reasons. Each of the three Unicode encoding
forms can be efficiently transformed into either of the other two without any loss of data.

Non-overlap. Each of the Unicode encoding forms is designed with the principle of non-
overlap in mind. Figure 2-9 presents an example of an encoding where overlap is permitted.
In this encoding (Windows code page 932), characters are formed from either one or two
code bytes. Whether a sequence is one or two bytes in length depends on the first byte, so
that the values for lead bytes (of a two-byte sequence) and single bytes are disjoint. How-
ever, single-byte values and trail-byte values can overlap. That means that when someone
searches for the character “D”, for example, he or she might find it either (mistakenly) as
the trail byte of a two-byte sequence or as a single, independent byte. To find out which
alternative is correct, a program must look backward through text.

Figure 2-9. Overlap in Legacy Mixed-Width Encodings

—
D Trail and Single

0044

T T
/ 0442

The situation is made more complex by the fact that lead and trail bytes can also overlap, as
shown in the second part of Figure 2-9. This means that the backward scan has to repeat
until it hits the start of the text or hits a sequence that could not exist as a pair as shown in

Lead and Trail

General Structure 34 2.5 EncodingForms

Figure 2-10. This is not only inefficient, but also extremely error-prone: corruption of one
byte can cause entire lines of text to be corrupted.

Figure 2-10. Boundaries and Interpretation

27]--[84]84|84/84]84|84|44]

TA//:L—XXD

0442 0414 0044

The Unicode encoding forms avoid this problem, because none of the ranges of values for
the lead, trail, or single code units in any of those encoding forms overlap.

Non-overlap makes all of the Unicode encoding forms well behaved for searching and com-
parison. When searching for a particular character, there will never be a mismatch against
some code unit sequence that represents just part of another character. The fact that all
Unicode encoding forms observe this principle of non-overlap distinguishes them from
many legacy East Asian multibyte character encodings, for which overlap of code unit
sequences may be a significant problem for implementations.

Another aspect of non-overlap in the Unicode encoding forms is that all Unicode charac-
ters have determinate boundaries when expressed in any of the encoding forms. That is, the
edges of code unit sequences representing a character are easily determined by local exam-
ination of code units; there is never any need to scan back indefinitely in Unicode text to
correctly determine a character boundary. This property of the encoding forms has some-
times been referred to as self-synchronization. This property has another very important
implication: corruption of a single code unit corrupts only a single character; none of the
surrounding characters are affected.

For example, when randomly accessing a string, a program can find the boundary of a
character with limited backup. In UTF-16, if a pointer points to a leading surrogate, a sin-
gle backup is required. In UTF-8, if a pointer points to a byte starting with 10xxxxxx (in
binary), one to three backups are required to find the beginning of the character.

Conformance. The Unicode Consortium fully endorses the use of any of the three Unicode
encoding forms as a conformant way of implementing the Unicode Standard. It is impor-
tant not to fall into the trap of trying to distinguish “UTF-8 versus Unicode,” for example.
UTF-8, UTF-16, and UTF-32 are all equally valid and conformant ways of implementing
the encoded characters of the Unicode Standard.

Examples. Figure 2-11 shows the three Unicode encoding forms, including how they are
related to Unicode code points.

In Figure 2-11, the UTF-32 line shows that each example character can be expressed with
one 32-bit code unit. Those code units have the same values as the code point for the char-
acter. For UTF-16, most characters can be expressed with one 16-bit code unit, whose value

General Structure 35 2.5 EncodingForms

Figure 2-11. Unicode Encoding Forms

AL Q1 EE L yrea

00000041 | 000003A9 | O00O0BA9E | 00010384

A QR T e

0041 | 039 | sasE | Dsoo | DFes
=4 M

Al Q| B AL | UTE-8

41 | cE Ao | Esymayoe [Fojo0 eE e

is the same as the code point for the character, but characters with high code point values
require a pair of 16-bit surrogate code units instead. In UTF-8, a character may be
expressed with one, two, three, or four bytes, and the relationship between those byte val-
ues and the code point value is more complex.

UTF-8, UTF-16, and UTF-32 are further described in the subsections that follow. See each
subsection for a general overview of how each encoding form is structured and the general
benefits or drawbacks of each encoding form for particular purposes. For the detailed for-
mal definition of the encoding forms and conformance requirements, see Section 3.9, Uni-
code Encoding Forms.

UTF-32

UTF-32 is the simplest Unicode encoding form. Each Unicode code point is represented
directly by a single 32-bit code unit. Because of this, UTF-32 has a one-to-one relationship
between encoded character and code unit; it is a fixed-width character encoding form. This
makes UTF-32 an ideal form for APIs that pass single character values.

As for all of the Unicode encoding forms, UTEF-32 is restricted to representation of code
points in the range 0..10FFFF, ,—that is, the Unicode codespace. This guarantees interop-
erability with the UTF-16 and UTF-8 encoding forms.

Fixed Width. The value of each UTF-32 code unit corresponds exactly to the Unicode code
point value. This situation differs significantly from that for UTF-16 and especially UTF-8,
where the code unit values often change unrecognizably from the code point value. For
example, U+10000 is represented as <00010000> in UTF-32 and as <F0 90 80 80> in UTF-
8. For UTF-32, it is trivial to determine a Unicode character from its UTF-32 code unit rep-
resentation. In contrast, UTF-16 and UTF-8 representations often require doing a code
unit conversion before the character can be identified in the Unicode code charts.

Preferred Usage. UTF-32 may be a preferred encoding form where memory or disk storage
space for characters is not a particular concern, but where fixed-width, single code unit
access to characters is desired. UTF-32 is also a preferred encoding form for processing
characters on most Unix platforms.

General Structure 36 2.5 EncodingForms

UTF-16

In the UTF-16 encoding form, code points in the range U+0000..U+FFFF are represented
as a single 16-bit code unit; code points in the supplementary planes, in the range
U+10000..U+10FFFF, are represented as pairs of 16-bit code units. These pairs of special
code units are known as surrogate pairs. The values of the code units used for surrogate
pairs are completely disjunct from the code units used for the single code unit representa-
tions, thus maintaining non-overlap for all code point representations in UTF-16. For the
formal definition of surrogates, see Section 3.8, Surrogates.

Optimized for BMP. UTF-16 optimizes the representation of characters in the Basic Multi-
lingual Plane (BMP)—that is, the range U+0000..U+FFFE. For that range, which contains
the vast majority of common-use characters for all modern scripts of the world, each char-
acter requires only one 16-bit code unit, thus requiring just half the memory or storage of
the UTF-32 encoding form. For the BMP, UTF-16 can effectively be treated as if it were a
fixed-width encoding form.

Supplementary Characters and Surrogates. For supplementary characters, UTF-16
requires two 16-bit code units. The distinction between characters represented with one
versus two 16-bit code units means that formally UTF-16 is a variable-width encoding
form. That fact can create implementation difficulties if it is not carefully taken into
account; UTF-16 is somewhat more complicated to handle than UTF-32.

Preferred Usage. UTF-16 may be a preferred encoding form in many environments that
need to balance efficient access to characters with economical use of storage. It is reason-
ably compact, and all the common, heavily used characters fit into a single 16-bit code unit.

Origin. UTF-16 is the historical descendant of the earliest form of Unicode, which was
originally designed to use a fixed-width, 16-bit encoding form exclusively. The surrogates
were added to provide an encoding form for the supplementary characters at code points
past U+FFFE. The design of the surrogates made them a simple and efficient extension
mechanism that works well with older Unicode implementations and that avoids many of
the problems of other variable-width character encodings. See Section 5.4, Handling Surro-
gate Pairs in UTF-16, for more information about surrogates and their processing.

Collation. For the purpose of sorting text, binary order for data represented in the UTF-16
encoding form is not the same as code point order. This means that a slightly different
comparison implementation is needed for code point order. For more information, see
Section 5.17, Binary Order.

UTF-8

To meet the requirements of byte-oriented, ASCII-based systems, a third encoding form is
specified by the Unicode Standard: UTF-8. This variable-width encoding form preserves
ASCII transparency by making use of 8-bit code units.

Byte-Oriented. Much existing software and practice in information technology have long
depended on character data being represented as a sequence of bytes. Furthermore, many

General Structure 37 2.5 EncodingForms

of the protocols depend not only on ASCII values being invariant, but must make use of or
avoid special byte values that may have associated control functions. The easiest way to
adapt Unicode implementations to such a situation is to make use of an encoding form that
is already defined in terms of 8-bit code units and that represents all Unicode characters
while not disturbing or reusing any ASCII or CO control code value. That is the function of
UTE-8.

Variable Width. UTF-8 is a variable-width encoding form, using 8-bit code units, in which
the high bits of each code unit indicate the part of the code unit sequence to which each
byte belongs. A range of 8-bit code unit values is reserved for the first, or leading, element
of a UTF-8 code unit sequences, and a completely disjunct range of 8-bit code unit values is
reserved for the subsequent, or trailing, elements of such sequences; this convention pre-
serves non-overlap for UTF-8. Table 3-6 on page 125 shows how the bits in a Unicode code
point are distributed among the bytes in the UTF-8 encoding form. See Section 3.9, Unicode
Encoding Forms, for the full, formal definition of UTF-8.

ASCII Transparency. The UTF-8 encoding form maintains transparency for all of the
ASCII code points (0x00..0x7F). That means Unicode code points U+0000..U+007F are
converted to single bytes 0x00..0x7F in UTF-8 and are thus indistinguishable from ASCII
itself. Furthermore, the values 0x00..0x7F do not appear in any byte for the representation
of any other Unicode code point, so that there can be no ambiguity. Beyond the ASCII
range of Unicode, many of the non-ideographic scripts are represented by two bytes per
code point in UTF-8; all non-surrogate code points between U+0800 and U+FFFF are rep-
resented by three bytes; and supplementary code points above U+FFFF require four bytes.

Preferred Usage. UTF-8 is typically the preferred encoding form for HTML and similar
protocols, particularly for the Internet. The ASCII transparency helps migration. UTF-8
also has the advantage that it is already inherently byte-serialized, as for most existing 8-bit
character sets; strings of UTF-8 work easily with C or other programming languages, and
many existing APIs that work for typical Asian multibyte character sets adapt to UTF-8 as
well with little or no change required.

Self-synchronizing. In environments where 8-bit character processing is required for one
reason or another, UTF-8 has the following attractive features as compared to other multi-
byte encodings:

+ The first byte of a UTF-8 code unit sequence indicates the number of bytes to
follow in a multibyte sequence. This allows for very efficient forward parsing.

« It is efficient to find the start of a character when beginning from an arbitrary
location in a byte stream of UTF-8. Programs need to search at most four bytes
backward, and usually much less. It is a simple task to recognize an initial byte,
because initial bytes are constrained to a fixed range of values.

+ As with the other encoding forms, there is no overlap of byte values.

General Structure 38 2.5 EncodingForms

Comparison of the Advantages of UTF-32, UTF-16, and UTF-8

On the face of it, UTF-32 would seem to be the obvious choice of Unicode encoding forms
for an internal processing code because it is a fixed-width encoding form. It can be confor-
mantly bound to the C and C++ wchar_t, which means that such programming languages
may offer built-in support and ready-made string APIs that programmers can take advan-
tage of. However, UTF-16 has many countervailing advantages that may lead implementers
to choose it instead as an internal processing code.

While all three encoding forms need at most 4 bytes (or 32 bits) of data for each character,
in practice UTF-32 in almost all cases for real data sets occupies twice the storage that UTF-
16 requires. Therefore, a common strategy is to have internal string storage use UTF-16 or
UTF-8 but to use UTF-32 when manipulating individual characters.

UTF-32 Versus UTF-16. On average, more than 99% of all UTF-16 data is expressed using
single code units. This includes nearly all of the typical characters that software needs to
handle with special operations on text—for example, format control characters. As a con-
sequence, most text scanning operations do not need to unpack UTF-16 surrogate pairs at
all, but rather can safely treat them as an opaque part of a character string.

For many operations, UTF-16 is as easy to handle as UTF-32, and the performance of UTF-
16 as a processing code tends to be quite good. UTF-16 is the internal processing code of
choice for a majority of implementations supporting Unicode. Other than for Unix plat-
forms, UTF-16 provides the right mix of compact size with the ability to handle the occa-
sional character outside the BMP.

UTF-32 has somewhat of an advantage when it comes to simplicity of software coding
design and maintenance. Because the character handling is fixed width, UTF-32 processing
does not require maintaining branches in the software to test and process the double code
unit elements required for supplementary characters by UTF-16. Conversely, 32-bit indices
into large tables are not particularly memory efficient. To avoid the large memory penalties
of such indices, Unicode tables are often handled as multistage tables (see “Multistage
Tables” in Section 5.1, Data Structures for Character Conversion). In such cases, the 32-bit
code point values are sliced into smaller ranges to permit segmented access to the tables.
This is true even in typical UTF-32 implementations.

The performance of UTF-32 as a processing code may actually be worse than the perfor-
mance of UTF-16 for the same data, because the additional memory overhead means that
cache limits will be exceeded more often and memory paging will occur more frequently.
For systems with processor designs that impose penalties for 16-bit aligned access but have
very large memories, this effect may be less noticeable.

Characters Versus Code Points. In any event, Unicode code points do not necessarily
match user expectations for “characters.” For example, the following are not represented by
a single code point: a combining character sequence such as <g, acute>; a conjoining jamo
sequence for Korean; or the Devanagari conjunct “ksha.” Because some Unicode text pro-
cessing must be aware of and handle such sequences of characters as text elements, the
fixed-width encoding form advantage of UTF-32 is somewhat offset by the inherently vari-

General Structure 39 2.5 EncodingForms

able-width nature of processing text elements. See Unicode Technical Standard #18, “Uni-
code Regular Expressions,” for an example where commonly implemented processes deal
with inherently variable-width text elements owing to user expectations of the identity of a
“character.”

UTEF-8. UTF-8 is reasonably compact in terms of the number of bytes used. It is really only
at a significant size disadvantage when used for East Asian implementations such as Chi-
nese, Japanese, and Korean, which use Han ideographs or Hangul syllables requiring three-
byte code unit sequences in UTF-8. UTF-8 is also significantly less efficient in terms of pro-
cessing than the other encoding forms.

Binary Sorting. A binary sort of UTF-8 strings gives the same ordering as a binary sort of
Unicode code points. This is obviously the same order as for a binary sort of UTF-32
strings.

All three encoding forms give the same results for binary string comparisons or string sort-
ing when dealing only with BMP characters (in the range U+0000..U+FFFF). However,
when dealing with supplementary characters (in the range U+10000..U+10FFFF), UTF-16
binary order does not match Unicode code point order. This can lead to complications
when trying to interoperate with binary sorted lists—for example, between UTF-16 sys-
tems and UTF-8 or UTF-32 systems. However, for data that is sorted according to the con-
ventions of a specific language or locale rather than using binary order, data will be ordered
the same, regardless of the encoding form.

General Structure 40 2.6 EncodingSchemes

2.6 Encoding Schemes

The discussion of Unicode encoding forms in the previous section was concerned with the
machine representation of Unicode code units. Each code unit is represented in a computer
simply as a numeric data type; just as for other numeric types, the exact way the bits are
laid out internally is irrelevant to most processing. However, interchange of textual data,
particularly between computers of different architectural types, requires consideration of
the exact ordering of the bits and bytes involved in numeric representation. Integral data,
including character data, is serialized for open interchange into well-defined sequences of
bytes. This process of byte serialization allows all applications to correctly interpret
exchanged data and to accurately reconstruct numeric values (and thereby character val-
ues) from it. In the Unicode Standard, the specifications of the distinct types of byte serial-
izations to be used with Unicode data are known as Unicode encoding schemes.

Byte Order. Modern computer architectures differ in ordering in terms of whether the most
significant byte or the least significant byte of a large numeric data type comes first in inter-
nal representation. These sequences are known as “big-endian” and “little-endian” orders,
respectively. For the Unicode 16- and 32-bit encoding forms (UTF-16 and UTF-32), the
specification of a byte serialization must take into account the big-endian or little-endian
architecture of the system on which the data is represented, so that when the data is byte
serialized for interchange it will be well defined.

A character encoding scheme consists of a specified character encoding form plus a specifi-
cation of how the code units are serialized into bytes. The Unicode Standard also specifies
the use of an initial byte order mark (BOM) to explicitly differentiate big-endian or little-
endian data in some of the Unicode encoding schemes. (See the “Byte Order Mark” subsec-
tion in Section 23.8, Specials.)

When a higher-level protocol supplies mechanisms for handling the endianness of integral
data types, it is not necessary to use Unicode encoding schemes or the byte order mark. In
those cases Unicode text is simply a sequence of integral data types.

For UTF-8, the encoding scheme consists merely of the UTF-8 code units (= bytes) in
sequence. Hence, there is no issue of big- versus little-endian byte order for data repre-
sented in UTF-8. However, for 16-bit and 32-bit encoding forms, byte serialization must
break up the code units into two or four bytes, respectively, and the order of those bytes
must be clearly defined. Because of this, and because of the rules for the use of the byte
order mark, the three encoding forms of the Unicode Standard result in a total of seven
Unicode encoding schemes, as shown in Table 2-4.

The endian order entry for UTF-8 in Table 2-4 is marked N/A because UTF-8 code units
are 8 bits in size, and the usual machine issues of endian order for larger code units do not
apply. The serialized order of the bytes must not depart from the order defined by the UTF-
8 encoding form. Use of a BOM is neither required nor recommended for UTF-8, but may
be encountered in contexts where UTF-8 data is converted from other encoding forms that
use a BOM or where the BOM is used as a UTF-8 signature. See the “Byte Order Mark”
subsection in Section 23.8, Specials, for more information.

General Structure 41 2.6 EncodingSchemes

Table 2-4. The Seven Unicode Encoding Schemes

Encoding Scheme | Endian Order BOM Allowed?
UTE-8 N/A yes
UTEF-16 Big-endian or little-endian |yes
UTE-16BE Big-endian no
UTF-16LE Little-endian no
UTE-32 Big-endian or little-endian |yes
UTF-32BE Big-endian no
UTF-32LE Little-endian no

Encoding Scheme Versus Encoding Form. Note that some of the Unicode encoding
schemes have the same labels as the three Unicode encoding forms. This could cause con-
fusion, so it is important to keep the context clear when using these terms: character encod-
ing forms refer to integral data units in memory or in APIs, and byte order is irrelevant;
character encoding schemes refer to byte-serialized data, as for streaming I/O or in file stor-
age, and byte order must be specified or determinable.

The Internet Assigned Numbers Authority (IANA) maintains a registry of charset names
used on the Internet. Those charset names are very close in meaning to the Unicode char-
acter encoding model’s concept of character encoding schemes, and all of the Unicode
character encoding schemes are, in fact, registered as charsets. While the two concepts are
quite close and the names used are identical, some important differences may arise in terms
of the requirements for each, particularly when it comes to handling of the byte order
mark. Exercise due caution when equating the two.

Examples. Figure 2-12 illustrates the Unicode character encoding schemes, showing how
each is derived from one of the encoding forms by serialization of bytes.

Figure 2-12. Unicode Encoding Schemes

A QO B AN UTF-32BE
00|00|00|41 00|00|03|A9 00|00|8A|9E 00|01|03|84
A QO B AN UTF-32LE
41|00|00|00 A9|03|00|00 9E|8A|00|00 84|03|01 |00
AlQ |G AMAS UTE-16BE
00|41 03|A9 8A|9E D8|00|DF|84
AlQ | GE A UTE-16LE
41|00 A9|03 9E|8/—\ 00|D8|84|DF
Al Q| & 1L UTE-8
41 CE|A9 E8|AA|9E F0|90|8E|84

General Structure 42 2.6 EncodingSchemes

In Figure 2-12, the code units used to express each example character have been serialized
into sequences of bytes. This figure should be compared with Figure 2-11, which shows the
same characters before serialization into sequences of bytes. The “BE” lines show serializa-
tion in big-endian order, whereas the “LE” lines show the bytes reversed into little-endian
order. For UTF-8, the code unit is just an 8-bit byte, so that there is no distinction between
big-endian and little-endian order. UTF-32 and UTF-16 encoding schemes using the byte
order mark are not shown in Figure 2-12, to keep the basic picture regarding serialization of
bytes clearer.

For the detailed formal definition of the Unicode encoding schemes and conformance
requirements, see Section 3.10, Unicode Encoding Schemes. For further general discussion
about character encoding forms and character encoding schemes, both for the Unicode
Standard and as applied to other character encoding standards, see Unicode Technical
Report #17, “Unicode Character Encoding Model.” For information about charsets and
character conversion, see Unicode Technical Standard #22, “Character Mapping Markup
Language (CharMapML).”

General Structure 43 2.7 Unicode Strings

2.7 Unicode Strings

A Unicode string data type is simply an ordered sequence of code units. Thus a Unicode 8-
bit string is an ordered sequence of 8-bit code units, a Unicode 16-bit string is an ordered
sequence of 16-bit code units, and a Unicode 32-bit string is an ordered sequence of 32-bit
code units.

Depending on the programming environment, a Unicode string may or may not be
required to be in the corresponding Unicode encoding form. For example, strings in Java,
C#, or ECMAScript are Unicode 16-bit strings, but are not necessarily well-formed UTF-16
sequences. In normal processing, it can be far more efficient to allow such strings to con-
tain code unit sequences that are not well-formed UTF-16—that is, isolated surrogates.
Because strings are such a fundamental component of every program, checking for isolated
surrogates in every operation that modifies strings can create significant overhead, espe-
cially because supplementary characters are extremely rare as a percentage of overall text in
programs worldwide.

It is straightforward to design basic string manipulation libraries that handle isolated sur-
rogates in a consistent and straightforward manner. They cannot ever be interpreted as
abstract characters, but they can be internally handled the same way as noncharacters
where they occur. Typically they occur only ephemerally, such as in dealing with keyboard
events. While an ideal protocol would allow keyboard events to contain complete strings,
many allow only a single UTF-16 code unit per event. As a sequence of events is transmitted
to the application, a string that is being built up by the application in response to those
events may contain isolated surrogates at any particular point in time.

Whenever such strings are specified to be in a particular Unicode encoding form—even
one with the same code unit size—the string must not violate the requirements of that
encoding form. For example, isolated surrogates in a Unicode 16-bit string are not allowed
when that string is specified to be well-formed UTF-16. (See Section 3.9, Unicode Encoding
Forms.) A number of techniques are available for dealing with an isolated surrogate, such as
omitting it, converting it into U+FFFD REPLACEMENT CHARACTER to produce well-formed
UTF-16, or simply halting the processing of the string with an error. For more information
on this topic, see Unicode Technical Standard #22, “Character Mapping Markup Language
(CharMapML)”

General Structure 44 2.8 UnicodeAllocation

2.8 Unicode Allocation

For convenience, the encoded characters of the Unicode Standard are grouped by linguistic
and functional categories, such as script or writing system. For practical reasons, there are
occasional departures from this general principle, as when punctuation associated with the
ASCII standard is kept together with other ASCII characters in the range U+0020..U+007E
rather than being grouped with other sets of general punctuation characters. By and large,
however, the code charts are arranged so that related characters can be found near each
other in the charts.

Grouping encoded characters by script or other functional categories offers the additional
benefit of supporting various space-saving techniques in actual implementations, as for
building tables or fonts.

For more information on writing systems, see Section 6.1, Writing Systems.

Planes

The Unicode codespace consists of the single range of numeric values from 0 to 10FFFF g,
but in practice it has proven convenient to think of the codespace as divided up into planes
of characters—each plane consisting of 64K code points. Because of these numeric conven-
tions, the Basic Multilingual Plane is occasionally referred to as Plane 0. The last four hexa-
decimal digits in each code point indicate a character’s position inside a plane. The
remaining digits indicate the plane. For example, U+23456 CJK UNIFIED IDEOGRAPH-23456
is found at location 34564 in Plane 2.

Basic Multilingual Plane. The Basic Multilingual Plane (BMP, or Plane 0) contains the
common-use characters for all the modern scripts of the world as well as many historical
and rare characters. By far the majority of all Unicode characters for almost all textual data
can be found in the BMP.

Supplementary Multilingual Plane. The Supplementary Multilingual Plane (SMP, or
Plane 1) is dedicated to the encoding of characters for scripts or symbols which either could
not be fit into the BMP or see very infrequent usage. This includes many historic scripts, a
number of lesser-used contemporary scripts, special-purpose invented scripts, notational
systems or large pictographic symbol sets, and occasionally historic extensions of scripts
whose core sets are encoded on the BMP.

Examples include Gothic (historic), Shavian (special-purpose invented), Musical Symbols
(notational system), Domino Tiles (pictographic), and Ancient Greek Numbers (historic
extension for Greek). A number of scripts, whether of historic and contemporary use, do
not yet have their characters encoded in the Unicode Standard. The majority of scripts cur-
rently identified for encoding will eventually be allocated in the SMP. As a result, some
areas of the SMP will experience common, frequent usage.

Supplementary Ideographic Plane. The Supplementary Ideographic Plane (SIP, or Plane
2) is intended as an additional allocation area for those CJK characters that could not be fit
in the blocks set aside for more common CJK characters in the BMP. While there are a

General Structure 45 2.8 UnicodeAllocation

small number of common-use CJK characters in the SIP (for example, for Cantonese
usage), the vast majority of Plane 2 characters are extremely rare or of historical interest
only.

Supplementary Special-purpose Plane. The Supplementary Special-purpose Plane (SSP,
or Plane 14) is the spillover allocation area for format control characters that do not fit into
the small allocation areas for format control characters in the BMP.

Private Use Planes. The two Private Use Planes (Planes 15 and 16) are allocated, in their
entirety, for private use. Those two planes contain a total of 131,068 characters to supple-
ment the 6,400 private-use characters located in the BMP.

Allocation Areas and Character Blocks

Allocation Areas. The Unicode Standard does not have any normatively defined concept of
areas or zones for the BMP (or other planes), but it is often handy to refer to the allocation
areas of the BMP by the general types of the characters they include. These areas are merely
a rough organizational device and do not restrict the types of characters that may end up
being allocated in them. The description and ranges of areas may change from version to
version of the standard as more new scripts, symbols, and other characters are encoded in
previously reserved ranges.

Blocks. The various allocation areas are, in turn, divided up into character blocks, which are
normatively defined, and which are used to structure the actual code charts. For a complete
listing of the normative character blocks in the Unicode Standard, see Blocks.txt in the Uni-
code Character Database.

The normative status of character blocks should not, however, be taken as indicating that
they define significant sets of characters. For the most part, the character blocks serve only
as ranges to divide up the code charts and do not necessarily imply anything else about the
types of characters found in the block. Block identity cannot be taken as a reliable guide to
the source, use, or properties of characters, for example, and it cannot be reliably used
alone to process characters. In particular:

+ Blocks are simply ranges, and many contain reserved code points.

+ Characters used in a single writing system may be found in several different
blocks. For example, characters used for letters for Latin-based writing systems
are found in at least 14 different blocks: Basic Latin, Latin-1 Supplement, Latin
Extended-A, Latin Extended-B, Latin Extended-C, Latin Extended-D, Latin
Extended-E, IPA Extensions, Phonetic Extensions, Phonetic Extensions Supple-
ment, Latin Extended Additional, Spacing Modifier Letters, Combining Dia-
critical Marks, and Combining Diacritical Marks Supplement.

+ Characters in a block may be used with different writing systems. For example,
the danda character is encoded in the Devanagari block but is used with
numerous other scripts; Arabic combining marks in the Arabic block are used
with the Syriac script; and so on.

General Structure 46 2.8 UnicodeAllocation

+ Block definitions are not at all exclusive. For instance, many mathematical
operator characters are not encoded in the Mathematical Operators block—
and are not even in any block containing “Mathematical” in its name; many
currency symbols are not found in the Currency Symbols block, and so on.

For reliable specification of the properties of characters, one should instead turn to the
detailed, character-by-character property assignments available in the Unicode Character
Database. See also Chapter 4, Character Properties. For further discussion of the relation-
ship between Unicode character blocks and significant property assignments and sets of

characters, see Unicode Standard Annex #24, “Unicode Script Property,” and Unicode
Technical Standard #18, “Unicode Regular Expressions.”

Allocation Order. The allocation order of various scripts and other groups of characters
reflects the historical evolution of the Unicode Standard. While there is a certain geo-
graphic sense to the ordering of the allocation areas for the scripts, this is only a very loose
correlation. The empty spaces will be filled with future script encodings on a space-avail-
able basis. The relevant character encoding committees follow an organized roadmap to
help them decide where to encode new scripts within the available space. Until the charac-
ters for a script are actually standardized, however, there are no absolute guarantees where
future allocations will occur. In general, implementations should not make assumptions
about where future scripts may be encoded based on the identity of neighboring blocks of
characters already encoded.

Assignment of Code Points
Code points in the Unicode Standard are assigned using the following guidelines:

+ Where there is a single accepted standard for a script, the Unicode Standard
generally follows it for the relative order of characters within that script.

+ The first 256 codes follow precisely the arrangement of ISO/IEC 8859-1 (Latin
1), of which 7-bit ASCII (ISO/IEC 646 IRV) accounts for the first 128 code
positions.

+ Characters with common characteristics are located together contiguously. For
example, the primary Arabic character block was modeled after ISO/IEC
8859-6. The Arabic script characters used in Persian, Urdu, and other lan-
guages, but not included in ISO/IEC 8859-6, are allocated after the primary
Arabic character block. Right-to-left scripts are grouped together.

+ In most cases, scripts with fewer than 128 characters are allocated so as not to
cross 128-code-point boundaries (that is, they fit in ranges nn00..nn7F or
nn80..nnFF). For supplementary characters, an additional constraint not to
cross 1,024-code-point boundaries is applied (that is, scripts fit in ranges
nn000..nn3FF, nn400..nn7FF, nn800..nnBFE, or nnC00..nnFFF). Such con-
straints enable better optimizations for tasks such as building tables for access
to character properties.

General Structure 47 2.8 UnicodeAllocation

+ Codes that represent letters, punctuation, symbols, and diacritics that are gen-
erally shared by multiple languages or scripts are grouped together in several
locations.

» The Unicode Standard does not correlate character code allocation with lan-
guage-dependent collation or case. For more information on collation order,
see Unicode Technical Standard #10, “Unicode Collation Algorithm.”

+ Unified CJK ideographs are laid out in multiple blocks, each of which is
arranged according to the Han ideograph arrangement defined in Section 18.1,
Han. This ordering is roughly based on a radical-stroke count order.

General Structure 48 2.9 Details of Allocation

2.9 Details of Allocation

This section provides a more detailed summary of the way characters are allocated in the
Unicode Standard. Figure 2-13 gives an overall picture of the allocation areas of the Uni-
code Standard, with an emphasis on the identities of the planes. The following subsections
discuss the allocation details for specific planes.

Figure 2-13. Unicode Allocation

0000
_—
For allocations on Plane 0 (BMP) and
1 0000 Plane 1 (SMP), see the detail figures
—_—
2
0000 CJK Unified Ideographs Extensions
3 0000 CJK Compatibility Ideographs Supplement
4 0000
Graphic
5 0000
Format or Control
6 0000
T~ Private Use
.
B 0000
Reserved
C 0000
- Detail on other figures
D 0000
E 0000 Tags and Ideographic Variation Selectors
F 0000
Supplementary Private Use Area-A
10 0000

Supplementary Private Use Area-B

(10 FFFF)

General Structure 49 2.9 Details of Allocation

Plane 0 (BMP)

Figure 2-14 shows the Basic Multilingual Plane (BMP) in an expanded format to illustrate
the allocation substructure of that plane in more detail. This section describes each alloca-
tion area, in the order of their location on the BMP.

Figure 2-14. Allocation on the BMP

0000 p====== (000-00FF ASCII & Latin-1 Compatibility Area
—— 0100-058F General Scripts Area
0900 0590-08FF General Scripts Area (RTL)
0900-1FFF General Scripts Area
2000
2000-2BFF Punctuation and Symbols Area
2C00 2C00-2DFF General Scripts Area

2E00-2E7F Supplemental Punctuation Area
2E80-33FF CJK Miscellaneous Area

3400

3400-9FFF CJKV Unified Ideographs Area
(not to scale)

AQ0O
A000-ABFF General Scripts Area (Asia & Africa)

ACOO0

ACO00-D7FF Hangul Syllables Area

D800 D800-DFFF Surrogate Codes
E00O

E000-F8FF Private Use Area

F900
(FFFF)

F900-FFFF Compatibility and Specials Area

General Structure 50 2.9 Details of Allocation

ASCII and Latin-1 Compatibility Area. For compatibility with the ASCII and ISO 8859-1,
Latin-1 standards, this area contains the same repertoire and ordering as Latin-1. Accord-
ingly, it contains the basic Latin alphabet, European digits, and then the same collection of
miscellaneous punctuation, symbols, and additional Latin letters as are found in Latin-1.

General Scripts Area. The General Scripts Area contains a large number of modern-use
scripts of the world, including Latin, Greek, Cyrillic, Arabic, and so on. Most of the charac-
ters encoded in this area are graphic characters. A subrange of the General Scripts Area is
set aside for right-to-left scripts, including Hebrew, Arabic, Thaana, and N’Ko.

Punctuation and Symbols Area. This area is devoted mostly to all kinds of symbols,
including many characters for use in mathematical notation. It also contains general punc-
tuation, as well as most of the important format control characters.

Supplementary General Scripts Area. This area contains scripts or extensions to scripts
that did not fit in the General Scripts Area itself. It contains the Glagolitic, Coptic, and Tifi-
nagh scripts, plus extensions for the Latin, Cyrillic, Georgian, and Ethiopic scripts.

CJK Miscellaneous Area. The CJK Miscellaneous Area contains some East Asian scripts, such
as Hiragana and Katakana for Japanese, punctuation typically used with East Asian scripts,
lists of CJK radical symbols, and a large number of East Asian compatibility characters.

CJKV Ideographs Area. This area contains almost all the unified Han ideographs in the
BMP. It is subdivided into a block for the Unified Repertoire and Ordering (the initial block
of 20,902 unified Han ideographs plus 38 later additions) and another block containing
Extension A (an additional 6,582 unified Han ideographs).

General Scripts Area (Asia and Africa). This area contains numerous blocks for additional
scripts of Asia and Africa, such as Yi, Cham, Vai, and Bamum. It also contains more spill-
over blocks with additional characters for the Latin, Devanagari, Myanmar, and Hangul
scripts.

Hangul Area. This area consists of one large block containing 11,172 precomposed Hangul
syllables, and one small block with additional, historic Hangul jamo extensions.

Surrogates Area. The Surrogates Area contains only surrogate code points and no encoded
characters. See Section 23.6, Surrogates Area, for more details.

Private Use Area. The Private Use Area in the BMP contains 6,400 private-use characters.

Compatibility and Specials Area. This area contains many compatibility variants of char-
acters from widely used corporate and national standards that have other representations
in the Unicode Standard. For example, it contains Arabic presentation forms, whereas the
basic characters for the Arabic script are located in the General Scripts Area. The Compat-
ibility and Specials Area also contains twelve CJK unified ideographs, a few important for-
mat control characters, the basic variation selectors, and other special characters. See
Section 23.8, Specials, for more details.

General Structure 51 2.9 Details of Allocation

Plane 1 (SMP)

Figure 2-15 shows Plane 1, the Supplementary Multilingual Plane (SMP), in expanded for-
mat to illustrate the allocation substructure of that plane in more detail.

Figure 2-15. Allocation on Plane 1

1 0000 General Scripts Area
1 0800 General Scripts Area (RTL)
11000 General Scripts Area
1 2000
Cuneiform & Hieroglyphic Area
1 6000 General Scripts Area
1 7000
Ideographic Scripts Area
1 BCOO
General Scripts Area
1 D000
Symbols Area
1 E800 General Scripts Area (RTL)
1 FOO0O
Symbols Area
(1 FFFF)

General Scripts Areas. These areas contain a large number of historic scripts, as well as a
few regional scripts which have some current use. The first of these areas also contains a
small number of symbols and numbers associated with ancient scripts.

General Scripts Areas (RTL). There are two subranges in the SMP which are set aside for
historic right-to-left scripts, such as Phoenician, Kharoshthi, and Avestan. The second of
these also defaults to Bidi_Class=R and is reserved for the encoding of other historic right-
to-left scripts or symbols.

Cuneiform and Hieroglyphic Area. This area contains three large, ancient scripts: Sumero-
Akkadian Cuneiform, Egyptian Hieroglyphs, and Anatolian Hieroglyphs. Other large
hieroglyphic and pictographic scripts will be allocated in this area in the future.

General Structure 52 2.9 Details of Allocation

Ideographic Scripts Area. This area is set aside for large, historic siniform (but non-Han)
logosyllabic scripts such as Tangut, Jurchen, Khitan, and Naxi. As of Unicode 9.0, this area
contains a large set of Tangut ideographs and components, as well as two archaic kana
characters.

Symbols Areas. The first of these SMP Symbols Areas contains sets of symbols for nota-
tional systems, such as musical symbols, shorthands, and mathematical alphanumeric
symbols. The second contains various game symbols, and large sets of miscellaneous sym-
bols and pictographs, mostly used in compatibility mapping of East Asian character sets.
Notable among these are emoji and emoticons.

Plane 2 (SIP)

Plane 2, the Supplementary Ideographic Plane (SIP), consists primarily of one big area,
starting from the first code point in the plane, that is dedicated to encoding additional uni-
fied CJK characters. A much smaller area, toward the end of the plane, is dedicated to addi-
tional CJK compatibility ideographic characters—which are basically just duplicated
character encodings required for round-trip conversion to various existing legacy East
Asian character sets. The CJK compatibility ideographic characters in Plane 2 are currently
all dedicated to round-trip conversion for the CNS standard and are intended to supple-
ment the CJK compatibility ideographic characters in the BMP, a smaller number of char-
acters dedicated to round-trip conversion for various Korean, Chinese, and Japanese
standards.

Other Planes

The first 4,096 code positions on Plane 14 form an area set aside for special characters that
have the Default_Ignorable_Code_Point property. A small number of tag characters, plus
some supplementary variation selection characters, have been allocated there. All remain-
ing code positions on Plane 14 are reserved for future allocation of other special-purpose
characters.

Plane 15 and Plane 16 are allocated, in their entirety, for private use. Those two planes con-
tain a total of 131,068 characters, to supplement the 6,400 private-use characters located in
the BMP.

All other planes are reserved; there are no characters assigned in them. The last two code
positions of all planes are permanently set aside as noncharacters. (See Section 2.13, Special
Characters).

General Structure 53 2.10 Writing Direction

2.10 Writing Direction

Individual writing systems have different conventions for arranging characters into lines on
a page or screen. Such conventions are referred to as a script’s directionality. For example, in
the Latin script, characters are arranged horizontally from left to right to form lines, and
lines are arranged from top to bottom, as shown in the first example of Figure 2-16.

Figure 2-16. Writing Directions

-

O] ® ® ® ®

Bidirectional. In most Semitic scripts such as Hebrew and Arabic, characters are arranged
from right to left into lines, although digits run the other way, making the scripts inherently
bidirectional, as shown in the second example in Figure 2-16. In addition, left-to-right and
right-to-left scripts are frequently used together. In all such cases, arranging characters into
lines becomes more complex. The Unicode Standard defines an algorithm to determine the
layout of a line, based on the inherent directionality of each character, and supplemented
by a small set of directional controls. See Unicode Standard Annex #9, “Unicode Bidirec-
tional Algorithm,” for more information.

Vertical. East Asian scripts are frequently written in vertical lines in which characters are
arranged from top to bottom. Lines are arranged from right to left, as shown in the third
example in Figure 2-16. Such scripts may also be written horizontally, from left to right.
Most East Asian characters have the same shape and orientation when displayed horizon-
tally or vertically, but many punctuation characters change their shape when displayed ver-
tically. In a vertical context, letters and words from other scripts are generally rotated
through 90-degree angles so that they, too, read from top to bottom. Unicode Technical
Report #50, “Unicode Vertical Text Layout,” defines a character property which is useful in
determining the correct orientation of characters when laid out vertically in text.

In contrast to the bidirectional case, the choice to lay out text either vertically or horizon-
tally is treated as a formatting style. Therefore, the Unicode Standard does not provide
directionality controls to specify that choice.

Mongolian is usually written from top to bottom, with lines arranged from left to right, as
shown in the fourth example. When Mongolian is written horizontally, the characters are
rotated.

Boustrophedon. Early Greek used a system called boustrophedon (literally, “ox-turning”).
In boustrophedon writing, characters are arranged into horizontal lines, but the individual
lines alternate between right to left and left to right, the way an ox goes back and forth

General Structure 54 2.10 Writing Direction

when plowing a field, as shown in the fifth example. The letter images are mirrored in
accordance with the direction of each individual line.

Other Historical Directionalities. Other script directionalities are found in historical writ-
ing systems. For example, some ancient Numidian texts are written from bottom to top,
and Egyptian hieroglyphics can be written with varying directions for individual lines.

The historical directionalities are of interest almost exclusively to scholars intent on repro-
ducing the exact visual content of ancient texts. The Unicode Standard does not provide
direct support for them. Fixed texts can, however, be written in boustrophedon or in other
directional conventions by using hard line breaks and directionality overrides or the equiv-
alent markup.

General Structure 55 2.11 Combining Characters

2.11 Combining Characters

Combining Characters. Characters intended to be positioned relative to an associated base
character are depicted in the character code charts above, below, or through a dotted circle.
When rendered, the glyphs that depict these characters are intended to be positioned rela-
tive to the glyph depicting the preceding base character in some combination. The Unicode
Standard distinguishes two types of combining characters: spacing and nonspacing. Non-
spacing combining characters do not occupy a spacing position by themselves. Neverthe-
less, the combination of a base character and a nonspacing character may have a different

advance width than the base character by itself. For example, an “i” may be slightly wider

than a plain “i”. The spacing or nonspacing properties of a combining character are defined
in the Unicode Character Database.

All combining characters can be applied to any base character and can, in principle, be used
with any script. As with other characters, the allocation of a combining character to one
block or another identifies only its primary usage; it is not intended to define or limit the
range of characters to which it may be applied. In the Unicode Standard, all sequences of
character codes are permitted.

This does not create an obligation on implementations to support all possible combina-
tions equally well. Thus, while application of an Arabic annotation mark to a Han charac-
ter or a Devanagari consonant is permitted, it is unlikely to be supported well in rendering
or to make much sense.

Diacritics. Diacritics are the principal class of nonspacing combining characters used with
the Latin, Greek, and Cyrillic scripts and their relatives. In the Unicode Standard, the term
“diacritic” is defined very broadly to include accents as well as other nonspacing marks.

Symbol Diacritics. Some diacritical marks are applied primarily to symbols. These com-
bining marks are allocated in the Combining Diacritical Marks for Symbols block, to dis-
tinguish them from diacritical marks applied primarily to letters.

Enclosing Combining Marks. Figure 2-17 shows examples of combining enclosing marks
for symbols. The combination of an enclosing mark with a base character has the appear-
ance of a symbol. As discussed in “Properties” later in this section, it is best to limit the use
of combining enclosing marks to characters that represent symbols. This limitation mini-
mizes the potential for surprises resulting from mismatched character properties.

A few symbol characters are intended primarily for use with enclosing combining marks.
For example, U+2621 CAUTION SIGN is a winding road symbol that can be used in combi-
nation with U+20E4 COMBINING ENCLOSING UPWARD POINTING TRIANGLE or U+20DF
COMBINING ENCLOSING DIAMOND. However, the enclosing combining marks can also be
used in combination with arbitrary symbols, as illustrated by applying U+20E0 coMBIN-
ING ENCLOSING CIRCLE BACKSLASH to U+2615 HOT BEVERAGE to create a “no drinks
allowed” symbol. Furthermore, no formal restriction prevents enclosing combining marks
from being used with non-symbols, as illustrated by applying U+20DD coMBINING
ENCLOSING CIRCLE to U+062D ARABIC LETTER HAH to represent a circled hah.

General Structure 56 2.11 Combining Characters

Figure 2-17. Combining Enclosing Marks for Symbols

2 + O -> @

2621 20DF

$99

S + - ®
2615 20E0

T+ - ©
062D 20DD

Script-Specific Combining Characters. Some scripts, such as Hebrew, Arabic, and the
scripts of India and Southeast Asia, have both spacing and nonspacing combining charac-
ters specific to those scripts. Many of these combining characters encode vowel letters. As
such, they are not generally referred to as diacritics, but may have script-specific terminol-
ogy such as harakat (Arabic) or matra (Devanagari). See Section 7.9, Combining Marks.

Sequence of Base Characters and Diacritics

In the Unicode Standard, all combining characters are to be used in sequence following the
base characters to which they apply. The sequence of Unicode characters <U+0061 “a”
LATIN SMALL LETTER A, U+0308 “**”COMBINING DIAERESIS, U+0075 “u” LATIN SMALL LET-

TER U> unambiguously represents “4u” and not “aii”, as shown in Figure 2-18.

Figure 2-18. Sequence of Base Characters and Diacritics

a+s+u - du (notai)

0061 0308 0075

Ordering. The ordering convention used by the Unicode Standard—placing combining
marks after the base character to which they apply—is consistent with the logical order of
combining characters in Semitic and Indic scripts, the great majority of which (logically or
phonetically) follow the base characters with which they are associated. This convention
also conforms to the way modern font technology handles the rendering of nonspacing
graphical forms (glyphs), so that mapping from character memory representation order to
font rendering order is simplified. It is different from the convention used in the biblio-
graphic standard ISO 5426.

Indic Vowel Signs. Some Indic vowel signs are rendered to the left of a consonant letter or
consonant cluster, even though their logical order in the Unicode encoding follows the con-
sonant letter. In the charts, these vowels are depicted to the left of dotted circles (see
Figure 2-19). The coding of these vowels in pronunciation order and not in visual order is
consistent with the ISCII standard.

General Structure 57 2.11 Combining Characters

Figure 2-19. Reordered Indic Vowel Signs

%+ > B

0928 093F

Properties. A sequence of a base character plus one or more combining characters gener-
ally has the same properties as the base character. For example, “A” followed by “*” has the
same properties as “A”. Por this reason, most Unicode algorithms ensure that such
sequences behave the same way as the corresponding base character. However, when the
combining character is an enclosing combining mark—in other words, when its
General_Category value is Me—the resulting sequence has the appearance of a symbol. In
Figure 2-20, enclosing the exclamation mark with U+20E4 COMBINING ENCLOSING UPWARD
POINTING TRIANGLE produces a sequence that looks like U+26A0 WARNING SIGN.

Figure 2-20. Properties and Combining Character Sequences

'+ A > A=A

0021 20E4 26A0

Because the properties of U+0021 EXCLAMATION MARK are that of a punctuation character,
they are different from those of U+26A0 WARNING sIGN. For example, the two will behave
differently for line breaking. To avoid unexpected results, it is best to limit the use of com-
bining enclosing marks to characters that encode symbols. For that reason, the warning
sign is separately encoded as a miscellaneous symbol in the Unicode Standard and does not
have a decomposition.

Multiple Combining Characters

In some instances, more than one diacritical mark is applied to a single base character (see
Figure 2-21). The Unicode Standard does not restrict the number of combining characters
that may follow a base character. The following discussion summarizes the default treat-
ment of multiple combining characters. (For further discussion, see Section 3.6, Combina-
tion.)

Figure 2-21. Stacking Sequences

Characters Glyphs

a+o+orors o
A

0061 0308 0303 0323 032D

> QN

p= 2
o+ o+ -
O0E02 OE36 OE49

Q"Dat:

General Structure 58 2.11 Combining Characters

If the combining characters can interact typographically—for example, U+0304 coMBIN-
ING MACRON and U+0308 cOMBINING DIAERESIS—then the order of graphic display is
determined by the order of coded characters (see Table 2-5). By default, the diacritics or
other combining characters are positioned from the base character’s glyph outward. Com-
bining characters placed above a base character will be stacked vertically, starting with the
first encountered in the logical store and continuing for as many marks above as are
required by the character codes following the base character. For combining characters
placed below a base character, the situation is reversed, with the combining characters
starting from the base character and stacking downward.

When combining characters do not interact typographically, the relative ordering of con-
tiguous combining marks cannot result in any visual distinction and thus is insignificant.

Table 2-5. Interaction of Combining Characters

Glyph Equivalent Sequences

é LATIN SMALL LETTER A WITH TILDE

LATIN SMALL LETTER A + COMBINING TILDE

a LATIN SMALL LETTER A WITH DOT ABOVE
LATIN SMALL LETTER A + COMBINING DOT ABOVE

LATIN SMALL LETTER A WITH TILDE + COMBINING DOT BELOW
LATIN SMALL LETTER A + COMBINING TILDE + COMBINING DOT BELOW
LATIN SMALL LETTER A WITH DOT BELOW + COMBINING TILDE
LATIN SMALL LETTER A + COMBINING DOT BELOW + COMBINING TILDE

[§ab);

LATIN SMALL LETTER A WITH DOT BELOW + COMBINING DOT ABOVE
LATIN SMALL LETTER A + COMBINING DOT BELOW + COMBINING DOT ABOVE
LATIN SMALL LETTER A WITH DOT ABOVE + COMBINING DOT BELOW
LATIN SMALL LETTER A + COMBINING DOT ABOVE + COMBINING DOT BELOW

Q.

LATIN SMALL LETTER A WITH CIRCUMFLEX AND ACUTE
LATIN SMALL LETTER A WITH CIRCUMFLEX + COMBINING ACUTE
LATIN SMALL LETTER A + COMBINING CIRCUMFLEX + COMBINING ACUTE

LATIN SMALL LETTER A ACUTE + COMBINING CIRCUMFLEX
LATIN SMALL LETTER A + COMBINING ACUTE + COMBINING CIRCUMFLEXT

m\> m>\

Another example of multiple combining characters above the base character can be found
in Thai, where a consonant letter can have above it one of the vowels U+0E34 through
U+0E37 and, above that, one of four tone marks U+0E48 through U+0E4B. The order of
character codes that produces this graphic display is base consonant character + vowel char-
acter + tone mark character, as shown in Figure 2-21.

Many combining characters have specific typographical traditions that provide detailed
rules for the expected rendering. These rules override the default stacking behavior. For
example, certain combinations of combining marks are sometimes positioned horizontally
rather than stacking or by ligature with an adjacent nonspacing mark (see Table 2-6). When
positioned horizontally, the order of codes is reflected by positioning in the predominant
direction of the script with which the codes are used. For example, in a left-to-right script,

General Structure 59 2.11 Combining Characters

horizontal accents would be coded from left to right. In Table 2-6, the top example is cor-
rect and the bottom example is incorrect.

Such override behavior is associated with specific scripts or alphabets. For example, when
used with the Greek script, the “breathing marks” U+0313 COMBINING COMMA ABOVE
(psili) and U+0314 COMBINING REVERSED COMMA ABOVE (dasia) require that, when used
together with a following acute or grave accent, they be rendered side-by-side rather than
the accent marks being stacked above the breathing marks. The order of codes here is base
character code + breathing mark code + accent mark code. This example demonstrates the
script-dependent or writing-system-dependent nature of rendering combining diacritical
marks.

Table 2-6. Nondefault Stacking

GREEK SMALL LETTER ALPHA
a + COMBINING COMMA ABOVE (psili) This is correct
+ COMBINING ACUTE ACCENT (0xia)

3 GREEK SMALL LETTER ALPHA
a + COMBINING ACUTE ACCENT (0xia) This is incorrect
+ COMBINING COMMA ABOVE (psili)

For additional examples of script-specific departure from default stacking of sequences of
combining marks, see the discussion about the positioning of multiple points and marks in
Section 9.1, Hebrew, the discussion of nondefault placement of Arabic vowel marks accom-
panying Figure 9-5 in Section 9.2, Arabic, or the discussion of horizontal combination of
titlo letters in Old Church Slavonic found in the subsection “Cyrillic Extended-A:
U+2DE0-U+2DFF” in Section 7.4, Cyrillic.

For other types of nondefault stacking behavior, see the discussion about the positioning of
combining parentheses in the subsection “Combining Diacritical Marks Extended:
U+1ABO-U+1AFF” in Section 7.9, Combining Marks.

The Unicode Standard specifies default stacking behavior to offer guidance about which
character codes are to be used in which order to represent the text, so that texts containing
multiple combining marks can be interchanged reliably. The Unicode Standard does not
aim to regulate or restrict typographical tradition.

Ligated Multiple Base Characters

When the glyphs representing two base characters merge to form a ligature, the combining
characters must be rendered correctly in relation to the ligated glyph (see Figure 2-22).
Internally, the software must distinguish between the nonspacing marks that apply to posi-
tions relative to the first part of the ligature glyph and those that apply to the second part.
(For a discussion of general methods of positioning nonspacing marks, see Section 5.12,
Strategies for Handling Nonspacing Marks.)

For more information, see “Application of Combining Marks” in Section 3.6, Combination.

General Structure 60 2.11 Combining Characters

Figure 2-22. Ligated Multiple Base Characters

f+ ~+1+ - ﬁ

0066 0303 0069 0323

Ligated base characters with multiple combining marks do not commonly occur in most
scripts. However, in some scripts, such as Arabic, this situation occurs quite often when
vowel marks are used. It arises because of the large number of ligatures in Arabic, where
each element of a ligature is a consonant, which in turn can have a vowel mark attached to
it. Ligatures can even occur with three or more characters merging; vowel marks may be
attached to each part.

Exhibiting Nonspacing Marks in Isolation

Nonspacing combining marks used by the Unicode Standard may be exhibited in apparent
isolation by applying them to U+00AO0 No-BREAK SPACE. This convention might be
employed, for example, when talking about the combining mark itself as a mark, rather
than using it in its normal way in text (that is, applied as an accent to a base letter or in
other combinations).

Prior to Version 4.1 of the Unicode Standard, the standard recommended the use of
U+0020 spack for display of isolated combining marks. This practice is no longer recom-
mended because of potential conflicts with the handling of sequences of U+0020 spacE
characters in such contexts as XML. For additional ways of displaying some diacritical
marks, see “Spacing Clones of Diacritical Marks” in Section 7.9, Combining Marks.

“Characters” and Grapheme Clusters

End users have various concepts about what constitutes a letter or “character” in the writ-
ing system for their language or languages. The precise scope of these end-user “characters”
depends on the particular written language and the orthography it uses. In addition to the
many instances of accented letters, they may extend to digraphs such as Slovak “ch” tri-
graphs or longer combinations, and sequences using spacing letter modifiers, such as “k"”.
Such concepts are often important for processes such as collation, for the definition of
characters in regular expressions, and for counting “character” positions within text. In
instances such as these, what the user thinks of as a character may affect how the collation
or regular expression will be defined or how the “characters” will be counted. Words and
other higher-level text elements generally do not split within elements that a user thinks of
as a character, even when the Unicode representation of them may consist of a sequence of
encoded characters.

The variety of these end-user-perceived characters is quite great—particularly for digraphs,
ligatures, or syllabic units. Furthermore, it depends on the particular language and writing
system that may be involved. Despite this variety, however, the core concept “characters
that should be kept together” can be defined for the Unicode Standard in a language-inde-

General Structure 61 2.11 Combining Characters

pendent way. This core concept is known as a grapheme cluster, and it consists of any com-
bining character sequence that contains only nonspacing combining marks or any sequence
of characters that constitutes a Hangul syllable (possibly followed by one or more nonspac-
ing marks). An implementation operating on such a cluster would almost never want to
break between its elements for rendering, editing, or other such text processes; the graph-
eme cluster is treated as a single unit. Unicode Standard Annex #29, “Unicode Text Seg-
mentation,” provides a complete formal definition of a grapheme cluster and discusses its
application in the context of editing and other text processes. Implementations also may
tailor the definition of a grapheme cluster, so that under limited circumstances, particular
to one written language or another, the grapheme cluster may more closely pertain to what
end users think of as “characters” for that language.

General Structure 62 2.12 Equivalent Sequences

2.12 Equivalent Sequences

In cases involving two or more sequences considered to be equivalent, the Unicode Stan-
dard does not prescribe one particular sequence as being the correct one; instead, each
sequence is merely equivalent to the others. Figure 2-23 illustrates the two major forms of
equivalent sequences formally defined by the Unicode Standard. In the first example, the
sequences are canonically equivalent. Both sequences should display and be interpreted the
same way. The second and third examples illustrate different compatibility sequences.
Compatible-equivalent sequences may have format differences in display and may be inter-
preted differently in some contexts.

Figure 2-23. Equivalent Sequences

® B+A =B+A+i:

0042 00C4 0042 0041 0308

@ LJ+A=L+J+A

01C7 0041 004C 004A 0041

®2+U ~2+1+/+4

0032 00BC 0032 0031 2044 0034

If an application or user attempts to distinguish between canonically equivalent sequences,
as shown in the first example in Figure 2-23, there is no guarantee that other applications
would recognize the same distinctions. To prevent the introduction of interoperability
problems between applications, such distinctions must be avoided wherever possible. Mak-
ing distinctions between compatibly equivalent sequences is less problematical. However,
in restricted contexts, such as the use of identifiers, avoiding compatibly equivalent
sequences reduces possible security issues. See Unicode Technical Report #36, “Unicode
Security Considerations.”

Normalization

Where a unique representation is required, a normalized form of Unicode text can be used
to eliminate unwanted distinctions. The Unicode Standard defines four normalization
forms: Normalization Form D (NFD), Normalization Form KD (NFKD), Normalization
Form C (NFC), and Normalization Form KC (NFKC). Roughly speaking, NFD and NFKD
decompose characters where possible, while NFC and NFKC compose characters where
possible. For more information, see Unicode Standard Annex #15, “Unicode Normaliza-
tion Forms,” and Section 3.11, Normalization Forms.

A key part of normalization is to provide a unique canonical order for visually nondistinct
sequences of combining characters. Figure 2-24 shows the effect of canonical ordering for
multiple combining marks applied to the same base character.

General Structure 63 2.12 Equivalent Sequences

Figure 2-24. Canonical Ordering

non-interacting

7 14
O] A+ 5+ 0 = A+ o +
0041 0301 0328 0041 0328 0301
ccc=0 ccc=230 cce=202 ccc=0 ccc=202 cce=230
interacting
1
@ A+4+8 # A+5+4
0041 0301 0308 0041 0308 0301
ccc=0 ccc=230 cce=230 ccc=0 ccc=230 cce=230

In the first row of Figure 2-24, the two sequences are visually nondistinct and, therefore,
equivalent. The sequence on the right has been put into canonical order by reordering in
ascending order of the Canonical Combining_Class (ccc) values. The ccc values are shown
below each character. The second row of Figure 2-24 shows an example where combining
marks interact typographically—the two sequences have different stacking order, and the
order of combining marks is significant. Because the two combining marks have been given
the same combining class, their ordering is retained under canonical reordering. Thus the
two sequences in the second row are not equivalent.

Decompositions

Precomposed characters are formally known as decomposables, because they have decom-
positions to one or more other characters. There are two types of decompositions:

+ Canonical. The character and its decomposition should be treated as essentially
equivalent.

+ Compatibility. The decomposition may remove some information (typically
formatting information) that is important to preserve in particular contexts.

Types of Decomposables. Conceptually, a decomposition implies reducing a character to
an equivalent sequence of constituent parts, such as mapping an accented character to a
base character followed by a combining accent. The vast majority of nontrivial decomposi-
tions are indeed a mapping from a character code to a character sequence. However, in a
small number of exceptional cases, there is a mapping from one character to another char-
acter, such as the mapping from ohm to capital omega. Finally, there are the “trivial”
decompositions, which are simply a mapping of a character to itself. They are really an
indication that a character cannot be decomposed, but are defined so that all characters
formally have a decomposition. The definition of decomposable is written to encompass
only the nontrivial types of decompositions; therefore these characters are considered non-
decomposable.

General Structure 64 2.12 Equivalent Sequences

In summary, three types of characters are distinguished based on their decomposition
behavior:

+ Canonical decomposable. A character that is not identical to its canonical
decomposition.

+ Compatibility decomposable. A character whose compatibility decomposition is
not identical to its canonical decomposition.

+ Nondecomposable. A character that is identical to both its canonical decomposi-
tion and its compatibility decomposition. In other words, the character has
trivial decompositions (decompositions to itself). Loosely speaking, these char-
acters are said to have “no decomposition,” even though, for completeness, the
algorithm that defines decomposition maps such characters to themselves.

Because of the way decompositions are defined, a character cannot have a nontrivial
canonical decomposition while having a trivial compatibility decomposition. Characters
with a trivial compatibility decomposition are therefore always nondecomposables.

Examples. Figure 2-25 illustrates these three types. Compatibility decompositions that are
redundant because they are identical to the canonical decompositions are not shown.

Figure 2-25. Types of Decomposables

Nondecomposables
a o D C
0061 00F8 0110 0681

Canonical decomposables | Compatibility decomposables

Q -5 Q 7 —

2126 03A9 FF76 30AB
4 4
- kKA > k A
00C1 0041 0301 3384 006B 0041
1

| pa T .
T e d T 03D3 -
03D3 03D2 0301 ,
03A5 0301

03D2 0301

The figure illustrates two important points:

+ Decompositions may be to single characters or to sequences of characters.
Decompositions to a single character, also known as singleton decompositions,
are seen for the ohm sign and the halfwidth katakana ka in Figure 2-25. Because
of examples like these, decomposable characters in Unicode do not always con-
sist of obvious, separate parts; one can know their status only by examining the
data tables for the standard.

General Structure 65 2.12 Equivalent Sequences

+ A very small number of characters are both canonical and compatibility
decomposable. The example shown in Figure 2-25 is for the Greek hooked upsi-
lon symbol with an acute accent. It has a canonical decomposition to one
sequence and a compatibility decomposition to a different sequence.

For more precise definitions of these terms, see Chapter 3, Conformance.

Non-decomposition of Certain Diacritics

Most characters that one thinks of as being a letter “plus accent” have formal decomposi-
tions in the Unicode Standard. For example, see the canonical decomposable U+00C1
LATIN CAPITAL LETTER A WITH ACUTE shown in Figure 2-25. There are, however, exceptions
involving certain types of diacritics and other marks.

Overlaid and Attached Diacritics. Based on the pattern for accented letters, implementers
often also expect to encounter formal decompositions for characters which use various
overlaid diacritics such as slashes and bars to form new Latin (or Cyrillic) letters. For exam-
ple, one might expect a decomposition for U+00D8 LATIN CAPITAL LETTER O WITH STROKE
involving U+0338 COMBINING LONG SOLIDUS OVERLAY. However, such decompositions
involving overlaid diacritics are not formally defined in the Unicode Standard.

For historical and implementation reasons, there are no decompositions for characters
with overlaid diacritics such as slashes and bars, nor for most diacritic hooks, swashes, tails,
and other similar modifications to the graphic form of a base character. In such cases, the
generic identification of the overlaid element is not specific enough to identify which part
of the base glyph is to be overlaid. The characters involved include prototypical overlaid
diacritic letters as U+0268 LATIN SMALL LETTER I WITH STROKE, but also characters with
hooks and descenders, such as U+0188 LATIN SMALL LETTER C WITH HOOK, U+049B CYRIL-
LIC SMALL LETTER KA WITH DESCENDER, and U+0499 CYRILLIC SMALL LETTER ZE WITH
DESCENDER.

There are three exceptional attached diacritics which are regularly decomposed, namely
U+0327 COMBINING CEDILLA, U+0328 COMBINING OGONEK, and U+031B COMBINING
HORN (which is used in Vietnamese letters).

Other Diacritics. There are other characters for which the name and glyph appear to imply
the presence of a decomposable diacritic, but which have no decomposition defined in the
Unicode Standard. A prominent example is the Pashto letter U+0681 ARABIC LETTER HAH
WITH HAMZA ABOVE. In these cases, as for the overlaid diacritics, the composed character
and the sequence of base letter plus combining diacritic are not equivalent, although their
renderings would be very similar. See the text on “Combining Hamza Above” in
Section 9.2, Arabic for further complications related to this and similar characters.

Character Names and Decomposition. One cannot determine the decomposition status of
a Latin letter from its Unicode name, despite the existence of phrases such as “..witH
ACUTE” or “...WITH STROKE . The normative decomposition mappings listed in the Unicode
Character Database are the only formal definition of decomposition status.

General Structure 66 2.12 Equivalent Sequences

Simulated Decomposition in Processing. Because the Unicode characters with overlaid
diacritics or similar modifications to their base form shapes have no formal decomposi-
tions, some kinds of text processing that would ordinarily use Normalization Form D
(NFD) internally to separate base letters from accents may end up simulating decomposi-
tions instead. Effectively, this processing treats overlaid diacritics as if they were represented
by a separately encoded combining mark. For example, a common operation in searching
or matching is to sort (or match) while ignoring accents and diacritics on letters. This is
easy to do with characters that formally decompose; the text is decomposed, and then the
combining marks for the accents are ignored. However, for letters with overlaid diacritics,
the effect of ignoring the diacritic has to be simulated instead with data tables that go
beyond simple use of Unicode decomposition mappings.

Security Issue. The lack of formal decompositions for characters with overlaid diacritics
means that there are increased opportunities for spoofing involving such characters. The
display of a base letter plus a combining overlaid mark such as U+0335 COMBINING SHORT
STROKE OVERLAY may look the same as the encoded base letter with bar diacritic, but the
two sequences are not canonically equivalent and would not be folded together by Unicode
normalization.

Implementations of writing systems which make use of letters with overlaid diacritics typi-
cally do not mix atomic representation (use of a precomposed letter with overlaid diacritic)
with sequential representation (use of a sequence of base letter plus combining mark for
the overlaid diacritic). Mixing these conventions is avoided precisely because the atomic
representation and the sequential representation are not canonically equivalent. In most
cases the atomic representation is the preferred choice, because of its convenience and
more reliable display.

Security protocols for identifiers may disallow either the sequential representation or the
atomic representation of a letter with an overlaid diacritic to try to minimize spoofing
opportunities. However, when this is done, it is incumbent on the protocol designers first
to verify whether the atomic or the sequential representation is in actual use. Disallowing
the preferred convention, while instead forcing use of the unpreferred one for a particular
writing system can have the unintended consequence of increasing confusion about use—
and may thereby reduce the usability of the protocol for its intended purpose.

For more information and data for handling these confusable sequences involving overlaid
diacritics, see Unicode Technical Report #36, “Unicode Security Considerations.”

General Structure 67 2.13 Special Characters

2.13 Special Characters

The Unicode Standard includes a small number of important characters with special
behavior; some of them are introduced in this section. It is important that implementa-
tions treat these characters properly. For a list of these and similar characters, see
Section 4.12, Characters with Unusual Properties; for more information about such charac-
ters, see Section 23.1, Control Codes; Section 23.2, Layout Controls; Section 23.7, Noncharac-
ters; and Section 23.8, Specials.

Special Noncharacter Code Points

The Unicode Standard contains a number of code points that are intentionally not used to
represent assigned characters. These code points are known as noncharacters. They are per-
manently reserved for internal use and are not used for open interchange of Unicode text.
For more information on noncharacters, see Section 23.7, Noncharacters.

Byte Order Mark (BOM)

The UTF-16 and UTF-32 encoding forms of Unicode plain text are sensitive to the byte
ordering that is used when serializing text into a sequence of bytes, such as when writing
data to a file or transferring data across a network. Some processors place the least signifi-
cant byte in the initial position; others place the most significant byte in the initial position.
Ideally, all implementations of the Unicode Standard would follow only one set of byte
order rules, but this scheme would force one class of processors to swap the byte order on
reading and writing plain text files, even when the file never leaves the system on which it
was created.

To have an efficient way to indicate which byte order is used in a text, the Unicode Standard
contains two code points, U+FEFF ZERO WIDTH NO-BREAK SPACE (byte order mark) and
U+FFFE (a noncharacter), which are the byte-ordered mirror images of each other. When
a BOM is received with the opposite byte order, it will be recognized as a noncharacter and
can therefore be used to detect the intended byte order of the text. The BOM is not a con-
trol character that selects the byte order of the text; rather, its function is to allow recipients
to determine which byte ordering is used in a file.

Unicode Signature. An initial BOM may also serve as an implicit marker to identify a file as
containing Unicode text. For UTF-16, the sequence FE;4 FF ¢ (or its byte-reversed coun-
terpart, FF;¢ FE¢) is exceedingly rare at the outset of text files that use other character
encodings. The corresponding UTF-8 BOM sequence, EF;4 BB;¢ BF 4, is also exceedingly
rare. In either case, it is therefore unlikely to be confused with real text data. The same is
true for both single-byte and multibyte encodings.

Data streams (or files) that begin with the U+FEFF byte order mark are likely to contain
Unicode characters. It is recommended that applications sending or receiving untyped data
streams of coded characters use this signature. If other signaling methods are used, signa-
tures should not be employed.

General Structure 68 2.13 Special Characters

Conformance to the Unicode Standard does not require the use of the BOM as such a sig-
nature. See Section 23.8, Specials, for more information on the byte order mark and its use
as an encoding signature.

Layout and Format Control Characters

The Unicode Standard defines several characters that are used to control joining behavior,
bidirectional ordering control, and alternative formats for display. Their specific use in lay-
out and formatting is described in Section 23.2, Layout Controls.

The Replacement Character

U+FFFD REPLACEMENT CHARACTER is the general substitute character in the Unicode
Standard. It can be substituted for any “unknown” character in another encoding that can-
not be mapped in terms of known Unicode characters (see Section 5.3, Unknown and Miss-
ing Characters, and Section 23.8, Specials).

Control Codes

In addition to the special characters defined in the Unicode Standard for a number of pur-
poses, the standard incorporates the legacy control codes for compatibility with the ISO/
IEC 2022 framework, ASCII, and the various protocols that make use of control codes.
Rather than simply being defined as byte values, however, the legacy control codes are
assigned to Unicode code points: U+0000..U+001F, U+007E..U+009E. Those code points
for control codes must be represented consistently with the various Unicode encoding
forms when they are used with other Unicode characters. For more information on control
codes, see Section 23.1, Control Codes.

General Structure 69 2.14 Conforming to the Unicode Standard

2.14 Conforming to the Unicode Standard

Conformance requirements are a set of unambiguous criteria to which a conformant
implementation of a standard must adhere, so that it can interoperate with other confor-
mant implementations. The universal scope of the Unicode Standard complicates the task
of rigorously defining such conformance requirements for all aspects of the standard. Mak-
ing conformance requirements overly confining runs the risk of unnecessarily restricting
the breadth of text operations that can be implemented with the Unicode Standard or of
limiting them to a one-size-fits-all lowest common denominator. In many cases, therefore,
the conformance requirements deliberately cover only minimal requirements, falling far
short of providing a complete description of the behavior of an implementation. Neverthe-
less, there are many core aspects of the standard for which a precise and exhaustive defini-
tion of conformant behavior is possible.

This section gives examples of both conformant and nonconformant implementation
behavior, illustrating key aspects of the formal statement of conformance requirements
found in Chapter 3, Conformance.

Characteristics of Conformant Implementations

An implementation that conforms to the Unicode Standard has the following characteris-
tics:

It treats characters according to the specified Unicode encoding form.

+ The byte sequence <20 20> is interpreted as U+2020 ‘t” DAGGER in the UTF-16
encoding form.

+ The same byte sequence <20 20> is interpreted as the sequence of two spaces,
<U+0020, U+0020>, in the UTF-8 encoding form.

It interprets characters according to the identities, properties, and rules defined for them in
this standard.

+ U+42423 is ‘. OPEN BOX, not ‘v’ hiragana small i (which is the meaning of the
bytes 24234 in JIS).

« U+00F4 ¢’ is equivalent to U+006F ‘o’ followed by U+0302 7, but not equiva-
lent to U+0302 followed by U+006F.

+ U+05D0 ‘¥ followed by U+05D1 ‘2’ looks like an’, not ‘82’ when displayed.

When an implementation supports the display of Arabic, Hebrew, or other right-to-left
characters and displays those characters, they must be ordered according to the Bidirec-
tional Algorithm described in Unicode Standard Annex #9, “Unicode Bidirectional Algo-
rithm.

When an implementation supports Arabic, Devanagari, or other scripts with complex
shaping for their characters and displays those characters, at a minimum the characters are

General Structure 70 2.14 Conforming to the Unicode Standard

shaped according to the relevant block descriptions. (More sophisticated shaping can be
used if available.)

Unacceptable Behavior
It is unacceptable for a conforming implementation:

To use unassigned codes.

« U+2073 is unassigned and not usable for >

ter.

(superscript 3) or any other charac-

To corrupt unsupported characters.

+ U+03A1 “P” GREEK CAPITAL LETTER RHO should not be changed to U+00A1
(first byte dropped), U+0050 (mapped to Latin letter P), U+A103 (bytes
reversed), or anything other than U+03A1.

To remove or alter uninterpreted code points in text that purports to be unmodified.

+ U+42029 is PARAGRAPH SEPARATOR and should not be dropped by applications
that do not support it.

Acceptable Behavior
It is acceptable for a conforming implementation:
To support only a subset of the Unicode characters.

+ An application might not provide mathematical symbols or the Thai script, for
example.

To transform data knowingly.
+ Uppercase conversion: ‘@’ transformed to ‘A
+ Romaji to kana: ‘kyo’ transformed to & &

+ Decomposition: U+247D (10)’ decomposed to <U+0028, U+0031, U+0030,
U+0029>

To build higher-level protocols on the character set.

+ Examples are defining a file format for compression of characters or for use
with rich text.

To define private-use characters.

+ Examples of characters that might be defined for private use include additional
ideographic characters (gaiji) or existing corporate logo characters.

To not support the Bidirectional Algorithm or character shaping in implementations that do
not support complex scripts, such as Arabic and Devanagari.

General Structure 71 2.14 Conforming to the Unicode Standard

To not support the Bidirectional Algorithm or character shaping in implementations that do
not display characters, as, for example, on servers or in programs that simply parse or trans-
code text, such as an XML parser.

Code conversion between other character encodings and the Unicode Standard will be con-
sidered conformant if the conversion is accurate in both directions.

Supported Subsets

The Unicode Standard does not require that an application be capable of interpreting and
rendering all Unicode characters so as to be conformant. Many systems will have fonts for
only some scripts, but not for others; sorting and other text-processing rules may be imple-
mented for only a limited set of languages. As a result, an implementation is able to inter-
pret a subset of characters.

The Unicode Standard provides no formalized method for identifying an implemented
subset. Furthermore, such a subset is typically different for different aspects of an imple-
mentation. For example, an application may be able to read, write, and store any Unicode
character and to sort one subset according to the rules of one or more languages (and the
rest arbitrarily), but have access to fonts for only a single script. The same implementation
may be able to render additional scripts as soon as additional fonts are installed in its envi-
ronment. Therefore, the subset of interpretable characters is typically not a static concept.

General Structure 72 2.14 Conforming to the Unicode Standard

73

Chapter 3

Conformance

This chapter defines conformance to the Unicode Standard in terms of the principles and
encoding architecture it embodies. The first section defines the format for referencing the
Unicode Standard and Unicode properties. The second section consists of the conformance
clauses, followed by sections that define more precisely the technical terms used in those
clauses. The remaining sections contain the formal algorithms that are part of confor-
mance and referenced by the conformance clause. Additional definitions and algorithms
that are part of this standard can be found in the Unicode Standard Annexes listed at the
end of Section 3.2, Conformance Requirements.

In this chapter, conformance clauses are identified with the letter C. Definitions are identi-
fied with the letter D. Bulleted items are explanatory comments regarding definitions or
subclauses.

For information on implementing best practices, see Chapter 5, Implementation Guidelines.

Conformance 74 3.1 Versions of the Unicode Standard

3.1 Versions of the Unicode Standard

For most character encodings, the character repertoire is fixed (and often small). Once the
repertoire is decided upon, it is never changed. Addition of a new abstract character to a
given repertoire creates a new repertoire, which will be treated either as an update of the
existing character encoding or as a completely new character encoding.

For the Unicode Standard, by contrast, the repertoire is inherently open. Because Unicode
is a universal encoding, any abstract character that could ever be encoded is a potential can-
didate to be encoded, regardless of whether the character is currently known.

Each new version of the Unicode Standard supersedes the previous one, but implementa-
tions—and, more significantly, data—are not updated instantly. In general, major and
minor version changes include new characters, which do not create particular problems
with old data. The Unicode Technical Committee will neither remove nor move characters.
Characters may be deprecated, but this does not remove them from the standard or from
existing data. The code point for a deprecated character will never be reassigned to a differ-
ent character, but the use of a deprecated character is strongly discouraged. These rules
make the encoded characters of a new version backward-compatible with previous ver-
sions.

Implementations should be prepared to be forward-compatible with respect to Unicode
versions. That is, they should accept text that may be expressed in future versions of this
standard, recognizing that new characters may be assigned in those versions. Thus they
should handle incoming unassigned code points as they do unsupported characters. (See
Section 5.3, Unknown and Missing Characters.)

A version change may also involve changes to the properties of existing characters. When
this situation occurs, modifications are made to the Unicode Character Database and a new
version is issued for the standard. Changes to the data files may alter program behavior that
depends on them. However, such changes to properties and to data files are never made
lightly. They are made only after careful deliberation by the Unicode Technical Committee
has determined that there is an error, inconsistency, or other serious problem in the prop-
erty assignments.

Stability

Each version of the Unicode Standard, once published, is absolutely stable and will never
change. Implementations or specifications that refer to a specific version of the Unicode
Standard can rely upon this stability. When implementations or specifications are
upgraded to a future version of the Unicode Standard, then changes to them may be neces-
sary. Note that even errata and corrigenda do not formally change the text of a published
version; see “Errata and Corrigenda” later in this section.

Some features of the Unicode Standard are guaranteed to be stable across versions. These
include the names and code positions of characters, their decompositions, and several
other character properties for which stability is important to implementations. See also

Conformance 75 3.1 Versions of the Unicode Standard

“Stability of Properties” in Section 3.5, Properties. The formal statement of such stability
guarantees is contained in the policies on character encoding stability found on the Uni-
code website. See the subsection “Policies” in Section B.6, Other Unicode Online Resources.
See the discussion of backward compatibility in Section 2.5 of Unicode Standard Annex

#31, “Unicode Identifier and Pattern Syntax,” and the subsection “Interacting with Down-
level Systems” in Section 5.3, Unknown and Missing Characters.

Version Numbering

Version numbers for the Unicode Standard consist of three fields, denoting the major ver-
sion, the minor version, and the update version, respectively. For example, “Unicode 5.2.0”
indicates major version 5 of the Unicode Standard, minor version 2 of Unicode 5, and
update version 0 of minor version Unicode 5.2.

Additional information on the current and past versions of the Unicode Standard can be
found on the Unicode website. See the subsection “Versions” in Section B.6, Other Unicode
Online Resources. The online document contains the precise list of contributing files from
the Unicode Character Database and the Unicode Standard Annexes, which are formally
part of each version of the Unicode Standard.

Major and Minor Versions. Major and minor versions have significant additions to the
standard, including, but not limited to, additions to the repertoire of encoded characters.
Both are published as an updated core specification, together with associated updates to the
code charts, the Unicode Standard Annexes and the Unicode Character Database. Such ver-
sions consolidate all errata and corrigenda and supersede any prior documentation for
major, minor, or update versions.

A major version typically is of more importance to implementations; however, even update
versions may be important to particular companies or other organizations. Major and
minor versions are often synchronization points with related standards, such as with ISO/
IEC 10646.

Prior to Version 5.2, minor versions of the standard were published as online amendments
expressed as textual changes to the previous version, rather than as fully consolidated new
editions of the core specification.

Update Version. An update version represents relatively small changes to the standard, typ-
ically updates to the data files of the Unicode Character Database. An update version never
involves any additions to the character repertoire. These versions are published as modifi-
cations to the data files, and, on occasion, include documentation of small updates for
selected errata or corrigenda.

Formally, each new version of the Unicode Standard supersedes all earlier versions. How-
ever, update versions generally do not obsolete the documentation of the immediately
prior version of the standard.

Scheduling of Versions. Prior to Version 7.0.0, major, minor, and update versions of the
Unicode Standard were published whenever the work on each new set of repertoire, prop-

Conformance 76 3.1 Versions of the Unicode Standard

erties, and documentation was finished. The emphasis was on ensuring synchronization of
the major releases with corresponding major publication milestones for ISO/IEC 10646,
but that practice resulted in an irregular publication schedule.

The Unicode Technical Committee changed its process as of Version 7.0.0 of the Unicode
Standard, to make the publication time predictable. Major releases of the standard are now
scheduled for annual publication. Further minor and update releases are not anticipated,
but might occur under exceptional circumstances. This predictable, regular publication
makes planning for new releases easier for most users of the standard. The detailed state-
ments of synchronization between versions of the Unicode Standard and ISO/IEC 10646
have become somewhat more complex as a result, but in practice this has not been a prob-
lem for implementers.

Errata and Corrigenda

From time to time it may be necessary to publish errata or corrigenda to the Unicode Stan-
dard. Such errata and corrigenda will be published on the Unicode website. See Section B.6,
Other Unicode Online Resources, for information on how to report errors in the standard.

Errata. Errata correct errors in the text or other informative material, such as the represen-
tative glyphs in the code charts. See the subsection “Updates and Errata” in Section B.6,
Other Unicode Online Resources. Whenever a new major or minor version of the standard is
published, all errata up to that point are incorporated into the core specification, code
charts, or other components of the standard.

Corrigenda. Occasionally errors may be important enough that a corrigendum is issued
prior to the next version of the Unicode Standard. Such a corrigendum does not change the
contents of the previous version. Instead, it provides a mechanism for an implementation,
protocol, or other standard to cite the previous version of the Unicode Standard with the
corrigendum applied. If a citation does not specifically mention the corrigendum, the cor-
rigendum does not apply. For more information on citing corrigenda, see “Versions” in
Section B.6, Other Unicode Online Resources.

References to the Unicode Standard

The documents associated with the major, minor, and update versions are called the major
reference, minor reference, and update reference, respectively. For example, consider Uni-
code Version 3.1.1. The major reference for that version is The Unicode Standard, Version
3.0 (ISBN 0-201-61633-5). The minor reference is Unicode Standard Annex #27, “The Uni-
code Standard, Version 3.1.” The update reference is Unicode Version 3.1.1. The exact list of
contributory files, Unicode Standard Annexes, and Unicode Character Database files can
be found at Enumerated Version 3.1.1.

The reference for this version, Version 9.0.0, of the Unicode Standard, is

The Unicode Consortium. The Unicode Standard, Version 9.0.0, defined
by: The Unicode Standard, Version 9.0 (Mountain View, CA: The Uni-
code Consortium, 2015. ISBN 978-1-936213-13-9)

Conformance 77 3.1 Versions of the Unicode Standard

References to an update (or minor version prior to Version 5.2.0) include a reference to
both the major version and the documents modifying it. For the standard citation format
for other versions of the Unicode Standard, see “Versions” in Section B.6, Other Unicode
Online Resources.

Precision in Version Citation

Because Unicode has an open repertoire with relatively frequent updates, it is important
not to over-specify the version number. Wherever the precise behavior of all Unicode char-
acters needs to be cited, the full three-field version number should be used, as in the first
example below. However, trailing zeros are often omitted, as in the second example. In such
a case, writing 3.1 is in all respects equivalent to writing 3.1.0.

1. The Unicode Standard, Version 3.1.1

2. The Unicode Standard, Version 3.1

3. The Unicode Standard, Version 3.0 or later
4. The Unicode Standard

Where some basic level of content is all that is important, phrasing such as in the third
example can be used. Where the important information is simply the overall architecture
and semantics of the Unicode Standard, the version can be omitted entirely, as in example 4.

References to Unicode Character Properties
Properties and property values have defined names and abbreviations, such as
Property: General_Category (gc)
Property Value: Uppercase_Letter (Lu)
To reference a given property and property value, these aliases are used, as in this example:

The property value Uppercase_Letter from the General_Category prop-
erty, as specified in Version 9.0.0 of the Unicode Standard.

Then cite that version of the standard, using the standard citation format that is provided
for each version of the Unicode Standard.

When referencing multi-word properties or property values, it is permissible to omit the
underscores in these aliases or to replace them by spaces.

When referencing a Unicode character property, it is customary to prepend the word “Uni-
code” to the name of the property, unless it is clear from context that the Unicode Standard
is the source of the specification.

Conformance 78 3.1 Versions of the Unicode Standard

References to Unicode Algorithms

A reference to a Unicode algorithm must specify the name of the algorithm or its abbrevia-
tion, followed by the version of the Unicode Standard, as in this example:

The Unicode Bidirectional Algorithm, as specified in Version 9.0.0 of the
Unicode Standard.

See Unicode Standard Annex #9, “Unicode Bidirectional Algorithm,”
(http://www.unicode.org/reports/tr9/tr9-35.html)

Where algorithms allow tailoring, the reference must state whether any such tailorings were
applied or are applicable. For algorithms contained in a Unicode Standard Annex, the doc-
ument itself and its location on the Unicode website may be cited as the location of the
specification.

When referencing a Unicode algorithm it is customary to prepend the word “Unicode” to
the name of the algorithm, unless it is clear from the context that the Unicode Standard is
the source of the specification.

Omitting a version number when referencing a Unicode algorithm may be appropriate
when such a reference is meant as a generic reference to the overall algorithm. Such a
generic reference may also be employed in the sense of latest available version of the algo-
rithm. However, for specific and detailed conformance claims for Unicode algorithms,
generic references are generally not sufficient, and a full version number must accompany
the reference.

Conformance 79 3.2 Conformance Requirements

3.2 Conformance Requirements

This section presents the clauses specifying the formal conformance requirements for pro-
cesses implementing Version 9.0 of the Unicode Standard.

In addition to this core specification, the Unicode Standard, Version 9.0.0, includes a num-
ber of Unicode Standard Annexes (UAXes) and the Unicode Character Database. At the
end of this section there is a list of those annexes that are considered an integral part of the
Unicode Standard, Version 9.0.0, and therefore covered by these conformance require-
ments.

The Unicode Character Database contains an extensive specification of normative and
informative character properties completing the formal definition of the Unicode Stan-
dard. See Chapter 4, Character Properties, for more information.

Not all conformance requirements are relevant to all implementations at all times because
implementations may not support the particular characters or operations for which a given
conformance requirement may be relevant. See Section 2.14, Conforming to the Unicode
Standard, for more information.

In this section, conformance clauses are identified with the letter C.

Code Points Unassigned to Abstract Characters

C1 A process shall not interpret a high-surrogate code point or a low-surrogate code point
as an abstract character.

+ The high-surrogate and low-surrogate code points are designated for surrogate
code units in the UTF-16 character encoding form. They are unassigned to any
abstract character.

C2 A process shall not interpret a noncharacter code point as an abstract character.

+ The noncharacter code points may be used internally, such as for sentinel val-
ues or delimiters, but should not be exchanged publicly.

C3 A process shall not interpret an unassigned code point as an abstract character.

+ This clause does not preclude the assignment of certain generic semantics to
unassigned code points (for example, rendering with a glyph to indicate the
position within a character block) that allow for graceful behavior in the pres-
ence of code points that are outside a supported subset.

+ Unassigned code points may have default property values. (See D26.)

+ Code points whose use has not yet been designated may be assigned to abstract
characters in future versions of the standard. Because of this fact, due care in
the handling of generic semantics for such code points is likely to provide better
robustness for implementations that may encounter data based on future ver-
sions of the standard.

Conformance 80 3.2 Conformance Requirements

Interpretation

Interpretation of characters is the key conformance requirement for the Unicode Standard,
as it is for any coded character set standard. In legacy character set standards, the single
conformance requirement is generally stated in terms of the interpretation of bit patterns
used as characters. Conforming to a particular standard requires interpreting bit patterns
used as characters according to the list of character names and the glyphs shown in the
associated code table that form the bulk of that standard.

Interpretation of characters is a more complex issue for the Unicode Standard. It includes
the core issue of interpreting code points used as characters according to the names and
representative glyphs shown in the code charts, of course. However, the Unicode Standard
also specifies character properties, behavior, and interactions between characters. Such
information about characters is considered an integral part of the “character semantics
established by this standard.”

Information about the properties, behavior, and interactions between Unicode characters
is provided in the Unicode Character Database and in the Unicode Standard Annexes.
Additional information can be found throughout the other chapters of this core specifica-
tion for the Unicode Standard. However, because of the need to keep extended discussions
of scripts, sets of symbols, and other characters readable, material in other chapters is not
always labeled as to its normative or informative status. In general, supplementary seman-
tic information about a character is considered normative when it contributes directly to
the identification of the character or its behavior. Additional information provided about
the history of scripts, the languages which use particular characters, and so forth, is merely
informative. Thus, for example, the rules about Devanagari rendering specified in
Section 12.1, Devanagari, or the rules about Arabic character shaping specified in
Section 9.2, Arabic, are normative: they spell out important details about how those charac-
ters behave in conjunction with each other that is necessary for proper and complete inter-
pretation of the respective Unicode characters covered in each section.

C4 A process shall interpret a coded character sequence according to the character seman-
tics established by this standard, if that process does interpret that coded character
sequence.

+ This restriction does not preclude internal transformations that are never visi-
ble external to the process.

C5 A process shall not assume that it is required to interpret any particular coded character
sequence.

+ Processes that interpret only a subset of Unicode characters are allowed; there is
no blanket requirement to interpret all Unicode characters.

+ Any means for specifying a subset of characters that a process can interpret is
outside the scope of this standard.

+ The semantics of a private-use code point is outside the scope of this standard.

Conformance 81 3.2 Conformance Requirements

+ Although these clauses are not intended to preclude enumerations or specifica-
tions of the characters that a process or system is able to interpret, they do sep-
arate supported subset enumerations from the question of conformance. In
actuality, any system may occasionally receive an unfamiliar character code that
it is unable to interpret.

C6 A process shall not assume that the interpretations of two canonical-equivalent charac-
ter sequences are distinct.

+ The implications of this conformance clause are twofold. First, a process is
never required to give different interpretations to two different, but canonical-
equivalent character sequences. Second, no process can assume that another
process will make a distinction between two different, but canonical-equivalent
character sequences.

+ Ideally, an implementation would always interpret two canonical-equivalent
character sequences identically. There are practical circumstances under which
implementations may reasonably distinguish them.

+ Even processes that normally do not distinguish between canonical-equivalent
character sequences can have reasonable exception behavior. Some examples of
this behavior include graceful fallback processing by processes unable to sup-
port correct positioning of nonspacing marks; “Show Hidden Text” modes that
reveal memory representation structure; and the choice of ignoring collating
behavior of combining character sequences that are not part of the repertoire of
a specified language (see Section 5.12, Strategies for Handling Nonspacing
Marks).

Modification

C7 When a process purports not to modify the interpretation of a valid coded character
sequence, it shall make no change to that coded character sequence other than the possi-
ble replacement of character sequences by their canonical-equivalent sequences.

+ Replacement of a character sequence by a compatibility-equivalent sequence
does modify the interpretation of the text.

+ Replacement or deletion of a character sequence that the process cannot or
does not interpret does modify the interpretation of the text.

+ Changing the bit or byte ordering of a character sequence when transforming it
between different machine architectures does not modify the interpretation of
the text.

+ Changing a valid coded character sequence from one Unicode character encod-
ing form to another does not modify the interpretation of the text.

Conformance 82 3.2 Conformance Requirements

+ Changing the byte serialization of a code unit sequence from one Unicode
character encoding scheme to another does not modify the interpretation of
the text.

+ If a noncharacter that does not have a specific internal use is unexpectedly
encountered in processing, an implementation may signal an error or replace
the noncharacter with U+FFFD REPLACEMENT CHARACTER. If the implementa-
tion chooses to replace, delete or ignore a noncharacter, such an action consti-
tutes a modification in the interpretation of the text. In general, a noncharacter
should be treated as an unassigned code point. For example, an API that
returned a character property value for a noncharacter would return the same
value as the default value for an unassigned code point.

+ Note that security problems can result if noncharacter code points are removed
from text received from external sources. For more information, see
Section 23.7, Noncharacters, and Unicode Technical Report #36, “Unicode Secu-
rity Considerations.”

+ All processes and higher-level protocols are required to abide by conformance
clause C7 at a minimum. However, higher-level protocols may define addi-
tional equivalences that do not constitute modifications under that protocol.
For example, a higher-level protocol may allow a sequence of spaces to be
replaced by a single space.

+ There are important security issues associated with the correct interpretation
and display of text. For more information, see Unicode Technical Report #36,
“Unicode Security Considerations.”

Character Encoding Forms

C8 When a process interprets a code unit sequence which purports to be in a Unicode char-
acter encoding form, it shall interpret that code unit sequence according to the corre-
sponding code point sequence.

+ The specification of the code unit sequences for UTF-8 is given in D92.
+ The specification of the code unit sequences for UTF-16 is given in D91.
+ The specification of the code unit sequences for UTF-32 is given in D90.

C9 When a process generates a code unit sequence which purports to be in a Unicode char-
acter encoding form, it shall not emit ill-formed code unit sequences.

+ The definition of each Unicode character encoding form specifies the ill-
formed code unit sequences in the character encoding form. For example, the
definition of UTF-8 (D92) specifies that code unit sequences such as <C0O AF>
are ill-formed.

Conformance 83 3.2 Conformance Requirements

C10 When a process interprets a code unit sequence which purports to be in a Unicode char-
acter encoding form, it shall treat ill-formed code unit sequences as an error condition
and shall not interpret such sequences as characters.

+ For example, in UTF-8 every code unit of the form 110xxxx, must be followed
by a code unit of the form 10xxxxxx,. A sequence such as 110xxxxx, 0XXXXXXX,
is ill-formed and must never be generated. When faced with this ill-formed
code unit sequence while transforming or interpreting text, a conformant pro-
cess must treat the first code unit 110xxxxx, as an illegally terminated code unit
sequence—for example, by signaling an error, filtering the code unit out, or
representing the code unit with a marker such as U+FFFD REPLACEMENT
CHARACTER.

+ Conformant processes cannot interpret ill-formed code unit sequences. How-
ever, the conformance clauses do not prevent processes from operating on code
unit sequences that do not purport to be in a Unicode character encoding form.
For example, for performance reasons a low-level string operation may simply
operate directly on code units, without interpreting them as characters. See,
especially, the discussion under D89.

+ Utility programs are not prevented from operating on “mangled” text. For
example, a UTF-8 file could have had CRLF sequences introduced at every 80
bytes by a bad mailer program. This could result in some UTEF-8 byte sequences
being interrupted by CRLFs, producing illegal byte sequences. This mangled
text is no longer UTF-8. It is permissible for a conformant program to repair
such text, recognizing that the mangled text was originally well-formed UTF-8
byte sequences. However, such repair of mangled data is a special case, and it
must not be used in circumstances where it would cause security problems.
There are important security issues associated with encoding conversion, espe-
cially with the conversion of malformed text. For more information, see Uni-
code Technical Report #36, “Unicode Security Considerations.”

Character Encoding Schemes

CI11 When a process interprets a byte sequence which purports to be in a Unicode character
encoding scheme, it shall interpret that byte sequence according to the byte order and
specifications for the use of the byte order mark established by this standard for that
character encoding scheme.

+ Machine architectures differ in ordering in terms of whether the most signifi-
cant byte or the least significant byte comes first. These sequences are known as
“big-endian” and “little-endian” orders, respectively.

+ For example, when using UTF-16LE, pairs of bytes are interpreted as UTF-16
code units using the little-endian byte order convention, and any initial <FF
FE> sequence is interpreted as U+FEFF ZERO WIDTH NO-BREAK SPACE (part of
the text), rather than as a byte order mark (not part of the text). (See D97.)

Conformance 84 3.2 Conformance Requirements

Bidirectional Text

CI12 A process that displays text containing supported right-to-left characters or embedding
codes shall display all visible representations of characters (excluding format characters)
in the same order as if the Bidirectional Algorithm had been applied to the text, unless
tailored by a higher-level protocol as permitted by the specification.

+ The Bidirectional Algorithm is specified in Unicode Standard Annex #9, “Uni-
code Bidirectional Algorithm.”

Normalization Forms

Cl13 A process that produces Unicode text that purports to be in a Normalization Form shall
do so in accordance with the specifications in Section 3.11, Normalization Forms.

Cl4 A process that tests Unicode text to determine whether it is in a Normalization Form
shall do so in accordance with the specifications in Section 3.11, Normalization Forms.

C15 A process that purports to transform text into a Normalization Form must be able to
produce the results of the conformance test specified in Unicode Standard Annex #15,
“Unicode Normalization Forms.”

+ This means that when a process uses the input specified in the conformance
test, its output must match the expected output of the test.

Normative References

Cl6 Normative references to the Unicode Standard itself, to property aliases, to property
value aliases, or to Unicode algorithms shall follow the formats specified in Section 3.1,
Versions of the Unicode Standard.

Cl17 Higher-level protocols shall not make normative references to provisional properties.

+ Higher-level protocols may make normative references to informative proper-
ties.

Unicode Algorithms

CI18 If a process purports to implement a Unicode algorithm, it shall conform to the specifi-
cation of that algorithm in the standard, including any tailoring by a higher-level pro-
tocol as permitted by the specification.

+ The term Unicode algorithm is defined at D17.

+ An implementation claiming conformance to a Unicode algorithm need only
guarantee that it produces the same results as those specified in the logical
description of the process; it is not required to follow the actual described pro-
cedure in detail. This allows room for alternative strategies and optimizations
in implementation.

Conformance 85 3.2 Conformance Requirements

C19 The specification of an algorithm may prohibit or limit tailoring by a higher-level pro-
tocol. If a process that purports to implement a Unicode algorithm applies a tailoring,
that fact must be disclosed.

+ For example, the algorithms for normalization and canonical ordering are not
tailorable. The Bidirectional Algorithm allows some tailoring by higher-level
protocols. The Unicode Default Case algorithms may be tailored without limi-
tation.

Default Casing Algorithms

C20 An implementation that purports to support Default Case Conversion, Default Case
Detection, or Default Caseless Matching shall do so in accordance with the definitions
and specifications in Section 3.13, Default Case Algorithms.

+ A conformant implementation may perform casing operations that are differ-
ent from the default algorithms, perhaps tailored to a particular orthography,
so long as the fact that a tailoring is applied is disclosed.

Unicode Standard Annexes

The following standard annexes are approved and considered part of Version 9.0 of the
Unicode Standard. These annexes may contain either normative or informative material, or
both. Any reference to Version 9.0 of the standard automatically includes these standard
annexes.

+ UAX #9: Unicode Bidirectional Algorithm, Version 9.0.0

+ UAX #11: East Asian Width, Version 9.0.0

+ UAX #14: Unicode Line Breaking Algorithm, Version 9.0.0

+ UAX #15: Unicode Normalization Forms, Version 9.0.0

+ UAX #24: Unicode Script Property, Version 9.0.0

+ UAX #29: Unicode Text Segmentation, Version 9.0.0

+ UAX #31: Unicode Identifier and Pattern Syntax, Version 9.0.0
+ UAX #34: Unicode Named Character Sequences, Version 9.0.0
+ UAX #38: Unicode Han Database (Unihan), Version 9.0.0

+ UAX #41: Common References for Unicode Standard Annexes, Version 9.0.0
+ UAX #42: Unicode Character Database in XML, Version 9.0.0
+ UAX #44: Unicode Character Database, Version 9.0.0

+ UAX #45: U-Source Ideographs, Version 9.0.0

Conformance 86 3.2 Conformance Requirements

Conformance to the Unicode Standard requires conformance to the specifications con-
tained in these annexes, as detailed in the conformance clauses listed earlier in this section.

Conformance 87 3.3 Semantics

3.3 Semantics

Definitions

This and the following sections more precisely define the terms that are used in the confor-
mance clauses.

Character Identity and Semantics

Di

D2

D3

Normative behavior: The normative behaviors of the Unicode Standard consist of
the following list or any other behaviors specified in the conformance clauses:

Character combination
Canonical decomposition
Compatibility decomposition
Canonical ordering behavior

Bidirectional behavior, as specified in the Unicode Bidirectional Algorithm (see
Unicode Standard Annex #9, “Unicode Bidirectional Algorithm”)

Conjoining jamo behavior, as specified in Section 3.12, Conjoining Jamo Behav-
ior

Variation selection, as specified in Section 23.4, Variation Selectors
Normalization, as specified in Section 3.11, Normalization Forms
Default casing, as specified in Section 3.13, Default Case Algorithms

Character identity: The identity of a character is established by its character name
and representative glyph in the code charts.

A character may have a broader range of use than the most literal interpretation
of its name might indicate; the coded representation, name, and representative
glyph need to be assessed in context when establishing the identity of a charac-
ter. For example, U+002E rULL sTOP can represent a sentence period, an abbre-
viation period, a decimal number separator in English, a thousands number
separator in German, and so on. The character name itself is unique, but may
be misleading. See “Character Names” in Section 24.1, Character Names List.

Consistency with the representative glyph does not require that the images be
identical or even graphically similar; rather, it means that both images are gen-
erally recognized to be representations of the same character. Representing the
character U+0061 LATIN SMALL LETTER A by the glyph “X” would violate its
character identity.

Character semantics: The semantics of a character are determined by its identity,
normative properties, and behavior.

Conformance 88 3.3 Semantics

« Some normative behavior is default behavior; this behavior can be overridden
by higher-level protocols. However, in the absence of such protocols, the behav-
ior must be observed so as to follow the character semantics.

+ The character combination properties and the canonical ordering behavior
cannot be overridden by higher-level protocols. The purpose of this constraint
is to guarantee that the order of combining marks in text and the results of nor-
malization are predictable.

D4 Character name: A unique string used to identify each abstract character encoded in
the standard.

+ The character names in the Unicode Standard match those of the English edi-
tion of ISO/IEC 10646.

+ Character names are immutable and cannot be overridden; they are stable
identifiers. For more information, see Section 4.8, Name.

+ The name of a Unicode character is also formally a character property in the
Unicode Character Database. Its long property alias is “Name” and its short
property alias is “na”. Its value is the unique string label associated with the
encoded character.

+ The detailed specification of the Unicode character names, including rules for
derivation of some ranges of characters, is given in Section 4.8, Name. That sec-
tion also describes the relationship between the normative value of the Name
property and the contents of the corresponding data field in UnicodeData.txt
in the Unicode Character Database.

D5 Character name alias: An additional unique string identifier, other than the charac-
ter name, associated with an encoded character in the standard.

+ Character name aliases are assigned when there is a serious clerical defect with
a character name, such that the character name itself may be misleading regard-
ing the identity of the character. A character name alias constitutes an alternate
identifier for the character.

+ Character name aliases are also assigned to provide string identifiers for control
codes and to recognize widely used alternative names and abbreviations for
control codes, format characters and other special-use characters.

+ Character name aliases are unique within the common namespace shared by
character names, character name aliases, and named character sequences.

+ More than one character name alias may be assigned to a given Unicode char-
acter. For example, the control code U+000D is given a character name alias for
its ISO 6429 control function as CARRIAGE RETURN, but is also given a character
name alias for its widely used abbreviation “CR”.

+ Character name aliases are a formal, normative part of the standard and should
be distinguished from the informative, editorial aliases provided in the code

Conformance 89 3.3 Semantics

charts. See Section 24.1, Character Names List, for the notational conventions
used to distinguish the two.

D6 Namespace: A set of names together with name matching rules, so that all names are
distinct under the matching rules.

+ Within a given namespace all names must be unique, although the same name
may be used with a different meaning in a different namespace.

+ Character names, character name aliases, and named character sequences share
a single namespace in the Unicode Standard.

Conformance 90 3.4 Characters and Encoding

3.4

D7

D8
D9

D11

Characters and Encoding

Abstract character: A unit of information used for the organization, control, or rep-
resentation of textual data.

When representing data, the nature of that data is generally symbolic as
opposed to some other kind of data (for example, aural or visual). Examples of
such symbolic data include letters, ideographs, digits, punctuation, technical
symbols, and dingbats.

An abstract character has no concrete form and should not be confused with a
glyph.

An abstract character does not necessarily correspond to what a user thinks of
as a “character” and should not be confused with a grapheme.

The abstract characters encoded by the Unicode Standard are known as Uni-
code abstract characters.

Abstract characters not directly encoded by the Unicode Standard can often be
represented by the use of combining character sequences.

Abstract character sequence: An ordered sequence of one or more abstract characters.
Unicode codespace: A range of integers from 0 to 10FFFF 4.

This particular range is defined for the codespace in the Unicode Standard.
Other character encoding standards may use other codespaces.

Code point: Any value in the Unicode codespace.
A code point is also known as a code position.
See D77 for the definition of code unit.

Code point type: Any of the seven fundamental classes of code points in the standard:
Graphic, Format, Control, Private-Use, Surrogate, Noncharacter, Reserved.

See Table 2-3 for a summary of the meaning and use of each class.
For Noncharacter, see also D14 Noncharacter.

For Reserved, see also D15 Reserved code point.

For Private-Use, see also D49 Private-use code point.

For Surrogate, see also D71 High-surrogate code point and D73 Low-surrogate
code point.

Encoded character: An association (or mapping) between an abstract character and a
code point.

An encoded character is also referred to as a coded character.

Conformance 91 3.4 Characters and Encoding

+ While an encoded character is formally defined in terms of the mapping
between an abstract character and a code point, informally it can be thought of
as an abstract character taken together with its assigned code point.

+ Occasionally, for compatibility with other standards, a single abstract character
may correspond to more than one code point—for example, “A” corresponds
both to U+00C5 A LATIN CAPITAL LETTER A WITH RING ABOVE and to U+212B
A ANGSTROM SIGN.

+ A single abstract character may also be represented by a sequence of code
points—for example, latin capital letter ¢ with acute may be represented by the
sequence <U+0047 LATIN CAPITAL LETTER G, U+0301 COMBINING ACUTE
ACCENT>, rather than being mapped to a single code point.

D12 Coded character sequence: An ordered sequence of one or more code points.
+ A coded character sequence is also known as a coded character representation.

+ Normally a coded character sequence consists of a sequence of encoded charac-
ters, but it may also include noncharacters or reserved code points.

+ Internally, a process may choose to make use of noncharacter code points in its
coded character sequences. However, such noncharacter code points may not
be interpreted as abstract characters (see conformance clause C2). Their
removal by a conformant process constitutes modification of interpretation of
the coded character sequence (see conformance clause C7).

+ Reserved code points are included in coded character sequences, so that the
conformance requirements regarding interpretation and modification are
properly defined when a Unicode-conformant implementation encounters
coded character sequences produced under a future version of the standard.

Unless specified otherwise for clarity, in the text of the Unicode Standard the term character
alone designates an encoded character. Similarly, the term character sequence alone desig-
nates a coded character sequence.

D13 Deprecated character: A coded character whose use is strongly discouraged.

+ Deprecated characters are retained in the standard indefinitely, but should not
be used. They are retained in the standard so that previously conforming data
stay conformant in future versions of the standard.

+ Deprecated characters typically consist of characters with significant architec-
tural problems, or ones which cause implementation problems. Some examples
of characters deprecated on these grounds include tag characters (see
Section 23.9, Tag Characters) and the alternate format characters (see
Section 23.3, Deprecated Format Characters).

+ Deprecated characters are explicitly indicated in the Unicode code charts. They
are also given an explicit property value of Deprecated=True in the Unicode
Character Database.

Conformance 92 3.4 Characters and Encoding

+ Deprecated characters should not be confused with obsolete characters, which
are historical. Obsolete characters do not occur in modern text, but they are
not deprecated; their use is not discouraged.

D14 Noncharacter: A code point that is permanently reserved for internal use. Nonchar-
acters consist of the values U+nFFFE and U+nFFFF (where # is from 0 to 10,4) and
the values U+FDDO0..U+FDEF.

« For more information, see Section 23.7, Noncharacters.
+ These code points are permanently reserved as noncharacters.

D15 Reserved code point: Any code point of the Unicode Standard that is reserved for
future assignment. Also known as an unassigned code point.

+ Surrogate code points and noncharacters are considered assigned code points,
but not assigned characters.

+ For a summary classification of reserved and other types of code points, see
Table 2-3.

In general, a conforming process may indicate the presence of a code point whose use has
not been designated (for example, by showing a missing glyph in rendering or by signaling
an appropriate error in a streaming protocol), even though it is forbidden by the standard
from interpreting that code point as an abstract character.

D16 Higher-level protocol: Any agreement on the interpretation of Unicode characters
that extends beyond the scope of this standard.

+ Such an agreement need not be formally announced in data; it may be implicit
in the context.

+ The specification of some Unicode algorithms may limit the scope of what a
conformant higher-level protocol may do.

D17 Unicode algorithm: The logical description of a process used to achieve a specified
result involving Unicode characters.

+ This definition, as used in the Unicode Standard and other publications of the
Unicode Consortium, is intentionally broad so as to allow precise logical
description of required results, without constraining implementations to fol-
low the precise steps of that logical description.

D18 Named Unicode algorithm: A Unicode algorithm that is specified in the Unicode
Standard or in other standards published by the Unicode Consortium and that is
given an explicit name for ease of reference.

+ Named Unicode algorithms are cited in titlecase in the Unicode Standard.

Table 3-1 lists the named Unicode algorithms and indicates the locations of their specifica-
tions. Details regarding conformance to these algorithms and any restrictions they place on
the scope of allowable tailoring by higher-level protocols can be found in the specifications.

Conformance 93 3.4 Characters and Encoding

In some cases, a named Unicode algorithm is provided for information only. When exter-
nally referenced, a named Unicode algorithm may be prefixed with the qualifier “Unicode”
to make the connection of the algorithm to the Unicode Standard and other Unicode spec-
ifications clear. Thus, for example, the Bidirectional Algorithm is generally referred to by its
full name, “Unicode Bidirectional Algorithm.” As much as is practical, the titles of Unicode
Standard Annexes which define Unicode algorithms consist of the name of the Unicode
algorithm they specify. In a few cases, named Unicode algorithms are also widely known by
their acronyms, and those acronyms are also listed in Table 3-1.

Table 3-1. Named Unicode Algorithms

Name Description
Canonical Ordering Section 3.11
Canonical Composition Section 3.11
Normalization Section 3.11
Hangul Syllable Composition Section 3.12
Hangul Syllable Decomposition Section 3.12
Hangul Syllable Name Generation Section 3.12
Default Case Conversion Section 3.13
Default Case Detection Section 3.13
Default Caseless Matching Section 3.13
Bidirectional Algorithm (UBA) UAX #9
Line Breaking Algorithm UAX #14
Character Segmentation UAX #29
Word Segmentation UAX #29
Sentence Segmentation UAX #29
Hangul Syllable Boundary Determination UAX #29
Default Identifier Determination UAX #31
Alternative Identifier Determination UAX #31
Pattern Syntax Determination UAX #31
Identifier Normalization UAX #31
Identifier Case Folding UAX #31
Standard Compression Scheme for Unicode (SCSU) UTS #6
Unicode Collation Algorithm (UCA) UTS #10

Conformance 94 3.5 Properties

3.5 Properties

The Unicode Standard specifies many different types of character properties. This section
provides the basic definitions related to character properties.

The actual values of Unicode character properties are specified in the Unicode Character
Database. See Section 4.1, Unicode Character Database, for an overview of those data files.
Chapter 4, Character Properties, contains more detailed descriptions of some particular,
important character properties. Additional properties that are specific to particular charac-
ters (such as the definition and use of the right-to-left override character or zero width space)
are discussed in the relevant sections of this standard.

The interpretation of some properties (such as the case of a character) is independent of
context, whereas the interpretation of other properties (such as directionality) is applicable
to a character sequence as a whole, rather than to the individual characters that compose
the sequence.

Types of Properties

D19 Property: A named attribute of an entity in the Unicode Standard, associated with a
defined set of values.

+ The lists of code point and encoded character properties for the Unicode Stan-
dard are documented in Unicode Standard Annex #44, “Unicode Character
Database,” and in Unicode Standard Annex #38, “Unicode Han Database (Uni-
han).”

+ The file PropertyAliases.txt in the Unicode Character Database provides a
machine-readable list of the non-Unihan properties and their names.

D20 Code point property: A property of code points.

+ Code point properties refer to attributes of code points per se, based on archi-
tectural considerations of this standard, irrespective of any particular encoded
character.

+ Thus the Surrogate property and the Noncharacter property are code point
properties.

D21 Abstract character property: A property of abstract characters.

+ Abstract character properties refer to attributes of abstract characters per se,
based on their independent existence as elements of writing systems or other
notational systems, irrespective of their encoding in the Unicode Standard.

+ Thus the Alphabetic property, the Punctuation property, the Hex_Digit prop-
erty, the Numeric_Value property, and so on are properties of abstract charac-
ters and are associated with those characters whether encoded in the Unicode
Standard or in any other character encoding—or even prior to their being
encoded in any character encoding standard.

Conformance 95 3.5 Properties

D22 Encoded character property: A property of encoded characters in the Unicode Stan-
dard.

+ For each encoded character property there is a mapping from every code point
to some value in the set of values associated with that property.

Encoded character properties are defined this way to facilitate the implementation of char-
acter property APIs based on the Unicode Character Database. Typically, an API will take a
property and a code point as input, and will return a value for that property as output,
interpreting it as the “character property” for the “character” encoded at that code point.
However, to be useful, such APIs must return meaningful values for unassigned code
points, as well as for encoded characters.

In some instances an encoded character property in the Unicode Standard is exactly equiv-
alent to a code point property. For example, the Pattern_Syntax property simply defines a
range of code points that are reserved for pattern syntax. (See Unicode Standard Annex
#31, “Unicode Identifier and Pattern Syntax.”)

In other instances, an encoded character property directly reflects an abstract character
property, but extends the domain of the property to include all code points, including
unassigned code points. For Boolean properties, such as the Hex_Digit property, typically
an encoded character property will be true for the encoded characters with that abstract
character property and will be false for all other code points, including unassigned code
points, noncharacters, private-use characters, and encoded characters for which the
abstract character property is inapplicable or irrelevant.

However, in many instances, an encoded character property is semantically complex and
may telescope together values associated with a number of abstract character properties
and/or code point properties. The General Category property is an example—it contains
values associated with several abstract character properties (such as Letter, Punctuation,
and Symbol) as well as code point properties (such as \p{gc=Cs} for the Surrogate code
point property).

In the text of this standard the terms “Unicode character property,” “character property,”
and “property” without qualifier generally refer to an encoded character property, unless
otherwise indicated.

A list of the encoded character properties formally considered to be a part of the Unicode
Standard can be found in PropertyAliases.txt in the Unicode Character Database. See also
“Property Aliases” later in this section.

Property Values

D23 Property value: One of the set of values associated with an encoded character prop-
erty.

+ For example, the East_Asian_Width [EAW] property has the possible values
“Narrow”, “Neutral”, “Wide”, “Ambiguous”, and “Unassigned”.

Conformance 96 3.5 Properties

A list of the values associated with encoded character properties in the Unicode Standard
can be found in PropertyValueAliases.txt in the Unicode Character Database. See also
“Property Aliases” later in this section.

D24 Explicit property value: A value for an encoded character property that is explicitly
associated with a code point in one of the data files of the Unicode Character Data-
base.

D25 Implicit property value: A value for an encoded character property that is given by a
generic rule or by an “otherwise” clause in one of the data files of the Unicode Char-
acter Database.

+ Implicit property values are used to avoid having to explicitly list values for
more than 1 million code points (most of them unassigned) for every property.

Default Property Values

To work properly in implementations, unassigned code points must be given default prop-
erty values as if they were characters, because various algorithms require property values to
be assigned to every code point before they can function at all.

Default property values are not uniform across all unassigned code points, because certain
ranges of code points need different values for particular properties to maximize compati-
bility with expected future assignments. This means that some encoded character proper-
ties have multiple default values. For example, the Bidi_Class property defines a range of
unassigned code points as having the “R” value, another range of unassigned code points as
having the “AL” value, and the otherwise case as having the “L” value. For information on
the default values for each encoded character property, see its description in the Unicode
Character Database.

Default property values for unassigned code points are normative. They should not be
changed by implementations to other values.

Default property values are also provided for private-use characters. Because the interpre-
tation of private-use characters is subject to private agreement between the parties which
exchange them, most default property values for those characters are overridable by
higher-level protocols, to match the agreed-upon semantics for the characters. There are
important exceptions for a few properties and Unicode algorithms. See Section 23.5, Pri-
vate-Use Characters.

D26 Default property value: The value (or in some cases small set of values) of a property
associated with unassigned code points or with encoded characters for which the
property is irrelevant.

+ For example, for most Boolean properties, “false” is the default property value.
In such cases, the default property value used for unassigned code points may
be the same value that is used for many assigned characters as well.

Conformance 97 3.5 Properties

+ Some properties, particularly enumerated properties, specify a particular,
unique value as their default value. For example, “XX” is the default property
value for the Line_Break property.

+ A default property value is typically defined implicitly, to avoid having to repeat
long lists of unassigned code points.

+ In the case of some properties with arbitrary string values, the default property
value is an implied null value. For example, the fact that there is no Unicode
character name for unassigned code points is equivalent to saying that the
default property value for the Name property for an unassigned code point is a
null string.

Classification of Properties by Their Values
D27 Enumerated property: A property with a small set of named values.

+ As characters are added to the Unicode Standard, the set of values may need to
be extended in the future, but enumerated properties have a relatively fixed set
of possible values.

D28 Closed enumeration: An enumerated property for which the set of values is closed
and will not be extended for future versions of the Unicode Standard.

+ The General_Category and Bidi_Class properties are the only closed enumera-
tions, except for the Boolean properties.

D29 Boolean property: A closed enumerated property whose set of values is limited to
“true” and “false”.

+ The presence or absence of the property is the essential information.

D30 Numeric property: A numeric property is a property whose value is a number that
can take on any integer or real value.

+ An example is the Numeric_Value property. There is no implied limit to the
number of possible distinct values for the property, except the limitations on
representing integers or real numbers in computers.

D31 String-valued property: A property whose value is a string.
+ The Canonical_Decomposition property is a string-valued property.

D32 Catalog property: A property that is an enumerated property, typically unrelated to
an algorithm, that may be extended in each successive version of the Unicode Stan-
dard.

+ Examples are the Age, Block, and Script properties. Additional new values for
the set of enumerated values for these properties may be added each time the
standard is revised. A new value for Age is added for each new Unicode version,

Conformance 98 3.5 Properties

a new value for Block is added for each new block added to the standard, and a
new value for Script is added for each new script added to the standard.

Most properties have a single value associated with each code point. However, some prop-
erties may instead associate a set of multiple different values with each code point. See Sec-
tion 5.7.6, Properties Whose Values Are Sets of Values, in Unicode Standard Annex #44,
“Unicode Character Database.”

Property Status

Each Unicode character property has one of several different statuses: normative, informa-
tive, contributory, or provisional. Each of these statuses is formally defined below, with
some explanation and examples. In addition, normative properties can be subclassified,
based on whether or not they can be overridden by conformant higher-level protocols.

The full list of currently defined Unicode character properties is provided in Unicode Stan-
dard Annex #44, “Unicode Character Database” and in Unicode Standard Annex #38,
“Unicode Han Database (Unihan).” The tables of properties in those documents specify the
status of each property explicitly. The data file PropertyAliases.txt provides a machine-
readable listing of the character properties, except for those associated with the Unicode
Han Database. The long alias for each property in PropertyAliases.txt also serves as the for-
mal name of that property. In case of any discrepancy between the listing in PropertyAlia-
ses.txt and the listing in Unicode Standard Annex #44 or any other text of the Unicode
Standard, the listing in PropertyAliases.txt should be taken as definitive. The tag for each
Unihan-related character property documented in Unicode Standard Annex #38 serves as
the formal name of that property.

D33 Normative property: A Unicode character property used in the specification of the
standard.

Specification that a character property is normative means that implementations which
claim conformance to a particular version of the Unicode Standard and which make use of
that particular property must follow the specifications of the standard for that property for
the implementation to be conformant. For example, the Bidi_Class property is required for
conformance whenever rendering text that requires bidirectional layout, such as Arabic or
Hebrew.

Whenever a normative process depends on a property in a specified way, that property is
designated as normative.

The fact that a given Unicode character property is normative does not mean that the val-
ues of the property will never change for particular characters. Corrections and extensions
to the standard in the future may require minor changes to normative values, even though
the Unicode Technical Committee strives to minimize such changes. See also “Stability of
Properties” later in this section.

Some of the normative Unicode algorithms depend critically on particular property values
for their behavior. Normalization, for example, defines an aspect of textual interoperability

Conformance 99 3.5 Properties

that many applications rely on to be absolutely stable. As a result, some of the normative
properties disallow any kind of overriding by higher-level protocols. Thus the decomposi-
tion of Unicode characters is both normative and not overridable; no higher-level protocol
may override these values, because to do so would result in non-interoperable results for
the normalization of Unicode text. Other normative properties, such as case mapping, are
overridable by higher-level protocols, because their intent is to provide a common basis for
behavior. Nevertheless, they may require tailoring for particular local cultural conventions
or particular implementations.

D34 Overridable property: A normative property whose values may be overridden by
conformant higher-level protocols.

+ For example, the Canonical Decomposition property is not overridable. The
Uppercase property can be overridden.

Some important normative character properties of the Unicode Standard are listed in
Table 3-2, with an indication of which sections in the standard provide a general descrip-
tion of the properties and their use. Other normative properties are documented in the
Unicode Character Database. In all cases, the Unicode Character Database provides the
definitive list of character properties and the exact list of property value assignments for
each version of the standard.

Table 3-2. Normative Character Properties

Property Description

Bidi_Class (directionality) UAX #9 and Section 4.4
Bidi_Mirrored UAX #9 and Section 4.7
Bidi_Paired_Bracket UAX #9
Bidi_Paired_Bracket_Type UAX #9

Block Section 24.1
Canonical_Combining_Class Section 3.11 and Section 4.3
Case-related properties Section 3.13, Section 4.2, and UAX #44
Composition_Exclusion Section 3.11
Decomposition_Mapping Section 3.7 and Section 3.11
Default_Ignorable_Code_Point Section 5.21

Deprecated Section 3.1
General_Category Section 4.5
Hangul_Syllable_Type Section 3.12 and UAX #29
Joining_Type and Joining_Group Section 9.2

Name Section 4.8
Noncharacter_Code_Point Section 23.7
Numeric_Value Section 4.6

White_Space UAX #44

D35 Informative property: A Unicode character property whose values are provided for
information only.

Conformance 100 3.5 Properties

A conformant implementation of the Unicode Standard is free to use or change informa-
tive property values as it may require, while remaining conformant to the standard. An
implementer always has the option of establishing a protocol to convey the fact that infor-
mative properties are being used in distinct ways.

Informative properties capture expert implementation experience. When an informative
property is explicitly specified in the Unicode Character Database, its use is strongly rec-
ommended for implementations to encourage comparable behavior between implementa-
tions. Note that it is possible for an informative property in one version of the Unicode
Standard to become a normative property in a subsequent version of the standard if its use
starts to acquire conformance implications in some part of the standard.

Table 3-3 provides a partial list of the more important informative character properties. For
a complete listing, see the Unicode Character Database.

Table 3-3. Informative Character Properties

Property Description

Dash Section 6.2 and Table 6-3
East_Asian_Width Section 18.4 and UAX #11
Letter-related properties Section 4.10

Line_Break Section 23.1, Section 23.2, and UAX #14
Mathematical Section 22.5

Script UAX #24

Space Section 6.2 and Table 6-2
Unicode_1_Name Section 4.9

D35a Contributory property: A simple property defined merely to make the statement of a
rule defining a derived property more compact or general.

Contributory properties typically consist of short lists of exceptional characters which are
used as part of the definition of a more generic normative or informative property. In most
cases, such properties are given names starting with “Other”, as Other_Alphabetic or
Other_Default_Ignorable_Code_Point.

Contributory properties are not themselves subject to stability guarantees, but they are
sometimes specified in order to make it easier to state the definition of a derived property
which itself is subject to a stability guarantee, such as the derived, normative identifier-
related properties, XID_Start and XID_Continue. The complete list of contributory prop-
erties is documented in Unicode Standard Annex #44, “Unicode Character Database.”

D36 Provisional property: A Unicode character property whose values are unapproved
and tentative, and which may be incomplete or otherwise not in a usable state.

+ Provisional properties may be removed from future versions of the standard,
without prior notice.

Conformance 101 3.5 Properties

Some of the information provided about characters in the Unicode Character Database
constitutes provisional data. This data may capture partial or preliminary information. It
may contain errors or omissions, or otherwise not be ready for systematic use; however, it is
included in the data files for distribution partly to encourage review and improvement of
the information. For example, a number of the tags in the Unihan database file (Uni-
han.zip) provide provisional property values of various sorts about Han characters.

The data files of the Unicode Character Database may also contain various annotations and
comments about characters, and those annotations and comments should be considered
provisional. Implementations should not attempt to parse annotations and comments out
of the data files and treat them as informative character properties per se.

Section 4.12, Characters with Unusual Properties, provides additional lists of Unicode char-
acters with unusual behavior, including many format controls discussed in detail elsewhere
in the standard. Although in many instances those characters and their behavior have nor-
mative implications, the particular subclassification provided in Table 4-15 does not
directly correspond to any formal definition of Unicode character properties. Therefore
that subclassification itself should also be considered provisional and potentially subject to
change.

Context Dependence

D37 Context-dependent property: A property that applies to a code point in the context of
a longer code point sequence.

+ For example, the lowercase mapping of a Greek sigma depends on the context
of the surrounding characters.

D38 Context-independent property: A property that is not context dependent; it applies to
a code point in isolation.

Stability of Properties

D39 Stable transformation: A transformation T on a property P is stable with respect to
an algorithm A if the result of the algorithm on the transformed property A(T(P)) is
the same as the original result A(P) for all code points.

D40 Stable property: A property is stable with respect to a particular algorithm or process
as long as possible changes in the assignment of property values are restricted in
such a manner that the result of the algorithm on the property continues to be the
same as the original result for all previously assigned code points.

+ As new characters are assigned to previously unassigned code points, the
replacement of any default values for these code points with actual property
values must maintain stability.

D41 Fixed property: A property whose values (other than a default value), once associated
with a specific code point, are fixed and will not be changed, except to correct obvi-
ous or clerical errors.

Conformance 102 3.5 Properties

+ For a fixed property, any default values can be replaced without restriction by
actual property values as new characters are assigned to previously unassigned
code points. Examples of fixed properties include Age and
Hangul_Syllable_Type.

+ Designating a property as fixed does not imply stability or immutability (see
“Stability” in Section 3.1, Versions of the Unicode Standard). While the age of a
character, for example, is established by the version of the Unicode Standard to
which it was added, errors in the published listing of the property value could
be corrected. For some other properties, even the correction of such errors is
prohibited by explicit guarantees of property stability.

D42 Immutable property: A fixed property that is also subject to a stability guarantee pre-
venting any change in the published listing of property values other than assignment
of new values to formerly unassigned code points.

+ An immutable property is trivially stable with respect to all algorithms.

+ An example of an immutable property is the Unicode character name itself.
Because character names are values of an immutable property, misspellings and
incorrect names will never be corrected clerically. Any errata will be noted in a
comment in the character names list and, where needed, an informative char-
acter name alias will be provided.

+ When an encoded character property representing a code point property is
immutable, none of its values can ever change. This follows from the fact that
the code points themselves do not change, and the status of the property is
unaffected by whether a particular abstract character is encoded at a code point
later. An example of such a property is the Pattern_Syntax property; all values
of that property are unchangeable for all code points, forever.

+ In the more typical case of an immutable property, the values for existing
encoded characters cannot change, but when a new character is encoded, the
formerly unassigned code point changes from having a default value for the
property to having one of its nondefault values. Once that nondefault value is
published, it can no longer be changed.

D43 Stabilized property: A property that is neither extended to new characters nor main-
tained in any other manner, but that is retained in the Unicode Character Database.

+ A stabilized property is also a fixed property.
D44 Deprecated property: A property whose use by implementations is discouraged.

+ One of the reasons a property may be deprecated is because a different combi-
nation of properties better expresses the intended semantics.

+ Where sufficiently widespread legacy support exists for the deprecated prop-
erty, not all implementations may be able to discontinue the use of the depre-

Conformance 103 3.5 Properties

cated property. In such a case, a deprecated property may be extended to new
characters so as to maintain it in a usable and consistent state.

Informative or normative properties in the standard will not be removed even when they
are supplanted by other properties or are no longer useful. However, they may be stabilized
and/or deprecated.

The complete list of stability policies which affect character properties, their values, and
their aliases, is available online. See the subsection “Policies” in Section B.6, Other Unicode
Online Resources.

Simple and Derived Properties

D45 Simple property: A Unicode character property whose values are specified directly in
the Unicode Character Database (or elsewhere in the standard) and whose values
cannot be derived from other simple properties.

D46 Derived property: A Unicode character property whose values are algorithmically
derived from some combination of simple properties.

The Unicode Character Database lists a number of derived properties explicitly. Even
though these values can be derived, they are provided as lists because the derivation may
not be trivial and because explicit lists are easier to understand, reference, and implement.
Good examples of derived properties include the ID_Start and ID_Continue properties,
which can be used to specify a formal identifier syntax for Unicode characters. The details
of how derived properties are computed can be found in the documentation for the Uni-
code Character Database.

Property Aliases

To enable normative references to Unicode character properties, formal aliases for proper-
ties and for property values are defined as part of the Unicode Character Database.

D47 Property alias: A unique identifier for a particular Unicode character property.

+ The identifiers used for property aliases contain only ASCII alphanumeric
characters or the underscore character.

+ Short and long forms for each property alias are defined. The short forms are
typically just two or three characters long to facilitate their use as attributes for
tags in markup languages. For example, “General_Category” is the long form
and “gc” is the short form of the property alias for the General Category prop-
erty. The long form serves as the formal name for the character property.

+ Property aliases are defined in the file PropertyAliases.txt lists all of the non-
Unihan properties that are part of each version of the standard. The Unihan
properties are listed in Unicode Standard Annex #38, “Unicode Han Database
(Unihan).”

+ Property aliases of normative properties are themselves normative.

Conformance 104 3.5 Properties

D48 Property value alias: A unique identifier for a particular enumerated value for a par-
ticular Unicode character property.

+ The identifiers used for property value aliases contain only ASCII alphanu-
meric characters or the underscore character, or have the special value “n/a”

+ Short and long forms for property value aliases are defined. For example,
“Currency_Symbol” is the long form and “Sc” is the short form of the property
value alias for the currency symbol value of the General Category property.

+ Property value aliases are defined in the file PropertyValueAliases.txt in the
Unicode Character Database.

+ Property value aliases are unique identifiers only in the context of the particular
property with which they are associated. The same identifier string might be
associated with an entirely different value for a different property. The combi-
nation of a property alias and a property value alias is, however, guaranteed to
be unique.

+ Property value aliases referring to values of normative properties are themselves
normative.

The property aliases and property value aliases can be used, for example, in XML formats
of property data, for regular-expression property tests, and in other programmatic textual
descriptions of Unicode property data. Thus “gc=Lu” is a formal way of specifying that the
General Category of a character (using the property alias “gc”) has the value of being an
uppercase letter (using the property value alias “Lu”).

Private Use

D49 Private-use code point: Code points in the ranges U+E000..U+F8FE, U+F0000..
U+FFFFD, and U+100000..U+10FFFD.

+ Private-use code points are considered to be assigned characters, but the
abstract characters associated with them have no interpretation specified by
this standard. They can be given any interpretation by conformant processes.

+ Private-use code points are given default property values, but these default val-
ues are overridable by higher-level protocols that give those private-use code
points a specific interpretation. See Section 23.5, Private-Use Characters.

Conformance 105 3.6 Combination

3.6 Combination

Combining Character Sequences

D50

D51

D51a

Graphic character: A character with the General Category of Letter (L), Combining
Mark (M), Number (N), Punctuation (P), Symbol (S), or Space Separator (Zs).

Graphic characters specifically exclude the line and paragraph separators (Zl,
Zp), as well as the characters with the General Category of Other (Cn, Cs, Cc,
Cf).

The interpretation of private-use characters (Co) as graphic characters or not is
determined by the implementation.

For more information, see Chapter 2, General Structure, especially Section 2.4,
Code Points and Characters, and Table 2-3.

Base character: Any graphic character except for those with the General Category of
Combining Mark (M).

Most Unicode characters are base characters. In terms of General Category val-
ues, a base character is any code point that has one of the following categories:
Letter (L), Number (N), Punctuation (P), Symbol (S), or Space Separator (Zs).

Base characters do not include control characters or format controls.

Base characters are independent graphic characters, but this does not preclude
the presentation of base characters from adopting different contextual forms or
participating in ligatures.

The interpretation of private-use characters (Co) as base characters or not is
determined by the implementation. However, the default interpretation of pri-
vate-use characters should be as base characters, in the absence of other infor-
mation.

Extended base: Any base character, or any standard Korean syllable block.

+ This term is defined to take into account the fact that sequences of Korean con-

joining jamo characters behave as if they were a single Hangul syllable charac-
ter, so that the entire sequence of jamos constitutes a base.

+ For the definition of standard Korean syllable block, see D134 in Section 3.12,

D52

Conjoining Jamo Behavior.

Combining character: A character with the General Category of Combining Mark
(M).

+ Combining characters consist of all characters with the General Category val-

ues of Spacing Combining Mark (Mc), Nonspacing Mark (Mn), and Enclosing
Mark (Me).

Conformance 106 3.6 Combination

+ All characters with non-zero canonical combining class are combining charac-
ters, but the reverse is not the case: there are combining characters with a zero
canonical combining class.

+ The interpretation of private-use characters (Co) as combining characters or
not is determined by the implementation.

+ These characters are not normally used in isolation unless they are being
described. They include such characters as accents, diacritics, Hebrew points,
Arabic vowel signs, and Indic matras.

+ The graphic positioning of a combining character depends on the last preced-
ing base character, unless they are separated by a character that is neither a
combining character nor either ZERO WIDTH JOINER Or ZERO WIDTH NON-
joINER. The combining character is said to apply to that base character.

+ There may be no such base character, such as when a combining character is at
the start of text or follows a control or format character—for example, a car-
riage return, tab, or RIGHT-LEFT MARK. In such cases, the combining characters
are called isolated combining characters.

+ With isolated combining characters or when a process is unable to perform
graphical combination, a process may present a combining character without
graphical combination; that is, it may present it as if it were a base character.

+ The representative images of combining characters are depicted with a dotted
circle in the code charts. When presented in graphical combination with a pre-
ceding base character, that base character is intended to appear in the position
occupied by the dotted circle.

D53 Nonspacing mark: A combining character with the General Category of Nonspacing
Mark (Mn) or Enclosing Mark (Me).

+ The position of a nonspacing mark in presentation depends on its base charac-
ter. It generally does not consume space along the visual baseline in and of
itself.

+ Such characters may be large enough to affect the placement of their base char-
acter relative to preceding and succeeding base characters. For example, a cir-
cumflex applied to an “i” may affect spacing (“1”), as might the character
U+20DD COMBINING ENCLOSING CIRCLE.

D54 Enclosing mark: A nonspacing mark with the General Category of Enclosing Mark
(Me).

+ Enclosing marks are a subclass of nonspacing marks that surround a base char-
acter, rather than merely being placed over, under, or through it.

Conformance 107 3.6 Combination

D55

D56

D56a

D57

Spacing mark: A combining character that is not a nonspacing mark.

Examples include U+093F DEVANAGARI VOWEL SIGN 1. In general, the behavior
of spacing marks does not differ greatly from that of base characters.

Spacing marks such as U+0BCA TAMIL VOWEL SIGN 0 may be rendered on both
sides of a base character, but are not enclosing marks.

Combining character sequence: A maximal character sequence consisting of either a
base character followed by a sequence of one or more characters where each is a
combining character, ZERO WIDTH JOINER, Or ZERO WIDTH NON-JOINER; OI a
sequence of one or more characters where each is a combining character, ZEro
WIDTH JOINER, O ZERO WIDTH NON-JOINER.

When identifying a combining character sequence in Unicode text, the defini-
tion of the combining character sequence is applied maximally. For example, in
the sequence <c, dot-below, caron, acute, a>, the entire sequence <c, dot-
below, caron, acute> is identified as the combining character sequence, rather
than the alternative of identifying <c, dot-below> as a combining character
sequence followed by a separate (defective) combining character sequence
<caron, acute>.

Extended combining character sequence: A maximal character sequence consisting of
either an extended base followed by a sequence of one or more characters where
each is a combining character, ZERO WIDTH JOINER, O ZERO WIDTH NON-JOINER ; OF
a sequence of one or more characters where each is a combining character, ZEro
WIDTH JOINER, OI ZERO WIDTH NON-JOINER.

Combining character sequence is commonly abbreviated as CCS, and extended
combining character sequence is commonly abbreviated as ECCS.

Defective combining character sequence: A combining character sequence that does
not start with a base character.

Defective combining character sequences occur when a sequence of combining
characters appears at the start of a string or follows a control or format charac-
ter. Such sequences are defective from the point of view of handling of combin-
ing marks, but are not ill-formed. (See D84.)

Grapheme Clusters

D58

Grapheme base: A character with the property Grapheme_Base, or any standard
Korean syllable block.

Characters with the property Grapheme_Base include all base characters (with
the exception of U+FF9E..U+FF9F) plus most spacing marks.

The concept of a grapheme base is introduced to simplify discussion of the
graphical application of nonspacing marks to other elements of text. A graph-
eme base may consist of a spacing (combining) mark, which distinguishes it

Conformance 108 3.6 Combination

from a base character per se. A grapheme base may also itself consist of a
sequence of characters, in the case of the standard Korean syllable block.

+ For the definition of standard Korean syllable block, see D134 in Section 3.12,
Conjoining Jamo Behavior.

D59 Grapheme extender: A character with the property Grapheme_Extend.

+ Grapheme extender characters consist of all nonspacing marks, ZERO WIDTH
JOINER, ZERO WIDTH NON-JOINER, U+FF9E, U+FF9E and a small number of
spacing marks.

+ A grapheme extender can be conceived of primarily as the kind of nonspacing
graphical mark that is applied above or below another spacing character.

* ZERO WIDTH JOINER and ZERO WIDTH NON-JOINER are formally defined to be
grapheme extenders so that their presence does not break up a sequence of
other grapheme extenders.

+ The small number of spacing marks that have the property Grapheme_Extend
are all the second parts of a two-part combining mark.

+ The set of characters with the Grapheme_Extend property and the set of char-
acters with the Grapheme_Base property are disjoint, by definition.

D60 Grapheme cluster: The text between grapheme cluster boundaries as specified by
Unicode Standard Annex #29, “Unicode Text Segmentation.”

+ This definition of “grapheme cluster” is generic. The specification of grapheme
cluster boundary segmentation in UAX #29 includes two alternatives, for
“extended grapheme clusters” and for “legacy grapheme clusters.” Further-
more, the segmentation algorithm in UAX #29 is tailorable.

+ The grapheme cluster represents a horizontally segmentable unit of text, con-
sisting of some grapheme base (which may consist of a Korean syllable)
together with any number of nonspacing marks applied to it.

+ A grapheme cluster is similar, but not identical to a combining character
sequence. A combining character sequence starts with a base character and
extends across any subsequent sequence of combining marks, nonspacing or
spacing. A combining character sequence is most directly relevant to processing
issues related to normalization, comparison, and searching.

+ A grapheme cluster typically starts with a grapheme base and then extends
across any subsequent sequence of nonspacing marks. A grapheme cluster is
most directly relevant to text rendering and processes such as cursor placement
and text selection in editing, but may also be relevant to comparison and
searching.

+ For many processes, a grapheme cluster behaves as if it were a single character
with the same properties as its grapheme base. Effectively, nonspacing marks

Conformance 109 3.6 Combination

apply graphically to the base, but do not change its properties. For example, <x,
macron> behaves in line breaking or bidirectional layout as if it were the char-
acter x.

D61 Extended grapheme cluster: The text between extended grapheme cluster boundaries
as specified by Unicode Standard Annex #29, “Unicode Text Segmentation.”

+ Extended grapheme clusters are defined in a parallel manner to legacy graph-
eme clusters, but also include sequences of spacing marks.

+ Grapheme clusters and extended grapheme clusters may not have any particu-
lar linguistic significance, but are used to break up a string of text into units for
processing.

+ Grapheme clusters and extended grapheme clusters may be adjusted for partic-
ular processing requirements, by tailoring the rules for grapheme cluster seg-
mentation specified in Unicode Standard Annex #29, “Unicode Text
Segmentation.”

Application of Combining Marks

A number of principles in the Unicode Standard relate to the application of combining
marks. These principles are listed in this section, with an indication of which are consid-
ered to be normative and which are considered to be guidelines.

In particular, guidelines for rendering of combining marks in conjunction with other char-
acters should be considered as appropriate for defining default rendering behavior, in the
absence of more specific information about rendering. It is often the case that combining
marks in complex scripts or even particular, general-use nonspacing marks will have ren-
dering requirements that depart significantly from the general guidelines. Rendering pro-
cesses should, as appropriate, make use of available information about specific typographic
practices and conventions so as to produce best rendering of text.

To help in the clarification of the principles regarding the application of combining marks,
a distinction is made between dependence and graphical application.

D6la Dependence: A combining mark is said to depend on its associated base character.

+ The associated base character is the base character in the combining character
sequence that a combining mark is part of.

+ A combining mark in a defective combining character sequence has no associ-
ated base character and thus cannot be said to depend on any particular base
character. This is one of the reasons why fallback processing is required for
defective combining character sequences.

+ Dependence concerns all combining marks, including spacing marks and com-
bining marks that have no visible display.

Conformance 110 3.6 Combination

D61b Graphical application: A nonspacing marKk is said to apply to its associated grapheme
base.

+ The associated grapheme base is the grapheme base in the grapheme cluster
that a nonspacing mark is part of.

+ A nonspacing mark in a defective combining character sequence is not part of a
grapheme cluster and is subject to the same kinds of fallback processing as for
any defective combining character sequence.

+ Graphic application concerns visual rendering issues and thus is an issue for
nonspacing marks that have visible glyphs. Those glyphs interact, in rendering,
with their grapheme base.

Throughout the text of the standard, whenever the situation is clear, discussion of combin-
ing marks often simply talks about combining marks “applying” to their base. In the proto-
typical case of a nonspacing accent mark applying to a single base character letter, this
simplification is not problematical, because the nonspacing mark both depends (notion-
ally) on its base character and simultaneously applies (graphically) to its grapheme base,
affecting its display. The finer distinctions are needed when dealing with the edge cases,
such as combining marks that have no display glyph, graphical application of nonspacing
marks to Korean syllables, and the behavior of spacing combining marks.

The distinction made here between notional dependence and graphical application does
not preclude spacing marks or even sequences of base characters from having effects on
neighboring characters in rendering. Thus spacing forms of dependent vowels (matras) in
Indic scripts may trigger particular kinds of conjunct formation or may be repositioned in
ways that influence the rendering of other characters. (See Chapter 12, South and Central
Asia-I, for many examples.) Similarly, sequences of base characters may form ligatures in
rendering. (See “Cursive Connection and Ligatures” in Section 23.2, Layout Controls.)

The following listing specifies the principles regarding application of combining marks.
Many of these principles are illustrated in Section 2.11, Combining Characters, and
Section 7.9, Combining Marks.

P1 [Normative] Combining character order: Combining characters follow the base
character on which they depend.

+ This principle follows from the definition of a combining character sequence.

+ Thus the character sequence <U+0061 “a” LATIN SMALL LETTER A, U+0308 “”
COMBINING DIAERESIS, U+0075 “u” LATIN SMALL LETTER U> is unambiguously

interpreted (and displayed) as “4u”, not “aii”. See Figure 2-18.

P2 [Guideline] Inside-out application. Nonspacing marks with the same combining
class are generally positioned graphically outward from the grapheme base to
which they apply.

Conformance 111 3.6 Combination

+ The most numerous and important instances of this principle involve nonspac-
ing marks applied either directly above or below a grapheme base. See
Figure 2-21.

+ In a sequence of two nonspacing marks above a grapheme base, the first nons-
pacing mark is placed directly above the grapheme base, and the second is then
placed above the first nonspacing mark.

+ In a sequence of two nonspacing marks below a grapheme base, the first nons-
pacing mark is placed directly below the grapheme base, and the second is then
placed below the first nonspacing mark.

+ This rendering behavior for nonspacing marks can be generalized to sequences
of any length, although practical considerations usually limit such sequences to
no more than two or three marks above and/or below a grapheme base.

+ The principle of inside-out application is also referred to as default stacking
behavior for nonspacing marks.

P3 [Guideline] Side-by-side application. Notwithstanding the principle of inside-out
application, some specific nonspacing marks may override the default stacking
behavior and are positioned side-by-side over (or under) a grapheme base, rather
than stacking vertically.

+ Such side-by-side positioning may reflect language-specific orthographic rules,
such as for Vietnamese diacritics and tone marks or for polytonic Greek breath-
ing and accent marks. See Table 2-6.

+ Side-by-side positioning may also reflect certain writing conventions, such as
for titlo letters in the Old Church Slavonic manuscript tradition.

+ When positioned side-by-side, the visual rendering order of a sequence of non-
spacing marks reflects the dominant order of the script with which they are
used. Thus, in Greek, the first nonspacing mark in such a sequence will be posi-
tioned to the left side above a grapheme base, and the second to the right side
above the grapheme base. In Hebrew, the opposite positioning is used for side-
by-side placement.

+ The combining parentheses diacritical marks U+1ABB..U+1ABD are also posi-
tioned in a side-by-side manner, surrounding other diacritics, as described in
the subsection “Combining Diacritical Marks Extended: U+1AB0-U+1AFF” in
Section 7.9, Combining Marks.

P4 [Guideline] Traditional typographical behavior will sometimes override the
default placement or rendering of nonspacing marks.

+ Because of typographical conflict with the descender of a base character, a com-
bining comma below placed on a lowercase “g” is traditionally rendered as if it

were an inverted comma above. See Figure 7-1.

Conformance 112 3.6 Combination

p5

Pé

Because of typographical conflict with the ascender of a base character, a com-
bining hacek (caron) is traditionally rendered as an apostrophe when placed,
for example, on a lowercase “d”. See Figure 7-1.

The relative placement of vowel marks in Arabic cannot be predicted by default
stacking behavior alone, but depends on traditional rules of Arabic typography.
See Figure 9-5.

[Normative] Nondistinct order. Nonspacing marks with different, non-zero com-
bining classes may occur in different orders without affecting either the visual dis-
play of a combining character sequence or the interpretation of that sequence.

For example, if one nonspacing mark occurs above a grapheme base and
another nonspacing mark occurs below it, they will have distinct combining
classes. The order in which they occur in the combining character sequence
does not matter for the display or interpretation of the resulting grapheme clus-
ter.

The introduction of the combining class for characters and its use in canonical
ordering in the standard is to precisely define canonical equivalence and
thereby clarify exactly which such alternate sequences must be considered as
identical for display and interpretation. See Figure 2-24.

In cases of nondistinct order, the order of combining marks has no linguistic
significance. The order does not reflect how “closely bound” they are to the
base. After canonical reordering, the order may no longer reflect the typed-in
sequence. Rendering systems should be prepared to deal with common typed-in
sequences and with canonically reordered sequences. See Table 5-3.

Inserting a combining grapheme joiner between two combining marks with
nondistinct order prevents their canonical reordering. For more information,
see “Combining Grapheme Joiner” in Section 23.2, Layout Controls.

[Guideline] Enclosing marks surround their grapheme base and any intervening
nonspacing marks.

This implies that enclosing marks successively surround previous enclosing

marks. See Figure 3-1.

Figure 3-1. Enclosing Marks

a+[@+5+0 - @

09A4 20DE 0308 20DD

Dynamic application of enclosing marks—particularly sequences of enclosing
marks—is beyond the capability of most fonts and simple rendering processes.
It is not unexpected to find fallback rendering in cases such as that illustrated in
Figure 3-1.

Conformance 113 3.6 Combination

P7 [Guideline] Double diacritic nonspacing marks, such as U+0360 COMBINING DOU-

P8

P9

BLE TILDE, apply to their grapheme base, but are intended to be rendered with
glyphs that encompass a following grapheme base as well.

+ Because such double diacritic display spans combinations of elements that

would otherwise be considered grapheme clusters, the support of double dia-
critics in rendering may involve special handling for cursor placement and text
selection. See Figure 7-9 for an example.

[Guideline] When double diacritic nonspacing marks interact with normal nons-
pacing marks in a grapheme cluster, they “float” to the outermost layer of the stack
of rendered marks (either above or below).

+ This behavior can be conceived of as a kind of looser binding of such double

diacritics to their bases. In effect, all other nonspacing marks are applied first,
and then the double diacritic will span the resulting stacks. See Figure 7-10 for
an example.

+ Double diacritic nonspacing marks are also given a very high combining class,

so that in canonical order they appear at or near the end of any combining
character sequence. Figure 7-11 shows an example of the use of CGJ to block
this reordering.

+ The interaction of enclosing marks and double diacritics is not well defined

graphically. Many fonts and rendering processes may not be able to handle
combinations of these marks. It is not recommended to use combinations of
these together in the same grapheme cluster.

[Guideline] When a nonspacing mark above—that is, a combining mark with
ccc=230—is applied to the letters i and j or any other character with the
Soft_Dotted property, the inherent dot on the base character is suppressed in dis-

play.

+ See Figure 7-2 for an example.

+ For languages such as Lithuanian, in which both a dot and an accent must be

displayed, use U+0307 COMBINING DOT ABOVE. For guidelines in handling this
situation in case mapping, see Section 5.18, Case Mappings.

Combining Marks and Korean Syllables. When a grapheme cluster comprises a Korean
syllable, a combining mark applies to that entire syllable. For example, in the following
sequence the grave is applied to the entire Korean syllable, not just to the last jamo:

U+1100 1 choseong kiyeok + U+1161 } jungseong a + U+0300 > grave —
7}

If the combining mark in question is an enclosing combining mark, then it would enclose
the entire Korean syllable, rather than the last jamo in it:

U+1100 -1 choseong kiyeok + U+1161 } jungseong a + U+20DD ©
enclosing circle — (71)

Conformance 114 3.6 Combination

This treatment of the application of combining marks with respect to Korean syllables fol-
lows from the implications of canonical equivalence. It should be noted, however, that
older implementations may have supported the application of an enclosing combining
mark to an entire Indic consonant conjunct or to a sequence of grapheme clusters linked
together by combining grapheme joiners. Such an approach has a number of technical
problems and leads to interoperability defects, so it is strongly recommended that imple-
mentations do not follow it.

For more information on the recommended use of the combining grapheme joiner, see the
subsection “Combining Grapheme Joiner” in Section 23.2, Layout Controls. For more dis-
cussion regarding the application of combining marks in general, see Section 7.9, Combin-
ing Marks.

Conformance 115 3.7 Decomposition

3.7 Decomposition

D62

D63

D64

Decomposition mapping: A mapping from a character to a sequence of one or more
characters that is a canonical or compatibility equivalent, and that is listed in the
character names list or described in Section 3.12, Conjoining Jamo Behavior.

Each character has at most one decomposition mapping. The mappings in
Section 3.12, Conjoining Jamo Behavior, are canonical mappings. The mappings
in the character names list are identified as either canonical or compatibility
mappings (see Section 24.1, Character Names List).

Decomposable character: A character that is equivalent to a sequence of one or more
other characters, according to the decomposition mappings found in the Unicode
Character Database, and those described in Section 3.12, Conjoining Jamo Behavior.

A decomposable character is also referred to as a precomposed character or com-
posite character.

The decomposition mappings from the Unicode Character Database are also
given in Section 24.1, Character Names List.

Decomposition: A sequence of one or more characters that is equivalent to a decom-
posable character. A full decomposition of a character sequence results from decom-
posing each of the characters in the sequence until no characters can be further
decomposed.

Compatibility Decomposition

Dé65

Do66

Compatibility decomposition: The decomposition of a character or character
sequence that results from recursively applying both the compatibility mappings and
the canonical mappings found in the Unicode Character Database, and those
described in Section 3.12, Conjoining Jamo Behavior, until no characters can be fur-
ther decomposed, and then reordering nonspacing marks according to Section 3.11,
Normalization Forms.

The decomposition mappings from the Unicode Character Database are also
given in Section 24.1, Character Names List.

Some compatibility decompositions remove formatting information.

Compatibility decomposable character: A character whose compatibility decomposi-
tion is not identical to its canonical decomposition. It may also be known as a com-
patibility precomposed character or a compatibility composite character.

For example, U+00B5 MICRO SIGN has no canonical decomposition mapping,
so its canonical decomposition is the same as the character itself. It has a com-
patibility decomposition to U+03BC GREEK SMALL LETTER MU. Because MICRO
SIGN has a compatibility decomposition that is not equal to its canonical
decomposition, it is a compatibility decomposable character.

Conformance 116 3.7 Decomposition

+ For example, U+03D3 GREEK UPSILON WITH ACUTE AND HOOK SYMBOL canon-
ically decomposes to the sequence <U+03D2 GREEK UPSILON WITH HOOK SYM-
BoL, U+0301 COMBINING ACUTE ACCENT>. That sequence has a compatibility
decomposition of <U+03A5 GREEK CAPITAL LETTER UPSILON, U+0301 com-
BINING ACUTE ACCENT>. Because GREEK UPSILON WITH ACUTE AND HOOK SYM-
BoL has a compatibility decomposition that is not equal to its canonical
decomposition, it is a compatibility decomposable character.

+ This term should not be confused with the term “compatibility character,”
which is discussed in Section 2.3, Compatibility Characters.

+ Many compatibility decomposable characters are included in the Unicode
Standard solely to represent distinctions in other base standards. They support
transmission and processing of legacy data. Their use is discouraged other than
for legacy data or other special circumstances.

+ Some widely used and indispensable characters, such as NBSP, are compatibil-
ity decomposable characters for historical reasons. Their use is not discour-
aged.

+ A large number of compatibility decomposable characters are used in phonetic
and mathematical notation, where their use is not discouraged.

+ For historical reasons, some characters that might have been given a compati-
bility decomposition were not, in fact, decomposed. The Normalization Stabil-
ity Policy prohibits adding decompositions for such cases in the future, so that
normalization forms will stay stable. See the subsection “Policies” in
Section B.6, Other Unicode Online Resources.

+ Replacing a compatibility decomposable character by its compatibility decom-
position may lose round-trip convertibility with a base standard.

D67 Compatibility equivalent: Two character sequences are said to be compatibility
equivalents if their full compatibility decompositions are identical.

Canonical Decomposition

D68 Canonical decomposition: The decomposition of a character or character sequence
that results from recursively applying the canonical mappings found in the Unicode
Character Database and those described in Section 3.12, Conjoining Jamo Behavior,
until no characters can be further decomposed, and then reordering nonspacing
marks according to Section 3.11, Normalization Forms.

+ The decomposition mappings from the Unicode Character Database are also
printed in Section 24.1, Character Names List.

+ A canonical decomposition does not remove formatting information.

Conformance 117 3.7 Decomposition

D69 Canonical decomposable character: A character that is not identical to its canonical
decomposition. It may also be known as a canonical precomposed character or a
canonical composite character.

+ For example, U+00E0 LATIN SMALL LETTER A WITH GRAVE is a canonical
decomposable character because its canonical decomposition is to the sequence
<U+0061 LATIN SMALL LETTER A, U+0300 COMBINING GRAVE ACCENT>.
U+212A KELVIN SIGN is a canonical decomposable character because its canon-
ical decomposition is to U+004B LATIN CAPITAL LETTER K.

D70 Canonical equivalent: Two character sequences are said to be canonical equivalents if
their full canonical decompositions are identical.

+ For example, the sequences <o, combining-diaeresis> and <> are canonical
equivalents. Canonical equivalence is a Unicode property. It should not be con-
fused with language-specific collation or matching, which may add other
equivalencies. For example, in Swedish, 4 is treated as a completely different let-
ter from o and is collated after z. In German, ¢ is weakly equivalent to oe and is
collated with oe. In English, ¢ is just an o with a diacritic that indicates that it is
pronounced separately from the previous letter (as in codperate) and is collated
with o.

+ By definition, all canonical-equivalent sequences are also compatibility-equiva-
lent sequences.

For information on the use of decomposition in normalization, see Section 3.11, Normal-
ization Forms.

Conformance 118 3.8 Surrogates

3.8 Surrogates

D71
D72

D73
D74

D75

High-surrogate code point: A Unicode code point in the range U+D800 to U+DBFE.

High-surrogate code unit: A 16-bit code unit in the range D800;, to DBFF ¢, used in
UTF-16 as the leading code unit of a surrogate pair.

Low-surrogate code point: A Unicode code point in the range U+DC00 to U+DEFFE.

Low-surrogate code unit: A 16-bit code unit in the range DC00;¢ to DFFF;¢, used in
UTF-16 as the trailing code unit of a surrogate pair.

High-surrogate and low-surrogate code points are designated only for that use.

High-surrogate and low-surrogate code units are used only in the context of the
UTEF-16 character encoding form.

Surrogate pair: A representation for a single abstract character that consists of a
sequence of two 16-bit code units, where the first value of the pair is a high-surro-
gate code unit and the second value is a low-surrogate code unit.

Surrogate pairs are used only in UTF-16. (See Section 3.9, Unicode Encoding
Forms.)

Isolated surrogate code units have no interpretation on their own. Certain
other isolated code units in other encoding forms also have no interpretation
on their own. For example, the isolated byte 80,4 has no interpretation in UTF-
8; it can be used only as part of a multibyte sequence. (See Table 3-7.)

Sometimes high-surrogate code units are referred to as leading surrogates. Low-
surrogate code units are then referred to as trailing surrogates. This is analogous
to usage in UTF-8, which has leading bytes and trailing bytes.

For more information, see Section 23.6, Surrogates Area, and Section 5.4, Han-
dling Surrogate Pairs in UTF-16.

Conformance 119 3.9 Unicode Encoding Forms

3.9 Unicode Encoding Forms

The Unicode Standard supports three character encoding forms: UTF-32, UTF-16, and
UTF-8. Each encoding form maps the Unicode code points U+0000..U+D7FF and
U+E000..U+10FFFF to unique code unit sequences. The size of the code unit is specified
for each encoding form. This section presents the formal definition of each of these encod-

ing forms.

D76

D77

D78

Unicode scalar value: Any Unicode code point except high-surrogate and low-surro-

gate code points.

As a result of this definition, the set of Unicode scalar values consists of the
ranges 0 to D7FF;q and E000,4 to 10FFFF, inclusive.

Code unit: The minimal bit combination that can represent a unit of encoded text

for processing or interchange.

Code units are particular units of computer storage. Other character encoding
standards typically use code units defined as 8-bit units—that is, octets. The
Unicode Standard uses 8-bit code units in the UTF-8 encoding form, 16-bit
code units in the UTF-16 encoding form, and 32-bit code units in the UTF-32
encoding form.

A code unit is also referred to as a code value in the information industry.

In the Unicode Standard, specific values of some code units cannot be used to
represent an encoded character in isolation. This restriction applies to isolated
surrogate code units in UTF-16 and to the bytes 80-FF in UTF-8. Similar
restrictions apply for the implementations of other character encoding stan-
dards; for example, the bytes 81-9F, EO—FC in SJIS (Shift-JIS) cannot represent
an encoded character by themselves.

For information on use of wchar t or other programming language types to
represent Unicode code units, see “ANSI/ISO C wchar_t” in Section 5.2, Pro-
gramming Languages and Data Types.

Code unit sequence: An ordered sequence of one or more code units.

When the code unit is an 8-bit unit, a code unit sequence may also be referred
to as a byte sequence.

A code unit sequence may consist of a single code unit.

In the context of programming languages, the value of a string data type basi-
cally consists of a code unit sequence. Informally, a code unit sequence is itself
just referred to as a string, and a byte sequence is referred to as a byte string. Care
must be taken in making this terminological equivalence, however, because the
formally defined concept of a string may have additional requirements or com-
plications in programming languages. For example, a string is defined as a
pointer to char in the C language and is conventionally terminated with a NULL

Conformance 120 3.9 Unicode Encoding Forms

character. In object-oriented languages, a string is a complex object, with asso-
ciated methods, and its value may or may not consist of merely a code unit
sequence.

+ Depending on the structure of a character encoding standard, it may be neces-
sary to use a code unit sequence (of more than one unit) to represent a single
encoded character. For example, the code unit in SJIS is a byte: encoded charac-
ters such as “a” can be represented with a single byte in SJIS, whereas ideo-
graphs require a sequence of two code units. The Unicode Standard also makes

use of code unit sequences whose length is greater than one code unit.

D79 A Unicode encoding form assigns each Unicode scalar value to a unique code unit
sequence.

+ For historical reasons, the Unicode encoding forms are also referred to as Uni-
code (or UCS) transformation formats (UTF). That term is actually ambiguous
between its usage for encoding forms and encoding schemes.

+ The mapping of the set of Unicode scalar values to the set of code unit
sequences for a Unicode encoding form is one-to-one. This property guarantees
that a reverse mapping can always be derived. Given the mapping of any Uni-
code scalar value to a particular code unit sequence for a given encoding form,
one can derive the original Unicode scalar value unambiguously from that code
unit sequence.

+ The mapping of the set of Unicode scalar values to the set of code unit
sequences for a Unicode encoding form is not onto. In other words, for any
given encoding form, there exist code unit sequences that have no associated
Unicode scalar value.

+ To ensure that the mapping for a Unicode encoding form is one-to-one, all
Unicode scalar values, including those corresponding to noncharacter code
points and unassigned code points, must be mapped to unique code unit
sequences. Note that this requirement does not extend to high-surrogate and
low-surrogate code points, which are excluded by definition from the set of
Unicode scalar values.

D80 Unicode string: A code unit sequence containing code units of a particular Unicode
encoding form.

+ In the rawest form, Unicode strings may be implemented simply as arrays of
the appropriate integral data type, consisting of a sequence of code units lined
up one immediately after the other.

+ A single Unicode string must contain only code units from a single Unicode
encoding form. It is not permissible to mix forms within a string.

D81 Unicode 8-bit string: A Unicode string containing only UTF-8 code units.

D82 Unicode 16-bit string: A Unicode string containing only UTF-16 code units.

Conformance 121 3.9 Unicode Encoding Forms

D83
D84

Unicode 32-bit string: A Unicode string containing only UTF-32 code units.

Ill-formed: A Unicode code unit sequence that purports to be in a Unicode encoding
form is called ill-formed if and only if it does not follow the specification of that Uni-
code encoding form.

+ Any code unit sequence that would correspond to a code point outside the

defined range of Unicode scalar values would, for example, be ill-formed.

+ UTF-8 has some strong constraints on the possible byte ranges for leading and

D84a

trailing bytes. A violation of those constraints would produce a code unit
sequence that could not be mapped to a Unicode scalar value, resulting in an
ill-formed code unit sequence.

Ill-formed code unit subsequence: A non-empty subsequence of a Unicode code unit
sequence X which does not contain any code units which also belong to any minimal
well-formed subsequence of X.

+ In other words, an ill-formed code unit subsequence cannot overlap with a

D85

D85a

minimal well-formed subsequence.

Well-formed: A Unicode code unit sequence that purports to be in a Unicode encod-
ing form is called well-formed if and only if it does follow the specification of that
Unicode encoding form.

Minimal well-formed code unit subsequence: A well-formed Unicode code unit
sequence that maps to a single Unicode scalar value.

+ For UTEF-38, see the specification in D92 and Table 3-7.

+ For UTF-16, see the specification in D91.

+ For UTF-32, see the specification in D90.

A well-formed Unicode code unit sequence can be partitioned into one or more minimal
well-formed code unit sequences for the given Unicode encoding form. Any Unicode code
unit sequence can be partitioned into subsequences that are either well-formed or ill-
formed. The sequence as a whole is well-formed if and only if it contains no ill-formed sub-
sequence. The sequence as a whole is ill-formed if and only if it contains at least one ill-
formed subsequence.

D86

Well-formed UTF-8 code unit sequence: A well-formed Unicode code unit sequence
of UTF-8 code units.

+ The UTF-8 code unit sequence <41 C3 B1 42> is well-formed, because it can be

partitioned into subsequences, all of which match the specification for UTF-8
in Table 3-7. It consists of the following minimal well-formed code unit subse-
quences: <41>, <C3 B1>, and <42>.

+ The UTF-8 code unit sequence <41 C2 C3 B1 42> is ill-formed, because it con-

tains one ill-formed subsequence. There is no subsequence for the C2 byte
which matches the specification for UTF-8 in Table 3-7. The code unit sequence

Conformance 122 3.9 Unicode Encoding Forms

is partitioned into one minimal well-formed code unit subsequence, <41>, fol-
lowed by one ill-formed code unit subsequence, <C2>, followed by two mini-
mal well-formed code unit subsequences, <C3 B1> and <42>.

+ In isolation, the UTF-8 code unit sequence <C2 C3> would be ill-formed, but
in the context of the UTF-8 code unit sequence <41 C2 C3 Bl 42>, <C2 C3>
does not constitute an ill-formed code unit subsequence, because the C3 byte is
actually the first byte of the minimal well-formed UTF-8 code unit subse-
quence <C3 B1>. Ill-formed code unit subsequences do not overlap with mini-
mal well-formed code unit subsequences.

D87 Well-formed UTF-16 code unit sequence: A well-formed Unicode code unit sequence
of UTF-16 code units.

D88 Well-formed UTF-32 code unit sequence: A well-formed Unicode code unit sequence
of UTF-32 code units.

D89 In a Unicode encoding form: A Unicode string is said to be in a particular Unicode
encoding form if and only if it consists of a well-formed Unicode code unit sequence
of that Unicode encoding form.

+ A Unicode string consisting of a well-formed UTF-8 code unit sequence is said
to be in UTF-8. Such a Unicode string is referred to as a valid UTF-8 string, or a
UTF-8 string for short.

+ A Unicode string consisting of a well-formed UTF-16 code unit sequence is said
to be in UTF-16. Such a Unicode string is referred to as a valid UTF-16 string,
or a UTF-16 string for short.

+ A Unicode string consisting of a well-formed UTF-32 code unit sequence is said
to be in UTF-32. Such a Unicode string is referred to as a valid UTF-32 string,
or a UTF-32 string for short.

Unicode strings need not contain well-formed code unit sequences under all conditions.
This is equivalent to saying that a particular Unicode string need not be in a Unicode
encoding form.

+ For example, it is perfectly reasonable to talk about an operation that takes the
two Unicode 16-bit strings, <004D D800> and <DF02 004D>, each of which
contains an ill-formed UTF-16 code unit sequence, and concatenates them to
form another Unicode string <004D D800 DF02 004D>, which contains a well-
formed UTF-16 code unit sequence. The first two Unicode strings are not in
UTE-16, but the resultant Unicode string is.

+ As another example, the code unit sequence <C0 80 61 F3> is a Unicode 8-bit
string, but does not consist of a well-formed UTF-8 code unit sequence. That
code unit sequence could not result from the specification of the UTF-8 encod-
ing form and is thus ill-formed. (The same code unit sequence could, of course,
be well-formed in the context of some other character encoding standard using
8-bit code units, such as ISO/IEC 8859-1, or vendor code pages.)

Conformance 123 3.9 Unicode Encoding Forms

If a Unicode string purports to be in a Unicode encoding form, then it must not contain any
ill-formed code unit subsequence.

If a process which verifies that a Unicode string is in a Unicode encoding form encounters
an ill-formed code unit subsequence in that string, then it must not identify that string as
being in that Unicode encoding form.

A process which interprets a Unicode string must not interpret any ill-formed code unit
subsequences in the string as characters. (See conformance clause C10.) Furthermore, such
a process must not treat any adjacent well-formed code unit sequences as being part of
those ill-formed code unit sequences.

Table 3-4 gives examples that summarize the three Unicode encoding forms.

Table 3-4. Examples of Unicode Encoding Forms

Code Point Encoding Form Code Unit Sequence

U+004D UTEF-32 0000004D
UTEF-16 004D
UTEF-8 4D

U+0430 UTE-32 00000430
UTEF-16 0430
UTE-8 DO BO

U+4E8C UTEF-32 00004E8C
UTEF-16 4E8C
UTE-8 E4 BA 8C

U+10302 UTE-32 00010302
UTEF-16 D800 DF02
UTF-8 F0 90 8C 82

UTF-32

D90 UTF-32 encoding form: The Unicode encoding form that assigns each Unicode scalar
value to a single unsigned 32-bit code unit with the same numeric value as the Uni-
code scalar value.

+ In UTF-32, the code point sequence <004D, 0430, 4E8C, 10302> is represented
as <0000004D 00000430 00004E8C 00010302>.

+ Because surrogate code points are not included in the set of Unicode scalar val-
ues, UTF-32 code units in the range 0000D800;..0000DFFF ¢4 are ill-formed.

+ Any UTF-32 code unit greater than 0010FFFF is ill-formed.

For a discussion of the relationship between UTF-32 and UCS-4 encoding form defined in
ISO/IEC 10646, see Section C.2, Encoding Forms in ISO/IEC 10646.

Conformance 124 3.9 Unicode Encoding Forms

UTF-16

D91

UTF-16 encoding form: The Unicode encoding form that assigns each Unicode scalar
value in the ranges U+0000..U+D7FF and U+E000..U+FFFF to a single unsigned
16-bit code unit with the same numeric value as the Unicode scalar value, and that
assigns each Unicode scalar value in the range U+10000..U+10FFFF to a surrogate
pair, according to Table 3-5.

In UTEF-16, the code point sequence <004D, 0430, 4E8C, 10302> is represented
as <004D 0430 4E8C D800 DF02>, where <D800 DF02> corresponds to
U+10302.

Because surrogate code points are not Unicode scalar values, isolated UTF-16
code units in the range D800, 4..DFFF, 4 are ill-formed.

Table 3-5 specifies the bit distribution for the UTF-16 encoding form. Note that for Uni-
code scalar values equal to or greater than U+10000, UTF-16 uses surrogate pairs. Calcula-
tion of the surrogate pair values involves subtraction of 10000, to account for the starting
offset to the scalar value. ISO/IEC 10646 specifies an equivalent UTF-16 encoding form.
For details, see Section C.3, UTF-8 and UTF-16.

Table 3-5. UTF-16 Bit Distribution

Scalar Value UTF-16

XXXXXXXXXXXXXXXX | XXXXXXXXXXXXXXXX

000uuuUUXXXXXXXXXXXXXXXX | 1101 10wwwwxxxxxx 110111 XXXXXXXXXX

Note: wwww = uuuuu - 1

UTF-8
D92 UTF-8 encoding form: The Unicode encoding form that assigns each Unicode scalar

value to an unsigned byte sequence of one to four bytes in length, as specified in
Table 3-6 and Table 3-7.

In UTF-8, the code point sequence <004D, 0430, 4E8C, 10302> is represented
as <4D DO B0 E4 BA 8C F0 90 8C 82>, where <4D> corresponds to U+004D,
<D0 BO> corresponds to U+0430, <E4 BA 8C> corresponds to U+4E8C, and
<F0 90 8C 82> corresponds to U+10302.

Any UTF-8 byte sequence that does not match the patterns listed in Table 3-7 is
ill-formed.

Before the Unicode Standard, Version 3.1, the problematic “non-shortest form”
byte sequences in UTF-8 were those where BMP characters could be repre-
sented in more than one way. These sequences are ill-formed, because they are
not allowed by Table 3-7.

Conformance

125

3.9 Unicode Encoding Forms

+ Because surrogate code points are not Unicode scalar values, any UTF-8 byte
sequence that would otherwise map to code points U+D800..U+DFFF is ill-

formed.

Table 3-6 specifies the bit distribution for the UTF-8 encoding form, showing the ranges of
Unicode scalar values corresponding to one-, two-, three-, and four-byte sequences. For a
discussion of the difference in the formulation of UTE-8 in ISO/IEC 10646, see Section C.3,
UTF-8 and UTF-16.

Table 3-6. UTEF-8 Bit Distribution

Scalar Value First Byte Second Byte | Third Byte | Fourth Byte
00000000 OxxxxxXX 0xXXXXXXX

00000yyy yyxxxxxx 110yyyyy 10xxxxxx

ZZZZYYYY YYXXXXXX 1110zzzz 10yyyyyy 10xxxxxx

000uuuuu zzzzyyyy yyxxxxxx |11110uuu 10uuzzzz 10yyyyyy 10xxxxxX

Table 3-7 lists all of the byte sequences that are well-formed in UTF-8. A range of byte val-
ues such as A0..BF indicates that any byte from A0 to BF (inclusive) is well-formed in that
position. Any byte value outside of the ranges listed is ill-formed. For example:

+ The byte sequence <CO AF> is ill-formed, because CO0 is not well-formed in the
“First Byte” column.

+ The byte sequence <E0 9F 80> is ill-formed, because in the row where EO is
well-formed as a first byte, 9F is not well-formed as a second byte.

+ The byte sequence <F4 80 83 92> is well-formed, because every byte in that
sequence matches a byte range in a row of the table (the last row).

Table 3-7. Well-Formed UTF-8 Byte Sequences

Code Points First Byte Second Byte | Third Byte | Fourth Byte
U+0000..U+007F 00..7F

U+0080..U+07FF C2..DF 80..BF

U+0800..U+0FFF EO AO0..BF 80..BF

U+1000..U+CFFF E1.EC 80..BF 80..BF

U+D000..U+D7FF ED 80..9F 80..BF

U+E000..U+FFFF EE..EF 80..BF 80..BF

U+10000..U+3FFFF FO 90..BF 80..BF 80..BF
U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
U+100000..U+10FFFF |F4 80..8F 80..BF 80..BF

In Table 3-7, cases where a trailing byte range is not 80..BF are shown in bold italic to draw
attention to them. These exceptions to the general pattern occur only in the second byte of
a sequence.

Conformance 126 3.9 Unicode Encoding Forms

As a consequence of the well-formedness conditions specified in Table 3-7, the following
byte values are disallowed in UTF-8: C0-C1, F5-FE

Encoding Form Conversion

D93 Encoding form conversion: A conversion defined directly between the code unit
sequences of one Unicode encoding form and the code unit sequences of another
Unicode encoding form.

+ In implementations of the Unicode Standard, a typical API will logically convert
the input code unit sequence into Unicode scalar values (code points) and then
convert those Unicode scalar values into the output code unit sequence. Proper
analysis of the encoding forms makes it possible to convert the code units
directly, thereby obtaining the same results but with a more efficient process.

+ A conformant encoding form conversion will treat any ill-formed code unit
sequence as an error condition. (See conformance clause C10.) This guarantees
that it will neither interpret nor emit an ill-formed code unit sequence. Any
implementation of encoding form conversion must take this requirement into
account, because an encoding form conversion implicitly involves a verification
that the Unicode strings being converted do, in fact, contain well-formed code
unit sequences.

Constraints on Conversion Processes

The requirement not to interpret any ill-formed code unit subsequences in a string as char-
acters (see conformance clause C10) has important consequences for conversion processes.
Such processes may, for example, interpret UTF-8 code unit sequences as Unicode charac-
ter sequences. If the converter encounters an ill-formed UTF-8 code unit sequence which
starts with a valid first byte, but which does not continue with valid successor bytes (see
Table 3-7), it must not consume the successor bytes as part of the ill-formed subsequence
whenever those successor bytes themselves constitute part of a well-formed UTF-8 code
unit subsequence.

If an implementation of a UTF-8 conversion process stops at the first error encountered,
without reporting the end of any ill-formed UTF-8 code unit subsequence, then the
requirement makes little practical difference. However, the requirement does introduce a
significant constraint if the UTF-8 converter continues past the point of a detected error,
perhaps by substituting one or more U+FFFD replacement characters for the uninterpreta-
ble, ill-formed UTF-8 code unit subsequence. For example, with the input UTF-8 code unit
sequence <C2 41 42>, such a UTF-8 conversion process must not return <U+FFFD> or
<U+FFFD, U+0042>, because either of those outputs would be the result of misinterpret-
ing a well-formed subsequence as being part of the ill-formed subsequence. The expected
return value for such a process would instead be <U+FFFD, U+0041, U+0042>.

Conformance 127 3.9 Unicode Encoding Forms

For a UTF-8 conversion process to consume valid successor bytes is not only non-confor-
mant, but also leaves the converter open to security exploits. See Unicode Technical Report
#36, “Unicode Security Considerations.”

Although a UTF-8 conversion process is required to never consume well-formed subse-
quences as part of its error handling for ill-formed subsequences, such a process is not oth-
erwise constrained in how it deals with any ill-formed subsequence itself. An ill-formed
subsequence consisting of more than one code unit could be treated as a single error or as
multiple errors. For example, in processing the UTF-8 code unit sequence <F0 80 80 41>,
the only formal requirement mandated by Unicode conformance for a converter is that the
<41> be processed and correctly interpreted as <U+0041>. The converter could return
<U+FFFD, U+0041>, handling <F0 80 80> as a single error, or <U+FFFD, U+FFED,
U+FFFED, U+0041>, handling each byte of <F0 80 80> as a separate error, or could take
other approaches to signalling <F0 80 80> as an ill-formed code unit subsequence.

Best Practices for Using U+FFFD. When using U+FFFD to replace ill-formed subse-
quences encountered during conversion, there are various logically possible approaches to
associate U+FFFD with all or part of an ill-formed subsequence. To promote interoperabil-
ity in the implementation of conversion processes, the Unicode Standard recommends a
particular best practice. The following definitions simplify the discussion of this best prac-
tice:

D93a Unconvertible offset: An offset in a code unit sequence for which no code unit subse-
quence starting at that offset is well-formed.

D93b Maximal subpart of an ill-formed subsequence: The longest code unit subsequence
starting at an unconvertible offset that is either:

a. the initial subsequence of a well-formed code unit sequence, or
b. a subsequence of length one.

+ The term maximal subpart of an ill-formed subsequence can be abbreviated to
maximal subpart when it is clear in context that the subsequence in question is
ill-formed.

+ This definition can be trivially applied to the UTF-32 or UTF-16 encoding
forms, but is primarily of interest when converting UTF-8 strings.

+ For example, in the ill-formed UTF-8 sequence <41 CO AF 41 F4 80 80 41>,
there are two ill-formed subsequences: <C0O AF> and <F4 80 80>, each sepa-
rated by <41>, which is well-formed. Applying the definition of maximal sub-
parts for these ill-formed subsequences, in the first case <C0> is a maximal
subpart, because that byte value can never be the first byte of a well-formed
UTF-8 sequence. In the second subsequence, <F4 80 80> is a maximal subpart,
because up to that point all three bytes match the specification for UTF-8. It is
only when followed by <41> that the sequence of <F4 80 80> can be deter-
mined to be ill-formed, because the specification requires a following byte in
the range 80..BF, instead.

Conformance 128 3.9 Unicode Encoding Forms

*+ Another example illustrates the application of the concept of maximal subpart
for UTF-8 continuation bytes outside the allowable ranges defined in Table 3-7.
The UTF-8 sequence <41 E0 9F 80 41> is ill-formed, because <9F> is not an
allowed second byte of a UTF-8 sequence commencing with <E0>. In this case,
there is an unconvertible offset at <E0> and the maximal subpart at that offset
is also <E0>. The subsequence <E0 9F> cannot be a maximal subpart, because
it is not an initial subsequence of any well-formed UTF-8 code unit sequence.

Using the definition for maximal subpart, the best practice can be stated simply as:

Whenever an unconvertible offset is reached during conversion of a code
unit sequence:

1. The maximal subpart at that offset should be replaced by a single
U+FFFD.

2. The conversion should proceed at the offset immediately after the max-
imal subpart.

This sounds complicated, but it reflects the way optimized conversion processes are typi-
cally constructed, particularly for UTF-8. A sequence of code units will be processed up to
the point where the sequence either can be unambiguously interpreted as a particular Uni-
code code point or where the converter recognizes that the code units collected so far con-
stitute an ill-formed subsequence. At that point, the converter can emit a single U+FFFD
for the collected (but ill-formed) code unit(s) and move on, without having to further
accumulate state. The maximal subpart could be the start of a well-formed sequence,
except that the sequence lacks the proper continuation. Alternatively, the converter may
have found a continuation code unit or some other code unit which cannot be the start of
a well-formed sequence.

To illustrate this policy, consider the ill-formed UTF-8 sequence <61 F1 80 80 E1 80 C2 62
80 63 80 BF 64>. Possible alternative approaches for a UTF-8 converter using U+FFFD are
illustrated in Table 3-8.

Table 3-8. Use of U+FFFD in UTF-8 Conversion

61 F1 80 80 El 80 C2 62 80 63 80 BF 64

0061 |FFFD 0062 |FFFD |0063 |FFFD 0064
2 0061 |FFFD FFFD FFFD |0062 |FFFD |0063 |FFFD |FFFD |0064
0061 |FFFD |FFFED |FFFD |FFFD |FFFD |FFED [0062 |FFFD |0063 |FFFD |FFFD 0064

The recommended conversion policy would have the outcome shown in Row 2 of
Table 3-8, rather than Row 1 or Row 3. For example, a UTF-8 converter would detect that
<F1 80 80> constituted a maximal subpart of the ill-formed subsequence as soon as it
encountered the subsequent code unit <E1>, so at that point, it would emit a single
U+FFED and then continue attempting to convert from the <E1> code unit—and so forth
to the end of the code unit sequence to convert. The UTF-8 converter would detect that the
code unit <80> in the sequence <62 80 63> is not well-formed, and would replace it by

Conformance 129 3.9 Unicode Encoding Forms

U+FFFD. Neither of the code units <80> or <BF> in the sequence <63 80 BF 64> is the
start of a potentially well-formed sequence; therefore each of them is separately replaced by
U+FFED. For a discussion of the generalization of this approach for conversion of other
character sets to Unicode, see Section 5.22, Best Practice for U+FFFD Substitution.

Conformance 130 3.10 Unicode Encoding Schemes

3.10 Unicode Encoding Schemes

D94 Unicode encoding scheme: A specified byte serialization for a Unicode encoding
form, including the specification of the handling of a byte order mark (BOM), if
allowed.

+ For historical reasons, the Unicode encoding schemes are also referred to as
Unicode (or UCS) transformation formats (UTF). That term is, however, ambig-
uous between its usage for encoding forms and encoding schemes.

The Unicode Standard supports seven encoding schemes. This section presents the formal
definition of each of these encoding schemes.

D95 UTF-8 encoding scheme: The Unicode encoding scheme that serializes a UTF-8 code
unit sequence in exactly the same order as the code unit sequence itself.

+ In the UTF-8 encoding scheme, the UTF-8 code unit sequence <4D D0 B0 E4
BA 8C F0 90 8C 82> is serialized as <4D D0 B0 E4 BA 8C F0 90 8C 82>.

+ Because the UTF-8 encoding form already deals in ordered byte sequences, the
UTF-8 encoding scheme is trivial. The byte ordering is already obvious and
completely defined by the UTF-8 code unit sequence itself. The UTF-8 encod-
ing scheme is defined merely for completeness of the Unicode character encod-
ing model.

+ While there is obviously no need for a byte order signature when using UTF-8,
there are occasions when processes convert UTF-16 or UTF-32 data containing
a byte order mark into UTF-8. When represented in UTF-8, the byte order
mark turns into the byte sequence <EF BB BF>. Its usage at the beginning of a
UTF-8 data stream is neither required nor recommended by the Unicode Stan-
dard, but its presence does not affect conformance to the UTF-8 encoding
scheme. Identification of the <EF BB BF> byte sequence at the beginning of a
data stream can, however, be taken as a near-certain indication that the data
stream is using the UTF-8 encoding scheme.

D96 UTF-16BE encoding scheme: The Unicode encoding scheme that serializes a UTF-16
code unit sequence as a byte sequence in big-endian format.

+ In UTF-16BE, the UTF-16 code unit sequence <004D 0430 4E8C D800 DF02>
is serialized as <00 4D 04 30 4E 8C D8 00 DF 02>.

+ In UTF-16BE, an initial byte sequence <FE FF> is interpreted as U+FEFF zero
WIDTH NO-BREAK SPACE.

D97 UTF-16LE encoding scheme: The Unicode encoding scheme that serializes a UTF-16
code unit sequence as a byte sequence in little-endian format.

+ In UTF-16LE, the UTF-16 code unit sequence <004D 0430 4E8C D800 DF02>
is serialized as <4D 00 30 04 8C 4E 00 D8 02 DF>.

Conformance 131 3.10 Unicode Encoding Schemes

+ In UTF-16LE, an initial byte sequence <FF FE> is interpreted as U+FEFF zero
WIDTH NO-BREAK SPACE.

D98 UTEF-16 encoding scheme: The Unicode encoding scheme that serializes a UTF-16
code unit sequence as a byte sequence in either big-endian or little-endian format.

+ In the UTF-16 encoding scheme, the UTF-16 code unit sequence <004D 0430
4F8C D800 DF02> is serialized as <FE FF 00 4D 04 30 4E 8C D8 00 DF 02> or
<FF FE 4D 00 30 04 8C 4E 00 D8 02 DF> or <00 4D 04 30 4E 8C D8 00 DF 02>.

+ In the UTF-16 encoding scheme, an initial byte sequence corresponding to
U-+FEFF is interpreted as a byte order mark; it is used to distinguish between
the two byte orders. An initial byte sequence <FE FF> indicates big-endian
order, and an initial byte sequence <FF FE> indicates little-endian order. The
BOM is not considered part of the content of the text.

+ The UTF-16 encoding scheme may or may not begin with a BOM. However,
when there is no BOM, and in the absence of a higher-level protocol, the byte
order of the UTF-16 encoding scheme is big-endian.

Table 3-9 gives examples that summarize the three Unicode encoding schemes for the UTF-
16 encoding form.

Table 3-9. Summary of UTE-16BE, UTF-16LE, and UTF-16

Code Unit Sequence | Encoding Scheme Byte Sequence(s)
004D UTF-16BE 004D
UTEF-16LE 4D 00
UTF-16 FE FF 00 4D
FF FE 4D 00
004D
0430 UTEF-16BE 04 30
UTF-16LE 30 04
UTF-16 FE FF 04 30
FF FE 30 04
04 30
4E8C UTEF-16BE 4E 8C
UTEF-16LE 8C4E
UTEF-16 FE FF 4E 8C
FF FE 8C 4E
4E 8C
D800 DF02 UTF-16BE D8 00 DF 02
UTF-16LE 00 D8 02 DF
UTF-16 FE FF D8 00 DF 02
FF FE 00 D8 02 DF
D8 00 DF 02

D99 UTF-32BE encoding scheme: The Unicode encoding scheme that serializes a UTF-32
code unit sequence as a byte sequence in big-endian format.

Conformance 132 3.10 Unicode Encoding Schemes

+ In UTF-32BE, the UTF-32 code unit sequence <0000004D 00000430 00004E8C

00010302> is serialized as <00 00 00 4D 00 00 04 30 00 00 4E 8C 00 01 03 02>.

+ In UTF-32BE, an initial byte sequence <00 00 FE FF> is interpreted as U+FEFF

D100

ZERO WIDTH NO-BREAK SPACE.

UTF-32LE encoding scheme: The Unicode encoding scheme that serializes a UTF-32
code unit sequence as a byte sequence in little-endian format.

+ In UTF-32LE, the UTF-32 code unit sequence <0000004D 00000430 00004E8C

00010302> is serialized as <4D 00 00 00 30 04 00 00 8C 4E 00 00 02 03 01 00>.

+ In UTF-32LE, an initial byte sequence <FF FE 00 00> is interpreted as U+FEFF

D101

ZERO WIDTH NO-BREAK SPACE.

UTF-32 encoding scheme: The Unicode encoding scheme that serializes a UTF-32
code unit sequence as a byte sequence in either big-endian or little-endian format.

+ In the UTF-32 encoding scheme, the UTF-32 code unit sequence <0000004D

00000430 00004E8C 00010302> is serialized as <00 00 FE FF 00 00 00 4D 00 00
04 30 00 00 4E 8C 00 01 03 02> or <FF FE 00 00 4D 00 00 00 30 04 00 00 8C 4E
0000 02 03 01 00> or <00 00 00 4D 00 00 04 30 00 00 4E 8C 00 01 03 02>.

+ In the UTF-32 encoding scheme, an initial byte sequence corresponding to

U-+FEFF is interpreted as a byte order mark; it is used to distinguish between
the two byte orders. An initial byte sequence <00 00 FE FF> indicates big-
endian order, and an initial byte sequence <FF FE 00 00> indicates little-endian
order. The BOM is not considered part of the content of the text.

+ The UTF-32 encoding scheme may or may not begin with a BOM. However,

when there is no BOM, and in the absence of a higher-level protocol, the byte
order of the UTF-32 encoding scheme is big-endian.

Table 3-10 gives examples that summarize the three Unicode encoding schemes for the
UTF-32 encoding form.

Table 3-10. Summary of UTF-32BE, UTF-32LE, and UTF-32

Code Unit Sequence | Encoding Scheme Byte Sequence(s)
0000004D UTF-32BE 00 00 00 4D
UTF-32LE 4D 00 00 00
UTF-32 00 00 FE FF 00 00 00 4D
FF FE 00 00 4D 00 00 00
00 00 00 4D
00000430 UTEF-32BE 00 00 04 30
UTF-32LE 30 04 00 00
UTE-32 00 00 FE FF 00 00 04 30
FF FE 00 00 30 04 00 00
0000 04 30

Conformance 133 3.10 Unicode Encoding Schemes

Table 3-10. Summary of UTF-32BE, UTF-32LE, and UTF-32 (Continued)

00004E8C UTEF-32BE 00 00 4E 8C
UTEF-32LE 8C 4E 00 00

UTEF-32 00 00 FE FF 00 00 4E 8C

FF FE 00 00 8C 4E 00 00
00 00 4E 8C
00010302 UTF-32BE 000103 02
UTE-32LE 0203 01 00

UTE-32 00 00 FE FF 00 01 03 02

FF FE 00 00 02 03 01 00
0001 03 02

The terms UTF-8, UTF-16, and UTF-32, when used unqualified, are ambiguous between
their sense as Unicode encoding forms or Unicode encoding schemes. For UTE-8, this
ambiguity is usually innocuous, because the UTF-8 encoding scheme is trivially derived
from the byte sequences defined for the UTF-8 encoding form. However, for UTF-16 and
UTF-32, the ambiguity is more problematical. As encoding forms, UTF-16 and UTF-32
refer to code units in memory; there is no associated byte orientation, and a BOM is never
used. As encoding schemes, UTF-16 and UTF-32 refer to serialized bytes, as for streaming
data or in files; they may have either byte orientation, and a BOM may be present.

When the usage of the short terms “UTF-16” or “UTF-32” might be misinterpreted, and
where a distinction between their use as referring to Unicode encoding forms or to Uni-
code encoding schemes is important, the full terms, as defined in this chapter of the Uni-
code Standard, should be used. For example, use UTF-16 encoding form or UTF-16
encoding scheme. These terms may also be abbreviated to UTF-16 CEF or UTF-16 CES,
respectively.

When converting between different encoding schemes, extreme care must be taken in han-
dling any initial byte order marks. For example, if one converted a UTF-16 byte serializa-
tion with an initial byte order mark to a UTF-8 byte serialization, thereby converting the
byte order mark to <EF BB BF> in the UTF-8 form, the <EF BB BF> would now be ambig-
uous as to its status as a byte order mark (from its source) or as an initial zero width no-
break space. If the UTF-8 byte serialization were then converted to UTF-16BE and the ini-
tial <EF BB BF> were converted to <FE FF>, the interpretation of the U+FEFF character
would have been modified by the conversion. This would be nonconformant behavior
according to conformance clause C7, because the change between byte serializations would
have resulted in modification of the interpretation of the text. This is one reason why the
use of the initial byte sequence <EF BB BF> as a signature on UTF-8 byte sequences is not
recommended by the Unicode Standard.

Conformance 134 3.11 Normalization Forms

3.11 Normalization Forms

The concepts of canonical equivalent (D70) or compatibility equivalent (D67) characters
in the Unicode Standard make it necessary to have a full, formal definition of equivalence
for Unicode strings. String equivalence is determined by a process called normalization,
whereby strings are converted into forms which are compared directly for identity.

This section provides the formal definitions of the four Unicode Normalization Forms. It
defines the Canonical Ordering Algorithm and the Canonical Composition Algorithm
which are used to convert Unicode strings to one of the Unicode Normalization Forms for
comparison. It also formally defines Unicode Combining Classes—values assigned to all
Unicode characters and used by the Canonical Ordering Algorithm.

Note: In versions of the Unicode Standard up to Version 5.1.0, the Unicode Normalization
Forms and the Canonical Composition Algorithm were defined in Unicode Standard
Annex #15, “Unicode Normalization Forms.” Those definitions have now been consoli-
dated in this chapter, for clarity of exposition of the normative definitions and algorithms
involved in Unicode normalization. However, because implementation of Unicode nor-
malization is quite complex, implementers are still advised to fully consult Unicode Stan-
dard Annex #15, “Unicode Normalization Forms,” which contains more detailed
explanations, examples, and implementation strategies.

Unicode normalization should be carefully distinguished from Unicode collation. Both
processes involve comparison of Unicode strings. However, the point of Unicode normal-
ization is to make a determination of canonical (or compatibility) equivalence or non-
equivalence of strings—it does not provide any rank-ordering information about those
strings. Unicode collation, on the other hand, is designed to provide orderable weights or
“keys” for strings; those keys can then be used to sort strings into ordered lists. Unicode
normalization is not tailorable; normalization equivalence relationships between strings
are exact and unchangeable. Unicode collation, on the other hand, is designed to be tailor-
able to allow many kinds of localized and other specialized orderings of strings. For more
information, see Unicode Technical Standard #10, “Unicode Collation Algorithm.”

D102 [Moved to Section 3.6, Combination and renumbered as Dé61a.]

D103 [Moved to Section 3.6, Combination and renumbered as D61b.]

Normalization Stability

A very important attribute of the Unicode Normalization Forms is that they must remain
stable between versions of the Unicode Standard. A Unicode string normalized to a partic-
ular Unicode Normalization Form in one version of the standard is guaranteed to remain
in that Normalization Form for implementations of future versions of the standard. In
order to ensure this stability, there are strong constraints on changes of any character prop-
erties that are involved in the specification of normalization—in particular, the combining
class and the decomposition of characters. The details of those constraints are spelled out
in the Normalization Stability Policy. See the subsection “Policies” in Section B.6, Other

Conformance 135 3.11 Normalization Forms

Unicode Online Resources. The requirement for stability of normalization also constrains
what kinds of characters can be encoded in future versions of the standard. For an extended
discussion of this topic, see Section 3, Versioning and Stability, in Unicode Standard Annex
#15, “Unicode Normalization Forms.”

Combining Classes

Each character in the Unicode Standard has a combining class associated with it. The com-
bining class is a numerical value used by the Canonical Ordering Algorithm to determine
which sequences of combining marks are to be considered canonically equivalent and
which are not. Canonical equivalence is the criterion used to determine whether two char-
acter sequences are considered identical for interpretation.

D104 Combining class: A numeric value in the range 0..254 given to each Unicode code
point, formally defined as the property Canonical_Combining_Class.

+ The combining class for each encoded character in the standard is specified in
the file UnicodeData.txt in the Unicode Character Database. Any code point
not listed in that data file defaults to \p{Canonical Combining Class = 0} (or
\p{ccc = 0} for short).

+ An extracted listing of combining classes, sorted by numeric value, is provided
in the file DerivedCombiningClass.txt in the Unicode Character Database.

+ Only combining marks have a combining class other than zero. Almost all com-
bining marks with a class other than zero are also nonspacing marks, with a few
exceptions. Also, not all nonspacing marks have a non-zero combining class.
Thus, while the correlation between A\p{ccc=0] and \p{gc=Mn} is close, it is
not exact, and implementations should not depend on the two concepts being
identical.

D105 Fixed position class: A subset of the range of numeric values for combining classes—
specifically, any value in the range 10..199.

+ Fixed position classes are assigned to a small number of Hebrew, Arabic, Syriac,
Telugu, Thai, Lao, and Tibetan combining marks whose positions were con-
ceived of as occurring in a fixed position with respect to their grapheme base,
regardless of any other combining mark that might also apply to the grapheme
base.

+ Not all Arabic vowel points or Indic matras are given fixed position classes. The
existence of fixed position classes in the standard is an historical artifact of an
earlier stage in its development, prior to the formal standardization of the Uni-
code Normalization Forms.

D106 Typographic interaction: Graphical application of one nonspacing mark in a position
relative to a grapheme base that is already occupied by another nonspacing mark, so
that some rendering adjustment must be done (such as default stacking or side-by-
side placement) to avoid illegible overprinting or crashing of glyphs.

Conformance 136 3.11 Normalization Forms

The assignment of combining class values for Unicode characters was originally done with
the goal in mind of defining distinct numeric values for each group of nonspacing marks
that would typographically interact. Thus all generic nonspacing marks placed above the
base character are given the same value, \p{ccc=230}, while all generic nonspacing marks
placed below are given the value \p{ccc=220}. Nonspacing marks that tend to sit on one
“shoulder” or another of a grapheme base, or that may actually be attached to the graph-
eme base itself when applied, have their own combining classes.

The design of canonical ordering generally assures that:

+ When two combining characters C1 and C2 do typographically interact, the
sequence C1+ C2 is not canonically equivalent to C2+ CI.

+ When two combining characters C1 and C2 do not typographically interact, the
sequence C1+4 C2 is canonically equivalent to C2+ CI.

This is roughly correct for the normal cases of detached, generic nonspacing marks placed
above and below base letters. However, the ramifications of complex rendering for many
scripts ensure that there are always some edge cases involving typographic interaction
between combining marks of distinct combining classes. This has turned out to be particu-
larly true for some of the fixed position classes for Hebrew and Arabic, for which a distinct
combining class is no guarantee that there will be no typographic interaction for rendering.

Because of these considerations, particular combining class values should be taken only as
a guideline regarding issues of typographic interaction of combining marks.

The only normative use of combining class values is as input to the Canonical Ordering
Algorithm, where they are used to normatively distinguish between sequences of combin-
ing marks that are canonically equivalent and those that are not.

Specification of Unicode Normalization Forms

The specification of Unicode Normalization Forms applies to all Unicode coded character
sequences (D12). For clarity of exposition in the definitions and rules specified here, the
terms “character” and “character sequence” are used, but coded character sequences refer
also to sequences containing noncharacters or reserved code points. Unicode Normaliza-
tion Forms are specified for all Unicode code points, and not just for ordinary, assigned
graphic characters.

Starters
D107 Starter: Any code point (assigned or not) with combining class of zero (ccc=0).

+ Note that ccc=0 is the default value for the Canonical_Combining_Class prop-
erty, so that all reserved code points are Starters by definition. Noncharacters
are also Starters by definition. All control characters, format characters, and
private-use characters are also Starters.

Conformance 137 3.11 Normalization Forms

+ Private agreements cannot override the value of the Canonical_Combining Class
property for private-use characters.

Among the graphic characters, all those with General Category values other than gc=M
are Starters. Some combining marks have ccc=0 and thus are also Starters. Combining
marks with ccc other than 0 are not Starters. Table 3-11 summarizes the relationship
between types of combining marks and their status as Starters.

Table 3-11. Combining Marks and Starter Status

Description gc ccc Starter
Nonspacing Mn 0 Yes

>0 No
Spacing Mc 0 Yes

>0 No
Enclosing Me 0 Yes

The term Starter refers, in concept, to the starting character of a combining character
sequence (D56), because all combining character sequences except defective combining
character sequences (D57) commence with a ccc=0 character—in other words, they start
with a Starter. However, because the specification of Unicode Normalization Forms must
apply to all possible coded character sequences, and not just to typical combining character
sequences, the behavior of a code point for Unicode Normalization Forms is specified
entirely in terms of its status as a Starter or a non-starter, together with its
Decomposition_Mapping value.

Canonical Ordering Algorithm

D108 Reorderable pair: Two adjacent characters A and B in a coded character sequence <A,
B> are a Reorderable Pair if and only if ccc(A) > ccc(B) > 0.

D109 Canonical Ordering Algorithm: In a decomposed character sequence D, exchange the
positions of the characters in each Reorderable Pair until the sequence contains no
more Reorderable Pairs.

+ In effect, the Canonical Ordering Algorithm is a local bubble sort that guaran-
tees that a Canonical Decomposition or a Compatibility Decomposition will
contain no subsequences in which a combining mark is followed directly by
another combining mark that has a lower, non-zero combining class.

+ Canonical ordering is defined in terms of application of the Canonical Order-
ing Algorithm to an entire decomposed sequence. For example, canonical
decomposition of the sequence <U+1EOB LATIN SMALL LETTER D WITH DOT
ABOVE, U+0323 COMBINING DOT BELOW> would result in the sequence
<U+0064 LATIN SMALL LETTER D, U+0307 COMBINING DOT ABOVE, U+0323
COMBINING DOT BELOW>>, a sequence which is not yet in canonical order. Most
decompositions for Unicode strings are already in canonical order.

Conformance 138 3.11 Normalization Forms

Table 3-12 gives some examples of sequences of characters, showing which of them consti-
tute a Reorderable Pair and the reasons for that determination. Except for the base charac-
ter “a”, the other characters in the example table are combining marks; character names are
abbreviated in the Sequence column to make the examples clearer.

Table 3-12. Reorderable Pairs

Sequence Combining Reorderable? Reason
Classes

<a, acute> 0, 230 No ccc(A)=0

<acute, a> 230,0 No cce(B)=0

<diaeresis, acute> 230, 230 No ccc(A)=ccc(B)

<cedilla, acute> 202, 230 No ccc(A)<cee(B)

<acute, cedilla> 230, 202 Yes ccc(A)>cee(B)

Canonical Composition Algorithm

D110 Singleton decomposition: A canonical decomposition mapping from a character to a
different single character.

+ The default value for the Decomposition_Mapping property for a code point
(including any private-use character, any noncharacter, and any unassigned
code point) is the code point itself. This default value does not count as a sin-
gleton decomposition, because it does not map a character to a different charac-
ter. Private agreements cannot override the decomposition mapping for
private-use characters

+ Example: U+2126 ouM siGN has a singleton decomposition to U+03A9 GREEK
CAPITAL LETTER OMEGA.

+ A character with a singleton decomposition is often referred to simply as a sin-
gleton for short.

D110a Expanding canonical decomposition: A canonical decomposition mapping from a
character to a sequence of more than one character.

D110b Starter decomposition: An expanding canonical decomposition for which both the
character being mapped and the first character of the resulting sequence are Starters.

+ Definitions D110a and D110b are introduced to simplify the following defini-
tion of non-starter decomposition and make it more precise.

D111 Non-starter decomposition: An expanding canonical decomposition which is not a
starter decomposition.

+ Example: U+0344 COMBINING GREEK DIALYTIKA TONOS has an expanding
canonical decomposition to the sequence <U+0308 COMBINING DIAERESIS,
U+0301 COMBINING ACUTE ACCENT>. U+0344 is a non-starter, and the first

Conformance 139 3.11 Normalization Forms

character in its decomposition is a non-starter. Therefore, on two counts,
U+0344 has a non-starter decomposition.

+ Example: U+0F73 TIBETAN VOWEL SIGN II has an expanding canonical decom-
position to the sequence <U+0F71 TIBETAN VOWEL SIGN AA, U+0F72 TIBETAN
VOWEL SIGN 1>. The first character in that sequence is a non-starter. Therefore
U-+0F73 has a non-starter decomposition, even though U+0F73 is a Starter.

« As of the current version of the standard, there are no instances of the third
possible situation: a non-starter character with an expanding canonical decom-
position to a sequence whose first character is a Starter.

D112 Composition exclusion: A Canonical Decomposable Character (D69) which has the
property value Composition_Exclusion=True.

+ The list of Composition Exclusions is provided in CompositionExclusions.txt
in the Unicode Character Database.

D113 Full composition exclusion: A Canonical Decomposable Character which has the
property value Full_Composition_Exclusion=True.

+ Full composition exclusions consist of the entire list of composition exclusions
plus all characters with singleton decompositions or with non-starter decom-
positions.

+ For convenience in implementation of Unicode normalization, the derived
property Full_Composition_Exclusion is computed, and all characters with the
property value Full Composition_Exclusion=True are listed in DerivedNor-
malizationProps.txt in the Unicode Character Database.

D114 Primary composite: A Canonical Decomposable Character (D69) which is not a Full
Composition Exclusion.

+ For any given version of the Unicode Standard, the list of primary composites
can be computed by extracting all canonical decomposable characters from
UnicodeData.txt in the Unicode Character Database, adding the list of precom-
posed Hangul syllables (D132), and subtracting the list of Full Decomposition
Exclusions.

D115 Blocked: Let A and C be two characters in a coded character sequence <A, ... C>. Cis
blocked from A if and only if ccc(A)=0 and there exists some character B between A
and C in the coded character sequence, i.e., <A, ... B, ... C>, and either ccc(B)=0 or
ccc(B) >= cec(Q).

+ Because the Canonical Composition Algorithm operates on a string which is
already in canonical order, testing whether a character is blocked requires look-
ing only at the immediately preceding character in the string.

D116 Non-blocked pair: A pair of characters <A, ... C> in a coded character sequence, in
which C is not blocked from A.

Conformance 140 3.11 Normalization Forms

+ Itis important for proper implementation of the Canonical Composition Algo-
rithm to be aware that a Non-blocked Pair need not be contiguous.

D117 Canonical Composition Algorithm: Starting from the second character in the coded
character sequence (of a Canonical Decomposition or Compatibility Decomposi-
tion) and proceeding sequentially to the final character, perform the following steps:

R1 Seek back (left) in the coded character sequence from the character C to find the
last Starter L preceding C in the character sequence.

R2 Ifthereis such an L, and C is not blocked from L, and there exists a Primary Com-
posite P which is canonically equivalent to the sequence <L, C>, then replace L by
P in the sequence and delete C from the sequence.

+ When the algorithm completes, all Non-blocked Pairs canonically equivalent to
a Primary Composite will have been systematically replaced by those Primary
Composites.

+ The replacement of the Starter L in R2 requires continuing to check the suc-
ceeding characters until the character at that position is no longer part of any
Non-blocked Pair that can be replaced by a Primary Composite. For example,
consider the following hypothetical coded character sequence: <U+007A z,
U+0335 short stroke overlay, U+0327 cedilla, U+0324 diaeresis below, U+0301
acute>. None of the first three combining marks forms a Primary Composite
with the letter z. However, the fourth combining mark in the sequence, acute,
does form a Primary Composite with z, and it is not Blocked from the z. There-
fore, R2 mandates the replacement of the sequence <U+007A z, ... U+0301
acute> with <U+017A z-acute, ...>, even though there are three other combin-
ing marks intervening in the sequence.

+ The character C in R1 is not necessarily a non-starter. It is necessary to check all
characters in the sequence, because there are sequences <L, C> where both L
and C are Starters, yet there is a Primary Composite P which is canonically
equivalent to that sequence. For example, Indic two-part vowels often have
canonical decompositions into sequences of two spacing vowel signs, each of
which has Canonical_Combining_Class=0 and which is thus a Starter by defi-
nition. Nevertheless, such a decomposed sequence has an equivalent Primary
Composite.

Definition of Normalization Forms

The Unicode Standard specifies four normalization forms. Informally, two of these forms
are defined by maximal decomposition of equivalent sequences, and two of these forms are
defined by maximal composition of equivalent sequences. Each is then differentiated based
on whether it employs a Canonical Decomposition or a Compatibility Decomposition.

D118 Normalization Form D (NFD): The Canonical Decomposition of a coded character
sequence.

Conformance 141 3.11 Normalization Forms

D119 Normalization Form KD (NFKD): The Compatibility Decomposition of a coded
character sequence.

D120 Normalization Form C (NFC): The Canonical Composition of the Canonical
Decomposition of a coded character sequence.

D121 Normalization Form KC (NFKC): The Canonical Composition of the Compatibility
Decomposition of a coded character sequence.

Logically, to get the NFD or NFKD (maximally decomposed) normalization form for a
Unicode string, one first computes the full decomposition of that string and then applies
the Canonical Ordering Algorithm to it.

Logically, to get the NFC or NFKC (maximally composed) normalization form for a Uni-
code string, one first computes the NFD or NFKD normalization form for that string, and
then applies the Canonical Composition Algorithm to it.

Conformance 142 3.12 Conjoining Jamo Behavior

3.12 Conjoining Jamo Behavior

The Unicode Standard contains both a large set of precomposed modern Hangul syllables
and a set of conjoining Hangul jamo, which can be used to encode archaic Korean syllable
blocks as well as modern Korean syllable blocks. This section describes how to

+ Determine the canonical decomposition of precomposed Hangul syllables.
+ Compose jamo characters into precomposed Hangul syllables.
+ Algorithmically determine the names of precomposed Hangul syllables.

For more information, see the “Hangul Syllables” and “Hangul Jamo” subsections in
Section 18.6, Hangul. Hangul syllables are a special case of grapheme clusters. For the algo-
rithm to determine syllable boundaries in a sequence of conjoining jamo characters, see
Section 8, “Hangul Syllable Boundary Determination” in Unicode Standard Annex #29,
“Unicode Text Segmentation.”

Definitions

The following definitions use the Hangul_Syllable_Type property, which is defined in the
UCD file HangulSyllableType.txt.

D122 Leading consonant: A character with the Hangul Syllable Type property value
Leading_Jamo. Abbreviated as L.

+ When not occurring in clusters, the term leading consonant is equivalent to syl-
lable-initial character.

D123 Choseong: A sequence of one or more leading consonants.

+ In Modern Korean, a choseong consists of a single jamo. In Old Korean, a
sequence of more than one leading consonant may occur.

+ Equivalent to syllable-initial cluster.
D124 Choseong filler: U+115F HANGUL CHOSEONG FILLER. Abbreviated as Ly.

* A choseong filler stands in for a missing choseong to make a well-formed Korean
syllable.

D125 Vowel: A character with the Hangul Syllable_Type property value Vowel Jamo.
Abbreviated as V.

+ When not occurring in clusters, the term vowel is equivalent to syllable-peak
character.

D126 Jungseong: A sequence of one or more vowels.

+ In Modern Korean, a jungseong consists of a single jamo. In Old Korean, a
sequence of more than one vowel may occur.

+ Equivalent to syllable-peak cluster.

Conformance 143 3.12 Conjoining Jamo Behavior

Di27

Jungseong filler: U+1160 HANGUL JUNGSEONG FILLER. Abbreviated as V.

A jungseong filler stands in for a missing jungseong to make a well-formed

D128

Korean syllable.

Trailing consonant: A character with the Hangul Syllable Type property value
Trailing Jamo. Abbreviated as T.

+ When not occurring in clusters, the term trailing consonant is equivalent to syl-

D129

lable-final character.

Jongseong: A sequence of one or more trailing consonants.

+ In Modern Korean, a jongseong consists of a single jamo. In Old Korean, a

sequence of more than one trailing consonant may occur.

+ Equivalent to syllable-final cluster.

D130

LV_Syllable: A character with Hangul Syllable_Type property value LV_Syllable.
Abbreviated as LV.

+ AnLV_Syllable has a canonical decomposition to a sequence of the form <L, V>.

D131

LVT Syllable: A character with Hangul_Syllable_Type property value LVT_Syllable.
Abbreviated as LVT.

+ An LVT_Syllable has a canonical decomposition to a sequence of the form <LV, T>.

D132

D133

Precomposed Hangul syllable: A character that is either an LV_Syllable or an
LVT_Syllable.

Syllable block: A sequence of Korean characters that should be grouped into a single
square cell for display.

+ This is different from a precomposed Hangul syllable and is meant to include

sequences needed for the representation of Old Korean syllables.

+ A syllable block may contain a precomposed Hangul syllable plus other charac-

D134

ters.

Standard Korean syllable block: A sequence of one or more L followed by a sequence
of one or more V and a sequence of zero or more T, or any other sequence that is
canonically equivalent.

+ All precomposed Hangul syllables, which have the form LV or LVT, are standard

Korean syllable blocks.

+ Alternatively, a standard Korean syllable block may be expressed as a sequence

of a choseong and a jungseong, optionally followed by a jongseong.

+ A choseong filler may substitute for a missing leading consonant, and a jung-

seong filler may substitute for a missing vowel.

Conformance 144 3.12 Conjoining Jamo Behavior

+ This definition is used in Unicode Standard Annex #29, “Unicode Text Seg-
mentation,” as part of the algorithm for determining syllable boundaries in a
sequence of conjoining jamo characters.

Hangul Syllable Decomposition

The following algorithm specifies how to take a precomposed Hangul syllable s and arith-
metically derive its full canonical decomposition d. This normative mapping for precom-
posed Hangul syllables is referenced by D68, Canonical decomposition, in Section 3.7,
Decomposition.

This algorithm, as well as the other Hangul-related algorithms defined in the following
text, is first specified in pseudo-code. Then each is exemplified, showing its application to a
particular Hangul character or sequence. The Hangul characters used in those examples are
shown in Table 3-13. Finally, each algorithm is then further exemplified with an implemen-
tation as a Java method at the end of this section.

Table 3-13. Hangul Characters Used in Examples

Code Point | Glyph | Character Name Jamo Short Name
U+D4DB Zl HANGUL SYLLABLE PWILH

U+1111 ot HANGUL CHOSEONG PHIEUPH P

U+1171 .14 HANGUL JUNGSEONG WI WI

U+11B6 5 HANGUL JONGSEONG RIEUL-HIEUH |LH

Common Constants. Define the following consonants:
SBase = ACO004¢4

LBase = 110044
VBase = 1161,¢
TBase = 11A7q4

LCount = 19

VCount = 21

TCount = 28

NCount = 588 (VCount * TCount)
SCount = 11172 (LCount * NCount)

TBase is set to one less than the beginning of the range of trailing consonants, which starts
at U+11A8. TCount is set to one more than the number of trailing consonants relevant to
the decomposition algorithm: (11C2;4 - 11A8;¢ + 1) + 1. NCount is thus the number of
precomposed Hangul syllables starting with the same leading consonant, counting both
the LV_Syllables and the LVT_Syllables for each possible trailing consonant. SCount is the
total number of precomposed Hangul syllables.

Syllable Index. First compute the index of the precomposed Hangul syllable s:

SIndex = s - SBase

Conformance 145 3.12 Conjoining Jamo Behavior

Arithmetic Decomposition Mapping. If the precomposed Hangul syllable s with the index
SIndex (defined above) has the Hangul Syllable_Type value LV, then it has a canonical
decomposition mapping into a sequence of an L jamo and a V jamo, <LPart, VPart>:
LIndex = SIndex div NCount
VIndex = (SIndex mod NCount) div TCount

LPart = LBase + LIndex
VPart = VBase + VIndex

If the precomposed Hangul syllable s with the index SIndex (defined above) has the
Hangul_Syllable_Type value LVT, then it has a canonical decomposition mapping into a
sequence of an LV_Syllable and a T jamo, <LVPart, TPart>:

LVIndex = (SIndex div TCount) * TCount

TIndex = SIndex mod TCount

LVPart = SBase + LVIndex
TPart = TBase + TIndex

In this specification, the “div” operator refers to integer division (rounded down). The
“mod” operator refers to the modulo operation, equivalent to the integer remainder for
positive numbers.

The canonical decomposition mappings calculated this way are equivalent to the values of
the Unicode character property Decomposition_Mapping (dm), for each precomposed
Hangul syllable.

Full Canonical Decomposition. The full canonical decomposition for a Unicode character
is defined as the recursive application of canonical decomposition mappings. The canoni-
cal decomposition mapping of an LVT_Syllable contains an LVPart which itself is a pre-
composed Hangul syllable and thus must be further decomposed. However, it is simplest to
unwind the recursion and directly calculate the resulting <LPart, VPart, TPart> sequence
instead. For full canonical decomposition of a precomposed Hangul syllable, compute the
indices and components as follows:

LIndex SIndex div NCount

VIndex (SIndex mod NCount) div TCount

TIndex = SIndex mod TCount

LPart = LBase + LIndex
VPart = VBase + VIndex
TPart = TBase + TIndex if TIndex > 0

If TIndex = 0, then there is no trailing consonant, so map the precomposed Hangul syllable
s to its full decomposition d = <LPart, VPart>. Otherwise, there is a trailing consonant, so
map s to its full decomposition d = <LPart, VPart, TPart>.

Example. For the precomposed Hangul syllable U+D4DB, compute the indices and com-
ponents:
SIndex 10459

LIndex 17
VIndex = 16

Conformance 146 3.12 Conjoining Jamo Behavior

TIndex = 15

LPart = LBase + 17 = 11114
VPart = VBase + 16 = 11714
TPart = TBase + 15 = 11B6q4

Then map the precomposed syllable to the calculated sequence of components, which con-
stitute its full canonical decomposition:

U+D4DB - <U+1111, U+1171, U+11B6>

Note that the canonical decomposition mapping for U+D4DB would be <U+D4CC,
U+11B6>, but in computing the full canonical decomposition, that sequence would only
be an intermediate step.

Hangul Syllable Composition

The following algorithm specifies how to take a canonically decomposed sequence of Han-
gul jamo characters d and arithmetically derive its mapping to an equivalent precomposed
Hangul syllable s. This normative mapping can be used to calculate the Primary Composite
for a sequence of Hangul jamo characters, as specified in D117, Canonical Composition
Algorithm, in Section 3.11, Normalization Forms. Strictly speaking, this algorithm is simply
the inverse of the full canonical decomposition mappings specified by the Hangul Syllable
Decomposition Algorithm. However, it is useful to have a summary specification of that
inverse mapping as a separate algorithm, for convenience in implementation.

Note that the presence of any non-jamo starter or any combining character between two of
the jamos in the sequence d would constitute a blocking context, and would prevent canon-
ical composition. See D115, Blocked, in Section 3.11, Normalization Forms.

Arithmetic Primary Composite Mapping. Given a Hangul jamo sequence <LPart, VPart>,
where the LPart is in the range U+1100..U+1112, and where the VPart is in the range
U+1161..U+1175, compute the indices and syllable mapping:

LIndex = LPart - LBase

VIndex = VPart - VBase

LVIndex = LIndex * NCount + VIndex * TCount

s = SBase + LVIndex

Given a Hangul jamo sequence <LPart, VPart, TPart>, where the LPart is in the range
U+1100..U+1112, where the VPart is in the range U+1161..U+1175, and where the TPart
is in the range U+11A8..U+11C2, compute the indices and syllable mapping:

LIndex = LPart - LBase
VIndex VPart - VBase
TIndex = TPart - TBase
LVIndex = LIndex * NCount + VIndex * TCount

s = SBase + LVIndex + TIndex

The mappings just specified deal with canonically decomposed sequences of Hangul jamo
characters. However, for completeness, the following mapping is also defined to deal with

Conformance 147 3.12 Conjoining Jamo Behavior

cases in which Hangul data is not canonically decomposed. Given a sequence <LVPart,
TPart>, where the LVPart is a precomposed Hangul syllable of Hangul_Syllable_Type LV,
and where the TPart is in the range U+11A8..U+11C2, compute the index and syllable
mapping:

TIndex = TPart - TBase

s = LVPart + TIndex

Example. For the canonically decomposed Hangul jamo sequence <U+1111, U+1171,
U+11B6>, compute the indices and syllable mapping:

LIndex = 17

VIndex 16

TIndex = 15

LVIndex = 17 * 588 + 16 * 28 = 9996 + 448 = 10444

s = AC00;s + 10444 + 15 = D4DB,

Then map the Hangul jamo sequence to this precomposed Hangul syllable as its Primary
Composite:

<U+1111, U+1171, U+11B6> — U+D4DB

Hangul Syllable Name Generation

The Unicode character names for precomposed Hangul syllables are derived algorithmi-
cally from the Jamo_Short_Name property values for each of the Hangul jamo characters
in the full canonical decomposition of that syllable. That derivation is specified here.

Full Canonical Decomposition. First construct the full canonical decomposition d for the
precomposed Hangul syllable s, as specified by the Hangul Syllable Decomposition Algo-
rithm:

s - d = <LPart, VPart, (TPart)>

Jamo Short Name Mapping. For each part of the full canonical decomposition d, look up
the Jamo_Short_Name property value, as specified in Jamo.txt in the Unicode Character
Database. If there is no TPart in the full canonical decomposition, then the third value is set
to be a null string:

JSNL = Jamo_Short Name (LPart)

JSNV = Jamo_Short Name (VPart)
JSNT = Jamo_Short Name (TPart) 1if TPart exists, else ""

Name Concatenation. The Unicode character name for s is then constructed by starting
with the constant string “HANGUL SYLLABLE” and then concatenating each of the three
Jamo short name values, in order:

Name = "HANGUL SYLLABLE " + JSNj + JSNy + JSNgp

Example. For the precomposed Hangul syllable U+D4DB, construct the full canonical
decomposition:

U+D4DB - <U+1111, U+1171, U+11B6>

Conformance 148 3.12 Conjoining Jamo Behavior

Look up the Jamo_Short Name values for each of the Hangul jamo in the canonical
decomposition:

JSN;, = Jamo_Short Name (U+1111) = "p"
JSNy = Jamo_Short_Name (U+1171) = "WI"
JSN; = Jamo_Short Name (U+11B6) = "LH"

Concatenate the pieces:
Name = "HANGUL SYLLABLE " + "P" + "WI" + "LH"
"HANGUL SYLLABLE PWILH"

Sample Code for Hangul Algorithms
This section provides sample Java code illustrating the three Hangul-related algorithms.

Common Constants. This code snippet defines the common constants used in the methods
that follow.

static final int
SBase = 0xACO00,
LBase = 0x1100, VBase = 0x11l61, TBase = 0x11A7,
LCount = 19, VCount = 21, TCount = 28,
NCount VCount * TCount, // 588
SCount = LCount * NCount; // 11172

Hangul Decomposition. The Hangul Decomposition Algorithm as specified above directly
decomposes precomposed Hangul syllable characters into a sequence of either two or three
Hangul jamo characters. The sample method here does precisely that:

public static String decomposeHangul (char s) {

int SIndex = s - SBase;
if (SIndex < 0 || SIndex >= SCount) ({
return String.valueOf (s) ;

StringBuffer result = new StringBuffer();
int L = LBase + SIndex / NCount;

int V VBase + (SIndex % NCount) / TCount;
int T = TBase + SIndex % TCount;
result.append ((char)L) ;
result.append ((char)V) ;

if (T != TBase) result.append((char)T);
return result.toString() ;

}

The Hangul Decomposition Algorithm could also be expressed equivalently as a recursion
of binary decompositions, as is the case for other non-Hangul characters. All LVT syllables
would decompose into an LV syllable plus a T jamo. The LV syllables themselves would in
turn decompose into an L jamo plus a V jamo. This approach can be used to produce
somewhat more compact code than what is illustrated in this sample method.

Conformance 149 3.12 Conjoining Jamo Behavior

Hangul Composition. An important feature of Hangul composition is that whenever the
source string is not in Normalization Form D or Normalization Form KD, one must not
detect only character sequences of the form <L, V> and <L, V, T>. It is also necessary to
catch the sequences of the form <LV, T>. To guarantee uniqueness, such sequences must

also be composed. This extra processing is illustrated in step 2 of the sample method
defined here.

public static String composeHangul (String source) {
int len = source.length() ;

if (len == 0) return "";
StringBuffer result = new StringBuffer();
char last = source.charAt (0); // copy first char

result.append (last) ;

for (int i = 1; i < len; ++i) {
char ch = source.charAt (i) ;

// 1. check to see if two current characters are L and V
int LIndex = last - LBase;
if (0 <= LIndex && LIndex < LCount) {

int VIndex = ch - VBase;

if (0 <= VIndex && VIndex < VCount) {

// make syllable of form LV

last = (char) (SBase + (LIndex * VCount + VIndex)
* TCount) ;

result.setCharAt (result.length()-1, last); // reset last
continue; // discard ch
1
!

// 2. check to see if two current characters are LV and T
int SIndex = last - SBase;
if (0 <= SIndex && SIndex < SCount
&& (SIndex % TCount) == 0) {
int TIndex = ch - TBase;
if (0 < TIndex && TIndex < TCount) {

// make syllable of form LVT

last += TIndex;
result.setCharAt (result.length()-1, last); // reset last
continue; // discard ch

}
}

// if neither case was true, just add the character
last = ch;

Conformance 150 3.12 Conjoining Jamo Behavior

result.append(ch) ;

}

return result.toString() ;

}

Hangul Character Name Generation. Hangul decomposition is also used when generating
the names for precomposed Hangul syllables. This is apparent in the following sample
method for constructing a Hangul syllable name. The content of the three tables used in
this method can be derived from the data file Jamo.txt in the Unicode Character Database.

public static String getHangulName (char s) {

int SIndex = s - SBase;
if (0 > SIndex || SIndex >= SCount) {
throw new IllegalArgumentException("Not a Hangul Syllable: "
+ 8);
1
int LIndex = SIndex / NCount;
int VIndex = (SIndex % NCount) / TCount;

int TIndex = SIndex % TCount;
return "HANGUL SYLLABLE " + JAMO_L_TABLE[LIndeX]
+ JAMO_V_TABLE [VIndex] + JAMO_T_TABLE [TIndex] ;

static private String[] JAMO L TABLE = {
"G"["GG"’ "N"["D", UDD"I "R"’ "M"["B", "BB"I
"S"["SS"’ “"’ "J"["JJ"’ "C"["K", "T"["P"["H"
static private String[] JAMO V_TABLE = {
||A|| , llAE n , n YA" , n YAE n , n EO n , "E” , n YEO n , n YE n , "Ol' ,
UWA" , UWAE n , n OE mn , n YO mn , "U" , "WEO n , "WE n , "WI n ,
n YU" , n EU" , "YI n , n I n
static private String[] JAMO T TABLE = {
n ||, ||G||, "GG"’ "GS", IIN”’ "NJ"’ IINH", IID”’ "L"’ "LG”, llLM"’
n LB n , ULS n , n LT" , n LP n , n LH n , "M" , "B" , UBS n ,
"S"["SS"’ "NG"’ "J"["C"["K"’ "T"["P", "H"

Additional Transformations for Hangul Jamo. Additional transformations can be per-
formed on sequences of Hangul jamo for various purposes. For example, to regularize
sequences of Hangul jamo into standard Korean syllable blocks, the choseong or jungseong
fillers can be inserted, as described in Unicode Standard Annex #29, “Unicode Text Seg-
mentation.”

For keyboard input, additional compositions may be performed. For example, a sequence
of trailing consonants k¢ + s may be combined into a single, complex jamo ks. In addition,
some Hangul input methods do not require a distinction on input between initial and final
consonants, and may instead change between them on the basis of context. For example, in

Conformance 151 3.12 Conjoining Jamo Behavior

the keyboard sequence m; + e, + n; + s; + a,,,, the consonant n; would be reinterpreted as
ng, because there is no possible syllable nsa. This results in the two syllables men and sa.

Conformance 152 3.13 Default Case Algorithms

3.13 Default Case Algorithms

This section specifies the default algorithms for case conversion, case detection, and case-
less matching. For information about the data sources for case mapping, see Section 4.2,
Case. For a general discussion of case mapping operations, see Section 5.18, Case Mappings.

All of these specifications are logical specifications. Particular implementations can opti-
mize the processes as long as they provide the same results.

Tailoring. The default casing operations are intended for use in the absence of tailoring for
particular languages and environments. Where a particular environment requires tailoring
of casing operations to produce correct results, use of such tailoring does not violate con-
formance to the standard.

Data that assist the implementation of certain tailorings are published in SpecialCasing.txt
in the Unicode Character Database. Most notably, these include:

+ Casing rules for the Turkish dotted capital I and dotless small i.

+ Casing rules for the retention of dots over 7 for Lithuanian letters with addi-
tional accents.

Examples of case tailorings which are not covered by data in SpecialCasing.txt include:
+ Titlecasing of IJ at the start of words in Dutch
+ Removal of accents when uppercasing letters in Greek

+ Titlecasing of second or subsequent letters in words in orthographies that
include caseless letters such as apostrophes

+ Uppercasing of U+00DF “f3” LATIN SMALL LETTER SHARP § to U+1E9E LATIN
CAPITAL LETTER SHARP S

The preferred mechanism for defining tailored casing operations is the Unicode Common
Locale Data Repository (CLDR), where tailorings such as these can be specified on a per-
language basis, as needed.

Tailorings of case operations may or may not be desired, depending on the nature of the
implementation in question. For more about complications in case mapping, see the dis-
cussion in Section 5.18, Case Mappings.

Definitions

The full case mappings for Unicode characters are obtained by using the mappings from
SpecialCasing.txt plus the mappings from UnicodeData.txt, excluding any of the latter
mappings that would conflict. Any character that does not have a mapping in these files is
considered to map to itself. The full case mappings of a character C are referred to as
Lowercase_Mapping(C), Titlecase_Mapping(C), and Uppercase_ Mapping(C). The full
case folding of a character C is referred to as Case_Folding(C).

Conformance 153 3.13 Default Case Algorithms

Detection of case and case mapping requires more than just the General Category values
(Lu, Lt, LI). The following definitions are used:

D135

A character C is defined to be cased if and only if C has the Lowercase or Uppercase
property or has a General_Category value of Titlecase_Letter.

+ The Uppercase and Lowercase property values are specified in the data file

D136

DerivedCoreProperties.txt in the Unicode Character Database. The derived
property Cased is also listed in DerivedCoreProperties.txt.

A character C is defined to be case-ignorable if C has the value MidLetter (ML), Mid-
NumlLet (MB), or Single_ Quote (SQ) for the Word Break property or its
General_Category is one of Nonspacing Mark (Mn), Enclosing Mark (Me), For-
mat (Cf), Modifier_Letter (Lm), or Modifier_Symbol (Sk).

+ The Word_Break property is defined in the data file WordBreakProperty.txt in

the Unicode Character Database.

+ The derived property Case_Ignorable is listed in the data file DerivedCoreProp-

erties.txt in the Unicode Character Database.

+ The Case_Ignorable property is defined for use in the context specifications of

D137
D138

Table 3-14. It is a narrow-use property, and is not intended for use in other con-
texts. The more broadly applicable string casing function, isCased(X), is
defined in D143.

Case-ignorable sequence: A sequence of zero or more case-ignorable characters.

A character C is in a particular casing context for context-dependent matching if and
only if it matches the corresponding specification in Table 3-14.

Table 3-14. Context Specification for Casing

Context Description Regular Expressions

Final_Sigma |C is preceded by a sequence consisting |Before C |\p{cased} (\p{case-ignorable})*

of a cased letter and then zero or more [Afor C
case-ignorable characters, and C is
not followed by a sequence consisting
of zero or more case-ignorable char-
acters and then a cased letter.

! ((\p{case-ignorable})*
\p{cased})

After_Soft_D |Thereisa Soft_Dotted character before |Before C | [\p{Soft_Dotted}]
otted

C, with no intervening character of ([AM\p{cee=230} \p{cce=0}])*
combining class 0 or 230 (Above).

Conformance 154 3.13 Default Case Algorithms

Table 3-14. Context Specification for Casing (Continued)

Context Description Regular Expressions
More_Above |C is followed by a character of combin-|After C | [A\p{ccc=230}\p{ccc=0}]*
ing class 230 (Above) with no inter- [\p{cce=230}]

vening character of combining class 0
or 230 (Above).

Before_Dot |C is followed by coMBINING DOT After C | ([Mpfcce=230} \p{cce=0}])*
ABOVE (U+0307). Any sequence of [\u0307]

characters with a combining class that
is neither 0 nor 230 may intervene
between the current character and the
combining dot above.

After_I There is an uppercase I before C, and |Before C |[I] ([A\p{ccc=230} \p{ccc=0}])*
there is no intervening combining
character class 230 (Above) or 0.

In Table 3-14, a description of each context is followed by the equivalent regular expres-
sion(s) describing the context before C, the context after C, or both. The regular expres-
sions use the syntax of Unicode Technical Standard #18, “Unicode Regular Expressions,”
with one addition: “!” means that the expression does not match. All of the regular expres-
sions are case-sensitive.

The regular-expression operator * in Table 3-14 is “possessive,” consuming as many charac-
ters as possible, with no backup. This is significant in the case of Final_Sigma, because the
sets of case-ignorable and cased characters are not disjoint: for example, they both contain
U+0345 yPoGEGRAMMENI. Thus, the Before condition is not satisfied if C is preceded by
only U+0345, but would be satisfied by the sequence <capital-alpha, ypogegrammeni>.
Similarly, the After condition is satisfied if C is only followed by ypogegrammeni, but would
not satisfied by the sequence <ypogegrammeni, capital-alpha>.

Default Case Conversion

The following rules specify the default case conversion operations for Unicode strings.
These rules use the full case conversion operations, Uppercase_Mapping(C),
Lowercase_Mapping(C), and Titlecase_Mapping(C), as well as the context-dependent
mappings based on the casing context, as specified in Table 3-14.

For a string X:
R1 toUppercase(X): Map each character C in X to Uppercase_Mapping(C).
R2 toLowercase(X): Map each character C in X to Lowercase_Mapping(C).

R3 toTitlecase(X): Find the word boundaries in X according to Unicode Standard
Annex #29, “Unicode Text Segmentation.” For each word boundary, find the first
cased character F following the word boundary. If F exists, map F to
Titlecase_Mapping(F); then map all characters C between F and the following
word boundary to Lowercase_Mapping(C).

Conformance 155 3.13 Default Case Algorithms

The default case conversion operations may be tailored for specific requirements. A com-
mon variant, for example, is to make use of simple case conversion, rather than full case
conversion. Language- or locale-specific tailorings of these rules may also be used.

Default Case Folding

Case folding is related to case conversion. However, the main purpose of case folding is to
contribute to caseless matching of strings, whereas the main purpose of case conversion is
to put strings into a particular cased form.

Default Case Folding does not preserve normalization forms. A string in a particular Uni-
code normalization form may not be in that normalization form after it has been case-
folded.

Default Case Folding is based on the full case conversion operations without the context-
dependent mappings sensitive to the casing context. There are also some adaptations spe-
cifically to support caseless matching. Lowercase_Mapping(C) is used for most characters,
but there are instances in which the folding must be based on Uppercase_Mapping(C),
instead. In particular, the addition of lowercase Cherokee letters as of Version 8.0 of the
Unicode Standard, together with the stability guarantees for case folding, require that
Cherokee letters be case folded to their uppercase counterparts. As a result, a case folded
string is not necessarily lowercase.

Any two strings which are considered to be case variants of each other under any of the full
case conversions, toUppercase(X), toLowercase(X), or toTitlecase(X) will fold to the same
string by the toCasefold(X) operation:

R4 toCasefold(X): Map each character C in X to Case_Folding(C).

+ Case_Folding(C) uses the mappings with the status field value “C” or “F” in the
data file CaseFolding.txt in the Unicode Character Database.

A modified form of Default Case Folding is designed for best behavior when doing caseless
matching of strings interpreted as identifiers. This folding is based on Case_Folding(C),
but also removes any characters which have the Unicode property value
Default_Ignorable_Code_Point=True. It also maps characters to their NFKC equivalent
sequences. Once the mapping for a string is complete, the resulting string is then normal-
ized to NFC. That last normalization step simplifies the statement of the use of this folding
for caseless matching.

R5 toNFKC_Casefold(X): Map each character C in X to NFKC_Casefold(C) and then
normalize the resulting string to NFC.

+ The mapping NFKC_Casefold (short alias NFKC_CF) is specified in the data
file DerivedNormalizationProps.txt in the Unicode Character Database.

+ The derived binary property Changes_When_NFKC_Casefolded is also listed
in the data file DerivedNormalizationProps.txt in the Unicode Character Data-
base.

Conformance 156 3.13 Default Case Algorithms

For more information on the use of NFKC_Casefold and caseless matching for identifiers,
see Unicode Standard Annex #31, “Unicode Identifier and Pattern Syntax.”

Default Case Detection

The casing status of a string can be determined by using the casing operations defined ear-
lier. The following definitions provide a specification. They assume that X and Y are
strings. In the following, functional names beginning with “is” are binary functions which
take the string X and return true when the string as a whole matches the given casing status.
For example, isLowerCase(X) would be true if the string X as a whole is lowercase. In con-
trast, the Unicode character properties such as Lowercase are properties of individual char-
acters.

For each definition, there is also a related Unicode character property which has a name
beginning with “Changes_When_". That property indicates whether each character is
affected by a particular casing operation; it can be used to optimize implementations of
Default Case Detection for strings.

When case conversion is applied to a string that is decomposed (or more precisely, normal-
ized to NFD), applying the case conversion character by character does not affect the nor-
malization status of the string. Therefore, these definitions are specified in terms of
Normalization Form NFD. To make the definitions easier to read, they adopt the conven-
tion that the string Y equals toNFD(X).

D139 isLowercase(X): isLowercase(X) is true when toLowercase(Y) =Y.

+ For example, isLowercase(“combining mark”) is true, and isLowercase(“Com-
bining mark”) is false.

+ The derived binary property Changes_ When_Lowercased is listed in the data
file DerivedCoreProperties.txt in the Unicode Character Database.

D140 isUppercase(X): isUppercase(X) is true when toUppercase(Y) =Y.

+ For example, isUppercase(“COMBINING MARK”) is true, and isUpper-
case(“Combining mark”) is false.

+ The derived binary property Changes_When_Uppercased is listed in the data
file DerivedCoreProperties.txt in the Unicode Character Database.

D141 isTitlecase(X): isTitlecase(X) is true when toTitlecase(Y) =Y.

+ For example, isTitlecase(“Combining Mark”) is true, and isTitlecase(“Combin-
ing mark”) is false.

+ The derived binary property Changes_When_Titlecased is listed in the data file
DerivedCoreProperties.txt in the Unicode Character Database.

D142 isCasefolded(X): isCasefolded(X) is true when toCasefold(Y) =Y.

+ For example, isCasefolded(“heiss”) is true, and isCasefolded(“hei3”) is false.

Conformance 157 3.13 Default Case Algorithms

+ The derived binary property Changes When_Casefolded is listed in the data
file DerivedCoreProperties.txt in the Unicode Character Database.

Uncased characters do not affect the results of casing detection operations such as the
string function isLowercase(X). Thus a space or a number added to a string does not affect
the results.

The examples in Table 3-15 show that these conditions are not mutually exclusive. “A2” is
both uppercase and titlecase; “3” is uncased, so it is simultaneously lowercase, uppercase,
and titlecase.

Table 3-15. Case Detection Examples

Case Letter | Name Alphanumeric | Digit
Lowercase a john smith a2 3
Uppercase A JOHN SMITH A2 3
Titlecase A John Smith A2 3

Only when a string, such as “123” contains no cased letters will all three conditions,—
isLowercase, isUppercase, and isTitlecase—evaluate as true. This combination of condi-
tions can be used to check for the presence of cased letters, using the following definition:

D143 isCased(X): isCased(X) is true when isLowercase(X) is false, or isUppercase(X) is
false, or isTitlecase(X) is false.

+ Any string X for which isCased(X) is true contains at least one character that
has a case mapping other than to itself.

+ For example, isCased(“123”) is false because all the characters in “123” have
case mappings to themselves, while isCased(“abc”) and isCased(“A12”) are
both true.

+ The derived binary property Changes_When_Casemapped is listed in the data
file DerivedCoreProperties.txt in the Unicode Character Database.

To find out whether a string contains only lowercase letters, implementations need to test
for (isLowercase(X) and isCased(X)).

Default Caseless Matching

Default caseless matching is the process of comparing two strings for case-insensitive
equality. The definitions of Unicode Default Caseless Matching build on the definitions of
Unicode Default Case Folding.

Default Caseless Matching uses full case folding:

D144 A string X is a caseless match for a string Y if and only if:
toCasefold(X) = toCasefold(Y)

Conformance 158 3.13 Default Case Algorithms

When comparing strings for case-insensitive equality, the strings should also be normal-
ized for most correct results. For example, the case folding of U+00C5 A LATIN CAPITAL
LETTER A WITH RING ABOVE is U+00E5 & LATIN SMALL LETTER A WITH RING ABOVE,
whereas the case folding of the sequence <U+0041 “A” LATIN CAPITAL LETTER A, U+030A &
COMBINING RING ABOVE> is the sequence <U+0061 “a” LATIN SMALL LETTER A, U+030A &
COMBINING RING ABOVE>. Simply doing a binary comparison of the results of case folding
both strings will not catch the fact that the resulting case-folded strings are canonical-
equivalent sequences. In principle, normalization needs to be done after case folding,
because case folding does not preserve the normalized form of strings in all instances. This
requirement for normalization is covered in the following definition for canonical caseless
matching:

D145 A string X is a canonical caseless match for a string Y if and only if:
NFD(toCasefold(NFD(X))) = NFD(toCasefold(NFD(Y)))

The invocations of canonical decomposition (NFD normalization) before case folding in
D145 are to catch very infrequent edge cases. Normalization is not required before case
folding, except for the character U+0345 ¢ COMBINING GREEK YPOGEGRAMMENI and any
characters that have it as part of their canonical decomposition, such as U+1FC3 1) GREEK
SMALL LETTER ETA WITH YPOGEGRAMMENI. In practice, optimized versions of canonical
caseless matching can catch these special cases, thereby avoiding an extra normalization
step for each comparison.

In some instances, implementers may wish to ignore compatibility differences between
characters when comparing strings for case-insensitive equality. The correct way to do this
makes use of the following definition for compatibility caseless matching:

DI46 A string X is a compatibility caseless match for a string Y if and only if:
NFKD(toCasefold(NFKD(toCasefold(NFD(X))))) =
NFKD (toCasefold(NFKD(toCasefold(NFD(Y)))))

Compatibility caseless matching requires an extra cycle of case folding and normalization
for each string compared, because the NFKD normalization of a compatibility character
such as U+3392 sQuaRE MHz may result in a sequence of alphabetic characters which must
again be case folded (and normalized) to be compared correctly.

Caseless matching for identifiers can be simplified and optimized by using the
NFKC_Casefold mapping. That mapping incorporates internally the derived results of iter-
ated case folding and NFKD normalization. It also maps away characters with the property
value Default_Ignorable Code_Point=True, which should not make a difference when
comparing identifiers.

The following defines identifier caseless matching:

D147 A string X is an identifier caseless match for a string Y if and only if:
toNFKC_Casefold(NFD(X)) = toNFKC_Casefold(NFD(Y))

159

Chapter 4

Character Properties

Disclaimer

The content of all character property tables has been verified as far as possible by
the Unicode Consortium. However, in case of conflict, the most authoritative ver-
sion of the information for this version of the Unicode Standard is that supplied
in the Unicode Character Database on the Unicode website. The contents of all the
tables in this chapter may be superseded or augmented by information in future ver-
sions of the Unicode Standard.

The Unicode Standard associates a rich set of semantics with characters and, in some
instances, with code points. The support of character semantics is required for confor-
mance; see Section 3.2, Conformance Requirements. Where character semantics can be
expressed formally, they are provided as machine-readable lists of character properties in
the Unicode Character Database (UCD). This chapter gives an overview of character prop-
erties, their status and attributes, followed by an overview of the UCD and more detailed
notes on some important character properties. For a further discussion of character prop-
erties, see Unicode Technical Report #23, “Unicode Character Property Model.”

Status and Attributes. Character properties may be normative, informative, contributory,
or provisional. Normative properties are those required for conformance. Many Unicode
character properties can be overridden by implementations as needed. Section 3.2, Confor-
mance Requirements, specifies when such overrides must be documented. A few properties,
such as Noncharacter_Code_Point, may not be overridden. See Section 3.5, Properties, for
the formal discussion of the status and attributes of properties.

Consistency of Properties. The Unicode Standard is the product of many compromises. It
has to strike a balance between uniformity of treatment for similar characters and compat-
ibility with existing practice for characters inherited from legacy encodings. Because of this
balancing act, one can expect a certain number of anomalies in character properties. For
example, some pairs of characters might have been treated as canonical equivalents but are
left unequivalent for compatibility with legacy differences. This situation pertains to
U+00B5 p micro sigN and U+03BC pu GREEK SMALL LETTER MU, as well as to certain
Korean jamo.

In addition, some characters might have had properties differing in some ways from those
assigned in this standard, but those properties are left as is for compatibility with existing
practice. This situation can be seen with the halfwidth voicing marks for Japanese

Character Properties 160

(U+FF9E HALFWIDTH KATAKANA VOICED SOUND MARK and U+FF9F HALFWIDTH
KATAKANA SEMI-VOICED SOUND MARK), which might have been better analyzed as spacing
combining marks. Another examples consists of the conjoining Hangul jamo, which might
have been better analyzed as an initial base character followed by formally combining
medial and final characters. In the interest of efficiency and uniformity in algorithms,
implementations may take advantage of such reanalyses of character properties, as long as
this does not conflict with the conformance requirements with respect to normative prop-
erties. See Section 3.5, Properties; Section 3.2, Conformance Requirements; and Section 3.3,
Semantics, for more information.

Character Properties 161 4.1 Unicode Character Database

4.1 Unicode Character Database

The Unicode Character Database (UCD) consists of a set of files that define the Unicode
character properties and internal mappings. For each property, the files determine the
assignment of property values to each code point. The UCD also supplies recommended
property aliases and property value aliases for textual parsing and display in environments
such as regular expressions.

The properties include the following:
* Name

+ General Category (basic partition into letters, numbers, symbols, punctuation,
and so on)

+ Other important general characteristics (whitespace, dash, ideographic, alpha-
betic, noncharacter, deprecated, and so on)

+ Display-related properties (bidirectional class, shaping, mirroring, width, and
SO on)

+ Casing (upper, lower, title, folding—both simple and full)
+ Numeric values and types
+ Script and Block

+ Normalization properties (decompositions, decomposition type, canonical
combining class, composition exclusions, and so on)

+ Age (version of the standard in which the code point was first designated)
+ Boundaries (grapheme cluster, word, line, and sentence)

See Unicode Standard Annex #44, “Unicode Character Database,” for more details on the
character properties and their values, the status of properties, their distribution across data
files, and the file formats.

Unihan Database. In addition, a large number of properties specific to CJK ideographs are
defined in the Unicode Character Database. These properties include source information,
radical and stroke counts, phonetic values, meanings, and mappings to many East Asian
standards. The values for all these properties are listed in the file Unihan.zip, also known as
the Unihan Database. For a complete description and documentation of the properties
themselves, see Unicode Standard Annex #38, “Unicode Han Database (Unihan).” (See also
“Online Unihan Database” in Section B.6, Other Unicode Online Resources.)

Many properties apply to both ideographs and other characters. These are not specified in
the Unihan Database.

Stability. While the Unicode Consortium strives to minimize changes to character prop-
erty data, occasionally character properties must be updated. When this situation occurs, a
new version of the Unicode Character Database is created, containing updated data files.

Character Properties 162 4.1 Unicode Character Database

Data file changes are associated with specific, numbered versions of the standard; character
properties are never silently corrected between official versions.

Each version of the Unicode Character Database, once published, is absolutely stable and
will never change. Implementations or specifications that refer to a specific version of the
UCD can rely upon this stability. Detailed policies on character encoding stability as they
relate to properties are found on the Unicode website. See the subsection “Policies” in
Section B.6, Other Unicode Online Resources. See also the discussion of versioning and sta-
bility in Section 3.1, Versions of the Unicode Standard.

Aliases. Character properties and their values are given formal aliases to make it easier to
refer to them consistently in specifications and in implementations, such as regular expres-
sions, which may use them. These aliases are listed exhaustively in the Unicode Character
Database, in the data files PropertyAliases.txt and PropertyValueAliases.txt.

Many of the aliases have both a long form and a short form. For example, the General Cat-
egory has a long alias “General_Category” and a short alias “gc”. The long alias is more
comprehensible and is usually used in the text of the standard when referring to a particu-
lar character property. The short alias is more appropriate for use in regular expressions
and other algorithmic contexts.

In comparing aliases programmatically, loose matching is appropriate. That entails ignor-
ing case differences and any whitespace, underscore, and hyphen characters. For example,
“GeneralCategory”, “general_category”, and “GENERAL-CATEGORY” would all be con-
sidered equivalent property aliases. See Unicode Standard Annex #44, “Unicode Character
Database,” for further discussion of property and property value matching.

For each character property whose values are not purely numeric, the Unicode Character
Database provides a list of value aliases. For example, one of the values of the Line_Break
property is given the long alias “Open_Punctuation” and the short alias “OP”.

Property aliases and property value aliases can be combined in regular expressions that
pick out a particular value of a particular property. For example, “\p{lb=OP}” means the
Open_Punctuation value of the Line_Break property, and “\p{gc=Lu}” means the

Uppercase_Letter value of the General_Category property.

Property aliases define a namespace. No two character properties have the same alias. For
each property, the set of corresponding property value aliases constitutes its own
namespace. No constraint prevents property value aliases for different properties from hav-
ing the same property value alias. Thus “B” is the short alias for the Paragraph_Separator
value of the Bidi_Class property; “B” is also the short alias for the Below value of the
Canonical_Combining_ Class property. However, because of the namespace restrictions,
any combination of a property alias plus an appropriate property value alias is guaranteed
to constitute a unique string, as in “\p{bc=B}” versus “\p{ccc=B}".

For a recommended use of property and property value aliases, see Unicode Technical
Standard #18, “Unicode Regular Expressions.” Aliases are also used for normatively refer-
encing properties, as described in Section 3.1, Versions of the Unicode Standard.

Character Properties 163 4.1 Unicode Character Database

UCD in XML. Starting with Unicode Version 5.1.0, the complete Unicode Character Data-
base is also available formatted in XML. This includes both the non-Han part of the Uni-
code Character Database and all of the content of the Unihan Database. For details
regarding the XML schema, file names, grouping conventions, and other considerations,
see Unicode Standard Annex #42, “Unicode Character Database in XML.”

Online Availability. All versions of the UCD are available online on the Unicode website.
See the subsections “Online Unicode Character Database” and “Online Unihan Database”
in Section B.6, Other Unicode Online Resources.

Character Properties 164 4.2 Case

4.2 Case

Case is a normative property of characters in certain alphabets whereby characters are con-
sidered to be variants of a single letter. These variants, which may differ markedly in shape
and size, are called the uppercase letter (also known as capital or majuscule) and the lower-
case letter (also known as small or minuscule). The uppercase letter is generally larger than
the lowercase letter.

Because of the inclusion of certain composite characters for compatibility, such as U+01F1
LATIN CAPITAL LETTER DZ, a third case, called titlecase, is used where the first character of a
word must be capitalized. An example of such a character is U+01F2 LATIN CAPITAL LETTER
D WITH SMALL LETTER Z. The three case forms are UPPERCASE, Titlecase, and lowercase.

For those scripts that have case (Latin, Greek, Coptic, Cyrillic, Glagolitic, Armenian,
archaic Georgian, Deseret, and Warang Citi), uppercase characters typically contain the
word capital in their names. Lowercase characters typically contain the word small. How-
ever, this is not a reliable guide. The word small in the names of characters from scripts
other than those just listed has nothing to do with case. There are other exceptions as well,
such as small capital letters that are not formally uppercase. Some Greek characters with
capital in their names are actually titlecase. (Note that while the archaic Georgian script
contained upper- and lowercase pairs, they are not used in modern Georgian. See
Section 7.7, Georgian.)

Definitions of Case and Casing

The Unicode Standard has more than one formal definition of lowercase, uppercase, and
related casing processes. This is the result of the inherent complexity of case relationships
and of defining case-related behavior on the basis of individual character properties. This
section clarifies the distinctions involved in the formal definition of casing in the standard.
The additional complications for titlecase are omitted from the discussion; titlecase dis-
tinctions apply only to a handful of compatibility characters.

The first set of values involved in the definition of case are based on the General_Category
property in UnicodeData.txt. The relevant values are General Category=LI
(Lowercase_Letter) and General _Category=Lu (Uppercase_Letter). For most ordinary let-
ters of bicameral scripts such as Latin, Greek, and Cyrillic, these values are obvious and
non-problematical. However, the General_Category property is, by design, a partition of
the Unicode codespace. This means that each Unicode character can only have one
General_Category value, which results in some odd edge cases for modifier letters, letter-
like symbols and letterlike numbers. As a consequence, not every Unicode character that
looks like a lowercase character necessarily ends up with General Category=Ll, and not
every Unicode character that looks like an uppercase character ends up with
General_Category=Lu.

The second set of definitions relevant to case consist of the derived binary properties, Low-
ercase and Uppercase, specified in DerivedCoreProperties.txt in the Unicode Character
Database. Those derived properties augment the General Category values by adding the

Character Properties 165 4.2 Case

additional characters that ordinary users think of as being lowercase or uppercase, based
primarily on their letterforms. The additional characters are included in the derivations by
means of the contributory properties, Other_Lowercase and Other_Uppercase, defined in
PropList.txt. For example, Other_Lowercase adds the various modifier letters that are let-
terlike in shape, the circled lowercase letter symbols, and the compatibility lowercase
Roman numerals. Other_Uppercase adds the circled uppercase letter symbols, and the
compatibility uppercase Roman numerals.

A third set of definitions for case is fundamentally different in kind, and does not consist of
character properties at all. The functions isLowercase and isUppercase are string functions
returning a binary True/False value. These functions are defined in Section 3.13, Default
Case Algorithms, and depend on case mapping relations, rather than being based on letter-
forms per se. Basically, isLowercase is True for a string if the result of applying the toLower-
case mapping operation for a string is the same as the string itself.

Table 4-1 illustrates the various possibilities for how these definitions interact, as applied to
exemplary single characters or single character strings.

Table 4-1. Relationship of Casing Definitions

Code Character gc Lowercase Uppercase isLowerCase(S) isUpperCase(S)
0068 h Ll True False True False
0048 H Lu False True False True
24D7 ® So True False True False
24BD ® So False True False True
02B0 h Lm True False True True
1D34 H Lm True False True True
02BD ‘ Lm False False True True

Note that for “caseless” characters, such as U+02B0, U+1D34, and U+02BD, isLowerCase
and isUpperCase are both True, because the inclusion of a caseless letter in a string is not
criterial for determining the casing of the string—a caseless letter always case maps to itself.

On the other hand, all modifier letters derived from letter shapes are also notionally lower-
case, whether the letterform itself is a minuscule or a majuscule in shape. Thus U+1D34
MODIFIER LETTER CAPITAL H is actually Lowercase=True. Other modifier letters not derived
from letter shapes, such as U+02BD, are neither Lowercase nor Uppercase.

The string functions isLowerCase and isUpperCase also apply to strings longer than one
character, of course, for which the character properties General_Category, LowerCase, and
Uppercase are not relevant. In Table 4-2, the string function isTitleCase is also illustrated,
to show its applicability for the same strings.

Programmers concerned with manipulating Unicode strings should generally be dealing
with the string functions such as isLowerCase (and its functional cousin, toLowerCase),
unless they are working directly with single character properties. Care is always advised,

Character Properties 166 4.2 Case

Table 4-2. Case Function Values for Strings

Codes String isLowerCase(S) isUpperCase(S) isTitleCase(S)
0068 0068 hh True False False
0048 0048 HH False True False
0048 0068 Hh False False True
0068 0048 hH False False False

however, when dealing with case in the Unicode Standard, as expectations based simply on
the behavior of the basic Latin alphabet (A..Z, a..z) do not generalize easily across the entire
repertoire of Unicode characters, and because case for modifier letters, in particular, can
result in unexpected behavior.

Case Mapping

The default case mapping tables defined in the Unicode Standard are normative, but may
be overridden to match user or implementation requirements. The Unicode Character
Database contains four files with case mapping information, as shown in Table 4-3. Full
case mappings for Unicode characters are obtained by using the basic mappings from
UnicodeData.txt and extending or overriding them where necessary with the mappings
from SpecialCasing.txt. Full case mappings may depend on the context surrounding the
character in the original string.

Some characters have a “best” single-character mapping in UnicodeData.txt as well as a full
mapping in SpecialCasing.txt. Any character that does not have a mapping in these files is
considered to map to itself. For more information on case mappings, see Section 5.18, Case
Mappings.

Table 4-3. Sources for Case Mapping Information

File Name Description

UnicodeData.txt ~ Contains the case mappings that map to a single character. These do not
increase the length of strings, nor do they contain context-dependent map-
pings.

SpecialCasing.txt ~ Contains additional case mappings that map to more than one character, such
as “B” to “SS”. Also contains context-dependent mappings, with flags to distin-
guish them from the normal mappings, as well as some locale-dependent
mappings.

CaseFolding.txt ~ Contains data for performing locale-independent case folding, as described in
“Caseless Matching,” in Section 5.18, Case Mappings.

PropList.txt Contains the definition of the property Soft_Dotted, which is used in the con-
text specification for casing. See D138 in Section 3.13, Default Case Algorithms.

The single-character mappings in UnicodeData.txt are insufficient for languages such as
German. Therefore, only legacy implementations that cannot handle case mappings that
increase string lengths should use UnicodeData.txt case mappings alone.

Character Properties 167 4.2 Case

A set of charts that show the latest case mappings is also available on the Unicode website.
See “Charts” in Section B.6, Other Unicode Online Resources.

Character Properties 168 4.3 Combining Classes

4.3 Combining Classes

Each combining character has a normative canonical combining class. This class is used
with the Canonical Ordering Algorithm to determine which combining characters interact
typographically and to determine how the canonical ordering of sequences of combining
characters takes place. Class zero combining characters act like base letters for the purpose
of determining canonical order. Combining characters with non-zero classes participate in
reordering for the purpose of determining the canonical order of sequences of characters.
(See Section 3.11, Normalization Forms, for the specification of the algorithm.)

The list of combining characters and their canonical combining class appears in the Uni-
code Character Database. Most combining characters are nonspacing.

The canonical order of character sequences does not imply any kind of linguistic correct-
ness or linguistic preference for ordering of combining marks in sequences. For more
information on rendering combining marks, see Section 5.13, Rendering Nonspacing Marks.

Class zero combining marks are never reordered by the Canonical Ordering Algorithm.
Except for class zero, the exact numerical values of the combining classes are of no impor-
tance in canonical equivalence, although the relative magnitude of the classes is significant.
For example, it is crucial that the combining class of the cedilla be lower than the combin-
ing class of the dot below, although their exact values of 202 and 220 are not important for
implementations.

Certain classes tend to correspond with particular rendering positions relative to the base
character, as shown in Figure 4-1.

Figure 4-1. Positions of Common Combining Marks

Reordrant, Split, and Subjoined Combining Marks

In some scripts, the rendering of combining marks is notably complex. This is true in par-
ticular of the Brahmi-derived scripts of South and Southeast Asia, whose vowels are often
encoded as class zero combining marks in the Unicode Standard, known as matras for the
Indic scripts.

In the case of simple combining marks, as for the accent marks of the Latin script, the nor-
mative Unicode combining class of that combining mark typically corresponds to its posi-
tional placement with regard to a base letter, as described earlier. However, in the case of

Character Properties 169 4.3 Combining Classes

the combining marks representing vowels (and sometimes consonants) in the Brahmi-
derived scripts and other abugidas, all of the combining marks are given the normative
combining class of zero, regardless of their positional placement within an aksara. The
placement and rendering of a class zero combining mark cannot be derived from its com-
bining class alone, but rather depends on having more information about the particulars of
the script involved. In some instances, the position may migrate in different historical peri-
ods for a script or may even differ depending on font style.

Such matters are not treated as normative character properties in the Unicode Standard,
because they are more properly considered properties of the glyphs and fonts used for ren-
dering. However, to assist implementers, this section subcategorizes some class zero com-
bining marks for Brahmi-derived scripts, pointing out significant types that need to be
handled consistently.

Reordrant Class Zero Combining Marks. In many instances in Indic scripts, a vowel is rep-
resented in logical order after the consonant of a syllable, but is displayed before (to the left
of) the consonant when rendered. Such combining marks are termed reordrant to reflect
their visual reordering to the left of a consonant (or, in some instances, a consonant clus-
ter). Special handling is required for selection and editing of these marks. In particular, the
possibility that the combining mark may be reordered left past a cluster, and not simply
past the immediate preceding character in the backing store, requires attention to the
details for each script involved.

The visual reordering of these reordrant class zero combining marks has nothing to do with
the reordering of combining character sequences in the Canonical Ordering Algorithm. All
of these marks are class zero and thus are never reordered by the Canonical Ordering Algo-
rithm for normalization. The reordering is purely a presentational issue for glyphs during
rendering of text.

Table 4-4 lists reordrant class zero combining marks in the Unicode Standard.

Table 4-4. Class Zero Combining Marks—Reordrant

Script Code Points
Devanagari 093F, 094E
Bengali 09BE, 09C7, 09C8
Gurmukhi 0A3F

Gujarati OABF

Oriya 0B47

Tamil 0BC6, 0BC7, 0BC8
Malayalam 0D46, 0D47, 0D48
Sinhala 0DD9, 0DDB
Tibetan OF3F

Myanmar 1031, 1084
Khmer 17C1, 17C2, 17C3
Buginese 1A19

Tai Tham 1A55, 1A6E..1A72

Character Properties

170

4.3 Combining Classes

Table 4-4. Class Zero Combining Marks—Reordrant (Continued)

Script Code Points
Balinese 1B3E, 1B3F
Sundanese 1BA6

Lepcha 1C27,1C28, 1C29, 1C34, 1C35
Javanese A9BA, A9BB
Cham AA2F, AA30, AA34
Meetei Mayek AAEB, AAEE
Kaithi 110B1

Chakma 1112C

Sharada 111B4

Khudawadi 112E1

Grantha 11347, 11348
Newa 11436

Tirhuta 114B1, 114B9
Siddham 115B0, 115B8
Takri 116AE

Ahom 11726

Marchen 11CB1

In addition, there are historically related vowel characters in the Thai, Lao, New Tai Lue,
and Tai Viet scripts that are not treated as combining marks. Instead, for these scripts, such
vowels are represented in the backing store in visual order and require no reordering for
rendering. The trade-off is that they have to be rearranged logically for searching and sort-
ing. Because of that processing requirement, these characters are given a formal character
property assignment, the Logical Order_Exception property, as listed in Table 4-5. See
PropList.txt in the Unicode Character Database.

Table 4-5. Thai, Lao, and Other Logical Order Exceptions

Script Code Points
Thai 0E40..0E44
Lao 0ECO0..0EC4

New Tai Lue 19B5..19B7, 19BA
Tai Viet AAB5, AAB6, AAB9, AABB, AABC

Split Class Zero Combining Marks. In addition to the reordrant class zero combining
marks, there are a number of class zero combining marks whose representative glyph typi-
cally consists of two parts, which are split into different positions with respect to the conso-
nant (or consonant cluster) in an aksara. Sometimes these glyphic pieces are rendered both
to the left and the right of a consonant. Sometimes one piece is rendered above or below the
consonant and the other piece is rendered to the left or the right. Particularly in the
instances where some piece of the glyph is rendered to the left of the consonant, these split

Character Properties 171 4.3 Combining Classes

class zero combining marks pose similar implementation problems as for the reordrant
marks.

Table 4-6 lists split class zero combining marks in the Unicode Standard, subgrouped by
positional patterns.

Table 4-6. Class Zero Combining Marks—Split

Glyph Positions Script Code Points

Left and right Bengali 09CB, 09CC
Oriya 0B4B
Tamil 0BCA, 0BCB, 0BCC
Malayalam 0D4A, 0D4B, 0D4C
Sinhala 0DDC, 0ODDE
Khmer 17C0, 17C4, 17C5
Balinese 1B40, 1B41
Grantha 1134B, 1134C
Tirhuta 114BC, 114BE
Siddham 115BA

Left and top Oriya 0B48
Sinhala 0DDA
Khmer 17BE
Tirhuta 114BB
Siddham 115B9

Left, top, and right Oriya 0B4C
Sinhala 0DDD
Khmer 17BF
Siddham 115BB

Top and right Gujarati 0AC9
Oriya 0B57
Kannada 0CCO0, 0CC7, 0CC8, 0CCA, 0CCB
Limbu 1925, 1926
Balinese 1B43
Khojki 11232, 11233

Top and bottom Telugu 0C48
Tibetan 0F73, 0F76, 0F77, 0F78, 0F79, 0F81
Balinese 1B3C
Chakma 1112E, 1112F

Top, bottom, and right |Balinese 1B3D

Bottom and right Balinese 1B3B

One should pay very careful attention to all split class zero combining marks in implemen-
tations. Not only do they pose issues for rendering and editing, but they also often have
canonical equivalences defined involving the separate pieces, when those pieces are also
encoded as characters. As a consequence, the split combining marks may constitute excep-

Character Properties 172 4.3 Combining Classes

tional cases under normalization. Some of the Tibetan split combining marks are depre-
cated.

The split vowels also pose difficult problems for understanding the standard, as the phono-
logical status of the vowel phonemes, the encoding status of the characters (including any
canonical equivalences), and the graphical status of the glyphs are easily confused, both for
native users of the script and for engineers working on implementations of the standard.

Subjoined Class Zero Combining Marks. Brahmi-derived scripts that are not represented
in the Unicode Standard with a virama may have class zero combining marks to represent
subjoined forms of consonants. These correspond graphologically to what would be repre-
sented by a sequence of virama plus consonant in other related scripts. The subjoined con-
sonants do not pose particular rendering problems, at least not in comparison to other
combining marks, but they should be noted as constituting an exception to the normal pat-
tern in Brahmi-derived scripts of consonants being represented with base letters. This
exception needs to be taken into account when doing linguistic processing or searching and
sorting.

Table 4-7 lists subjoined class zero combining marks in the Unicode Standard.

Table 4-7. Class Zero Combining Marks—Subjoined

Script Code Points

Tibetan 0F8D..0F97, 0F99..0FBC
Limbu 1929, 192A, 192B

Sundanese 1BA1..1BA3, 1BAC, 1BAD
Lepcha 1C24, 1C25

Phags-pa A867, A868, A871

Javanese = A9BD

Marchen 11C92..11CA7, 11CA9..11CAF

The Limbu consonants listed in Table 4-7, while logically considered subjoined combining
marks, are rendered mostly at the lower right of a base letter, rather than directly beneath
them.

Strikethrough Class Zero Combining Marks. The Kharoshthi script is unique in having
some class zero combining marks for vowels that are struck through a consonant, rather
than being placed in a position around the consonant. These are also called out in Table 4-8
specifically as a warning that they may involve particular problems for implementations.

Table 4-8. Class Zero Combining Marks—Strikethrough

Script Code Points
Kharoshthi 10A01, 10A06

Character Properties 173 4.4 Directionality

4.4 Directionality

Directional behavior is interpreted according to the Unicode Bidirectional Algorithm (see
Unicode Standard Annex #9, “Unicode Bidirectional Algorithm”). For this purpose, all
characters of the Unicode Standard possess a normative directional type, defined by the
Bidi_Class (bc) property in the Unicode Character Database. The directional types left-to-
right and right-to-left are called strong types, and characters of these types are called strong
directional characters. Left-to-right types include most alphabetic and syllabic characters
as well as all Han ideographic characters. Right-to-left types include the letters of predom-
inantly right-to-left scripts, such as Arabic, Hebrew, and Syriac, as well as most punctua-
tion specific to those scripts. In addition, the Unicode Bidirectional Algorithm uses weak
types and neutrals. Interpretation of directional properties according to the Unicode Bidi-
rectional Algorithm is needed for layout of right-to-left scripts such as Arabic and Hebrew.

Character Properties 174 4.5 General Category

4.5 General Category

The Unicode Character Database defines a General Category property for all Unicode
code points. The General Category value for a character serves as a basic classification of
that character, based on its primary usage. The property extends the widely used subdivi-
sion of ASCII characters into letters, digits, punctuation, and symbols—a useful classifica-
tion that needs to be elaborated and further subdivided to remain appropriate for the larger
and more comprehensive scope of the Unicode Standard.

Each Unicode code point is assigned a normative General_Category value. Each value of
the General Category is given a two-letter property value alias, where the first letter gives
information about a major class and the second letter designates a subclass of that major
class. In each class, the subclass “other” merely collects the remaining characters of the
major class. For example, the subclass “No” (Number, other) includes all characters of the
Number class that are not a decimal digit or letter. These characters may have little in com-
mon besides their membership in the same major class.

Table 4-9 enumerates the General Category values, giving a short description of each
value. See Table 2-3 for the relationship between General Category values and basic types
of code points.

There are several other conventions for how General_Category values are assigned to Uni-
code characters. Many characters have multiple uses, and not all such uses can be captured
by a single, simple partition property such as General_Category. Thus, many letters often
serve dual functions as numerals in traditional numeral systems. Examples can be found in
the Roman numeral system, in Greek usage of letters as numbers, in Hebrew, and similarly
for many scripts. In such cases the General_Category is assigned based on the primary let-
ter usage of the character, even though it may also have numeric values, occur in numeric
expressions, or be used symbolically in mathematical expressions, and so on.

The General_Category gc=Nl is reserved primarily for letterlike number forms which are
not technically digits. For example, the compatibility Roman numeral characters,
U+2160..U+217F, all have gc=NL. Because of the compatibility status of these characters,
the recommended way to represent Roman numerals is with regular Latin letters (gc=Ll or
gc=Lu). These letters derive their numeric status from conventional usage to express
Roman numerals, rather than from their General_Category value.

Currency symbols (gc=Sc), by contrast, are given their General Category value based
entirely on their function as symbols for currency, even though they are often derived from
letters and may appear similar to other diacritic-marked letters that get assigned one of the
letter-related General_Category values.

Pairs of opening and closing punctuation are given their General_Category values (gc=Ps
for opening and gc=Pe for closing) based on the most typical usage and orientation of such
pairs. Occasional usage of such punctuation marks unpaired or in opposite orientation cer-
tainly occurs, however, and is in no way prevented by their General_Category values.

Character Properties 175 4.5 General Category

Table 4-9. General Category

Lu = Letter, uppercase
Ll = Letter, lowercase
Lt = Letter, titlecase

Lm = Letter, modifier
Lo = Letter, other

Mn = Mark, nonspacing
Mc = Mark, spacing combining
Me = Mark, enclosing

Nd = Number, decimal digit
Nl = Number, letter
No = Number, other

Pc = Punctuation, connector
Pd = Punctuation, dash

Ps = Punctuation, open
Pe = Punctuation, close
Pi = Punctuation, initial quote (may behave like Ps or Pe depending on usage)

Pf = Punctuation, final quote (may behave like Ps or Pe depending on usage)
Po = Punctuation, other

Sm = Symbol, math
Sc = Symbol, currency
Sk = Symbol, modifier
So = Symbol, other

Zs = Separator, space
Zl = Separator, line
Zp = Separator, paragraph

Cc = Other, control

Cf = Other, format

Cs = Other, surrogate

Co = Other, private use

Cn = Other, not assigned (including noncharacters)

Similarly, characters whose General_Category identifies them primarily as a symbol or as a
mathematical symbol may function in other contexts as punctuation or even paired punc-
tuation. The most obvious such case is for U+003C “<” LEss-THAN siGN and U+003E “>”
GREATER-THAN SIGN. These are given the General_Category gc=Sm because their primary
identity is as mathematical relational signs. However, as is obvious from HTML and XML,
they also serve ubiquitously as paired bracket punctuation characters in many formal syn-
taxes.

A common use of the General_Category of a Unicode character is in the derivation of
properties for the determination of text boundaries, as in Unicode Standard Annex #29,
“Unicode Text Segmentation.” Other common uses include determining language identifi-
ers for programming, scripting, and markup, as in Unicode Standard Annex #31, “Unicode

Character Properties 176 4.5 General Category

Identifier and Pattern Syntax,” and in regular expression languages such as Perl. For more
information, see Unicode Technical Standard #18, “Unicode Regular Expressions.”

This property is also used to support common APIs such as isDigit (). Common func-
tions such as isLetter () and isUppercase () do not extend well to the larger and more
complex repertoire of Unicode. While it is possible to naively extend these functions to
Unicode using the General Category and other properties, they will not work for the entire
range of Unicode characters and the kinds of tasks for which people intend them. For more
appropriate approaches, see Unicode Standard Annex #31, “Unicode Identifier and Pattern
Syntax”; Unicode Standard Annex #29, “Unicode Text Segmentation”; Section 5.18, Case
Mappings; and Section 4.10, Letters, Alphabetic, and Ideographic.

Although the General _Category property is normative, and its values are used in the deri-
vation of many other properties referred to by Unicode algorithms, it does not follow that
the General_Category always provides the most appropriate classification of a character for
any given purpose. Implementations are not required to treat characters solely according to
their General_Category values when classifying them in various contexts. The following
examples illustrate some typical cases in which an implementation might reasonably
diverge from General_Category values for a character when grouping characters as “punc-
tuation,” “symbols,” and so forth.

+ A character picker application might classify U+0023 # NUMBER SIGN among
symbols, or perhaps under both symbols and punctuation.

+ An “Ignore Punctuation” option for a search might choose not to ignore
U+0040 @ COMMERCIAL AT.

+ A layout engine might treat U+0021 | EXCLAMATION MARK as a mathematical
operator in the context of a mathematical equation, and lay it out differently
than if the same character were used as terminal punctuation in text.

+ A regular expression syntax could provide an operator to match all punctua-
tion, but include characters other than those limited to gc=P (for example,
U+00A7 § SECTION SIGN).

The general rule is that if an implementation purports to be using the Unicode
General_Category property, then it must use the exact values specified in the Unicode
Character Database for that claim to be conformant. Thus, if a regular expression syntax
explicitly supports the Unicode General_Category property and matches gc=P, then that
match must be based on the precise UCD values.

Character Properties 177 4.6 Numeric Value

4.6 Numeric Value

Numeric_Value and Numeric_Type are normative properties of characters that represent
numbers. Characters with a non-default Numeric_Type include numbers and number
forms such as fractions, subscripts, superscripts, Roman numerals, encircled numbers, and
many script-specific digits and numbers.

In some traditional numbering systems, ordinary letters may also be used with a numeric
value. Examples include Greek letters used numerically, Hebrew gematria, and even Latin
letters when used in outlines (II.A.1.b). Letter characters used in this way are not given
Numeric_Type or Numeric_Value property values, to prevent simplistic parsers from treat-
ing them numerically by mistake. The Unicode Character Database gives the
Numeric_Type and Numeric_Value property values only for Unicode characters that nor-
mally represent numbers.

Decimal Digits. Decimal digits, as commonly understood, are digits used to form decimal-
radix numbers. They include script-specific digits, but exclude characters such as Roman
numerals and Greek acrophonic numerals, which do not form decimal-radix expressions.
(Note that <1, 5> = 15 = fifteen, but <I, V> = IV = four.)

The Numeric_Type=Decimal property value (which is correlated with the
General_Category=Nd property value) is limited to those numeric characters that are used
in decimal-radix numbers and for which a full set of digits has been encoded in a contigu-
ous range, with ascending order of Numeric_Value, and with the digit zero as the first code
point in the range.

Decimal digits, as defined in the Unicode Standard by these property assignments, exclude
some characters, such as the CJK ideographic digits (see the first ten entries in Table 4-10),
which are not encoded in a contiguous sequence. Decimal digits also exclude the compati-
bility subscript and superscript digits, to prevent simplistic parsers from misinterpreting
their values in context. (For more information on superscript and subscripts, see
Section 22.4, Superscript and Subscript Symbols.) Traditionally, the Unicode Character
Database has given these sets of noncontiguous or compatibility digits the value
Numeric_Type=Digit, to recognize the fact that they consist of digit values but do not nec-
essarily meet all the criteria for Numeric_Type=Decimal. However, the distinction between
Numeric_Type=Digit and the more generic Numeric_Type=Numeric has proven not to be
useful in implementations. As a result, future sets of digits which may be added to the stan-
dard and which do not meet the criteria for Numeric_Type=Decimal will simply be
assigned the value Numeric_Type=Numeric.

Numbers other than decimal digits can be used in numerical expressions, and may be
interpreted by a numeric parser, but it is up to the implementation to determine such spe-
cialized uses.

Script-Specific Digits. The Unicode Standard encodes separate characters for the digits
specific to a given script. Examples are the digits used with the Arabic script or those of the
various Indic scripts. See Table 22-3 for a list of script-specific digits. For naming conven-
tions relevant to the Arabic digits, see the introduction to Section 9.2, Arabic.

Character Properties 178 4.6 Numeric Value

Ideographic Numeric Values

CJK ideographs also may have numeric values. The primary numeric ideographs are
shown in Table 4-10. When used to represent numbers in decimal notation, zero is repre-
sented by U+3007. Otherwise, zero is represented by U+96F6.

Table 4-10. Primary Numeric Ideographs

Code Point | Value

U+96F6 0

U+4E00 1

U+4E8C 2

U+4E09 3

U+56DB 4

U+4E9%4 5

U+516D 6

U+4E03 7

U+516B 8

U+4E5D 9

U+5341 10

U+767E 100

U+5343 1,000

U+4E07 10,000

U+5104 100,000,000 (10,000 x 10,000)
U+4EBF 100,000,000 (10,000 x 10,000)
U+5146 1,000,000,000,000 (10,000 x 10,000 x 10,000)

Ideographic accounting numbers are commonly used on checks and other financial instru-
ments to minimize the possibilities of misinterpretation or fraud in the representation of
numerical values. The set of accounting numbers varies somewhat between Japanese, Chi-
nese, and Korean usage. Table 4-11 gives a fairly complete listing of the known accounting
characters. Some of these characters are ideographs with other meanings pressed into ser-
vice as accounting numbers; others are used only as accounting numbers.

Table 4-11. Ideographs Used as Accounting Numbers

Number | Multiple Uses | Accounting Use Only
1 U+58F9, U+58F1 |U+5F0C

2 U+8CAE, U+8CB3, U+8D30, U+5F10, U+5F0D
3 U+53C3, U+53C2 |U+53C1, U+5F0E

4 U+8086

5 U+4F0D

6 U+9678, U+9646

7 U+67D2

8 U+634C

9 U+7396

10 U+62FE

100 U+964C U+4F70

1,000 U+4EDF

10,000 U+842C

Character Properties 179 4.6 Numeric Value

In Japan, U+67D2 is also pronounced urusi, meaning “lacquer,” and is treated as a variant
of the standard character for “lacquer,” U+6F06.

The Unihan Database gives the most up-to-date and complete listing of primary numeric
ideographs and ideographs used as accounting numbers, including those for CJK reper-
toire extensions beyond the Unified Repertoire and Ordering. See Unicode Standard Annex
#38, “Unicode Han Database (Unihan),” for more details.

Character Properties 180 4.7 BidiMirrored

4.7 Bidi Mirrored

Bidi Mirrored is a normative property of characters such as parentheses, whose images are
mirrored horizontally in text that is laid out from right to left. For example, U+0028 LEFT
PARENTHESIS is interpreted as opening parenthesis; in a left-to-right context it will appear as
“(”, while in a right-to-left context it will appear as the mirrored glyph “)”. This require-
ment is necessary to render the character properly in a bidirectional context. Mirroring is
the default behavior for such paired characters in Unicode text. (For more information, see
the “Paired Punctuation” subsection in Section 6.2, General Punctuation.)

Paired delimiters are mirrored even when they are used in unusual ways, as, for example, in
the mathematical expressions [a,b) or]a,b[. If any of these expression is displayed from
right to left, then the mirrored glyphs are used. Because of the difficulty in interpreting
such expressions, authors of bidirectional text need to make sure that readers can deter-
mine the desired directionality of the text from context.

Note that mirroring is not limited to paired punctuation and other paired delimiters, but
also applies to a limited set of mathematical symbols whose orientation is reversed when
the direction of line layout is reversed—for example, U+222B INTEGRAL. Such characters
subject to bidi mirroring require the availability of a left-right symmetric pair of glyphs for
correct display.

For some mathematical symbols, the “mirrored” form is not an exact mirror image. For
example, the direction of the circular arrow in U+2232 CLOCKWISE CONTOUR INTEGRAL
reflects the direction of the integration in coordinate space, not the text direction. In a
right-to-left context, the integral sign would be mirrored, but the circular arrow would
retain its direction. In a similar manner, the bidi-mirrored form of U+221B cuBE rRoOT
would be composed of a mirrored radix symbol with a non-mirrored digit “3”. For more
information, see Unicode Technical Report #25, “Unicode Support for Mathematics.”

The list of mirrored characters appears in the Unicode Character Database. Formally, they
consist of all characters with the property value Bidi_Mirrored=Y. This applies to almost all
paired brackets (with the legacy exception of U+FD3E ORNATE LEFT PARENTHESIS and
U+FD3F ORNATE RIGHT PARENTHESIS), but not to quotation marks, whose directionality
and pairing status is less predictable than paired brackets. (See the subsection on “Lan-
guage-Based Usage of Quotation Marks” in Section 6.2, General Punctuation.) Many math-
ematical operators with a directional orientation are bidi mirrored, but mirroring does not
apply to any arrow symbols.

The mirroring behavior noted in paleographic materials for a number of ancient scripts,
such as Old Italic, Runic, (ancient) Greek, Egyptian Hieroglyphs, and so forth, is not
within the scope of the Bidi Mirrored property, and is not handled by default in the Uni-
code Bidirectional Algorithm (UBA). Mirroring of the letters or signs in the text of such
paleographic material should be dealt with by higher level protocol. HL6 "Additional mir-
roring" is specified by the UBA as a permissible type of higher-level protocol to allow addi-
tional mirroring of glyphs for certain characters in a bidirectional context. A
straightforward approach to a higher-level protocol would use existing bidirectional for-

Character Properties 181 4.7 BidiMirrored

mat controls to override text layout direction, add mirrored glyphs to a font used for paleo-
graphic display, and make the display choice depend on resolved direction for a directional
run. HL3 “Emulate explicit directional formatting characters” in the UBA also allows a
higher-level protocol to use other techniques such as style sheets or markup to override text
directionality in structured text. In combination, such techniques can provide for the lay-
out requirements of paleographic scripts which may mirror letters or signs depending on
text layout direction. See the discussions of directionality and text layout in the respective
sections regarding each script.

Related Properties. The Bidi Mirrored property is not to be confused with the related,
informative Bidi Mirroring Glyph property, which lists pairs of characters whose represen-
tative glyphs are mirror images of each other. The Unicode Bidirectional Algorithm also
requires two related, normative properties, Bidi Paired Bracket and Bidi Paired Bracket Type,
which are used for matching specific bracket pairs and to assign the same text direction to
both members of each pair in bidirectional processing for text layout. These properties do
not affect mirroring. For more information, see BidiMirroring.txt and BidiBrackets.txt in
the Unicode Character Database.

Character Properties 182 4.8 Name

4.8 Name

Unicode characters have names that serve as unique identifiers for each character. The
character names in the Unicode Standard are identical to those of the English-language edi-
tion of ISO/IEC 10646.

Where possible, character names are derived from existing conventional names of a charac-
ter or symbol in English, but in many cases the character names nevertheless differ from
traditional names widely used by relevant user communities. The character names of sym-
bols and punctuation characters often describe their shape, rather than their function,
because these characters are used in many different contexts. See also “Color Words in Uni-
code Character Names” in Section 22.9, Miscellaneous Symbols.

Character names are listed in the code charts.

Stability. Once assigned, a character name is immutable. It will never be changed in subse-
quent versions of the Unicode Standard. Implementers and users can rely on the fact that a
character name uniquely represents a given character.

Character Name Syntax. Unicode character names, as listed in the code charts, contain
only uppercase Latin letters A through Z, digits, space, and hyphen-minus. In more detail,
character names reflect the following rules:

R1 Only Latin capital letters A to Z (U+0041..U+0056), ASCII digits (U+0030..
U+0039), U+0020 spAcE, and U+002D HYPHEN-MINUS occur in character names.

R2 Digits do not occur as the first character of a character name, nor immediately fol-
lowing a space character.

R3 U+002D uYPHEN-MINUS does not occur as the first or last character of a character
name, nor immediately preceding or following another hyphen-minus character.
(In other words, multiple occurrences of U+002D in sequence are not allowed.)

R4 A space does not occur as the first or last character of a character name, nor imme-
diately preceding or following another space character. (In other words, multiple
spaces in sequence are not allowed.)

See Appendix A, Notational Conventions, for the typographical conventions used when
printing character names in the text of the standard.

Names as Identifiers. Character names are constructed so that they can easily be trans-
posed into formal identifiers in another context, such as a computer language. Because
Unicode character names do not contain any underscore (“_”) characters, a common strat-
egy is to replace any hyphen-minus or space in a character name by a single “_” when con-
structing a formal identifier from a character name. This strategy automatically results in a
syntactically correct identifier in most formal languages. Furthermore, such identifiers are
guaranteed to be unique, because of the special rules for character name matching.

Character Name Matching. When matching identifiers transposed from character names,
it is possible to ignore case, whitespace, and all medial hyphen-minus characters (or any “_”

Character Properties 183 4.8 Name

replacing a hyphen-minus), except for the hyphen-minusin U+1180 HANGUL JUNGSEONG O-
E, and still result in a unique match. For example, “ZERO WIDTH SPACE” is equivalent to
“zero-width-space” or “ZERO_WIDTH_SPACE” or “ZeroWidthSpace” However,
“TIBETAN LETTER A” should not match “TIBETAN LETTER -A”, because in that instance
the hyphen-minus is not medial between two letters, but is instead preceded by a space. For
more information on character name matching, see Section 5.7, “Matching Rules” in Uni-
code Standard Annex #44, “Unicode Character Database.”

Named Character Sequences. Occasionally, character sequences are also given a normative
name in the Unicode Standard. The names for such sequences are taken from the same
namespace as character names, and are also unique. For details, see Unicode Standard
Annex #34, “Unicode Named Character Sequences.” Named character sequences are not
listed in the code charts; instead, they are listed in the file NamedSequences.txt in the Uni-
code Character Database.

The names for named character sequences are also immutable. Once assigned, they will
never be changed in subsequent versions of the Unicode Standard.

Character Name Aliases. The Unicode Standard has a mechanism for the publication of
additional, normative formal aliases for characters. These formal aliases are known as char-
acter name aliases. (See Definition D5 in Section 3.3, Semantics.) They function essentially
as auxiliary names for a character. The original reason for defining character name aliases
was to provide corrections for known mistakes in character names, but they have also
proven useful for other purposes, as documented here.

Character name aliases are listed in the file NameAliases.txt in the Unicode Character Data-
base. That file also documents the type field which distinguishes among different kinds of
character name aliases, as shown in Table 4-12.

Table 4-12. Types of Character Name Aliases

Type Description

correction |Corrections for serious problems in the character names

control ISO 6429 names for C0 and C1 control functions, and other commonly occurring
names for control codes

alternate Widely used alternate names for format characters

figment Several documented labels for C1 control code points which were never actually

approved in any standard

abbreviation | Commonly occurring abbreviations (or acronyms) for control codes, format
characters, spaces, and variation selectors

Character name aliases are immutable, once published. (See Definition D42 in Section 3.5,
Properties.) They follow the same syntax rules as character names and are also guaranteed
to be unique in the Unicode namespace for character names. This attribute makes charac-
ter name aliases useful as identifiers. A character may, in principle, have more than one
normative character name alias, but each distinct character name alias uniquely identifies
only a single code point.

Character Properties 184 4.8 Name

The first type of character name alias consists of corrections for known mistakes in charac-
ter names. Sometimes errors in a character name are only discovered after publication of a
version of the Unicode Standard. Because character names are immutable, such errors are
not corrected by changing the names after publication. However, in some limited instances
(as for obvious typos in the name), a character name alias is defined instead.

For example, the following Unicode character name has a well-known spelling error in it:
U+FE18 PRESENTATION FORM FOR VERTICAL RIGHT WHITE LENTICULAR BRAKCET

Because the spelling error could not be corrected after publication of the data files which
first contained it, a character name alias with the corrected spelling was defined:

U+FE18 PRESENTATION FORM FOR VERTICAL RIGHT WHITE LENTICULAR BRACKET

Character name aliases are provided for additional reasons besides corrections of errors in
the character names. For example, there are character name aliases which give definitive
labels to control codes, which have no actual Unicode character names:

U+0009 HORIZONTAL TABULATION

Character name aliases of type alternate are for widely used alternate names of Unicode
format characters. Currently only one such alternate is normatively defined, but it is for an
important character:

U+FEFF BYTE ORDER MARK

Among the control codes there are a few which have had names propagate through the
computer implementation “lore,” despite the fact that they refer to ISO/IEC 10646 control
functions that were never formally adopted. These names are defined as character name
aliases of type figment, and are included in NameAliases.txt, because they occur in some
widely distributed implementations, such as the regex engine for Perl. Examples include:

U+0081 HIGH OCTET PRESET

Additional character name aliases match existing and widely used abbreviations (or acro-
nyms) for control codes and for Unicode format characters:

U+0009 TAB
U+200B zwsp

Specifying these additional, normative character name aliases serves two major functions.
First, it provides a set of well-defined aliases for use in regular expression matching and
searching, where users might expect to be able to use established names or abbreviations
for control codes and the like, but where those names or abbreviations are not part of the
actual Unicode Name property. Second, because character name aliases are guaranteed to
be unique in the Unicode character name namespace, having them defined for control
codes and abbreviations prevents the potential for accidental collisions between de facto
current use and names which might be chosen in the future for newly encoded Unicode
characters.

Character Properties 185 4.8 Name

It is acceptable and expected for external specifications to make normative references to
Unicode characters using one (or more) of their normative character name aliases, where
such references make sense. For example, when discussing Unicode encoding schemes and
the role of U+FEFF as a signature for byte order, it would not make much sense to insist on
referring to U+FEFF by its name ZERO WIDTH NO-BREAK SPACE, when use of the character
name alias BYTE ORDER MARK or the widely used abbreviation Bom would communicate
with less confusion.

A subset of character name aliases is listed in the code charts, using special typographical
conventions explained in Section 24.1, Character Names List.

A normative character name alias is distinct from the informative aliases listed in the code
charts. Informative aliases merely point out other common names in use for a given char-
acter. Informative aliases are not immutable and are not guaranteed to be unique; they
therefore cannot serve as an identifier for a character. Their main purposes are to help
readers of the standard to locate and to identify particular characters.

Unicode Name Property

Formally, the character name for a Unicode character is the value of the normative charac-
ter property, “Name”. Most Unicode character properties are defined by enumeration in
one of the data files of the Unicode Character Database, but the Name property is instead
defined in part by enumeration and in part by rule. A significant proportion of Unicode
characters belong to large sets, such as Han ideographs, Tangut ideographs, and Hangul
syllables, for which the character names are best defined by generative rule, rather than
one-by-one naming.

Formal Definition of the Name Property. The Name property (short alias: “na”) is a string
property, defined as follows:

NR1 For Hangul syllables, the Name property value is derived by rule, as specified in
Section 3.12, Conjoining Jamo Behavior, under “Hangul Syllable Name Genera-
tion,” by concatenating a fixed prefix string “HANGUL SYLLABLE ” and appropriate
values of the Jamo_Short_Name property.

For example, the name of U+D4DB is HANGUL SYLLABLE PWILH, constructed by concate-

«_»

nation of “HANGUL sYLLABLE ” and three Jamo_Short_Name property values, “P”, + “w1” +

« »

LH.

NR2 For most ideographs (characters with the binary property value Ideographic =
True), the Name property value is derived by concatenating a script-specific prefix
string, as specified in Table 4-13, to the code point, expressed in hexadecimal, with
the usual 4- to 6-digit convention.

For example, the name of U+4E00 is cJK UNIFIED IDEOGRAPH-4E00, constructed by con-
catenation of “cJK UNTFIED IDEOGRAPH-" and the code point. Similarly, the character name
of U+17000 is TANGUT IDEOGRAPH-17000.

Character Properties 186 4.8 Name

NR3 For all other Graphic characters and for all Format characters, the Name property
value is as explicitly listed in Field 1 of UnicodeData.txt.

For example, U+0A15 GURMUKHI LETTER KA or U+200D ZERO WIDTH JOINER.

NR4 For all other Unicode code points of all other types (Control, Private-Use, Surro-
gate, Noncharacter, and Reserved), the value of the Name property is the null
string. In other words, na = .

The ranges of Hangul syllables and most ideographic characters subject to the name deri-
vation rules NR1 and NR2 are identified by a special convention in Field 1 of Unicode-
Data.txt. The start and end of each range are indicated by a pair of entries in the data file in
the general format:

This convention originated as a compression technique for UnicodeData.txt, as all of the
UnicodeData.txt properties of these ranges were uniform, and the names for the characters
in the ranges could be specified by rule. Note that the same convention is used in Unicode-
Data.txt to specify properties for code point types which have a null string as their Name
property value, such as private use characters.

CJK compatibility ideographs are an exception. They have names derived by rule NR2, but
are explicitly listed in UnicodeData.txt with their names, because they typically have non-
uniform character properties, including most notably a nontrivial canonical decomposi-
tion value.

The exact ranges subject to name derivation rules NR1 and NR2, and the specified prefix
strings are summarized in Table 4-13.

Table 4-13. Name Derivation Rule Prefix Strings

Range Rule Prefix String
ACO00..D7A3 NR1 “HANGUL SYLLABLE ”
3400..4DB5 NR2 “CJK UNIFIED IDEOGRAPH-"
4F00..9FD5 NR2 “CJK UNIFIED IDEOGRAPH-

20000..2A6D6 NR2 “CJK UNIFIED IDEOGRAPH-"
2A700..2B734 NR2 “CJK UNIFIED IDEOGRAPH-"
2B740..2B81D NR2 “CJK UNIFIED IDEOGRAPH-"
2B820..2CEA1 NR2 “CJK UNIFIED IDEOGRAPH-"
17000..187EC ~ NR2 “TANGUT IDEOGRAPH-"
F900..FA6D* NR2 “CJK COMPATIBILITY IDEOGRAPH-"

FA70..FAD9 NR2 “CJK COMPATIBILITY IDEOGRAPH-"

2F800..2FA1D NR2 “CJK COMPATIBILITY IDEOGRAPH-"

Twelve of the CJK ideographs in the starred range in Table 4-13, in the CJK Compatibility
Ideographs block, are actually CJK unified ideographs. Nonetheless, their names are con-

Character Properties 187 4.8 Name

structed with the “Cjk COMPATIBILITY IDEOGRAPH-" prefix shared by all other code points
in that block. The status of a CJK ideograph as a unified ideograph cannot be deduced from
the Name property value for that ideograph; instead, the dedicated binary property
Unified_Ideograph should be used to determine that status. See “CJK Compatibility Ideo-
graphs” in Section 18.1, Han, and Section 4.4, “Listing of Characters Covered by the Uni-
han Database” in Unicode Standard Annex #38, “Unihan Database,” for more details about
these exceptional twelve CJK ideographs.

The generic term “character name” refers to the Name property value for an encoded Uni-
code character. An expression such as, “The reserved code point U+30000 has no name,” is
shorthand for the more precise statement that the reserved code point U+30000 (as for all
code points of type Reserved) has a property value of na="” for the Name property.

Name Uniqueness. The Unicode Name property values are unique for all non-null values,
but not every Unicode code point has a unique Unicode Name property value. Further-
more, because Unicode character names, character name aliases, and named character
sequences constitute a single, unique namespace, the Name property value uniqueness
requirement applies to all three kinds of names.

Interpretation of Field 1 of UnicodeData.txt. Where Field 1 of UnicodeData.txt contains a
string enclosed in angle brackets, “<” and “>”, such a string is not a character name, but a
meta-label indicating some other information—for example, the start or end of a character
range. In these cases, the Name property value for that code point is either empty (na="")
or is given by one of the rules described above. In all other cases, the value of Field 1 (that is,
the string of characters between the first and second semicolon separators on each line)
corresponds to the normative value of the Name property for that code point.

Control Codes. The Unicode Standard does not define character names for control codes
(characters with General_Category=Cc). In other words, all control codes have a property
value of na="” for the Name property. Control codes are instead listed in UnicodeData.txt
with a special label “<control>” in Field 1. This value is not a character name, but instead
indicates the code point type (see Definition D10a in Section 3.4, Characters and Encoding).
For control characters, the values of the informative Unicode 1.0 name property
(Unicode_1_Name) in Field 10 match the names of the associated control functions from
ISO/IEC 6429. (See Section 4.9, Unicode 1.0 Names.)

Code Point Labels

To provide unique, meaningful labels for code points that do not have character names, the
Unicode Standard uses a convention for code point labeling.

For each code point type without character names, code point labels are constructed by
using a lowercase prefix derived from the code point type, followed by a hyphen-minus and
then a 4- to 6-digit hexadecimal representation of the code point. The label construction
for the five affected code point types is illustrated in Table 4-14.

To avoid any possible confusion with actual, non-null Name property values, constructed
Unicode code point labels are often displayed between angle brackets: <control-0009>,

Character Properties 188 4.8 Name

Table 4-14. Construction of Code Point Labels

Type Label
Control control-NNNN
Reserved reserved-NNNN

Noncharacter noncharacter-NNNN
Private-Use private-use-NNNN
Surrogate surrogate-NNNN

<noncharacter-FFFF>, and so on. This convention is used consistently in the data files for
the Unicode Character Database.

A constructed code point label is distinguished from the designation of the code point itself
(for example, “U+0009” or “U+FFFF”), which is also a unique identifier, as described in
Appendix A, Notational Conventions.

Use of Character Names in APIs and User Interfaces

Use in APIs. APIs which return the value of a Unicode “character name” for a given code
point might vary somewhat in their behavior. An API which is defined as strictly returning
the value of the Unicode Name property (the “na” attribute), should return a null string for
any Unicode code point other than graphic or format characters, as that is the actual value
of the property for such code points. On the other hand, an API which returns a name for
Unicode code points, but which is expected to provide useful, unique labels for unassigned,
reserved code points and other special code point types, should return the value of the Uni-
code Name property for any code point for which it is non-null, but should otherwise con-
struct a code point label to stand in for a character name.

User Interfaces. A list of Unicode character names may not always be the most appropriate
set of choices to present to a user in a user interface. Many common characters do not have
a single name for all English-speaking user communities and, of course, their native name
in another language is likely to be different altogether. The names of many characters in the
Unicode Standard are based on specific Latin transcription of the sounds they represent.
There are often competing transcription schemes. For all these reasons, it can be more
effective for a user interface to use names that were translated or otherwise adjusted to meet
the expectations of the targeted user community. By also listing the formal character name,
a user interface could ensure that users can unambiguously refer to the character by the
name documented in the Unicode Standard.

Character Properties 189 4.9 Unicode 1.0 Names

4.9 Unicode 1.0 Names

The Unicode_1_Name property is an informative property referring to the name of charac-
ters in Version 1.0 of the Unicode Standard. Values of the Unicode_1_Name property are
provided in UnicodeData.txt in the Unicode Character Database in cases where the Version
1.0 name of a character differed from the current name of that character. A significant
number of names for Unicode characters in Version 1.0 were changed during the process of
merging the repertoire of the Unicode Standard with ISO/IEC 10646 in 1991. Character
name changes are now strictly prohibited by the Unicode Character Encoding Stability Pol-
icy, and no character name has been changed since Version 2.0.

The Version 1.0 names are primarily of historic interest regarding the early development of
the Unicode Standard. However, where a Version 1.0 character name provides additional
useful information about the identity of a character, it is explicitly listed in the code charts.
For example, U+00B6 piLcrOw SIGN has its Version 1.0 name, PARAGRAPH SIGN, listed for
clarity.

The status of the Unicode_1_Name property values in the case of control codes differs from
that for other characters. The Unicode Standard, Version 1.0, gave names to the CO control
codes, U+0000..U+001F, U+007F, based on then-current practice for reference to ASCII
control codes. Unicode 1.0 gave no names to the C1 control codes, U+0080..U+009E. The
values of the Unicode_1_Name property have been updated for the control codes to reflect
the ISO/IEC 6429 standard names for control functions. Those names can be seen as anno-
tations in the code charts. In a few instances, because of updates to ISO/IEC 6429, those
names may differ from the names that actually occurred in Unicode 1.0. For example, the
Unicode 1.0 name of U+0009 was HORIZONTAL TABULATION, but the ISO/IEC 6429 name
for this function is CHARACTER TABULATION, and the commonly used alias is, of course,
merely tab.

Character Properties 190 4.10 Letters, Alphabetic, and Ideographic

4.10 Letters, Alphabetic, and Ideographic

Letters and Syllables. The concept of a letter is used in many contexts. Computer language
standards often characterize identifiers as consisting of letters, syllables, ideographs, and
digits, but do not specify exactly what a “letter,” “syllable,” “ideograph,” or “digit” is, leav-
ing the definitions implicitly either to a character encoding standard or to a locale specifi-
cation. The large scope of the Unicode Standard means that it includes many writing
systems for which these distinctions are not as self-evident as they may once have been for
systems designed to work primarily for Western European languages and Japanese. In par-
ticular, while the Unicode Standard includes various “alphabets” and “syllabaries,” it also
includes writing systems that fall somewhere in between. As a result, no attempt is made to
draw a sharp property distinction between letters and syllables.

Alphabetic. The Alphabetic property is a derived informative property of the primary units
of alphabets and/or syllabaries, whether combining or noncombining. Included in this
group would be composite characters that are canonical equivalents to a combining char-
acter sequence of an alphabetic base character plus one or more combining characters; let-
ter digraphs; contextual variants of alphabetic characters; ligatures of alphabetic characters;
contextual variants of ligatures; modifier letters; letterlike symbols that are compatibility
equivalents of single alphabetic letters; and miscellaneous letter elements. Notably,
U+00AA FEMININE ORDINAL INDICATOR and U+00BA MASCULINE ORDINAL INDICATOR are
simply abbreviatory forms involving a Latin letter and should be considered alphabetic
rather than nonalphabetic symbols.

Ideographic. The Ideographic property is an informative property defined in the Unicode
Character Database. The Ideographic property is used, for example, in determining line
breaking behavior. Characters with the Ideographic property include unified CJK ideo-
graphs, CJK compatibility ideographs, Tangut ideographs, and characters from other
blocks—for example, U+3007 IDEOGRAPHIC NUMBER zERO and U+3006 IDEOGRAPHIC
CLOSING MARK. For more information about Han and Tangut ideographs, see Section 18.1,
Han and Section 18.10, Tangut. For more about ideographs and logosyllabaries in general,
see Section 6.1, Writing Systems.

Character Properties 1914.11 Properties Related to Text Boundaries

4.11 Properties Related to Text Boundaries

The determination of text boundaries, such as word breaks or line breaks, involves contex-
tual analysis of potential break points and the characters that surround them. Such an anal-
ysis is based on the classification of all Unicode characters by their default interaction with
each particular type of text boundary. For example, the Line_Break property defines the
default behavior of Unicode characters with respect to line breaking.

A number of characters have special behavior in the context of determining text boundar-
ies. These characters are described in more detail in the subsection on “Line and Word
Breaking” in Section 23.2, Layout Controls. For more information about text boundaries
and these characters, see Unicode Standard Annex #14, “Unicode Line Breaking Algo-
rithm,” and Unicode Standard Annex #29, “Unicode Text Segmentation.”

Character Properties 192 4.12 Characters with Unusual Properties

4.12 Characters with Unusual Properties

The behavior of most characters does not require special attention in this standard. How-
ever, the characters in Table 4-15 exhibit special behavior. Many other characters behave in
special ways but are not noted here, either because they do not affect surrounding text in
the same way or because their use is intended for well-defined contexts. Examples include
the compatibility characters for block drawing, the symbol pieces for large mathematical
operators, and many punctuation symbols that need special handling in certain circum-
stances. Such characters are more fully described in the following chapters. The section
numbers or other references listed in the “Details” column in Table 4-15 indicate where to
find more information about the functions or particular groups of characters listed.

Table 4-15. Unusual Properties

Function Details Code Point and Name
Segmentation
Line break controls Section 23.2 00AD SOFT HYPHEN

200B ZERO WIDTH SPACE
2060 WORD JOINER

Combining Marks
Bases for display of isolated |Section 2.11, |0020 sPACE
nonspacing marks Section 6.2, |00A0 NO-BREAK SPACE
Section 23.2
Double nonspacing marks | Section 7.9 035C COMBINING DOUBLE BREVE BELOW

035D COMBINING DOUBLE BREVE

035E COMBINING DOUBLE MACRON

035F COMBINING DOUBLE MACRON BELOW

0360 COMBINING DOUBLE TILDE

0361 COMBINING DOUBLE INVERTED BREVE

0362 COMBINING DOUBLE RIGHTWARDS ARROW
BELOW

1DCD COMBINING DOUBLE CIRCUMFLEX ABOVE

1DFC COMBINING DOUBLE INVERTED BREVE BELOW

Combining half marks Section 7.9 FE20 COMBINING LIGATURE LEFT HALF

FE21 COMBINING LIGATURE RIGHT HALF

and all other pairs in the Combining Half Marks

block
Combining continuous lin- | Section 7.3, 0305 COMBINING OVERLINE
ing marks Section 7.9 0332 COMBINING LOW LINE

0333 COMBINING DOUBLE LOW LINE
033F COMBINING DOUBLE OVERLINE
FE26 COMBINING CONJOINING MACRON
FE2D COMBINING CONJOINING MACRON BELOW
Combining marks with non- | Section 7.9 1ABB COMBINING PARENTHESES ABOVE

default stacking 1ABC COMBINING DOUBLE PARENTHESES ABOVE
1ABD COMBINING PARENTHESES BELOW

Character Properties

193 4.12 Characters with Unusual Properties

Table 4-15. Unusual Properties (Continued)

Function Details Code Point and Name
Ligation
Cursive joining and ligation |Section 23.2 |200C ZERO WIDTH NON-JOINER
control 200D ZERO WIDTH JOINER
Fraction formatting Section 6.2 2044 FRACTION SLASH
Ligating modifier tone let- | Section 7.8 02E5..02E9 MODIFIER LETTER EXTRA-HIGH TONE

ters

BAR..MODIFIER LETTER EXTRA-LOW TONE BAR

Ligating brackets that sur-
round text

Section 11.4,
Section 13.4,

0F3C TIBETAN MARK ANG KHANG GYON

0F3D TIBETAN MARK ANG KHANG GYAS

13258..1325D EGYPTIAN HIEROGLYPH OO0G6A..EGYP-
TIAN HIEROGLYPH OOO6F

13282 EGYPTIAN HIEROGLYPH O033A

13286..13289 EGYPTIAN HIEROGLYPH O036A..EGYP-
TIAN HIEROGLYPH 0036D

13379..1337B EGYPTIAN HIEROGLYPH VO11A..EGYP-
TIAN HIEROGLYPH VO11C

Ligating regional indicator
symbols

Section 22.10,
UTR #51

1F1E6..1F1FF REGIONAL INDICATOR SYMBOL LETTER
A..REGIONAL INDICATOR SYMBOL LETTER Z

Indic-related: conjuncts, ki

llers, and other viramas

Brahmi-derived script dead-
character formation

Chapter 12,
Chapter 13,
Chapter 14,
Chapter 15,
Chapter 16

See IndicSyllabicCategory.txt in the UCD for a full
listing.

Brahmi number formation

Section 14.1

1107F BRAHMI NUMBER JOINER

Non-Indic consonant liga-
tion

Section 19.3

2D7F TIFINAGH CONSONANT JOINER

Historical viramas with
other functions

Section 13.4,
Section 13.6,
Section 13.7,
Section 13.11,
Section 16.3

0F84 TIBETAN MARK HALANTA
103A MYANMAR SIGN ASAT

193B LIMBU SIGN SA-I

ABED MEETEI MAYEK APUN IYEK
11134 CHAKMA MAAYYAA

Ideographic-related

Ideographic variation indi-
cation

Section 6.2

303E IDEOGRAPHIC VARIATION INDICATOR

Ideographic description

Section 18.2

2FF0..2FFB IDEOGRAPHIC DESCRIPTION CHARACTER
LEFT TO RIGHT..IDEOGRAPHIC DESCRIPTION CHAR-
ACTER OVERLAID

Character Properties

194 4.12 Characters with Unusual Properties

Table 4-15. Unusual Properties (Continued)

Function

‘ Details

‘ Code Point and Name

Complex expression format control (scoped)

Bidirectional ordering

Section 23.2

See Table 23-3 for a full listing.

Mathematical expression
processing and formatting

Section 22.6

2061 FUNCTION APPLICATION
2062 INVISIBLE TIMES

2063 INVISIBLE SEPARATOR
2064 INVISIBLE PLUS

Musical format control

Section 21.2

1D173 MUSICAL SYMBOL BEGIN BEAM
1D174 MUSICAL SYMBOL END BEAM
1D175 MUSICAL SYMBOL BEGIN TIE
1D176 MUSICAL SYMBOL END TIE
1D177 MUSICAL SYMBOL BEGIN SLUR
1D178 MUSICAL SYMBOL END SLUR
1D179 MUSICAL SYMBOL BEGIN PHRASE
1D17A MUSICAL SYMBOL END PHRASE

Prefixed format control

Section 9.2,
Section 9.3,
Section 15.2

0600 ARABIC NUMBER SIGN

0601 ARABIC SIGN SANAH

0602 ARABIC FOOTNOTE MARKER
0603 ARABIC SIGN SAFHA

0604 ARABIC SIGN SAMVAT

0605 ARABIC NUMBER MARK ABOVE
06DD ARABIC END OF AYAH

070F SYRIAC ABBREVIATION MARK
08E2 ARABIC DISPUTED END OF AYAH
110BD KAITHI NUMBER SIGN

Interlinear annotation

Section 23.8

FFF9 INTERLINEAR ANNOTATION ANCHOR
FFFA INTERLINEAR ANNOTATION SEPARATOR
FFFB INTERLINEAR ANNOTATION TERMINATOR

Deprecated alternate format-
ting

Section 23.3

206A INHIBIT SYMMETRIC SWAPPING
206B ACTIVATE SYMMETRIC SWAPPING
206C INHIBIT ARABIC FORM SHAPING
206D ACTIVATE ARABIC FORM SHAPING
206E NATIONAL DIGIT SHAPES

206F NOMINAL DIGIT SHAPES

Other unusual format control

Miao tonal vowel position
control

Section 18.9

16F8F MIAO TONE RIGHT
16F90 MIAO TONE TOP RIGHT
16F91 MIAO TONE ABOVE
16F92 MIAO TONE BELOW

Shorthand format control

Section 21.5

1BC9D DUPLOYAN THICK LETTER SELECTOR

1BCAO SHORTHAND FORMAT LETTER OVERLAP
1BCA1 SHORTHAND FORMAT CONTINUING OVERLAP
1BCA2 SHORTHAND FORMAT DOWN STEP

1BCA3 SHORTHAND FORMAT UP STEP

SignWriting fill and rotation

Section 21.6

1DA9B..1DA9F SIGNWRITING FILL MODIFIER-
2..SIGNWRITING FILL MODIFIER-6

1DAA1..1DAAF SIGNWRITING ROTATION MODIFIER-
2..SIGNWRITING ROTATION MODIFIER-16

Character Properties

195 4.12 Characters with Unusual Properties

Table 4-15. Unusual Properties (Continued)

Function Details Code Point and Name
Variation selection
Generic variation selectors |Section 23.4 FEO00..FEOF VARIATION SELECTOR-1..VARIATION

SELECTOR-16
E0100..E01EF VARIATION SELECTOR-17..VARIATION
SELECTOR-256

Mongolian variation selec-
tors

Section 13.5

180B MONGOLIAN FREE VARIATION SELECTOR ONE
180C MONGOLIAN FREE VARIATION SELECTOR TWO
180D MONGOLIAN FREE VARIATION SELECTOR THREE
180E MONGOLIAN VOWEL SEPARATOR

Emoji modifiers for skin Section 22.9, |1F3FB..1F3FF EMOJI MODIFIER FITZPATRICK TYPE-1-
tone UTR #51 2..EMOJI MODIFIER FITZPATRICK TYPE-6

Tag characters

Deprecated language tag Section 23.9 |E0001 LANGUAGE TAG

Tag characters Section 23.9 | E0020..E007F TAG SPACE..CANCEL TAG

Miscellaneous

Collation weighting and Section 23.2 |034F COMBINING GRAPHEME JOINER

sequence interpretation

Byte order signature

Section 23.8

FEFF ZERO WIDTH NO-BREAK SPACE

Object replacement

Section 23.8

FFFC OBJECT REPLACEMENT CHARACTER

Code conversion fallback

Section 23.8

FFFD REPLACEMENT CHARACTER

Character Properties 196 4.12 Characters with Unusual Properties

197

Chapter 5

Implementation Guidelines

It is possible to implement a substantial subset of the Unicode Standard as “wide ASCIT”
with little change to existing programming practice. However, the Unicode Standard also
provides for languages and writing systems that have more complex behavior than English
does. Whether one is implementing a new operating system from the ground up or
enhancing existing programming environments or applications, it is necessary to examine
many aspects of current programming practice and conventions to deal with this more
complex behavior.

This chapter covers a series of short, self-contained topics that are useful for implementers.
The information and examples presented here are meant to help implementers understand
and apply the design and features of the Unicode Standard. That is, they are meant to pro-
mote good practice in implementations conforming to the Unicode Standard.

These recommended guidelines are not normative and are not binding on the imple-
menter, but are intended to represent best practice. When implementing the Unicode Stan-
dard, it is important to look not only at the letter of the conformance rules, but also at their
spirit. Many of the following guidelines have been created specifically to assist people who
run into issues with conformant implementations, while reflecting the requirements of
actual usage.

Implementation Guidelines 198 5.1 Data Structures for Character Conversion

5.1 Data Structures for Character Conversion

The Unicode Standard exists in a world of other text and character encoding standards—
some private, some national, some international. A major strength of the Unicode Stan-
dard is the number of other important standards that it incorporates. In many cases, the
Unicode Standard included duplicate characters to guarantee round-trip transcoding to
established and widely used standards.

Issues

Conversion of characters between standards is not always a straightforward proposition.
Many characters have mixed semantics in one standard and may correspond to more than
one character in another. Sometimes standards give duplicate encodings for the same char-
acter; at other times the interpretation of a whole set of characters may depend on the appli-
cation. Finally, there are subtle differences in what a standard may consider a character.

For these reasons, mapping tables are usually required to map between the Unicode Stan-
dard and another standard. Mapping tables need to be used consistently for text data
exchange to avoid modification and loss of text data. For details, see Unicode Technical
Standard #22, “Character Mapping Markup Language (CharMapML).” By contrast, con-
versions between different Unicode encoding forms are fast, lossless permutations.

There are important security issues associated with encoding conversion. For more infor-
mation, see Unicode Technical Report #36, “Unicode Security Considerations.”

The Unicode Standard can be used as a pivot to transcode among n different standards.
This process, which is sometimes called triangulation, reduces the number of mapping
tables that an implementation needs from O(n?) to O(n).

Multistage Tables

Tables require space. Even small character sets often map to characters from several differ-
ent blocks in the Unicode Standard and thus may contain up to 64K entries (for the BMP)
or 1,088K entries (for the entire codespace) in at least one direction. Several techniques
exist to reduce the memory space requirements for mapping tables. These techniques apply
not only to transcoding tables, but also to many other tables needed to implement the Uni-
code Standard, including character property data, case mapping, collation tables, and
glyph selection tables.

Flat Tables. If diskspace is not at issue, virtual memory architectures yield acceptable
working set sizes even for flat tables because the frequency of usage among characters dif-
fers widely. Even small character sets contain many infrequently used characters. In addi-
tion, data intended to be mapped into a given character set generally does not contain
characters from all blocks of the Unicode Standard (usually, only a few blocks at a time
need to be transcoded to a given character set). This situation leaves certain sections of the
mapping tables unused—and therefore paged to disk. The effect is most pronounced for
large tables mapping from the Unicode Standard to other character sets, which have large

Implementation Guidelines 199 5.1 Data Structures for Character Conversion

sections simply containing mappings to the default character, or the “unmappable charac-
ter” entry.

Ranges. It may be tempting to “optimize” these tables for space by providing elaborate pro-
visions for nested ranges or similar devices. This practice leads to unnecessary performance
costs on modern, highly pipelined processor architectures because of branch penalties. A
faster solution is to use an optimized two-stage table, which can be coded without any test or
branch instructions. Hash tables can also be used for space optimization, although they are
not as fast as multistage tables.

Two-Stage Tables. Two-stage tables are a commonly employed mechanism to reduce table
size (see Figure 5-1). They use an array of pointers and a default value. If a pointer is NULL,
the value returned by a lookup operation in the table is the default value. Otherwise, the
pointer references a block of values used for the second stage of the lookup. For BMP char-
acters, it is quite efficient to organize such two-stage tables in terms of high byte and low
byte values. The first stage is an array of 256 pointers, and each of the secondary blocks
contains 256 values indexed by the low byte in the code point. For supplementary charac-
ters, it is often advisable to structure the pointers and second-stage arrays somewhat differ-
ently, so as to take best advantage of the very sparse distribution of supplementary
characters in the remaining codespace.

Figure 5-1. Two-Stage Tables

Optimized Two-Stage Table. Wherever any blocks are identical, the pointers just point to
the same block. For transcoding tables, this case occurs generally for a block containing
only mappings to the default or “unmappable” character. Instead of using NULL pointers
and a default value, one “shared” block of default entries is created. This block is pointed to

Implementation Guidelines 200 5.1 Data Structures for Character Conversion

by all first-stage table entries, for which no character value can be mapped. By avoiding

tests and branches, this strategy provides access time that approaches the simple array
access, but at a great savings in storage.

Multistage Table Tuning. Given a table of arbitrary size and content, it is a relatively simple
matter to write a small utility that can calculate the optimal number of stages and their
width for a multistage table. Tuning the number of stages and the width of their arrays of
index pointers can result in various trade-offs of table size versus average access time.

Implementation Guidelines 201 5.2 Programming Languages and Data Types

5.2 Programming Languages and Data Types

Programming languages provide for the representation and handling of characters and
strings via data types, data constants (literals), and methods. Explicit support for Unicode
helps with the development of multilingual applications. In some programming languages,
strings are expressed as sequences (arrays) of primitive types, exactly corresponding to
sequences of code units of one of the Unicode encoding forms. In other languages, strings
are objects, but indexing into strings follows the semantics of addressing code units of a
particular encoding form.

Data types for “characters” generally hold just a single Unicode code point value for low-
level processing and lookup of character property values. When a primitive data type is
used for single-code point values, a signed integer type can be useful; negative values can
hold “sentinel” values like end-of-string or end-of-file, which can be easily distinguished
from Unicode code point values. However, in most APIs, string types should be used to
accommodate user-perceived characters, which may require sequences of code points.

Unicode Data Types for C

ISO/IEC Technical Report 19769, Extensions for the programming language C to support new
character types, defines data types for the three Unicode encoding forms (UTF-8, UTF-16,
and UTF-32), syntax for Unicode string and character literals, and methods for the conver-
sion between the Unicode encoding forms. No other methods are specified.

Unicode strings are encoded as arrays of primitive types as usual. For UTE-8, UTF-16, and
UTF-32, the basic types are char, char1l6 t,and char32 t, respectively. The ISO Tech-
nical Report assumes that char is at least 8 bits wide for use with UTF-8. While char and
wchar t may be signed or unsigned types, the new char1é t and char32 t types are
defined to be unsigned integer types.

Unlike the specification in the wchar t programming model, the Unicode data types do
not require that a single string base unit alone (especially char or char16 t) must be able
to store any one character (code point).

UTF-16 string and character literals are written with a lowercase u as a prefix, similar to the
L prefix for wchar_t literals. UTF-32 literals are written with an uppercase U as a prefix.
Characters outside the basic character set are available for use in string literals through the
\uhhhh and \Uhhhhhhhh escape sequences.

These types and semantics are available in a compiler if the <uchar.h> header is present
and defines the _ sTDC UTF 16 (for charié6 t) and _ STDC UTF_32 (for
char32_t) macros.

Because Technical Report 19769 was not available when UTF-16 was first introduced,
many implementations have been supporting a 16-bit wchar t to contain UTF-16 code
units. Such usage is not conformant to the C standard, because supplementary characters
require use of pairs of wchar_t units in this case.

Implementation Guidelines 202 5.2 Programming Languages and Data Types

ANSI/ISO C wchar_t. With the wchar t wide character type, ANSI/ISO C provides for
inclusion of fixed-width, wide characters. ANSI/ISO C leaves the semantics of the wide
character set to the specific implementation but requires that the characters from the por-
table C execution set correspond to their wide character equivalents by zero extension. The
Unicode characters in the ASCII range U+0020 to U+007E satisfy these conditions. Thus, if
an implementation uses ASCII to code the portable C execution set, the use of the Unicode
character set for the wchar_t type, in either UTF-16 or UTF-32 form, fulfills the require-
ment.

The width of wchar t is compiler-specific and can be as small as 8 bits. Consequently,
programs that need to be portable across any C or C++ compiler should not use wchar t
for storing Unicode text. The wchar_t type is intended for storing compiler-defined wide
characters, which may be Unicode characters in some compilers. However, programmers
who want a UTF-16 implementation can use a macro or typedef (for example, UNICHAR)
that can be compiled as unsigned short or wchar t depending on the target compiler
and platform. Other programmers who want a UTF-32 implementation can use a macro or
typedef that might be compiled as unsigned int or wchar t, depending on the target
compiler and platform. This choice enables correct compilation on different platforms and
compilers. Where a 16-bit implementation of wchar t is guaranteed, such macros or
typedefs may be predefined (for example, TCHAR on the Win32 API).

On systems where the native character type or wchar_t is implemented as a 32-bit quan-
tity, an implementation may use the UTF-32 form to represent Unicode characters.

A limitation of the ISO/ANSI C model is its assumption that characters can always be pro-
cessed in isolation. Implementations that choose to go beyond the ISO/ANSI C model may
find it useful to mix widths within their APIs. For example, an implementation may have a
32-bit wchar t and process strings in any of the UTF-8, UTF-16, or UTF-32 forms.
Another implementation may have a 16-bit wchar t and process strings as UTF-8 or
UTF-16, but have additional APIs that process individual characters as UTF-32 or deal with
pairs of UTF-16 code units.

Implementation Guidelines 203 5.3 Unknown and Missing Characters

5.3 Unknown and Missing Characters

This section briefly discusses how users or implementers might deal with characters that
are not supported or that, although supported, are unavailable for legible rendering.

Reserved and Private-Use Character Codes. There are two classes of code points that even
a “complete” implementation of the Unicode Standard cannot necessarily interpret cor-
rectly:

+ Code points that are reserved
+ Code points in the Private Use Area for which no private agreement exists

An implementation should not attempt to interpret such code points. However, in practice,
applications must deal with unassigned code points or private-use characters. This may
occur, for example, when the application is handling text that originated on a system
implementing a later release of the Unicode Standard, with additional assigned characters.

Options for rendering such unknown code points include printing the code point as four
to six hexadecimal digits, printing a black or white box, using appropriate glyphs such as
for reserved and (&) for private use, or simply displaying nothing. An implementation
should not blindly delete such characters, nor should it unintentionally transform them
into something else.

Interpretable but Unrenderable Characters. An implementation may receive a code point
that is assigned to a character in the Unicode character encoding, but be unable to render it
because it lacks a font for the code point or is otherwise incapable of rendering it appropri-
ately.

In this case, an implementation might be able to provide limited feedback to the user’s que-
ries, such as being able to sort the data properly, show its script, or otherwise display the
code point in a default manner. An implementation can distinguish between unrenderable
(but assigned) code points and unassigned code points by printing the former with distinc-
tive glyphs that give some general indication of their type, such as (T, (), @),), (23, (8), (&),
&), (w), &1, @), and so on.

Default Ignorable Code Points. Normally, characters outside the repertoire of supported
characters for an implementation would be graphical characters displayed with a fallback
glyph, such as a black box. However, certain special-use characters, such as format controls
or variation selectors, do not have visible glyphs of their own, although they may have an
effect on the display of other characters. When such a special-use character is not sup-
ported by an implementation, it should not be displayed with a visible fallback glyph, but
instead simply not be rendered at all. The list of such characters which should not be ren-
dered with a fallback glyph is defined by the Default_Ignorable_Code_Point property in
the Unicode Character Database. For more information, see Section 5.21, Ignoring Charac-
ters in Processing.

Interacting with Downlevel Systems. Versions of the Unicode Standard after Unicode 2.0
are strict supersets of Unicode 2.0 and all intervening versions. The Derived Age property

Implementation Guidelines 204 5.3 Unknown and Missing Characters

tracks the version of the standard at which a particular character was added to the standard.
This information can be particularly helpful in some interactions with downlevel systems.
If the protocol used for communication between the systems provides for an announce-
ment of the Unicode version on each one, an uplevel system can predict which recently
added characters will appear as unassigned characters to the downlevel system.

Implementation Guidelines 205 5.4 Handling Surrogate Pairsin UTF-16

5.4 Handling Surrogate Pairs in UTF-16

The method used by UTF-16 to address the 1,048,576 supplementary code points that can-
not be represented by a single 16-bit value is called surrogate pairs. A surrogate pair consists
of a high-surrogate code unit (leading surrogate) followed by a low-surrogate code unit
(trailing surrogate), as described in the specifications in Section 3.8, Surrogates, and the
UTF-16 portion of Section 3.9, Unicode Encoding Forms.

In well-formed UTEF-16, a trailing surrogate can be preceded only by a leading surrogate
and not by another trailing surrogate, a non-surrogate, or the start of text. A leading surro-
gate can be followed only by a trailing surrogate and not by another leading surrogate, a
non-surrogate, or the end of text. Maintaining the well-formedness of a UTF-16 code
sequence or accessing characters within a UTF-16 code sequence therefore puts additional
requirements on some text processes. Surrogate pairs are designed to minimize this impact.

Leading surrogates and trailing surrogates are assigned to disjoint ranges of code units. In
UTF-16, non-surrogate code points can never be represented with code unit values in those
ranges. Because the ranges are disjoint, each code unit in well-formed UTF-16 must meet
one of only three possible conditions:

+ A single non-surrogate code unit, representing a code point between 0 and
D7FF ¢ or between E000;4 and FFFF ¢

+ A leading surrogate, representing the first part of a surrogate pair
+ A trailing surrogate, representing the second part of a surrogate pair

By accessing at most two code units, a process using the UTF-16 encoding form can there-
fore interpret any Unicode character. Determining character boundaries requires at most
scanning one preceding or one following code unit without regard to any other context.

As long as an implementation does not remove either of a pair of surrogate code units or
incorrectly insert another character between them, the integrity of the data is maintained.
Moreover, even if the data becomes corrupted, the corruption remains localized, unlike
with some other multibyte encodings such as Shift-JIS or EUC. Corrupting a single UTF-
16 code unit affects only a single character. Because of non-overlap (see Section 2.5, Encod-
ing Forms), this kind of error does not propagate throughout the rest of the text.

UTF-16 enjoys a beneficial frequency distribution in that, for the majority of all text data,
surrogate pairs will be very rare; non-surrogate code points, by contrast, will be very com-
mon. Not only does this help to limit the performance penalty incurred when handling a
variable-width encoding, but it also allows many processes either to take no specific action
for surrogates or to handle surrogate pairs with existing mechanisms that are already
needed to handle character sequences.

Implementations should fully support surrogate pairs in processing UTF-16 text. Without
surrogate support, an implementation would not interpret any supplementary characters
or guarantee the integrity of surrogate pairs. This might apply, for example, to an older
implementation, conformant to Unicode Version 1.1 or earlier, before UTF-16 was defined.

Implementation Guidelines 206 5.4 Handling Surrogate Pairsin UTF-16

Support for supplementary characters is important because a significant number of them
are relevant for modern use, despite their low frequency.

The individual components of implementations may have different levels of support for
surrogates, as long as those components are assembled and communicate correctly. Low-
level string processing, where a Unicode string is not interpreted but is handled simply as
an array of code units, may ignore surrogate pairs. With such strings, for example, a trun-
cation operation with an arbitrary offset might break a surrogate pair. (For further discus-
sion, see Section 2.7, Unicode Strings.) For performance in string operations, such behavior
is reasonable at a low level, but it requires higher-level processes to ensure that offsets are
on character boundaries so as to guarantee the integrity of surrogate pairs.

Strategies for Surrogate Pair Support. Many implementations that handle advanced fea-
tures of the Unicode Standard can easily be modified to support surrogate pairs in UTE-16.
For example:

+ Text collation can be handled by treating those surrogate pairs as “grouped
characters,” such as is done for “ij” in Dutch or “ch” in Slovak.

+ Text entry can be handled by having a keyboard generate two Unicode code
points with a single keypress, much as an ENTER key can generate CRLF or an
Arabic keyboard can have a “lam-alef” key that generates a sequence of two
characters, lam and alef.

+ Truncation can be handled with the same mechanism as used to keep combin-
ing marks with base characters. For more information, see Unicode Standard
Annex #29, “Unicode Text Segmentation.”

Users are prevented from damaging the text if a text editor keeps insertion points (also
known as carets) on character boundaries.

Implementations using UTF-8 and Unicode 8-bit strings necessitate similar consider-
ations. The main difference from handling UTF-16 is that in the UTF-8 case the only char-
acters that are represented with single code units (single bytes) in UTF-8 are the ASCII
characters, U+0000..U+007F. Characters represented with multibyte sequences are very
common in UTF-8, unlike surrogate pairs in UTF-16, which are rather uncommon. This
difference in frequency may result in different strategies for handling the multibyte
sequences in UTF-8.

Implementation Guidelines 207 5.5 HandlingNumbers

5.5 Handling Numbers

There are many sets of characters that represent decimal digits in different scripts. Systems
that interpret those characters numerically should provide the correct numerical values.
For example, the sequence <U+0968 DEVANAGARI DIGIT TWO, U+0966 DEVANAGARI DIGIT
ZERO> when numerically interpreted has the value twenty.

When converting binary numerical values to a visual form, digits can be chosen from dif-
ferent scripts. For example, the value twenty can be represented either by <U+0032 pigIt
TwO, U+0030 DIGIT ZERO> Or by <U+0968 DEVANAGARI DIGIT TWO, U+0966 DEVANAGARI
DIGIT ZERO> or by <U+0662 ARABIC-INDIC DIGIT TwWO, U+0660 ARABIC-INDIC DIGIT
ZERO>. It is recommended that systems allow users to choose the format of the resulting
digits by replacing the appropriate occurrence of U+0030 piGiT zErRo with U+0660 ARrA-
BIC-INDIC DIGIT ZERO, and so on. (See Chapter 4, Character Properties, for the information
needed to implement formatting and scanning numerical values.)

Fullwidth variants of the ASCII digits are simply compatibility variants of regular digits
and should be treated as regular Western digits.

The Roman numerals, Greek acrophonic numerals, and East Asian ideographic numerals
are decimal numeral writing systems, but they are not formally decimal radix digit systems.
That is, it is not possible to do a one-to-one transcoding to forms such as 123456.789. Such
systems are appropriate only for positive integer writing.

It is also possible to write numbers in two ways with CJK ideographic digits. For example,
Figure 22-6 shows how the number 1,234 can be written. Supporting these ideographic dig-
its for numerical parsing means that implementations must be smart about distinguishing
between the two cases.

Digits often occur in situations where they need to be parsed, but are not part of numbers.
One such example is alphanumeric identifiers (see Unicode Standard Annex #31, “Unicode
Identifier and Pattern Syntax”).

Only in higher-level protocols, such as when implementing a full mathematical formula
parser, do considerations such as superscripting and subscripting of digits become crucial
for numerical interpretation.

Implementation Guidelines 208 5.6 Normalization

5.6 Normalization

Alternative Spellings. The Unicode Standard contains explicit codes for the most fre-
quently used accented characters. These characters can also be composed; in the case of
accented letters, characters can be composed from a base character and nonspacing
mark(s).

The Unicode Standard provides decompositions for characters that can be composed using
a base character plus one or more nonspacing marks. The decomposition mappings are
specific to a particular version of the Unicode Standard. Further decomposition mappings
may be added to the standard for new characters encoded in the future; however, no exist-
ing decomposition mapping for a currently encoded character will ever be removed or
changed, nor will a decomposition mapping be added for a currently encoded character.
These constraints on changes for decomposition are enforced by the Normalization Stabil-
ity Policy. See the subsection “Policies” in Section B.6, Other Unicode Online Resources.

Normalization. Systems may normalize Unicode-encoded text to one particular sequence,
such as normalizing composite character sequences into precomposed characters, or vice
versa (see Figure 5-2).

Figure 5-2. Normalization

Unnormalized

délo e NE
Precomposed Decomposed

Compared to the number of possible combinations, only a relatively small number of pre-
composed base character plus nonspacing marks have independent Unicode character val-
ues.

Systems that cannot handle nonspacing marks can normalize to precomposed characters;
this option can accommodate most modern Latin-based languages. Such systems can use
fallback rendering techniques to at least visually indicate combinations that they cannot
handle (see the “Fallback Rendering” subsection of Section 5.13, Rendering Nonspacing
Marks).

In systems that can handle nonspacing marks, it may be useful to normalize so as to elimi-
nate precomposed characters. This approach allows such systems to have a homogeneous
representation of composed characters and maintain a consistent treatment of such char-

Implementation Guidelines 209 5.6 Normalization

acters. However, in most cases, it does not require too much extra work to support mixed
forms, which is the simpler route.

The Unicode Normalization Forms are defined in Section 3.11, Normalization Forms. For
further information about implementation of normalization, see also Unicode Standard
Annex #15, “Unicode Normalization Forms.” For a general discussion of issues related to
normalization, see “Equivalent Sequences” in Section 2.2, Unicode Design Principles; and
Section 2.11, Combining Characters.

Implementation Guidelines 210 5.7 Compression

5.7 Compression

Using the Unicode character encoding may increase the amount of storage or memory
space dedicated to the text portion of files. Compressing Unicode-encoded files or strings
can therefore be an attractive option if the text portion is a large part of the volume of data
compared to binary and numeric data, and if the processing overhead of the compression
and decompression is acceptable.

Compression always constitutes a higher-level protocol and makes interchange dependent
on knowledge of the compression method employed. For a detailed discussion of compres-
sion and a standard compression scheme for Unicode, see Unicode Technical Standard #6,
“A Standard Compression Scheme for Unicode.”

Encoding forms defined in Section 2.5, Encoding Forms, have different storage characteris-
tics. For example, as long as text contains only characters from the Basic Latin (ASCII)
block, it occupies the same amount of space whether it is encoded with the UTF-8 or ASCII
codes. Conversely, text consisting of CJK ideographs encoded with UTF-8 will require
more space than equivalent text encoded with UTF-16.

For processing rather than storage, the Unicode encoding form is usually selected for easy
interoperability with existing APIs. Where there is a choice, the trade-off between decoding
complexity (high for UTF-8, low for UTF-16, trivial for UTF-32) and memory and cache
bandwidth (high for UTF-32, low for UTF-8 or UTF-16) should be considered.

Implementation Guidelines 211 5.8 Newline Guidelines

5.8 Newline Guidelines

Newlines are represented on different platforms by carriage return (CR), line feed (LF),
CRLE, or next line (NEL). Not only are newlines represented by different characters on dif-
ferent platforms, but they also have ambiguous behavior even on the same platform. These
characters are often transcoded directly into the corresponding Unicode code points when
a character set is transcoded; this means that even programs handling pure Unicode have to
deal with the problems. Especially with the advent of the Web, where text on a single
machine can arise from many sources, this causes a significant problem.

Newline characters are used to explicitly indicate line boundaries. For more information,
see Unicode Standard Annex #14, “Unicode Line Breaking Algorithm.” Newlines are also
handled specially in the context of regular expressions. For information, see Unicode Tech-
nical Standard #18, “Unicode Regular Expressions.” For the use of these characters in
markup languages, see the W3C specification, “Unicode in XML and Other Markup Lan-
guages.”

Definitions

Table 5-1 provides hexadecimal values for the acronyms used in these guidelines. The acro-
nyms shown in Table 5-1 correspond to characters or sequences of characters. The name
column shows the usual names used to refer to the characters in question, whereas the
other columns show the Unicode, ASCII, and EBCDIC encoded values for the characters.

Table 5-1. Hex Values for Acronyms

Acronym Name Unicode ASCII EBCDIC
Default z/0S

CR carriage return 000D 0D 0D 0D

LF line feed 000A 0A 25 15

CRLF Ci‘ir;iafg:eéetum ad 000D 000A> <0D0A> <0D 25> <0D 15>

NEL next line 0085 85 15 25

VT vertical tab 000B 0B 0B 0B

FF form feed 000C oC oC oC

LS line separator 2028 n/a n/a n/a

PS paragraph separator 2029 n/a n/a n/a

Encoding. Except for LS and PS, the newline characters discussed here are encoded as con-
trol codes. Many control codes were originally designed for device control but, together
with TAB, the newline characters are commonly used as part of plain text. For more infor-
mation on how Unicode encodes control codes, see Section 23.1, Control Codes.

Implementation Guidelines 212 5.8 Newline Guidelines

Notation. This discussion of newline guidelines uses lowercase when referring to functions
having to do with line determination, but uses the acronyms when referring to the actual
characters involved. Keys on keyboards are indicated in all caps. For example:

The line separator may be expressed by LS in Unicode text or CR on some
platforms. It may be entered into text with the SHIFT-RETURN key.

EBCDIC. Table 5-1 shows the two mappings of LF and NEL used by EBCDIC systems. The
first EBCDIC column shows the default control code mapping of these characters, which is
used in most EBCDIC environments. The second column shows the z/OS Unix System Ser-
vices mapping of LF and NEL. That mapping arises from the use of the LF character for the
newline function in C programs and in Unix environments, while text files on z/OS tradi-
tionally use NEL for the newline function.

NEL (next line) is not actually defined in 7-bit ASCIL. It is defined in the ISO control func-
tion standard, ISO 6429, as a C1 control function. However, the 0x85 mapping shown in
the ASCII column in Table 5-1 is the usual way that this C1 control function is mapped in
ASCII-based character encodings.

Newline Function. The acronym NLF (newline function) stands for the generic control
function for indication of a new line break. It may be represented by different characters,
depending on the platform, as shown in Table 5-2.

Table 5-2. NLF Platform Correlations

Platform NLF Value
MacOS 9.x and earlier |CR

MacOS X LF

Unix LF
Windows CRLF
EBCDIC-based OS NEL

Line Separator and Paragraph Separator

A paragraph separator—independent of how it is encoded—is used to indicate a separa-
tion between paragraphs. A line separator indicates where a line break alone should occur,
typically within a paragraph. For example:

This is a paragraph with a line separator at this point,

causing the word “causing” to appear on a different line, but not causing
the typical paragraph indentation, sentence breaking, line spacing, or
change in flush (right, center, or left paragraphs).

For comparison, line separators basically correspond to HTML
, and paragraph sep-
arators to older usage of HTML <P> (modern HTML delimits paragraphs by enclosing
them in <P>...</P>). In word processors, paragraph separators are usually entered using a
keyboard RETURN or ENTER; line separators are usually entered using a modified
RETURN or ENTER, such as SHIFT-ENTER.

Implementation Guidelines 213 5.8 Newline Guidelines

A record separator is used to separate records. For example, when exchanging tabular data,
a common format is to tab-separate the cells and use a CRLF at the end of a line of cells. This
function is not precisely the same as line separation, but the same characters are often used.

Traditionally, NLF started out as a line separator (and sometimes record separator). It is
still used as a line separator in simple text editors such as program editors. As platforms
and programs started to handle word processing with automatic line-wrap, these charac-
ters were reinterpreted to stand for paragraph separators. For example, even such simple
programs as the Windows Notepad program and the Mac SimpleText program interpret
their platform’s NLF as a paragraph separator, not a line separator.

Once NLF was reinterpreted to stand for a paragraph separator, in some cases another con-
trol character was pressed into service as a line separator. For example, vertical tabulation
VT is used in Microsoft Word. However, the choice of character for line separator is even
less standardized than the choice of character for NLF.

Many Internet protocols and a lot of existing text treat NLF as a line separator, so an imple-
menter cannot simply treat NLF as a paragraph separator in all circumstances.

Recommendations

The Unicode Standard defines two unambiguous separator characters: U+2029 PARA-
GRAPH SEPARATOR (PS) and U+2028 LINE SEPARATOR (LS). In Unicode text, the PS and LS
characters should be used wherever the desired function is unambiguous. Otherwise, the
following recommendations specify how to cope with an NLF when converting from other
character sets to Unicode, when interpreting characters in text, and when converting from
Unicode to other character sets.

Note that even if an implementer knows which characters represent NLF on a particular
platform, CR, LE, CRLE, and NEL should be treated the same on input and in interpreta-
tion. Only on output is it necessary to distinguish between them.

Converting from Other Character Code Sets
R1 Ifthe exact usage of any NLF is known, convert it to LS or PS.
Rla If the exact usage of any NLF is unknown, remap it to the platform NLF.

Recommendation Rla does not really help in interpreting Unicode text unless the imple-
menter is the only source of that text, because another implementer may have left in LF, CR,
CRLEF, or NEL.

Interpreting Characters in Text
R2 Always interpret PS as paragraph separator and LS as line separator.
R2a In word processing, interpret any NLF the same as PS.

R2b In simple text editors, interpret any NLF the same as LS.

Implementation Guidelines 214 5.8 Newline Guidelines

In line breaking, both PS and LS terminate a line; therefore, the Unicode Line Breaking
Algorithm in Unicode Standard Annex #14, “Unicode Line Breaking Algorithm,” is defined
such that any NLF causes a line break.

R2c¢ In parsing, choose the safest interpretation.

For example, in recommendation R2c an implementer dealing with sentence break heuris-
tics would reason in the following way that it is safer to interpret any NLF as LS:

+ Suppose an NLF were interpreted as LS, when it was meant to be PS. Because
most paragraphs are terminated with punctuation anyway, this would cause
misidentification of sentence boundaries in only a few cases.

+ Suppose an NLF were interpreted as PS, when it was meant to be LS. In this
case, line breaks would cause sentence breaks, which would result in significant
problems with the sentence break heuristics.

Converting to Other Character Code Sets

R3 Ifthe intended target is known, map NLF, LS, and PS depending on the target con-
ventions.

For example, when mapping to Microsoft Word’s internal conventions for documents, LS
would be mapped to VT, and PS and any NLF would be mapped to CRLE.

R3a If the intended target is unknown, map NLF, LS, and PS to the platform newline
convention (CR, LF, CRLEF, or NEL).

In Java, for example, this is done by mapping to a string n1£, defined as follows:

String nlf = System.getProperties("line.separator");
Input and Output

R4 A readline function should stop at NLF, LS, FE, or PS. In the typical implemen-
tation, it does not include the NLF, LS, PS, or FF that caused it to stop.

Because the separator is lost, the use of such a readline function is limited to text pro-
cessing, where there is no difference among the types of separators.

R4a A writeline (or newline) function should convert NLE LS, and PS according
to the recommendations R3 and R3a.

In C, gets is defined to terminate at a newline and replaces the newline with '\ 0", while
fgets is defined to terminate at a newline and includes the newline in the array into which
it copies the data. C implementations interpret ' \n' either as LF or as the underlying plat-
form newline NLE depending on where it occurs. EBCDIC C compilers substitute the rel-
evant codes, based on the EBCDIC execution set.

Page Separator

FF is commonly used as a page separator, and it should be interpreted that way in text.
When displaying on the screen, it causes the text after the separator to be forced to the next
page. It is interpreted in the same way as the LS for line breaking, in parsing, or in input

Implementation Guidelines 215 5.8 Newline Guidelines

segmentation such as readline. FF does not interrupt a paragraph, as paragraphs can and
do span page boundaries.

Implementation Guidelines 216 5.9 Regular Expressions

5.9 Regular Expressions

Byte-oriented regular expression engines require extensions to handle Unicode success-
fully. The following issues are involved in such extensions:

+ Unicode is a large character set—regular expression engines that are adapted to
handle only small character sets may not scale well.

+ Unicode encompasses a wide variety of languages that can have very different
characteristics than English or other Western European text.

For detailed information on the requirements of Unicode regular expressions, see Unicode
Technical Standard #18, “Unicode Regular Expressions.”

Implementation Guidelines 217 5.10 Language Information in Plain Text

5.10 Language Information in Plain Text

Requirements for Language Tagging

The requirement for language information embedded in plain text data is often overstated.
Many commonplace operations such as collation seldom require this extra information. In
collation, for example, foreign language text is generally collated as if it were not in a foreign
language. (See Unicode Technical Standard #10, “Unicode Collation Algorithm,” for more
information.) For example, an index in an English book would not sort the Slovak word
“chlieb” after “czar,” where it would be collated in Slovak, nor would an English atlas put
the Swedish city of Orebro after Zanzibar, where it would appear in Swedish.

Text to speech is also an area where the case for embedded language information is over-
stated. Although language information may be useful in performing text-to-speech opera-
tions, modern software for doing acceptable text-to-speech must be so sophisticated in
performing grammatical analysis of text that the extra work in determining the language is
not significant in practice.

Language information can be useful in certain operations, such as spell-checking or
hyphenating a mixed-language document. It is also useful in choosing the default font for a
run of unstyled text; for example, the ellipsis character may have a very different appear-
ance in Japanese fonts than in European fonts. Modern font and layout technologies pro-
duce different results based on language information. For example, the angle of the acute
accent may be different for French and Polish.

Language Tags and Han Unification

A common misunderstanding about Unicode Han unification is the mistaken belief that
Han characters cannot be rendered properly without language information. This idea
might lead an implementer to conclude that language information must always be added to
plain text using the tags. However, this implication is incorrect. The goal and methods of
Han unification were to ensure that the text remained legible. Although font, size, width,
and other format specifications need to be added to produce precisely the same appearance
on the source and target machines, plain text remains legible in the absence of these speci-
fications.

There should never be any confusion in Unicode, because the distinctions between the uni-
fied characters are all within the range of stylistic variations that exist in each country. No
unification in Unicode should make it impossible for a reader to identify a character if it
appears in a different font. Where precise font information is important, it is best conveyed
in a rich text format.

Typical Scenarios. The following e-mail scenarios illustrate that the need for language
information with Han characters is often overstated:

+ Scenario 1. A Japanese user sends out untagged Japanese text. Readers are Japa-
nese (with Japanese fonts). Readers see no differences from what they expect.

Implementation Guidelines 218 5.10 Language Information in Plain Text

+ Scenario 2. A Japanese user sends out an untagged mixture of Japanese and
Chinese text. Readers are Japanese (with Japanese fonts) and Chinese (with
Chinese fonts). Readers see the mixed text with only one font, but the text is
still legible. Readers recognize the difference between the languages by the con-
tent.

+ Scenario 3. A Japanese user sends out a mixture of Japanese and Chinese text.
Text is marked with font, size, width, and so on, because the exact format is
important. Readers have the fonts and other display support. Readers see the
mixed text with different fonts for different languages. They recognize the dif-
ference between the languages by the content, and see the text with glyphs that
are more typical for the particular language.

It is common even in printed matter to render passages of foreign language text in native-
language fonts, just for familiarity. For example, Chinese text in a Japanese document is
commonly rendered in a Japanese font.

Implementation Guidelines 219 5.11 Editing and Selection

5.11 Editing and Selection

Consistent Text Elements

As far as a user is concerned, the underlying representation of text is not a material con-
cern, but it is important that an editing interface present a uniform implementation of
what the user thinks of as characters. (See “‘Characters’ and Grapheme Clusters” in
Section 2.11, Combining Characters.) The user expects them to behave as units in terms of
mouse selection, arrow key movement, backspacing, and so on. For example, when such
behavior is implemented, and an accented letter is represented by a sequence of base char-
acter plus a nonspacing combining mark, using the right arrow key would logically skip
from the start of the base character to the end of the last nonspacing character.

In some cases, editing a user-perceived “character” or visual cluster element by element
may be the preferred way. For example, a system might have the backspace key delete by
using the underlying code point, while the delete key could delete an entire cluster. More-
over, because of the way keyboards and input method editors are implemented, there often
may not be a one-to-one relationship between what the user thinks of as a character and
the key or key sequence used to input it.

Three types of boundaries are generally useful in editing and selecting within words: cluster
boundaries, stacked boundaries and atomic character boundaries.

Cluster Boundaries. Arbitrarily defined cluster boundaries may occur in scripts such as
Devanagari, for which selection may be defined as applying to syllables or parts of syllables.
In such cases, combining character sequences such as ka + vowel sign a or conjunct clusters
such as ka + halant + ta are selected as a single unit. (See Figure 5-3.)

Figure 5-3. Consistent Character Boundaries

Cluster o|q|qﬂ'-| Pk\) .
Stack °|'7|®(|\"| Pk) .
e TR

Stacked Boundaries. Stacked boundaries are generally somewhat finer than cluster bound-
aries. Free-standing elements (such as vowel sign a in Devanagari) can be independently
selected, but any elements that “stack” (including vertical ligatures such as Arabic lam +
meem in Figure 5-3) can be selected only as a single unit. Stacked boundaries treat default
grapheme clusters as single entities, much like composite characters. (See Unicode Stan-

Implementation Guidelines 220 5.11 Editing and Selection

dard Annex #29, “Unicode Text Segmentation,” for the definition of default grapheme clus-
ters and for a discussion of how grapheme clusters can be tailored to meet the needs of
defining arbitrary cluster boundaries.)

Atomic Character Boundaries. The use of atomic character boundaries is closest to selec-
tion of individual Unicode characters. However, most modern systems indicate selection
with some sort of rectangular highlighting. This approach places restrictions on the consis-
tency of editing because some sequences of characters do not linearly progress from the
start of the line. When characters stack, two mechanisms are used to visually indicate par-
tial selection: linear and nonlinear boundaries.

Linear Boundaries. Use of linear boundaries treats the entire width of the resultant glyph
as belonging to the first character of the sequence, and the remaining characters in the
backing-store representation as having no width and being visually afterward.

This option is the simplest mechanism. The advantage of this system is that it requires very
little additional implementation work. The disadvantage is that it is never easy to select
narrow characters, let alone a zero-width character. Mechanically, it requires the user to
select just to the right of the nonspacing mark and drag just to the left. It also does not
allow the selection of individual nonspacing marks if more than one is present.

Nonlinear Boundaries. Use of nonlinear boundaries divides any stacked element into
parts. For example, picking a point halfway across a lam + meem ligature can represent the
division between the characters. One can either allow highlighting with multiple rectangles
or use another method such as coloring the individual characters.

With more work, a precomposed character can behave in deletion as if it were a composed
character sequence with atomic character boundaries. This procedure involves deriving the
character’s decomposition on the fly to get the components to be used in simulation. For
example, deletion occurs by decomposing, removing the last character, then recomposing
(if more than one character remains). However, this technique does not work in general
editing and selection.

In most editing systems, the code point is the smallest addressable item, so the selection
and assignment of properties (such as font, color, letterspacing, and so on) cannot be done
on any finer basis than the code point. Thus the accent on an “e” could not be colored dif-
ferently than the base in a precomposed character, although it could be colored differently
if the text were stored internally in a decomposed form.

Just as there is no single notion of text element, so there is no single notion of editing char-
acter boundaries. At different times, users may want different degrees of granularity in the
editing process. Two methods suggest themselves. First, the user may set a global preference
for the character boundaries. Second, the user may have alternative command mecha-
nisms, such as Shift-Delete, which give more (or less) fine control than the default mode.

Implementation Guidelines 221 5.12 Strategies for Handling Nonspacing Marks

5.12 Strategies for Handling Nonspacing Marks

By following these guidelines, a programmer should be able to implement systems and
routines that provide for the effective and efficient use of nonspacing marks in a wide
variety of applications and systems. The programmer also has the choice between minimal
techniques that apply to the vast majority of existing systems and more sophisticated tech-
niques that apply to more demanding situations, such as higher-end desktop publishing.

In this section and the following section, the terms nonspacing mark and combining charac-
ter are used interchangeably. The terms diacritic, accent, stress mark, Hebrew point, Arabic
vowel, and others are sometimes used instead of nonspacing mark. (They refer to particular
types of nonspacing marks.) Properly speaking, a nonspacing mark is any combining char-
acter that does not add space along the writing direction. For a formal definition of non-
spacing mark, see Section 3.6, Combination.

A relatively small number of implementation features are needed to support nonspacing
marks. Different levels of implementation are also possible. A minimal system yields good
results and is relatively simple to implement. Most of the features required by such a system
are simply modifications of existing software.

As nonspacing marks are required for a number of writing systems, such as Arabic,
Hebrew, and those of South Asia, many vendors already have systems capable of dealing
with these characters and can use their experience to produce general-purpose software for
handling these characters in the Unicode Standard.

Rendering. Composite character sequences can be rendered effectively by means of a fairly
simple mechanism. In simple character rendering, a nonspacing combining mark has a
zero advance width, and a composite character sequence will have the same width as the
base character.

Wherever a sequence of base character plus one or more nonspacing marks occurs, the
glyphs for the nonspacing marks can be positioned relative to the base. The ligature mech-
anisms in the fonts can also substitute a glyph representing the combined form. In some
cases the width of the base should change because of an applied accent, such as with “1”.
The ligature or contextual form mechanisms in the font can be used to change the width of

the base in cases where this is required.

Other Processes. Correct multilingual comparison routines must already be able to com-
pare a sequence of characters as one character, or one character as if it were a sequence.
Such routines can also handle combining character sequences when supplied with the
appropriate data. When searching strings, remember to check for additional nonspacing
marks in the target string that may affect the interpretation of the last matching character.

Line breaking algorithms generally use state machines for determining word breaks. Such
algorithms can be easily adapted to prevent separation of nonspacing marks from base
characters. (See also the discussion in Section 5.6, Normalization. For details in particular
contexts, see Unicode Technical Standard #10, “Unicode Collation Algorithm”; Unicode

Implementation Guidelines 222 5.12 Strategies for Handling Nonspacing Marks

Standard Annex #14, “Unicode Line Breaking Algorithm”; and Unicode Standard Annex
#29, “Unicode Text Segmentation.”)

Keyboard Input

A common implementation for the input of combining character sequences is the use of
dead keys. These keys match the mechanics used by typewriters to generate such sequences
through overtyping the base character after the nonspacing mark. In computer implemen-
tations, keyboards enter a special state when a dead key is pressed for the accent and emit a
precomposed character only when one of a limited number of “legal” base characters is
entered. It is straightforward to adapt such a system to emit combining character sequences
or precomposed characters as needed.

Typists, especially in the Latin script, are trained on systems that work using dead keys.
However, many scripts in the Unicode Standard (including the Latin script) may be imple-
mented according to the handwriting sequence, in which users type the base character first,
followed by the accents or other nonspacing marks (see Figure 5-4).

Figure 5-4. Dead Keys Versus Handwriting Sequence
Dead Key Handwriting

oZrich 7
Z}rlch \Zu

Z D?ﬁ

In the case of handwriting sequence, each keystroke produces a distinct, natural change on
the screen; there are no hidden states. To add an accent to any existing character, the user
positions the insertion point (caret) after the character and types the accent.

Truncation

There are two types of truncation: truncation by character count and truncation by dis-
played width. Truncation by character count can entail loss (be lossy) or be lossless.

Truncation by character count is used where, due to storage restrictions, a limited number
of characters can be entered into a field; it is also used where text is broken into buffers for
transmission and other purposes. The latter case can be lossless if buffers are recombined
seamlessly before processing or if lookahead is performed for possible combining character
sequences straddling buffers.

Implementation Guidelines 223 5.12 Strategies for Handling Nonspacing Marks

When fitting data into a field of limited storage length, some information will be lost. The
preferred position for truncating text in that situation is on a grapheme cluster boundary.
As Figure 5-5 shows, such truncation can mean truncating at an earlier point than the last
character that would have fit within the physical storage limitation. (See Unicode Standard
Annex #29, “Unicode Text Segmentation.”)

Figure 5-5. Truncating Grapheme Clusters

On Grapheme Cluster]
Boundaries

O S |¢€

Clipping]O Sé

Ellipsis]O. .e

Truncation by displayed width is used for visual display in a narrow field. In this case, trun-
cation occurs on the basis of the width of the resulting string rather than on the basis of a
character count. In simple systems, it is easiest to truncate by width, starting from the end
and working backward by subtracting character widths as one goes. Because a trailing non-
spacing mark does not contribute to the measurement of the string, the result will not sep-
arate nonspacing marks from their base characters.

If the textual environment is more sophisticated, the widths of characters may depend on
their context, due to effects such as kerning, ligatures, or contextual formation. For such
systems, the width of a precomposed character, such as an “i”, may be different than the
width of a narrow base character alone. To handle these cases, a final check should be made
on any truncation result derived from successive subtractions.

A different option is simply to clip the characters graphically. Unfortunately, this may result
in clipping off part of a character, which can be visually confusing. Also, if the clipping
occurs between characters, it may not give any visual feedback that characters are being
omitted. A graphic or ellipsis can be used to give this visual feedback.

Implementation Guidelines 224 5.13 Rendering Nonspacing Marks

5.13 Rendering Nonspacing Marks

This discussion assumes the use of proportional fonts, where the widths of individual char-
acters can vary. Various techniques can be used with monospaced fonts. In general, how-
ever, it is possible to get only a semblance of a correct rendering for most scripts in such
fonts.

When rendering a sequence consisting of more than one nonspacing mark, the nonspacing
marks should, by default, be stacked outward from the base character. That is, if two nons-
pacing marks appear over a base character, then the first nonspacing mark should appear
on top of the base character, and the second nonspacing mark should appear on top of the
first. If two nonspacing marks appear under a base character, then the first nonspacing
mark should appear beneath the base character, and the second nonspacing mark should
appear below the first (see Section 2.11, Combining Characters). This default treatment of
multiple, potentially interacting nonspacing marks is known as the inside-out rule (see
Figure 5-6).

Figure 5-6. Inside-Out Rule

Characters Glyphs
Aa+5+T+ 0+ > 3

0061 0308 0303 0323 032D

= Q.
i+ + o -
0E02 0E36 OE49

dh:(o

This default behavior may be altered based on typographic preferences or on knowledge of
the specific orthographic treatment to be given to multiple nonspacing marks in the con-
text of a particular writing system. For example, in the modern Vietnamese writing system,
an acute or grave accent (serving as a tone mark) may be positioned slightly to one side of
a circumflex accent rather than directly above it. If the text to be displayed is known to
employ a different typographic convention (either implicitly through knowledge of the
language of the text or explicitly through rich text-style bindings), then an alternative posi-
tioning may be given to multiple nonspacing marks instead of that specified by the default
inside-out rule.

Fallback Rendering. Several methods are available to deal with an unknown composed
character sequence that is outside of a fixed, renderable set (see Figure 5-7). One method
(Show Hidden) indicates the inability to draw the sequence by drawing the base character
first and then rendering the nonspacing mark as an individual unit, with the nonspacing
mark positioned on a dotted circle. (This convention is used in the Unicode code charts.)

Another method (Simple Overlap) uses a default fixed position for an overlapping zero-
width nonspacing mark. This position is generally high enough to make sure that the mark

Implementation Guidelines 225 5.13 Rendering Nonspacing Marks

Figure 5-7. Fallback Rendering

A A A
“Ideal” “Show “Simple
Hidden” Overlap”

does not collide with capital letters. This will mean that this mark is placed too high above
many lowercase letters. For example, the default positioning of a circumflex can be above
the ascent, which will place it above capital letters. Even though the result will not be par-
ticularly attractive for letters such as g-circumflex, the result should generally be recogniz-
able in the case of single nonspacing marks.

In a degenerate case, a nonspacing mark occurs as the first character in the text or is sepa-
rated from its base character by a line separator, paragraph separator, or other format char-
acter that causes a positional separation. This result is called a defective combining
character sequence (see Section 3.6, Combination). Defective combining character
sequences should be rendered as if they had a no-break space as a base character. (See
Section 7.9, Combining Marks.)

Bidirectional Positioning. In bidirectional text, the nonspacing marks are reordered with
their base characters; that is, they visually apply to the same base character after the algo-
rithm is used (see Figure 5-8). There are a few ways to accomplish this positioning.

The simplest method is similar to the Simple Overlap fallback method. In the Bidirectional
Algorithm, combining marks take the level of their base character. In that case, Arabic and
Hebrew nonspacing marks would come to the left of their base characters. The font is
designed so that instead of overlapping to the left, the Arabic and Hebrew nonspacing
marks overlap to the right. In Figure 5-8, the “glyph metrics” line shows the pen start and
end for each glyph with such a design. After aligning the start and end points, the final
result shows each nonspacing mark attached to the corresponding base letter. More sophis-
ticated rendering could then apply the positioning methods outlined in the next section.

Some rendering software may require keeping the nonspacing mark glyphs consistently
ordered to the right of the base character glyphs. In that case, a second pass can be done
after producing the “screen order” to put the odd-level nonspacing marks on the right of
their base characters. As the levels of nonspacing marks will be the same as their base char-
acters, this pass can swap the order of nonspacing mark glyphs and base character glyphs in
right-to-left (odd) levels. (See Unicode Standard Annex #9, “Unicode Bidirectional Algo-
rithm.”)

Implementation Guidelines 226 5.13 Rendering Nonspacing Marks

Figure 5-8. Bidirectional Placement

Backing Store
A)
g SN g_.)
Screen Order +
Glyph Metrics +
A 0
o ()
(@) T

Y

Aligned Glyphs
" 0
& &
L]
Justification. Typically, full justification of text adds extra space at space characters so as to
widen a line; however, if there are too few (or no) space characters, some systems add extra
letterspacing between characters (see Figure 5-9). This process needs to be modified if zero-

width nonspacing marks are present in the text. Otherwise, if extra justifying space is added

after the base character, it can have the effect of visually separating the nonspacing mark
from its base.

Figure 5-9. Justification
Ziirich
.o . 66 points/6 positions
Z Uuric h = 11 points per position
.o . 66 points/5 positions
Z Uurilic h = 13.2 points per position

Because nonspacing marks always follow their base character, proper justification adds let-
terspacing between characters only if the second character is a base character.

Implementation Guidelines 227 5.13 Rendering Nonspacing Marks

Canonical Equivalence

Canonical equivalence must be taken into account in rendering multiple accents, so that
any two canonically equivalent sequences display as the same. This is particularly impor-
tant when the canonical order is not the customary keyboarding order, which happens in
Arabic with vowel signs or in Hebrew with points. In those cases, a rendering system may
be presented with either the typical typing order or the canonical order resulting from nor-
malization, as shown in Table 5-3.

Table 5-3. Typing Order Differing from Canonical Order

Typical Typing Order Canonical Order

U+0631 y ARABIC LETTER REH + U+0651 & |U+0631) ARABIC LETTER REH + U+064B £
ARABIC SHADDA + U+064B /; ARABIC ARABIC FATHATAN + U+0651 < ARABIC
FATHATAN SHADDA

With a restricted repertoire of nonspacing mark sequences, such as those required for Ara-
bic, a ligature mechanism can be used to get the right appearance, as described earlier.
When a fallback mechanism for placing accents based on their combining class is
employed, the system should logically reorder the marks before applying the mechanism.

Rendering systems should handle any of the canonically equivalent orders of combining
marks. This is not a performance issue: the amount of time necessary to reorder combining
marks is insignificant compared to the time necessary to carry out other work required for
rendering.

A rendering system can reorder the marks internally if necessary, as long as the resulting
sequence is canonically equivalent. In particular, any permutation of the non-zero combin-
ing class values can be used for a canonical-equivalent internal ordering. For example, a
rendering system could internally permute weights to have U+0651 ARABIC SHADDA pre-
cede all vowel signs. This would use the remapping shown in Table 5-4.

Table 5-4. Permuting Combining Class Weights

Combining Internal
Class Weight

27 - 33

28 - 27

29 - 28

30 - 29

31 - 30

32 - 31

33 - 32

Only non-zero combining class values can be changed, and they can be permuted only, not
combined or split. This can be restated as follows:

Implementation Guidelines 228 5.13 Rendering Nonspacing Marks

+ Two characters that have the same combining class values cannot be given dis-
tinct internal weights.

+ Two characters that have distinct combining class values cannot be given the
same internal weight.

+ Characters with a combining class of zero must be given an internal weight of
zero.

Positioning Methods

A number of methods are available to position nonspacing marks so that they are in the
correct location relative to the base character and previous nonspacing marks.

Positioning with Ligatures. A fixed set of combining character sequences can be rendered
effectively by means of fairly simple substitution, as shown in Figure 5-10.

Figure 5-10. Positioning with Ligatures

a+ & -4
A+ 5 -5 A
f +1 ->1f

Wherever the glyphs representing a sequence of <base character, nonspacing mark> occur,
a glyph representing the combined form is substituted. Because the nonspacing mark has a
zero advance width, the composed character sequence will automatically have the same
width as the base character. More sophisticated text rendering systems may take additional
measures to account for those cases where the composed character sequence kerns differ-
ently or has a slightly different advance width than the base character.

Positioning with ligatures is perhaps the simplest method of supporting nonspacing marks.
Whenever there is a small, fixed set, such as those corresponding to the precomposed char-
acters of ISO/IEC 8859-1 (Latin-1), this method is straightforward to apply. Because the
composed character sequence almost always has the same width as the base character, ren-
dering, measurement, and editing of these characters are much easier than for the general
case of ligatures.

If a combining character sequence does not form a ligature, then either positioning with
contextual forms or positioning with enhanced kerning can be applied. If they are not
available, then a fallback method can be used.

Positioning with Contextual Forms. A more general method of dealing with positioning
of nonspacing marKks is to use contextual formation (see Figure 5-11). In this case for Deva-
nagari, a consonant RA is rendered with a nonspacing glyph (reph) positioned above a base
consonant. (See “Rendering Devanagari” in Section 12.1, Devanagari.) Depending on the
position of the stem for the corresponding base consonant glyph, a contextual choice is

Implementation Guidelines 229 5.13 Rendering Nonspacing Marks

made between reph glyphs with different side bearings, so that the tip of the reph will be
placed correctly with respect to the base consonant’s stem. Base glyphs generally fall into a
fairly small number of classes, depending on their general shape and width, so a corre-
sponding number of contextually distinct glyphs for the nonspacing mark suffice to pro-
duce correct rendering.

Figure 5-11. Positioning with Contextual Forms

In general cases, a number of different heights of glyphs can be chosen to allow stacking of
glyphs, at least for a few deep. (When these bounds are exceeded, then the fallback methods
can be used.) This method can be combined with the ligature method so that in specific
cases ligatures can be used to produce fine variations in position and shape.

Positioning with Enhanced Kerning. A third technique for positioning diacritics is an
extension of the normal process of kerning to be both horizontal and vertical (see
Figure 5-12). Typically, kerning maps from pairs of glyphs to a positioning offset. For exam-

« _»

ple, in the word “To” the “0” should nest slightly under the “T”. An extension of this system
maps to both a vertical and a horizontal offset, allowing glyphs to be positioned arbitrarily.

Figure 5-12. Positioning with Enhanced Kerning

/’

To w
Voo

To W

For effective use in the general case, the kerning process must be extended to handle more
than simple kerning pairs, as multiple diacritics may occur after a base letter.

Positioning with enhanced kerning can be combined with the ligature method so that in
specific cases ligatures can be used to produce fine variations in position and shape.

Implementation Guidelines 230 5.14 Locating Text Element Boundaries

5.14 Locating Text Element Boundaries

A string of Unicode-encoded text often needs to be broken up into text elements program-
matically. Common examples of text elements include what users think of as characters,
words, lines, and sentences. The precise determination of text elements may vary according
to locale, even as to what constitutes a “character.” The goal of matching user perceptions
cannot always be met, because the text alone does not always contain enough information
to decide boundaries unambiguously. For example, the period (U+002E FuLL sTop) is used
ambiguously—sometimes for end-of-sentence purposes, sometimes for abbreviations, and
sometimes for numbers. In most cases, however, programmatic text boundaries can match
user perceptions quite closely, or at least not surprise the user.

Rather than concentrate on algorithmically searching for text elements themselves, a sim-
pler computation looks instead at detecting the boundaries between those text elements.
Precise definitions of the default Unicode mechanisms for determining such text element
boundaries are found in Unicode Standard Annex #14, “Unicode Line Breaking Algo-
rithm,” and in Unicode Standard Annex #29, “Unicode Text Segmentation.”

Implementation Guidelines 231 5.15 Identifiers

5.15 Identifiers

A common task facing an implementer of the Unicode Standard is the provision of a pars-
ing and/or lexing engine for identifiers. To assist in the standard treatment of identifiers in
Unicode character-based parsers, a set of guidelines is provided in Unicode Standard
Annex #31, “Unicode Identifier and Pattern Syntax,” as a recommended default for the def-
inition of identifier syntax. That document provides details regarding the syntax and con-
formance considerations. Associated data files defining the character properties referred to
by the identifier syntax can be found in the Unicode Character Database.

Implementation Guidelines 232 5.16 Sorting and Searching

5.16 Sorting and Searching

Sorting and searching overlap in that both implement degrees of equivalence of terms to be
compared. In the case of searching, equivalence defines when terms match (for example, it
determines when case distinctions are meaningful). In the case of sorting, equivalence
affects the proximity of terms in a sorted list. These determinations of equivalence often
depend on the application and language, but for an implementation supporting the Uni-
code Standard, sorting and searching must always take into account the Unicode character
equivalence and canonical ordering defined in Chapter 3, Conformance.

Culturally Expected Sorting and Searching

Sort orders vary from culture to culture, and many specific applications require variations.
Sort order can be by word or sentence, case-sensitive or case-insensitive, ignoring accents
or not. It can also be either phonetic or based on the appearance of the character, such as
ordering by stroke and radical for East Asian ideographs. Phonetic sorting of Han charac-
ters requires use of either a lookup dictionary of words or special programs to maintain an
associated phonetic spelling for the words in the text.

Languages vary not only regarding which types of sorts to use (and in which order they are
to be applied), but also in what constitutes a fundamental element for sorting. For exam-
ple, Swedish treats U+00C4 LATIN CAPITAL LETTER A WITH DIAERESIS as an individual let-
ter, sorting it after z in the alphabet; German, however, sorts it either like ae or like other
accented forms of i following a. Spanish traditionally sorted the digraph Il as if it were a let-
ter between / and m. Examples from other languages (and scripts) abound.

As a result, it is not possible either to arrange characters in an encoding such that simple
binary string comparison produces the desired collation order or to provide single-level
sort-weight tables. The latter implies that character encoding details have only an indirect
influence on culturally expected sorting.

Unicode Technical Standard #10, “Unicode Collation Algorithm” (UCA), describes the
issues involved in culturally appropriate sorting and searching, and provides a specification
for how to compare two Unicode strings while remaining conformant to the requirements
of the Unicode Standard. The UCA also supplies the Default Unicode Collation Element
Table as the data specifying the default collation order. Searching algorithms, whether
brute-force or sublinear, can be adapted to provide language-sensitive searching as
described in the UCA.

Language-Insensitive Sorting

In some circumstances, an application may need to do language-insensitive sorting—that
is, sorting of textual data without consideration of language-specific cultural expectations
about how strings should be ordered. For example, a temporary index may need only to be
in some well-defined order, but the exact details of the order may not matter or be visible to
users. However, even in these circumstances, implementers should be aware of some issues.

Implementation Guidelines 233 5.16 Sorting and Searching

First, some subtle differences arise in binary ordering between the three Unicode encoding
forms. Implementations that need to do only binary comparisons between Unicode strings
still need to take this issue into account so as not to create interoperability problems
between applications using different encoding forms. See Section 5.17, Binary Order, for
further discussion.

Many applications of sorting or searching need to be case-insensitive, even while not caring
about language-specific differences in ordering. This is the result of the design of protocols
that may be very old but that are still of great current relevance. Traditionally, implementa-
tions did case-insensitive comparison by effectively mapping both strings to uppercase
before doing a binary comparison. This approach is, however, not more generally extensi-
ble to the full repertoire of the Unicode Standard. The correct approach to case-insensitive
comparison is to make use of case folding, as described in Section 5.18, Case Mappings.

Searching

Searching is subject to many of the same issues as comparison. Other features are often
added, such as only matching words (that is, where a word boundary appears on each side
of the match). One technique is to code a fast search for a weak match. When a candidate is
found, additional tests can be made for other criteria (such as matching diacriticals, word
match, case match, and so on).

When searching strings, it is necessary to check for trailing nonspacing marks in the target
string that may affect the interpretation of the last matching character. That is, a search for
“San Jose” may find a match in the string “Visiting San José, Costa Rica, is a...”. If an exact
(diacritic) match is desired, then this match should be rejected. If a weak match is sought,
then the match should be accepted, but any trailing nonspacing marks should be included
when returning the location and length of the target substring. The mechanisms discussed
in Unicode Standard Annex #29, “Unicode Text Segmentation,” can be used for this pur-
pose.

One important application of weak equivalence is case-insensitive searching. Many tradi-
tional implementations map both the search string and the target text to uppercase. How-
ever, case mappings are language-dependent and not unambiguous. The preferred method
of implementing case insensitivity is described in Section 5.18, Case Mappings.

A related issue can arise because of inaccurate mappings from external character sets. To
deal with this problem, characters that are easily confused by users can be kept in a weak
equivalency class (d d-bar, O eth, D capital d-bar, D capital eth). This approach tends to do
a better job of meeting users’” expectations when searching for named files or other objects.

Sublinear Searching

International searching is clearly possible using the information in the collation, just by
using brute force. However, this tactic requires an O(m*n) algorithm in the worst case and
an O(m) algorithm in common cases, where 7 is the number of characters in the pattern
that is being searched for and m is the number of characters in the target to be searched.

Implementation Guidelines 234 5.16 Sorting and Searching

A number of algorithms allow for fast searching of simple text, using sublinear algorithms.
These algorithms have only O(m/n) complexity in common cases by skipping over charac-
ters in the target. Several implementers have adapted one of these algorithms to search text
pre-transformed according to a collation algorithm, which allows for fast searching with
native-language matching (see Figure 5-13).

Figure 5-13. Sublinear Searching
The_quick_brown..

quicX
g uiek
—q—u—i—é—k—
quic@

The main problems with adapting a language-aware collation algorithm for sublinear
searching relate to multiple mappings and ignorables. Additionally, sublinear algorithms
precompute tables of information. Mechanisms like the two-stage tables shown in
Figure 5-1 are efficient tools in reducing memory requirements.

Implementation Guidelines 235 5.17 BinaryOrder

5.17 Binary Order

When comparing text that is visible to end users, a correct linguistic sort should be used, as
described in Section 5.16, Sorting and Searching. However, in many circumstances the only
requirement is for a fast, well-defined ordering. In such cases, a binary ordering can be
used.

Not all encoding forms of Unicode have the same binary order. UTF-8 and UTF-32 data,
and UTF-16 data containing only BMP characters, sort in code point order, whereas UTE-
16 data containing a mix of BMP and supplementary characters does not. This is because
supplementary characters are encoded in UTF-16 with pairs of surrogate code units that
have lower values (D800,4..DFFF;4) than some BMP code points.

Furthermore, when UTF-16 or UTF-32 data is serialized using one of the Unicode encod-
ing schemes and compared byte-by-byte, the resulting byte sequences may or may not have
the same binary ordering, because swapping the order of bytes will affect the overall order-
ing of the data. Due to these factors, text in the UTF-16BE, UTF-16LE, and UTF-32LE
encoding schemes does not sort in code point order.

In general, the default binary sorting order for Unicode text should be code point order.
However, it may be necessary to match the code unit ordering of a particular encoding
form (or the byte ordering of a particular encoding scheme) so as to duplicate the ordering
used in a different application.

Some sample routines are provided here for sorting one encoding form in the binary order
of another encoding form.

UTF-8 in UTF-16 Order

The following comparison function for UTF-8 yields the same results as UTF-16 binary
comparison. In the code, notice that it is necessary to do extra work only once per string,
not once per byte. That work can consist of simply remapping through a small array; there
are no extra conditional branches that could slow down the processing.

int strcmp8likel6 (unsigned char* a, unsigned char* b) {
while (true) {
int ac = *a++;
int bc = *b++;
if (ac != bc) return rotatelac] - rotatelbc];

if (ac == 0) return 0;

Implementation Guidelines

static char
{oxo00,
0x10,

0xDO,
0xEOQ,
OxXEE,

OxXEF,

rotate[256] =

.7

.

0xF0, OxF1,

236

0xF2,

0xF5,

OxED,

.

5.17 BinaryOrder

0x0F,
0x1F,

0xDF,
0xF4,
0XFF};

OxF3,

The rotate array is formed by taking an array of 256 bytes from 0x00 to 0xFFE, and rotating
OxEE to OxF4, the initial byte values of UTF-8 for the code points in the range
U+E000..U+10FFFE These rotated values are shown in boldface. When this rotation is
performed on the initial bytes of UTEF-8, it has the effect of making code points
U+10000..U+10FFFF sort below U+E000..U+FFFE, thus mimicking the ordering of UTF-

16.

UTF-16 in UTF-8 Order

The following code can be used to sort UTF-16 in code point order. As in the routine for
sorting UTF-8 in UTF-16 order, the extra cost is incurred once per function call, not once

per character.

int strcmplélike8 (Unichar* a,

while (true) ({

Unichar* b)

{

(Unichar) (ac + utfl6Fixuplac>>11]) -

(Unichar) (bc + utfléFixup[be>>11]) ;

0x£800,

0x£800,

int ac = *a++;
int bc = *b++;
if (ac != be) {
return
}
if (ac == 0) return 0;
}
}
static const Unichar utflé6Fixup [32]={
o, o, o0, 0, 0, 0, 0, O,
o, o, o, 0, 0, 0, 0, O,
o, o, o, 0, 0, 0, 0, O,
0o, 0, 0, 0x2000, 0xfs800,

Vi

0x£800

This code uses Unichar as an unsigned 16-bit integral type. The construction of the
utfl6Fixup array is based on the following concept. The range of UTF-16 values is

Implementation Guidelines 237 5.17 BinaryOrder

divided up into thirty-two 2K chunks. The 28th chunk corresponds to the values
0xD800..0xDFFF—that is, the surrogate code units. The 29th through 32nd chunks corre-
spond to the values 0xE000..0xFFFFE. The addition of 0x2000 to the surrogate code units
rotates them up to the range 0xF800..0xFFFE. Adding 0xF800 to the values 0xE000..0xFFFF
and ignoring the unsigned integer overflow rotates them down to the range
0xD800..0xF7FE. Calculating the final difference for the return from the rotated values pro-
duces the same result as basing the comparison on code points, rather than the UTF-16
code units. The use of the hack of unsigned integer overflow on addition avoids the need
for a conditional test to accomplish the rotation of values.

Note that this mechanism works correctly only on well-formed UTF-16 text. A modified
algorithm must be used to operate on 16-bit Unicode strings that could contain isolated
surrogates.

Implementation Guidelines 238 5.18 CaseMappings

5.18 Case Mappings

Case is a normative property of characters in specific alphabets such as Latin, Greek, Cyril-
lic, Armenian, and archaic Georgian, whereby characters are considered to be variants of a
single letter. These variants, which may differ markedly in shape and size, are called the
uppercase letter (also known as capital or majuscule) and the lowercase letter (also known
as small or minuscule). The uppercase letter is generally larger than the lowercase letter.
Alphabets with case differences are called bicameral; those without are called unicameral.
For example, the archaic Georgian script contained upper- and lowercase pairs, but they
are not used in modern Georgian. See Section 7.7, Georgian, for more information.

The case mappings in the Unicode Character Database (UCD) are normative. This follows
from their use in defining the case foldings in CaseFolding.txt and from the use of case
foldings to define case-insensitive identifiers in Unicode Standard Annex #31, “Unicode
Identifier and Pattern Syntax.” However, the normative status of case mappings does not
preclude the adaptation of case mapping processes to local conventions, as discussed below.
See also the Unicode Common Locale Data Repository (CLDR), in Section B.6, Other Uni-
code Online Resources, for extensive data regarding local and language-specific casing con-
ventions.

Titlecasing

Titlecasing refers to a casing practice wherein the first letter of a word is an uppercase letter
and the rest of the letters are lowercase. This typically applies, for example, to initial words
of sentences and to proper nouns. Depending on the language and orthographic practice,
this convention may apply to other words as well, as for common nouns in German.

Titlecasing also applies to entire strings, as in instances of headings or titles of documents,
for which multiple words are titlecased. The choice of which words to titlecase in headings
and titles is dependent on language and local conventions. For example, “The Merry Wives
of Windsor” is the appropriate titlecasing of that play’s name in English, with the word “of”
not titlecased. In German, however, the title is “Die lustigen Weiber von Windsor,” and
both “lustigen” and “von” are not titlecased. In French even fewer words are titlecased: “Les
joyeuses commeres de Windsor.”

Moreover, the determination of what actually constitutes a word is language dependent,
and this can influence which letter or letters of a “word” are uppercased when titlecasing
strings. For example Parbre is considered two words in French, whereas can’t is considered
one word in English.

The need for a normative Titlecase_Mapping property in the Unicode Standard derives
from the fact that the standard contains certain digraph characters for compatibility. These
digraph compatibility characters, such as U+01F3 “dz” LATIN SMALL LETTER Dz, require
one form when being uppercased, U+01F1 “DZ” LATIN CAPITAL LETTER DZ, and another
form when being titlecased, U+01F2 “Dz” LATIN CAPITAL LETTER D WITH SMALL LETTER Z.
The latter form is informally referred to as a titlecase character, because it is mixed case,
with the first letter uppercase. Most characters in the standard have identical values for

Implementation Guidelines 239 5.18 CaseMappings

their Titlecase_Mapping and Uppercase_Mapping; however, the two values are distin-
guished for these few digraph compatibility characters.

Complications for Case Mapping

A number of complications to case mappings occur once the repertoire of characters is
expanded beyond ASCII.

Change in Length. Case mappings may produce strings of different lengths than the origi-
nal. For example, the German character U+00DF {3 LATIN SMALL LETTER SHARP S expands
when uppercased to the sequence of two characters “SS”. Such expansion also occurs where
there is no precomposed character corresponding to a case mapping, such as with U+0149
N LATIN SMALL LETTER N PRECEDED BY APOSTROPHE. The maximum string expansion as a
result of case mapping in the Unicode Standard is three. For example, uppercasing U+0390
1 GREEK SMALL LETTER IOTA WITH DIALYTIKA AND TONOS results in three characters.

The lengths of case-mapped strings may also differ from their originals depending on the
Unicode encoding form. For example, the Turkish strings “topkap1” (with a dotless i) and
“TOPKAPI” have the same number of characters and are the same length in UTF-16 and
UTF-32; however, in UTF-8, the representation of the uppercase form takes only seven
bytes, whereas the lowercase form takes eight bytes. By comparison, the German strings
“heil” and “HEISS” have a different number of characters and differ in length in UTF-16
and UTF-32, but in UTF-8 both strings are encoded using the same number of bytes.

Greek iota subscript. The character U+0345 © COMBINING GREEK YPOGEGRAMMENTI (iota
subscript) requires special handling. As discussed in Section 7.2, Greek, the iota-subscript
characters used to represent ancient text have special case mappings. Normally, the upper-
case and lowercase forms of alpha-iota-subscript will map back and forth. In some
instances, uppercase words should be transformed into their older spellings by removing
accents and changing the iota subscript into a capital iota (and perhaps even removing
spaces).

Context-dependent Case Mappings. Characters may have different case mappings,
depending on the context surrounding the character in the original string. For example,
U+03A3 “X” GREEK CAPITAL LETTER SIGMA lowercases to U+03C3 “0” GREEK SMALL LET-
TER SIGMA if it is followed by another letter, but lowercases to U+03C2 “s” GREEK SMALL
LETTER FINAL SIGMA if it is not.

Because only a few context-sensitive case mappings exist, and because they involve only a
very few characters, implementations may choose to hard-code the treatment of these
characters for casing operations rather than using data-driven code based on the Unicode
Character Database. However, if this approach is taken, each time the implementation is
upgraded to a new version of the Unicode Standard, hard-coded casing operations should
be checked for consistency with the updated data. See SpecialCasing.txt in the Unicode
Character Database for details of context-sensitive case mappings.

Locale-dependent Case Mappings. The principal example of a case mapping that depends
on the locale is Turkish, where U+0131 “1” LATIN SMALL LETTER DOTLESS I maps to

Implementation Guidelines 240 5.18 CaseMappings

«:»

U+0049 “I” LATIN CAPITAL LETTER I and U+0069 “i” LATIN SMALL LETTER I maps to
U+0130 “1” LATIN CAPITAL LETTER I WITH DOT ABOVE. Figure 5-14 shows the uppercase
mapping for Turkish i and canonically equivalent sequences.

Figure 5-14. Uppercase Mapping for Turkish I

Normal Turkish
0069 0049 0069 0130
1 —_ | 1 > |
0131 0049 0131 0049
1+ 7 e I + 1+ ¢ — I +
0069 0307 0049 0307 0069 0307 0130 0307

Figure 5-15 shows the lowercase mapping for Turkish i.

Figure 5-15. Lowercase Mapping for Turkish I

Normal Turkish
I > 1 I > 1
0049 0069 0049 0131
| - 1+ ¢ | o 1
0130 0069 0307 0130 0069
[+ o> 1+ I+ T - 1
0049 0307 0069 0307 0049 0307 0069

In both of the Turkish case mapping figures, a mapping with a double-sided arrow round-
trips—that is, the opposite case mapping results in the original sequence. A mapping with
a single-sided arrow does not round-trip.

Caseless Characters. Because many characters are really caseless (most of the IPA block, for
example) and have no matching uppercase, the process of uppercasing a string does not
mean that it will no longer contain any lowercase letters.

German sharp s. The German sharp s character has several complications in case mapping.
Not only does its uppercase mapping expand in length, but its default case-pairings are
asymmetrical. The default case mapping operations follow standard German orthography,
which uses the string “SS” as the regular uppercase mapping for U+00DF 8 LATIN SMALL
LETTER SHARP S. In contrast, the alternate, single character uppercase form, U+1E9E LATIN
CAPITAL LETTER SHARP s, is intended for typographical representations of signage and
uppercase titles, and in other environments where users require the sharp s to be preserved
in uppercase. Overall, such usage is uncommon. Thus, when using the default Unicode cas-
ing operations, capital sharp s will lowercase to small sharp s, but not vice versa: small sharp

Implementation Guidelines 241 5.18 CaseMappings

s uppercases to “SS”, as shown in Figure 5-16. A tailored casing operation is needed in cir-
cumstances requiring small sharp s to uppercase to capital sharp s.

Figure 5-16. Casing of German Sharp S

Default Casing Tailored Casing

B <— (3 <> (3

SSs <> SS ss <> SS

Reversibility

No casing operations are reversible. For example:
toUpperCase(toLowerCase(“John Brown”)) — “JOHN BROWN”
toLowerCase(toUpperCase(“John Brown”)) — “john brown”

There are even single words like vederLa in Italian or the name McGowan in English, which
are neither upper-, lower-, nor titlecase. This format is sometimes called inner-caps—or
more informally camelcase—and it is often used in programming and in Web names. Once
the string “McGowan” has been uppercased, lowercased, or titlecased, the original cannot
be recovered by applying another uppercase, lowercase, or titlecase operation. There are
also single characters that do not have reversible mappings, such as the Greek sigmas.

For word processors that use a single command-key sequence to toggle the selection
through different casings, it is recommended to save the original string and return to it via
the sequence of keys. The user interface would produce the following results in response to
a series of command keys. In the following example, notice that the original string is
restored every fourth time.

1. The quick brown

2. THE QUICK BROWN

3. the quick brown

4. The Quick Brown

5. The quick brown (repeating from here on)

Uppercase, titlecase, and lowercase can be represented in a word processor by using a char-
acter style. Removing the character style restores the text to its original state. However, if
this approach is taken, any spell-checking software needs to be aware of the case style so
that it can check the spelling against the actual appearance.

Implementation Guidelines 242 5.18 CaseMappings

Caseless Matching

Caseless matching is implemented using case folding, which is the process of mapping char-
acters of different case to a single form, so that case differences in strings are erased. Case
folding allows for fast caseless matches in lookups because only binary comparison is
required. It is more than just conversion to lowercase. For example, it correctly handles
cases such as the Greek sigma, so that “660¢” and “OXO0X” will match.

Normally, the original source string is not replaced by the folded string because that substi-
tution may erase important information. For example, the name “Marco di Silva” would be
folded to “marco di silva,” losing the information regarding which letters are capitalized.
Typically, the original string is stored along with a case-folded version for fast comparisons.

The CaseFolding.txt file in the Unicode Character Database is used to perform locale-inde-
pendent case folding. This file is generated from the case mappings in the Unicode Charac-
ter Database, using both the single-character mappings and the multicharacter mappings.
It folds all characters having different case forms together into a common form. To com-
pare two strings for caseless matching, one can fold each string using this data and then use
a binary comparison.

Case folding logically involves a set of equivalence classes constructed from the Unicode
Character Database case mappings as follows.

For each character X in Unicode, apply the following rules in order:

R1 IfXis already in an equivalence class, continue to the next character. Otherwise,
form a new equivalence class and add X.

R2 Add any other character that uppercases, lowercases, or titlecases to anything in
the equivalence class.

R3 Add any other characters to which anything in the equivalence class uppercases,
lowercases, or titlecases.

R4 Repeat R2 and R3 until nothing further is added.

R5 From each class, one representative element (a single lowercase letter where possi-
ble) is chosen to be the common form.

For rule R5, it is preferable to choose a single lowercase letter for the common form, but
this is not possible in all instances. For case folding of Cherokee letters, for example, a sin-
gle uppercase letter must be chosen instead, because the uppercase letters for Cherokee were
encoded in an earlier version of the Unicode Standard, and the lowercase letters were
encoded in a later version. This choice is required to keep case folding stable across Unicode
versions.

Each equivalence class is completely disjoint from all the others, and every Unicode charac-
ter is in one equivalence class. CaseFolding.txt thus contains the mappings from other
characters in the equivalence classes to their common forms. As an exception, the case fold-
ings for dotless i and dotted I do not follow the derivation algorithm for all other case fold-
ings. Instead, their case foldings are hard-coded in the derivation for best default matching

Implementation Guidelines 243 5.18 CaseMappings

behavior. There are alternate case foldings for these characters, which can be used for case
folding for Turkic languages. However, the use of those alternate case foldings does not
maintain canonical equivalence. Furthermore, it is often undesirable to have differing
behavior for caseless matching. Because language information is often not available when
caseless matching is applied to strings, it also may not be clear which alternate to choose.

The Unicode case folding algorithm is defined to be simpler and more efficient than case
mappings. It is context-insensitive and language-independent (except for the optional,
alternate Turkic case foldings). As a result, there are a few rare cases where a caseless match
does not match pairs of strings as expected; the most notable instance of this is for Lithua-
nian. In Lithuanian typography for dictionary use, an “i” retains its dot when a grave,
acute, or tilde accent is placed above it. This convention is represented in Unicode by using
an explicit combining dot above, occurring in sequence between the “i” and the respective
accent. (See Figure 7-2.) When case folded using the default case folding algorithm, strings
containing these sequences will still contain the combining dot above. In the unusual situ-
ation where case folding needs to be tailored to provide for these special Lithuanian dic-
tionary requirements, strings can be preprocessed to remove any combining dot above
characters occurring between an “i” and a subsequent accent, so that the folded strings will

match correctly.

Where case distinctions are not important, other distinctions between Unicode characters
(in particular, compatibility distinctions) are generally ignored as well. In such circum-
stances, text can be normalized to Normalization Form NFKC or NFKD after case folding,
thereby producing a normalized form that erases both compatibility distinctions and case
distinctions. However, such normalization should generally be done only on a restricted
repertoire, such as identifiers (alphanumerics). See Unicode Standard Annex #15, “Uni-
code Normalization Forms,” and Unicode Standard Annex #31, “Unicode Identifier and
Pattern Syntax,” for more information. For a summary, see “Equivalent Sequences” in
Section 2.2, Unicode Design Principles.

Caseless matching is only an approximation of the language-specific rules governing the
strength of comparisons. Language-specific case matching can be derived from the colla-
tion data for the language, where only the first- and second-level differences are used. For
more information, see Unicode Technical Standard #10, “Unicode Collation Algorithm.”

In most environments, such as in file systems, text is not and cannot be tagged with lan-
guage information. In such cases, the language-specific mappings must not be used. Other-
wise, data structures such as B-trees might be built based on one set of case foldings and
used based on a different set of case foldings. This discrepancy would cause those data
structures to become corrupt. For such environments, a constant, language-independent,
default case folding is required.

Stability. The definition of case folding is guaranteed to be stable, in that any string of
characters case folded according to these rules will remain case folded in Version 5.0 or later
of the Unicode Standard. To achieve this stability, there are constraints on additions of case
pairs for existing encoded characters. Typically, no new lowercase character will be added
to the Unicode Standard as a casing pair of an existing upper- or titlecase character that

Implementation Guidelines 244 5.18 CaseMappings

does not already have a lowercase pair. In exceptional circumstances, where lowercase char-
acters must be added to the standard in a later version than the version in which the corre-
sponding uppercase characters were encoded, such lowercase characters can only be
defined as new case pairs with a corresponding change to case folding to ensure that they
case fold to the old uppercase letters. See the subsection “Policies” in Section B.6, Other Uni-
code Online Resources.

Normalization and Casing

Casing operations as defined in Section 3.13, Default Case Algorithms are not guaranteed to
preserve Normalization Forms. That is, some strings in a particular Normalization Form
(for example, NFC) will no longer be in that form after the casing operation is performed.
Consider the strings shown in the example in Table 5-5.

Table 5-5. Casing and Normalization in Strings

Original (NFC) jo |<U+01F0 LATIN SMALL LETTER J WITH CARON,
U+0323 COMBINING DOT BELOW>

Uppercased J% ¢ |<U+004A LATIN CAPITAL LETTER J,
U+030C COMBINING CARON,
U+0323 COMBINING DOT BELOW>

Uppercased NFC |J« & | <U+004A LATIN CAPITAL LETTER J,
U+0323 COMBINING DOT BELOW,
U+030C COMBINING CARON>

The original string is in Normalization Form NFC format. When uppercased, the small j
with caron turns into an uppercase] with a separate caron. If followed by a combining mark
below, that sequence is not in a normalized form. The combining marks have to be put in
canonical order for the sequence to be normalized.

If text in a particular system is to be consistently normalized to a particular form such as
NEC, then the casing operators should be modified to normalize after performing their
core function. The actual process can be optimized; there are only a few instances where a
casing operation causes a string to become denormalized. If a system specifically checks for
those instances, then normalization can be avoided where not needed.

Normalization also interacts with case folding. For any string X, let Q (X) = NFC (toCase-
£fo0ld (NFD (X))). In other words, Q (X) is the result of normalizing X, then case folding the
result, then putting the result into Normalization Form NFC format. Because of the way
normalization and case folding are defined, Q (Q (X)) = Q(X). Repeatedly applying Q does
not change the result; case folding is closed under canonical normalization for either Nor-
malization Form NFC or NFD.

Case folding is not, however, closed under compatibility normalization for either Normal-
ization Form NFKD or NFKC. That is, given R (X) = NFKC (toCasefold (NFD(X))),
there are some strings such that R (R (X)) # R(X).NFKC_Casefold, a derived property, is
closed under both case folding and NFKC normalization. The property values for

Implementation Guidelines 245 5.18 CaseMappings

NFKC_Casefold are found in DerivedNormalizationProps.txt in the Unicode Character
Database.

Implementation Guidelines 246 5.19 Mapping Compatibility Variants

5.19 Mapping Compatibility Variants

Identifying one character as a compatibility variant of another character (or sequence of
characters) suggests that in many circumstances the first can be remapped to the second
without the loss of any textual information other than formatting and layout. (See
Section 2.3, Compatibility Characters.)

Such remappings or foldings can be done in different ways. In the case of compatibility
decomposable characters, remapping occurs as a result of normalizing to the NFKD or
NFKC forms defined by Unicode Normalization. Other compatibility characters which are
not compatibility decomposable characters may be remapped by various kinds of folding;
for example, KangXi radical symbols in the range U+2F00..U+2FDF might be substituted
by the corresponding CJK unified ideographs of the same appearance.

However, such remapping should not be performed indiscriminately, because many of the
compatibility characters are included in the standard precisely to allow systems to maintain
one-to-one mappings to other existing character encoding standards. In such cases, a
remapping would lose information that is important to maintaining some distinction in
the original encoding.

Thus an implementation must proceed with due caution—replacing a character with its
compatibility decomposition or otherwise folding compatibility characters together with
ordinary Unicode characters may change not only formatting information, but also other
textual distinctions on which some other process may depend.

In many cases there exists a visual relationship between a compatibility character and an
ordinary character that is akin to a font style or directionality difference. Replacing such
characters with unstyled characters could affect the meaning of the text. Replacing them
with rich text would preserve the meaning for a human reader, but could cause some pro-
grams that depend on the distinction to behave unpredictably. This issue particularly
affects compatibility characters used in mathematical notation. For more discussion of
these issues, see the W3C specification, “Unicode in XML and other Markup Languages,”
and Unicode Technical Report #25, “Unicode Support for Mathematics.”

In other circumstances, remapping compatibility characters can be very useful. For exam-
ple, transient remapping of compatibility decomposable characters using NFKC or NFKD
normalization forms is very useful for performing “loose matches” on character strings.
See also Unicode Technical Standard #10, “Unicode Collation Algorithm,” for the role of
compatibility character remapping when establishing collation weights for Unicode
strings.

Confusables. The visual similarities between compatibility variants and ordinary charac-
ters can make them confusable with other characters, something that can be exploited in
possible security attacks. Compatibility variants should thus be avoided in certain usage
domains, such as personal or network identifiers. The usual practice for avoiding compati-
bility variants is to restrict such strings to those already in Normalization Form NFKC; this
practice eliminates any compatibility decomposable characters. Compatibility decompos-

Implementation Guidelines 247 5.19 Mapping Compatibility Variants

able characters can also be remapped on input by processes handling personal or network
identifiers, using Normalization Form NFKC.

This general implementation approach to the problems associated with visual similarities
among compatibility variants, by focusing first on the remapping of compatibility decom-
posable characters, is useful for two reasons. First, the large majority of compatibility vari-
ants are in fact also compatibility decomposable characters, so this approach deals with the
biggest portion of the problem. Second, it is simply and reproducibly implementable in
terms of a well-defined Unicode Normalization Form.

Extending restrictions on usage to other compatibility variants is more problematical,
because there is no exact specification of which characters are compatibility variants. Fur-
thermore, there may be valid reasons to restrict usage of certain characters which may be
visually confusable or otherwise problematical for some process, even though they are not
generally considered to be compatibility variants. Best practice in such cases is to depend
on carefully constructed and justified lists of confusable characters.

For more information on security implications and a discussion of confusables, see Uni-
code Technical Report #36, “Unicode Security Considerations” and Unicode Technical
Standard #39, “Unicode Security Mechanisms.”

Implementation Guidelines 248 5.20 Unicode Security

5.20 Unicode Security

It is sometimes claimed that the Unicode Standard poses new security issues. Some of these
claims revolve around unique features of the Unicode Standard, such as its encoding forms.
Others have to do with generic issues, such as character spoofing, which also apply to any
other character encoding, but which are seen as more severe threats when considered from
the point of view of the Unicode Standard.

This section examines some of these issues and makes some implementation recommenda-
tions that should help in designing secure applications using the Unicode Standard.

Alternate Encodings. A basic security issue arises whenever there are alternate encodings
for the “same” character. In such circumstances, it is always possible for security-conscious
modules to make different assumptions about the representation of text. This conceivably
can result in situations where a security watchdog module of some sort is screening for pro-
hibited text or characters, but misses the same characters represented in an alternative
form. If a subsequent processing module then treats the alternative form as if it were what
the security watchdog was attempting to prohibit, one potentially has a situation where a
hostile outside process can circumvent the security software. Whether such circumvention
can be exploited in any way depends entirely on the system in question.

Some earlier versions of the Unicode Standard included enough leniency in the definition
of the UTF-8 encoding form, particularly regarding the so-called non-shortest form, to raise
questions about the security of applications using UTF-8 strings. However, the conformance
requirements on UTF-8 and other encoding forms in the Unicode Standard have been
tightened so that no encoding form now allows any sort of alternate representation, includ-
ing non-shortest form UTF-8. Each Unicode code point has a single, unique encoding in
any particular Unicode encoding form. Properly coded applications should not be subject
to attacks on the basis of code points having multiple encodings in UTF-8 (or UTF-16).

However, another level of alternate representation has raised other security questions: the
canonical equivalences between precomposed characters and combining character
sequences that represent the same abstract characters. This is a different kind of alternate
representation problem—not one of the encoding forms per se, but one of visually identi-
cal characters having two distinct representations (one as a single encoded character and
one as a sequence of base form plus combining mark, for example). The issue here is differ-
ent from that for alternate encodings in UTF-8. Canonically equivalent representations for
the “same” string are perfectly valid and expected in Unicode. The conformance require-
ment, however, is that conforming implementations cannot be required to make an inter-
pretation distinction between canonically equivalent representations. The way for a
security-conscious application to guarantee this is to carefully observe the normalization
specifications (see Unicode Standard Annex #15, “Unicode Normalization Forms”) so that
data is handled consistently in a normalized form.

Spoofing. Another security issue is spoofing, meaning the deliberate misspelling of a
domain name, or user name, or other string in a form designed to trick unwary users into
interacting with a hostile website as if it was a trusted site (or user). In this case, the confu-

Implementation Guidelines 249 5.20 Unicode Security

sion is not at the level of the software process handling the code points, but rather in the
human end users, who see one character but mistake it for another, and who then can be
fooled into doing something that will breach security or otherwise result in unintended
results.

To be effective, spoofing does not require an exact visual match—for example, using the
digit “1” instead of the letter “I”. The Unicode Standard contains many confusables—that is,
characters whose glyphs, due to historical derivation or sheer coincidence, resemble each
other more or less closely. Certain security-sensitive applications or systems may be vulner-
able due to possible misinterpretation of these confusables by their users.

Many legacy character sets, including ISO/IEC 8859-1 or even ASCII, also contain confus-
ables, albeit usually far fewer of them than in the Unicode Standard simply because of the
sheer scale of Unicode. The legacy character sets all carry the same type of risks when it
comes to spoofing, so there is nothing unique or inadequate about Unicode in this regard.
Similar steps will be needed in system design to assure integrity and to lessen the potential
for security risks, no matter which character encoding is used.

The Unicode Standard encodes characters, not glyphs, and it is impractical for many rea-
sons to try to avoid spoofing by simply assigning a single character code for every possible
confusable glyph among all the world’s writing systems. By unifying an encoding based
strictly on appearance, many common text-processing tasks would become convoluted or
impossible. For example, Latin B and Greek Beta B look the same in most fonts, but lower-
case to two different letters, Latin b and Greek beta 8, which have very distinct appear-
ances. A simplistic fix to the confusability of Latin B and Greek Beta would result in great
difficulties in processing Latin and Greek data, and in many cases in data corruptions as
well.

Because all character encodings inherently have instances of characters that might be con-
fused with one another under some conditions, and because the use of different fonts to
display characters might even introduce confusions between characters that the designers
of character encodings could not prevent, character spoofing must be addressed by other
means. Systems or applications that are security-conscious can test explicitly for known
spoofings, such as “MICROSOFT,” “AOL,” or the like (substituting the digit “0” for the letter
“0”). Unicode-based systems can provide visual clues so that users can ensure that labels,
such as domain names, are within a single script to prevent cross-script spoofing. However,
provision of such clues is clearly the responsibility of the system or application, rather than
being a security condition that could be met by somehow choosing a “secure” character
encoding that was not subject to spoofing. No such character encoding exists.

Unicode Standard Annex #24, “Unicode Script Property,” presents a classification of Uni-
code characters by script. By using such a classification, a program can check that labels
consist only of characters from a given script or characters that are expected to be used with
more than one script (such as the “Common” or “Inherited” script names defined in Uni-
code Standard Annex #24, “Unicode Script Property”). Because cross-script names may be
legitimate, the best method of alerting a user might be to highlight any unexpected bound-
aries between scripts and let the user determine the legitimacy of such a string explicitly.

Implementation Guidelines 250 5.20 Unicode Security

For further discussion of security issues, see Unicode Technical Report #36, “Unicode Secu-
rity Considerations,” and Unicode Technical Standard #39, “Unicode Security Mecha-
nisms.”

Implementation Guidelines 251 5.21 Ignoring Charactersin Processing

5.21 Ignoring Characters in Processing

The majority of encoded characters in the Unicode Standard are ordinary graphic charac-
ters. However, the standard also includes a significant number of special-use characters.
For example, format characters (General_Category=Cf) are often defined to have very par-
ticular effects in text processing. These effects may impact one kind of text process, but be
completely irrelevant for other text processes. Format characters also typically have no vis-
ible display of their own, but may impact the display of neighboring graphic characters.
Technically, variation selectors are not format characters, but combining marks. However,
variation selectors and other “invisible” combining marks also have special behavior in text
processing.

Other sections of the Unicode Standard specify the intended effects of such characters in
detail. See, for example, Section 23.2, Layout Controls and Section 23.4, Variation Selectors.
This section, on the other hand, approaches the issue by discussing which kinds of format
characters (and other characters) are ignored for different kinds of text processes, and pro-
viding pointers to related implementation guidelines.

How these kinds of special-use characters are displayed or not displayed in various contexts
is of particular importance. Many have no inherent display of their own, so pose questions
both for normal rendering for display and for fallback rendering. Because of this, a partic-
ularly detailed discussion of ignoring characters for display can be found toward the end of
this section.

Characters Ignored in Text Segmentation

Processing for text segmentation boundaries generally ignores certain characters which are
irrelevant to the determination of those boundaries. The exact classes of characters depend
on which type of text segmentation is involved.

When parsing grapheme cluster boundaries, characters used to extend grapheme clusters
are ignored for boundary determination. These include nonspacing combining marks and
enclosing marks, as well as U+200C zERO WIDTH NON-JOINER. The exact list of characters
involved is specified by the property value: Grapheme_Cluster_Break=Extend. U+200D
ZERO WIDTH JOINER requires special handling, particularly for emoji sequences.

When parsing word or sentence boundaries, the set of characters which are ignored for
boundary determination is enlarged somewhat, to include spacing combining marks and
most format characters. For word breaking, the exact list of characters is specified by two
property values: Word_Break=Extend or Word_Break=Format. For sentence breaking, the
corresponding property values are: Sentence_Break=Extend or Sentence_Break=Format.

For a detailed discussion of text segmentation, see Unicode Standard Annex #29, “Unicode
Text Segmentation.” In particular, see Section 6.2, Replacing Ignore Rules, in that annex, for
implementation notes about the rules which ignore classes of characters for segmentation.

Implementation Guidelines 252 5.21 Ignoring Charactersin Processing

Characters Ignored in Line Breaking

Most control characters and format characters are ignored for line break determination,
and do not contribute to line width. The Unicode Line Breaking Algorithm handles this
class of characters by giving them the same Line_Break property value as combining marks:
Line Break=CM. For a detailed discussion, see Unicode Standard Annex #14, “Unicode
Line Breaking Algorithm.”

When expanding or compressing intercharacter space, as part of text justification and
determination of line breaks, the presence of U+200B zErRO WIDTH SPACE or U+2060 wORD
JOINER is generally ignored. There are, however, occasional exceptions. See, for example,
the discussion of “Thai-style” letter spacing in Section 23.2, Layout Controls.

Characters Ignored in Cursive Joining

U+200C zERO WIDTH NON-JOINER and U+200D zZERO WIDTH JOINER are format controls
specifically intended to influence cursive joining. However, there are other format controls
which are explicitly ignored when processing text for cursive joining. In particular, U+2060
WORD JOINER, U+FEFF ZERO WIDTH NO-BREAK SPACE, and U+200B ZERO WIDTH SPACE
influence text segmentation and line breaking, but should be ignored for cursive joining.
U+034F COMBINING GRAPHEME JOINER is also ignored for cursive joining.

More generally, there is a broad class of characters whose occurrence in a string should be
ignored when calculating cursive connections between adjacent letters subject to cursive
joining. This class is defined by the property value, Joining Type=Transparent, and
includes all nonspacing marks and most format characters other than ZWNJ and ZW]J. See
the detailed discussion of cursive joining in Section 23.2, Layout Controls.

Characters Ignored in Identifiers

Characters with the property Default_Ignorable_Code_Point (DI) are generally not rec-
ommended for inclusion in identifiers. Such characters include many (but not all) format
characters, as well as variation selectors. Exceptions are the cursive joining format charac-
ters, U+200C ZERO WIDTH NON-JOINER and U+200D ZERO WIDTH JOINER, which in limited
circumstances may be used to make visual distinctions deemed necessary for identifiers.

There are several possible approaches for ensuring that characters with DI=True are not
significant for comparison of identifiers. A strict formal syntax definition may simply pro-
hibit their inclusion in identifier strings altogether. However, comparison of identifiers
often involves a folding operation, such as case folding. In applications which implement
identifier folding based on the toNFKC_CaseFold transformation, DI=True characters are
removed from a string by that transformation. With such an approach, DI=True characters
can be said to be “ignored” in identifier comparison, and their presence or absence in a
given identifier string is irrelevant to the comparison. See Unicode Standard Annex #31,
“Unicode Identifier and Pattern Syntax,” for a detailed discussion of normalization and
case folding of identifiers and of the handling of format characters in identifiers.

Implementation Guidelines 253 5.21 Ignoring Charactersin Processing

Characters Ignored in Searching and Sorting

Searching and string matching is another context in which particular characters may be
ignored. Typically, users expect that certain characters, such as punctuation, will be
ignored when looking for string matches against a target string, or they expect that certain
character distinctions, such as case differences, will be ignored. Exact binary string com-
parisons in such circumstances produce the wrong results.

At its core, sorting string data involves using a string matching algorithm to determine
which strings count as equal. In any comparison of strings which do not count as equal,
sorting additionally requires the ability to determine which string comes before and which
after in the collation order. It is important to have a well-defined concept of which charac-
ters “do not make a difference,” and are thus ignored for the results of the sorting.

Some Unicode characters almost never make a significant difference for searching, string
matching, and sorting. For example, U+200C zERO WIDTH NON-JOINER and U+200D zero
WIDTH JOINER may impact cursive joining or ligature formation, but are not intended to
represent semantic differences between strings. At a first level of approximation, most Uni-
code format controls should be ignored for searching and sorting. However, there is no
unique way to use Unicode character properties to devise an exact list of which characters
should always be ignored for searching and sorting, in part because the criteria for any par-
ticular search or sort can vary so widely.

The Unicode algorithm which addresses this issue generically is defined in Unicode Techni-
cal Standard #10, “Unicode Collation Algorithm.” The Default Unicode Collation Element
Table (DUCET), documented in that standard, provides collation weights for all Unicode
characters; many of those weights are set up so that the characters will be ignored by default
for sorting. A string matching algorithm can also be based on the weights in that table.
Additionally, the UCA provides options for ignoring distinctions between related charac-
ters, such as uppercase versus lowercase letters, or letters with or without accents. The UCA
provides a mechanism to tailor the DUCET. This mechanism not only enables the general
algorithm to support different tailored tables which allow for language-specific orderings
of characters, it also makes it possible to specify very precisely which characters should or
should not be ignored for any particular search or sort.

Characters Ignored for Display

There are two distinct cases to consider when determining whether a particular character
should be “ignored” for display. The first case involves normal rendering, when a process
supports the character in question. The second case involves fallback rendering, when the
character in question is outside the repertoire which can be supported for normal render-
ing, so that a fallback to exceptional rendering for unknown characters is required.

In this discussion, “display” is used as shorthand for the entire text rendering process,
which typically involves a combination of rendering software and font definition. Having a
display glyph for a character defined in a font is not sufficient to render it for screen display
or for printing; rendering software is involved as well. On the other hand, fonts may con-

Implementation Guidelines 254 5.21 Ignoring Charactersin Processing

tain complex rendering logic which contributes to the text rendering process. This discus-
sion is not meant to preclude any particular approach to the design of a full text rendering
process. A phrase such as, “a font displays a glyph for the character,” or “a font displays no
glyph for the character,” is simply a general way of describing the intended display outcome
for rendering that character.

Normal Rendering. Many characters, including format characters and variation selectors,
have no visible glyph or advance width directly associated with them. Such characters with-
out glyphs are typically shown in the code charts with special display glyphs using a dotted
box and a mnemonic label. (See Section 24.1, Character Names List, for code chart display
conventions.) Outside of the particular context of code chart display, a font will typically
display no glyph for such characters. However, it is not unusual for format characters and
variation selectors to have a visible effect on other characters in their vicinity. For example,
ZW] and ZWN]J may affect cursive joining or the appearance of ligatures. A variation selec-
tor may change the choice of glyph for display of the base character it follows. In such cases,
even though the format character or variation selector has no visible glyph of its own, it
would be inappropriate to say that it is ignored for display, because the intent of its use is to
change the display in some visible way. Additional cases where a format character has no
glyph, but may otherwise affect display include:

+ Bidirectional format characters do not affect the glyph forms of displayed char-
acters, but may cause significant rearrangements of spans of text in a line.

{Mapist” is simply “therapist”—no visible glyph.
In line break processing, it indicates a possible intraword break. At any intra-
word break that is used for a line break—whether resulting from this character
or by some automatic process—a hyphen glyph (perhaps with spelling
changes) or some other indication can be shown, depending on language and

context.

In other contexts, a format character may have no visible effect on display at all. For exam-
ple, a ZWJ might occur in text between two characters which are not subject to cursive
joining and for which no ligature is available or appropriate: <x, ZWJ, x>. In such a case,
the ZW7J simply has no visible effect, and one can meaningfully say that it is ignored for dis-
play. Another example is a variation selector following a base character for which no stan-
dardized or registered variation sequence exists. In that case, the variation selector has no
effect on the display of the text.

Finally, there are some format characters whose function is not intended to affect display.
U+200B zERO WIDTH SPACE affects word segmentation, but has no visible display. U+034F
COMBINING GRAPHEME JOINER is likewise always ignored for display. Additional examples
include:

of surrounding characters; instead, its only effect is to indicate that there should
be no line break at that point.

Implementation Guidelines 255 5.21 Ignoring Charactersin Processing

used only in internal mathematical expression processing.

The fact that format characters and variation selectors have no visible glyphs does not
mean that such characters must always be invisible. An implementation can, for example,
show a visible glyph on request, such as in a “Show Hidden” mode. A particular use of a
“Show Hidden” mode is to display a visible indication of misplaced or ineffectual format
characters. For example, a sequence of two adjacent joiners, <..., ZWJ, ZWJ, ...>, is a case
where the extra ZWJ should have no effect.

Format characters with no visible glyphs are different from space characters. Space charac-
ters, such as U+0020 sPACE, are classified as graphic characters. Although they do not have
visible glyphs for display, they have advance widths. Technically, that counts as a “glyph” in
a font—it is simply a blank glyph “with no pixels turned on.” Like other graphic characters,
a space character can be visibly selected in text. Line separation characters, such as the car-
riage return, do not clearly exhibit their advance width, because they always occur at the
end of a line, but most implementations give them a visible advance width when they are
selected. Hence, they are classed together with space characters; both are given the
White_Space property. Whitespace characters are not considered to be ignored for display.

Fallback Rendering. Fallback rendering occurs when a text process needs to display a char-
acter or sequence of characters, but lacks the rendering resources to display that character
correctly. The typical situation results from having text to display without an appropriate
font covering the repertoire of characters used in that text. The recommended behavior for
display in such cases is to fall back to some visible, but generic, glyph display for graphic
characters, so that at least it is clear that there are characters present—and usually, how
many are present. (See Section 5.3, Unknown and Missing Characters.) However, variation
selectors and some format characters are special—it is not appropriate for fallback render-
ing to display them with visible glyphs. This is illustrated by the following examples.

First consider an ordinary graphic character. For example, if an implementation does not
support U+0915 h DEVANAGARI LETTER Ka, it should not ignore that character for display.
Displaying nothing would give the user the impression that the character does not occur in
the text at all. The recommendation in that case is to display a “last-resort” glyph or a visi-
ble “missing glyph” box, instead.

Contrast that with the typical situation for a format character, such as ZWJ. If an imple-
mentation does not support that character at all, the best practice is to ignore it completely
for display, without showing a last-resort glyph or a visible box in its place. This is because
even for normal rendering a ZW7J is invisible—its visible effects are on other characters.
When an implementation does not support the behavior of a ZWJ, it has no way of show-
ing the effects on neighboring characters.

Default Ignorable Code Point. The list of characters which should be ignored for display in
fallback rendering is given by a character property: Default_Ignorable_Code_Point (DI).
Those characters include almost all format characters, all variation selectors, and a few
other exceptional characters, such as Hangul fillers. The exact list is defined in Derived-
CoreProperties.txt in the Unicode Character Database.

Implementation Guidelines 256 5.21 Ignoring Charactersin Processing

The Default_Ignorable_Code_Point property is also given to certain ranges of code points:
U+2060..U+206F, U+FFF0..U+FFF8, and U+E0000..U+EOFFF, including any unassigned
code points in those ranges. These ranges are designed and reserved for future encoding of
format characters and similar special-use characters, to allow a certain degree of forward
compatibility. Implementations which encounter unassigned code points in these ranges
should ignore them for display in fallback rendering.

Surrogate code points, private-use characters, and control characters are not given the
Default_Ignorable_Code_Point property. To avoid security problems, such characters or
code points, when not interpreted and not displayable by normal rendering, should be dis-
played in fallback rendering with a fallback glyph, so that there is a visible indication of
their presence in the text. For more information, see Unicode Technical Report #36, “Uni-
code Security Considerations.”

A small number of format characters (General Category=Cf) are also not given the
Default_Ignorable_Code_Point property. This may surprise implementers, who often
assume that all format characters are generally ignored in fallback display. The exact list of
these exceptional format characters can be found in the Unicode Character Database.
There are, however, two important sets of such format characters to note. First, there are
the visible format characters which span groups of numbers, particularly for the Arabic
script—for example, U+0601 ARABIC SIGN SANAH, the Arabic year sign. These prepended
concatenation marks always have a visible display. See “Signs Spanning Numbers” in
Section 9.2, Arabic for more discussion of the use and display of these signs. The other nota-
ble set of exceptional format characters is the interlinear annotation characters: U+FFF9
INTERLINEAR ANNOTATION ANCHOR through U+FFFB INTERLINEAR ANNOTATION TERMI-
NaTOR. These annotation characters should have a visible glyph display for fallback render-
ing, because if they are simply not displayed, there is too much potential to misread the
resulting displayed text. See “Annotation Characters” in Section 23.8, Specials for more dis-
cussion of the use and display of interlinear annotation characters.

Implementation Guidelines 257 5.22 Best Practice for U+FFED Substitution

5.22 Best Practice for U+FFFD Substitution

When converting text from one character encoding to another, a conversion algorithm may
encounter unconvertible code units. This is most commonly caused by some sort of cor-
ruption of the source data, so that it does not correctly follow the specification for that
character encoding. Examples include dropping a byte in a multibyte encoding such as
Shift-JIS, improper concatenation of strings, a mismatch between an encoding declaration
and actual encoding of text, use of non-shortest form for UTF-8, and so on.

When a conversion algorithm encounters such unconvertible data, the usual practice is
either to throw an exception or to use a defined substitution character to represent the
unconvertible data. In the case of conversion to one of the encoding forms of the Unicode
Standard, the substitution character is defined as U+FFFD REPLACEMENT CHARACTER.
However, there are different possible ways to use U+FFED. This section describes the best
practice.

For conversion between different encoding forms of the Unicode Standard, Section 3.9,
Unicode Encoding Forms defines best practice for the use of U+FFFD. The basic formula-
tion is as follows:

Whenever an unconvertible offset is reached during conversion of a code
unit sequence:

1. The maximal subpart at that offset should be replaced by a single
U+FFFD.

2. The conversion should proceed at the offset immediately after the max-
imal subpart.

In that formulation, the term “maximal subpart” refers to a maximal subpart of an ill-
formed subsequence, which is precisely defined in Section 3.9, Unicode Encoding Forms for
Unicode encoding forms. Essentially, a conversion algorithm gathers up the longest
sequence of code units that could be the start of a valid, convertible sequence, but which is
not actually convertible. For example, consider the first three bytes of a four-byte UTF-8
sequence, followed by a byte which cannot be a valid continuation byte: <F4 80 80 41>. In
that case <F4 80 80> would be the maximal subpart that would be replaced by a single
U+FFED. If there is not any start of a valid, convertible sequence in the unconvertible data
at a particular offset, then the maximal subpart would consist of a single code unit.

This practice reflects the way conversion processes are typically constructed, particularly
for UTF-8. An optimized conversion algorithm simply walks an offset down the source
data string until it collects a sequence it can convert or until it reaches the first offset at
which it knows it cannot convert that sequence. At that point it either throws an exception
or it substitutes the unconvertible sequence it has collected with a single U+FFFD and then
moves on to the next offset in the source.

Although the definition of best practice for U+FFFD substitution in Section 3.9, Unicode
Encoding Forms technically applies only to conversion between Unicode encoding forms,
that principle for dealing with substitution for unconvertible sequences can be extended

Implementation Guidelines 258 5.22 Best Practice for U+FFED Substitution

easily to cover the more general case of conversion of any external character encoding to
Unicode. The more general statement is as follows:

Whenever an unconvertible offset is reached during conversion of a code
unit sequence to Unicode:

1. Find the longest code unit sequence that is the initial subsequence of
some sequence that could be converted. If there is such a sequence, replace
it with a single U+FFED; otherwise replace a single code unit with a sin-
gle U+FFFD.

2. The conversion should proceed at the offset immediately after the sub-
sequence which has been replaced.

When dealing with conversion mappings from external character encodings to Unicode,
one needs to take into account the fact that the mapping may be many-to-one. The conver-
sion algorithm needs to find the longest sequence that is valid for conversion, so that it does
not prematurely convert a code unit that could be part of a longer valid sequence. (This
problem does not occur when converting between Unicode encoding forms, which are all
constructed to be non-overlapping and one-to-one transforms.)

The requirement for finding the longest valid sequence for conversion is then generalized
to the case of replacement of invalid sequences. The conversion should proceed as far as it
can down the input string while the input could still be interpreted as starting some valid
sequence. Then if the conversion fails, all of the code units that have been collected to that
point are replaced with a single U+FFFD. If there is no valid code unit at all, a single code
unit is replaced.

For legacy character encodings and other character encodings defined externally, the Uni-
code Standard cannot precisely specify what is well-formed or ill-formed. Therefore, best
practice for U+FFFD substitution is defined in terms of what is convertible or unconvert-
ible in particular cases. Ultimately, that depends on the content of character mapping tables
and their accompanying conversion algorithms. To the extent that implementations share
common character mapping tables, they can obtain interoperable conversion results, not
only for the convertible data, but also for any data unconvertible by those tables. Unicode
Technical Standard #22, “Character Mapping Markup Language,” provides an XML format
for precisely specifying character mapping tables, which can be used to help guarantee
interoperable conversions.

259

Chapter 6

Writing Systems and Punctuation

This chapter begins the portion of the Unicode Standard devoted to the detailed descrip-
tion of each script or other related group of Unicode characters. Each of the subsequent
chapters presents a historically or geographically related group of scripts. This chapter
presents a general introduction to writing systems, explains how they can be used to classify
scripts, and then presents a detailed discussion of punctuation characters that are shared
across scripts.

Scripts and Blocks. The codespace of the Unicode Standard is divided into subparts called
blocks. Character blocks generally contain characters from a single script, and in many
cases, a script is fully represented in its character block; however, some scripts are encoded
using several blocks, which are not always adjacent. Discussion of scripts and other groups
of characters are structured by character blocks. Corresponding subsection headers iden-
tify each block and its associated range of Unicode code points. The Unicode code charts
are also organized by character blocks.

Scripts and Writing Systems. There are many different kinds of writing systems in the
world. Their variety poses some significant issues for character encoding in the Unicode
Standard as well as for implementers of the standard. Those who first approach the Uni-
code Standard without a background in writing systems may find the huge list of scripts
bewilderingly complex. Therefore, before considering the script descriptions in detail, this
chapter first presents a brief introduction to the types of writing systems. That introduc-
tion explains basic terminology about scripts and character types that will be used again
and again when discussing particular scripts.

Punctuation. The rest of this chapter deals with a special case: punctuation marks, which
tend to be scattered about in different blocks and which may be used in common by many
scripts. Punctuation characters occur in several widely separated places in the character
blocks, including Basic Latin, Latin-1 Supplement, General Punctuation, Supplemental
Punctuation, and CJK Symbols and Punctuation. There are also occasional punctuation
characters in character blocks for specific scripts.

Most punctuation characters are intended for common usage with any script, although
some of them are script-specific. Some scripts use both common and script-specific punc-
tuation characters, usually as the result of recent adoption of standard Western punctua-
tion marks. While punctuation characters vary in details of appearance and function
between different languages and scripts, their overall purpose is shared: they serve to sepa-
rate or otherwise organize units of text, such as sentences and phrases, thereby helping to
clarify the meaning of the text. Certain punctuation characters also occur in mathematical
and scientific formulae.

Writing Systems and Punctuation 260 6.1 WritingSystems

6.1 Writing Systems

This section presents a brief introduction to writing systems. It describes the different
kinds of writing systems and relates them to the encoded scripts found in the Unicode
Standard. This framework may help to make the variety of scripts, modern and historic, a
little less daunting. The terminology used here follows that developed by Peter T. Daniels, a
leading expert on writing systems of the world.

The term writing system has two mutually exclusive meanings in this standard. As used in
this section, “writing system” refers to a way that families of scripts may be classified by
how they represent the sounds or words of human language. For example, the writing sys-
tem of the Latin script is alphabetic. In other places in the standard, “writing system” refers
to the way a particular language is written. For example, the modern Japanese writing sys-
tem uses four scripts: Han ideographs, Hiragana, Katakana and Latin (Romaji).

Alphabets. A writing system that consists of letters for the writing of both consonants and
vowels is called an alphabet. The term “alphabet” is derived from the first two letters of the
Greek script: alpha, beta. Consonants and vowels have equal status as letters in such a sys-
tem. The Latin alphabet is the most widespread and well-known example of an alphabet,
having been adapted for use in writing thousands of languages.

The correspondence between letters and sounds may be either more or less exact. Many
alphabets do not exhibit a one-to-one correspondence between distinct sounds and letters
or groups of letters used to represent them; often this is an indication of original spellings
that were not changed as the language changed. Not only are many sounds represented by
letter combinations, such as “th” in English, but the language may have evolved since the
writing conventions were settled. Examples range from cases such as Italian or Finnish,
where the match between letter and sound is rather close, to English, which has notoriously
complex and arbitrary spelling.

Phonetic alphabets, in contrast, are used specifically for the precise transcription of the
sounds of languages. The best known of these alphabets is the International Phonetic Alpha-
bet, an adaptation and extension of the Latin alphabet by the addition of new letters and
marks for specific sounds and modifications of sounds. Unlike normal alphabets, the intent
of phonetic alphabets is that their letters exactly represent sounds. Phonetic alphabets are
not used as general-purpose writing systems per se, but it is not uncommon for a formerly
unwritten language to have an alphabet developed for it based on a phonetic alphabet.

Abjads. A writing system in which only consonants are indicated is an abjad. The main let-
ters are all consonants (or long vowels), with other vowels either left out entirely or option-
ally indicated with the use of secondary marks on the consonants. The Phoenician script is
a prototypical abjad; a better-known example is the Arabic writing system. The term
“abjad” is derived from the first four letters of the traditional order of the Arabic script:
alef, beh, jeem, dal. Abjads are often, although not exclusively, associated with Semitic lan-
guages, which have word structures particularly well suited to the use of consonantal writ-
ing. Some abjads allow consonant letters to mark long vowels, as the use of waw and yeh in
Arabic for /u:/ or /i:/.

Writing Systems and Punctuation 261 6.1 WritingSystems

Hebrew and Arabic are typically written without any vowel marking at all. The vowels,
when they do occur in writing, are referred to as points or harakat, and are indicated by the
use of diacritic dots and other marks placed above and below the consonantal letters.

Syllabaries. In a syllabary, each symbol of the system typically represents both a consonant
and a vowel, or in some instances more than one consonant and a vowel. One of the best-
known examples of a syllabary is Hiragana, used for Japanese, in which the units of the sys-
tem represent the syllables ka, ki, ku, ke, ko, sa, si, su, se, so, and so on. In general parlance,
the elements of a syllabary are not called letters, but rather syllables. This can lead to some
confusion, however, because letters of alphabets and units of other writing systems are also
used, singly or in combinations, to write syllables of languages. So in a broad sense, the
term “letter” can be used to refer to the syllables of a syllabary.

In syllabaries such as Cherokee, Hiragana, Katakana, and Yi, each symbol has a unique
shape, with no particular shape relation to any of the consonant(s) or vowels of the sylla-
bles. In other cases, however, the syllabic symbols of a syllabary are not atomic; they can be
built up out of parts that have a consistent relationship to the phonological parts of the syl-
lable. The best example of this is the Hangul writing system for Korean. Each Hangul sylla-
ble is made up of a part for the initial consonant (or consonant cluster), a part for the vowel
(or diphthong), and an optional part for the final consonant (or consonant cluster). The
relationship between the sounds and the graphic parts to represent them is systematic
enough for Korean that the graphic parts collectively are known as jamos and constitute a
kind of alphabet on their own.

The jamos of the Hangul writing system have another characteristic: their shapes are not
completely arbitrary, but were devised with intentionally iconic shapes relating them to
articulatory features of the sounds they represent in Korean. The Hangul writing system
has thus also been classified as a featural syllabary.

Abugidas. Abugidas represent a kind of blend of syllabic and alphabetic characteristics in a
writing system. The Ethiopic script is an abugida. The term “abugida” is derived from the
first four letters of the Ethiopic script in the Semitic order: alf, bet, gaml, dant. The order of
vowels (-4 -u -1 -a) is that of the traditional vowel order in the first four columns of the
Ethiopic syllable chart. Historically, abugidas spread across South Asia and were adapted by
many languages, often of phonologically very different types.

This process has also resulted in many extensions, innovations, and/or simplifications of
the original patterns. The best-known example of an abugida is the Devanagari script, used
in modern times to write Hindi and many other Indian languages, and used classically to
write Sanskrit. See Section 12.1, Devanagari, for a detailed description of how Devanagari
works and is rendered.

In an abugida, each consonant letter carries an inherent vowel, usually /a/. There are also
vowel letters, often distinguished between a set of independent vowel letters, which occur
on their own, and dependent vowel letters, or matras, which are subordinate to consonant
letters. When a dependent vowel letter follows a consonant letter, the vowel overrides the
inherent vowel of the consonant. This is shown schematically in Figure 6-1.

Writing Systems and Punctuation 262 6.1 WritingSystems

Figure 6-1. Overriding Inherent Vowels

ka+i-ki ka+e - ke
ka+u - ku ka+ o = ko

Abugidas also typically contain a special element usually referred to as a halant, virama, or
killer, which, when applied to a consonant letter with its inherent vowel, has the effect of
removing the inherent vowel, resulting in a bare consonant sound.

Because of legacy practice, three distinct approaches have been taken in the Unicode Stan-
dard for the encoding of abugidas: the Devanagari model, the Tibetan model, and the Thai
model. The Devanagari model, used for most abugidas, encodes an explicit virama charac-
ter and represents text in its logical order. The Thai model departs from the Devanagari
model in that it represents text in its visual display order, based on the typewriter legacy,
rather than in logical order. The Tibetan model avoids an explicit virama, instead encoding a
sequence of subjoined consonants to represent consonants occurring in clusters in a syllable.

The Ethiopic script is traditionally analyzed as an abugida, because the base character for
each consonantal series is understood as having an inherent vowel. However, Ethiopic lacks
some of the typical features of Brahmi-derived scripts, such as halants and matras. Histor-
ically, it was derived from early Semitic scripts and in its earliest form was an abjad. In its
traditional presentation and its encoding in the Unicode Standard, it is now treated more
like a syllabary.

Logosyllabaries. The final major category of writing system is known as the logosyllabary.
In a logosyllabary, the units of the writing system are used primarily to write words and/or
morphemes of words, with some subsidiary usage to represent syllabic sounds per se.

The best example of a logosyllabary is the Han script, used for writing Chinese and bor-
rowed by a number of other East Asian languages for use as part of their writing systems.
The term for a unit of the Han script is hanzi /%5 in Chinese, kanji }%:% in Japanese, and
hanja %:% in Korean. In many instances this unit also constitutes a word, but more typi-
cally, two or more units together are used to write a word.

The basic unit of a logosyllabary has variously been referred to as an ideograph (also ideo-
gram), a logograph (also logogram), or a sinogram. Other terms exist as well, and especially
for poorly understood or undeciphered writing systems, the units of writing may simply be
called signs. Notionally, a logograph (or logogram) is a unit of writing which represents a
word or morpheme, whereas an ideograph (or ideogram) is a unit of writing which repre-
sents an idea or concept. However, the lines between these terms are often unclear, and
usage varies widely. The Unicode Standard makes no principled distinction between these
terms, but rather follows the customary usage associated with a given script or writing sys-
tem. For the Han script, the term CJK ideograph (or Han ideograph) is used.

There are a number of other historical examples of logosyllabaries, such as Tangut. They
vary in the degree to which they combine logographic writing principles, where the sym-
bols stand for morphemes or entire words, and syllabic writing principles, where the sym-

Writing Systems and Punctuation 263 6.1 WritingSystems

bols come to represent syllables per se, divorced from their meaning as morphemes or
words. In some notable instances, as for Sumero-Akkadian cuneiform, a logosyllabary may
evolve through time into a syllabary or alphabet by shedding its use of logographs. In other
instances, as for the Han script, the use of logographic characters is very well entrenched
and persistent. However, even for the Han script a small number of characters are used
purely to represent syllabic sounds, so as to be able to represent such things as foreign per-
sonal names and place names.

Egyptian hieroglyphs constitute another mixed example. The majority of the hieroglyphs
are logographs, but Egyptian hieroglyphs also contain a well-defined subset that functions
as an alphabet, in addition to other signs that represent sequences of consonants. And some
hieroglyphs serve as semantic determinatives, rather than logographs in their own right—
a function which bears some comparison to the way radicals work in CJK ideographs. To
simplify the overall typology of Unicode scripts, Egyptian hieroglyphs and other hiero-
glyphic systems are lumped together with true logosyllabaries such as Han, but there are
many differences in detail. For more about Egyptian hieroglyphs, in particular, see
Section 11.4, Egyptian Hieroglyphs.

The classification of a writing system is often rendered somewhat ambiguous by complica-
tions in the exact ways in which it matches up written elements to the phonemes or sylla-
bles of a language. For example, although Hiragana is classified as a syllabary, it does not
always have an exact match between syllables and written elements. Syllables with long
vowels are not written with a single element, but rather with a sequence of elements. Thus
the syllable with a long vowel ki1 is written with two separate Hiragana symbols, {ku}+{u}.

There may also be complications when a writing system deviates from the historical model
from which it derives. For example, Mahajani and Multani are both based on the Brahmi
model, but are structurally simpler than an abugida. These writing systems do not contain
avirama. They also do not have matras and consonant conjunct formation characteristic to
abugidas. Instead, Mahajani and Multani behave respectively as an alphabet and an abjad,
and are encoded and classified accordingly in the Unicode Standard.

Because of these kinds of complications, one must always be careful not to assume too
much about the structure of a writing system from its nominal classification.

Typology of Scripts in the Unicode Standard. Table 6-1 lists all of the scripts currently
encoded in the Unicode Standard, showing the writing system type for each. The list is an
approximate guide, rather than a definitive classification, because of the mix of features
seen in many scripts. The writing systems for some languages may be quite complex, mix-
ing more than one type of script together in a composite system. Japanese is the best exam-
ple; it mixes a logosyllabary (Han), two syllabaries (Hiragana and Katakana), and one
alphabet (Latin, for romaji).

Notational Systems. In addition to scripts for written natural languages, there are nota-
tional systems for other kinds of information. Some of these more closely resemble text
than others. The Unicode Standard encodes symbols for use with mathematical notation,
Western and Byzantine musical notation, Duployan shorthand, Sutton SignWriting nota-
tion for sign languages, and Braille, as well as symbols for use in divination, such as the

Writing Systems and Punctuation 264 6.1 WritingSystems

Table 6-1. Typology of Scripts in the Unicode Standard

Adlam, Armenian, Avestan, Bassa Vah, Carian, Caucasian Alba-
nian, Coptic, Cyrillic, Deseret, Elbasan, Georgian, Glagolitic,
Gothic, Greek, Kayah Li, Latin, Lisu, Lycian, Lydian, Mahajani,
Alphabets Mandaic, Meroitic Cursive, Meroitic Hieroglyphs, Mongolian,
Mro, N’Ko, Ogham, Ol Chiki, Old Hungarian, Old Italic, Old Per-
mic, Old Persian, Old Turkic, Osage, Osmanya, Pahawh Hmong,
Pau Cin Hau, Runic, Shavian, Thaana, Tifinagh, Ugaritic, Warang
Citi
Arabic, Hatran, Hebrew, Imperial Aramaic, Inscriptional Pahlavi,
Abja ds Inscriptional Parthian, Manichaean, Multani, Nabataean, Old
North Arabian, Old South Arabian, Palmyrene, Phoenician, Psalter
Pahlavi, Samaritan, Syriac

Ahom, Balinese, Batak, Bengali, Bhaiksuki, Brahmi, Buginese,
Buhid, Chakma, Cham, Devanagari, Grantha, Gujarati, Gurmukhi,
Hanundo, Javanese, Kaithi, Kannada, Kharoshthi, Khmer, Khojki,
Abugidas Khudawadi, .Lao, Lepcha, Limbu,. Malayalam, Ma}rchen, Meetei

Mayek, Modi, Myanmar, New Tai Lue, Newa, Oriya, Phags-pa,
Rejang, Saurashtra, Sharada, Siddham, Sinhala, Sora Sompeng,
Sundanese, Syloti Nagri, Tagalog, Tagbanwa, Tai Le, Tai Tham, Tai
Viet, Takri, Tamil, Telugu, Thai, Tibetan, Tirhuta

Anatolian Hieroglyphs, Egyptian Hieroglyphs, Han, Linear A,
Sumero-Akkadian, Tangut

Logosyllabaries

Bamum, Bopomofo, Canadian Aboriginal Syllabics, Cherokee,
Simple Syllabaries |Cypriot, Ethiopic, Hiragana, Katakana, Linear B, Mende Kikakui,
Miao, Vai, Yi

Featural Syllabaries |Hangul

Yijing hexagrams. Notational systems can be classified by how closely they resemble text.
Even notational systems that do not fully resemble text may have symbols used in text. In
the case of musical notation, for example, while the full notation is two-dimensional, many
of the encoded symbols are frequently referenced in texts about music and musical nota-
tion.

Writing Systems and Punctuation 265 6.2 General Punctuation

6.2 General Punctuation

Punctuation characters—for example, U+002C comma and U+2022 BULLET—are
encoded only once, rather than being encoded again and again for particular scripts; such
general-purpose punctuation may be used for any script or mixture of scripts. In contrast,
punctuation principally used with a specific script is found in the block corresponding to
that script, such as U+058A ARMENIAN HYPHEN, U+061B & ARABIC SEMICOLON, or the
punctuation used with CJK ideographs in the CJK Symbols and Punctuation block. Script-
specific punctuation characters may be unique in function, have different directionality, or
be distinct in appearance or usage from their generic counterparts.

Punctuation intended for use with several related scripts is often encoded with the princi-
pal script for the group. For example, U+1735 PHILIPPINE SINGLE PUNCTUATION is
encoded in a single location in the Hanundo block, but it is intended for use with all four of
the Philippine scripts.

Use and Interpretation. The use and interpretation of punctuation characters can be heav-
ily context dependent. For example, U+002E ruLL sToP can be used as sentence-ending
punctuation, an abbreviation indicator, a decimal point, and so on.

Many Unicode algorithms, such as the Bidirectional Algorithm and Line Breaking Algo-
rithm, both of which treat numeric punctuation differently from text punctuation, resolve
the status of any ambiguous punctuation mark depending on whether it is part of a num-
ber context.

Legacy character encoding standards commonly include generic characters for punctua-
tion instead of the more precisely specified characters used in printing. Examples include
the single and double quotes, period, dash, and space. The Unicode Standard includes
these generic characters, but also encodes the unambiguous characters independently: var-
ious forms of quotation marks, em dash, en dash, minus, hyphen, em space, en space, hair
space, zero width space, and so on.

Rendering. Punctuation characters vary in appearance with the font style, just like the sur-
rounding text characters. In some cases, where used in the context of a particular script, a
specific glyph style is preferred. For example, U+002E ruLL stop should appear square
when used with Armenian, but is typically circular when used with Latin. For mixed Latin/
Armenian text, two fonts (or one font allowing for context-dependent glyph variation)
may need to be used to render the character faithfully.

Writing Direction. Punctuation characters shared across scripts have no inherent direc-
tionality. In a bidirectional context, their display direction is resolved according to the rules
in Unicode Standard Annex #9, “Unicode Bidirectional Algorithm.” Certain script-specific
punctuation marks have an inherent directionality that matches the writing direction of
the script. For an example, see “Dandas” later in this section. The image of certain paired
punctuation marks, specifically those that are brackets, is mirrored when the character is
part of a right-to-left directional run (see Section 4.7, Bidi Mirrored). Mirroring ensures
that the opening and closing semantics of the character remains independent of the writing
direction. The same is generally not true for other punctuation marks even when their

Writing Systems and Punctuation 266 6.2 General Punctuation

image is not bilaterally symmetric, such as slash or the curly quotes. See also “Paired Punc-
tuation” later in this section.

In vertical writing, many punctuation characters have special vertical glyphs. Normally,
fonts contain both the horizontal and vertical glyphs, and the selection of the appropriate
glyph is based on the text orientation in effect at rendering time. However, see “CJK Com-
patibility Forms: Vertical Forms” later in this section.

Figure 6-2 shows a set of three common shapes used for ideographic comma and ideographic
full stop. The first shape in each row is that used for horizontal text, the last shape is that for
vertical text. The centered form may be used with both horizontal and vertical text. See also
Figure 6-4 for an example of vertical and horizontal forms for quotation marks.

Figure 6-2. Forms of CJK Punctuation

Horizontal Centered Vertical

AY

Layout Controls. A number of characters in the blocks described in this section are not
graphic punctuation characters, but rather affect the operation of layout algorithms. For a
description of those characters, see Section 23.2, Layout Controls.

Encoding Characters with Multiple Semantic Values. Some of the punctuation characters
in the ASCII range (U+0020..U+007F) have multiple uses, either through ambiguity in the
original standards or through accumulated reinterpretations of a limited code set. For
example, 274 is defined in ANSI X3.4 as apostrophe (closing single quotation mark; acute
accent), and 2D is defined as hyphen-minus. In general, the Unicode Standard provides
the same interpretation for the equivalent code points, without adding to or subtracting
from their semantics. The Unicode Standard supplies unambiguous codes elsewhere for the
most useful particular interpretations of these ASCII values; the corresponding unambigu-
ous characters are cross-referenced in the character names list for this block. For more
information, see “Apostrophes,” “Space Characters,” and “Dashes and Hyphens” later in
this section.

Blocks Devoted to Punctuation

For compatibility with widely used legacy character sets, the Basic Latin (ASCII) block
(U+0000..U+007F) and the Latin-1 Supplement block (U+0080..U+00FF) contain several
of the most common punctuation signs. They are isolated from the larger body of Unicode
punctuation, signs, and symbols only because their relative code locations within ASCII
and Latin-1 are so widely used in standards and software. The Unicode Standard has a
number of blocks devoted specifically to encoding collections of punctuation characters.

Writing Systems and Punctuation 267 6.2 General Punctuation

The General Punctuation block (U+2000..U+206F) contains the most common punctua-
tion characters widely used in Latin typography, as well as a few specialized punctuation
marks and a large number of format control characters. All of these punctuation characters
are intended for generic use, and in principle they could be used with any script.

The Supplemental Punctuation block (U+2E00..U+2E7F) is devoted to less commonly
encountered punctuation marks, including those used in specialized notational systems or
occurring primarily in ancient manuscript traditions.

The CJK Symbols and Punctuation block (U+3000..U+303F) has the most commonly
occurring punctuation specific to East Asian typography—that is, typography involving
the rendering of text with CJK ideographs.

The Vertical Forms block (U+FE10..U+FE1F), the CJK Compatibility Forms block
(U+FE30..U+FE4F), the Small Form Variants block (U+FE50..U+FE6F), and the Half-
width and Fullwidth Forms block (U+FF00..U+FFEF) contain many compatibility charac-
ters for punctuation marks, encoded for compatibility with a number of East Asian
character encoding standards. Their primary use is for round-trip mapping with those leg-
acy standards. For vertical text, the regular punctuation characters are used instead, with
alternate glyphs for vertical layout supplied by the font.

The punctuation characters in these various blocks are discussed below in terms of their
general types.

Format Control Characters

Format control characters are special characters that have no visible glyph of their own, but
that affect the display of characters to which they are adjacent, or that have other special-
ized functions such as serving as invisible anchor points in text. All format control charac-
ters have General Category=Cf. A significant number of format control characters are
encoded in the General Punctuation block, but their descriptions are found in other sec-
tions.

Cursive joining controls, as well as U+200B zERO WIDTH SPACE, U+2028 LINE SEPARATOR,
U+2029 PARAGRAPH SEPARATOR, and U+2060 WORD JOINER, are described in Section 23.2,
Layout Controls. Bidirectional ordering controls are also discussed in Section 23.2, Layout
Controls, but their detailed use is specified in Unicode Standard Annex #9, “Unicode Bidi-
rectional Algorithm.”

Invisible operators are explained in Section 22.6, Invisible Mathematical Operators. Depre-
cated format characters related to obsolete models of Arabic text processing are described
in Section 23.3, Deprecated Format Characters.

The reserved code points U+2065 and U+FFF0..U+FFF8, as well as any reserved code
points in the range U+E0000..U+EOFFF, are reserved for the possible future encoding of
other format control characters. Because of this, they are treated as default ignorable code
points. For more information, see Section 5.21, Ignoring Characters in Processing.

Writing Systems and Punctuation 268 6.2 General Punctuation

Space Characters

Space characters are found in several character blocks in the Unicode Standard. The list of
space characters appears in Table 6-2.

Table 6-2. Unicode Space Characters

Code Name

U+0020 SPACE

U+00A0 NO-BREAK SPACE

U+1680 OGHAM SPACE MARK

U+180E MONGOLIAN VOWEL SEPARATOR
U+2000 EN QUAD

U+2001 EM QUAD

U+2002 EN SPACE

U+2003 EM SPACE

U+2004 THREE-PER-EM SPACE

U+2005 FOUR-PER-EM SPACE

U+2006 SIX-PER-EM SPACE

U+2007 FIGURE SPACE

U+2008 PUNCTUATION SPACE

U+2009 THIN SPACE

U+200A HAIR SPACE

U+202F NARROW NO-BREAK SPACE
U+205F MEDIUM MATHEMATICAL SPACE
U+3000 IDEOGRAPHIC SPACE

The space characters in the Unicode Standard can be identified by their General Category,
[gc=Zs], in the Unicode Character Database. One exceptional “space” character is U+200B
ZERO WIDTH SPACE. This character, although called a “space” in its name, does not actually
have any width or visible glyph in display. It functions primarily to indicate word boundar-
ies in writing systems that do not actually use orthographic spaces to separate words in text.
It is given the General Category [gc=Cf] and is treated as a format control character, rather
than as a space character, in implementations. Further discussion of U+200B ZERO WIDTH
sPACE, as well as other zero-width characters with special properties, can be found in
Section 23.2, Layout Controls.

The most commonly used space character is U+0020 spack. In ideographic text, U+3000
IDEOGRAPHIC SPACE is commonly used because its width matches that of the ideographs.

The main difference among other space characters is their width. U+2000..U+2006 are
standard quad widths used in typography. U+2007 FIGURE SPACE has a fixed width, known
as tabular width, which is the same width as digits used in tables. U+2008 PUNCTUATION
SPACE is a space defined to be the same width as a period. U+2009 THIN sPACE and U+200A
HAIR SPACE are successively smaller-width spaces used for narrow word gaps and for justi-
fication of type. The fixed-width space characters (U+2000..U+200A) are derived from
conventional (hot lead) typography. Algorithmic kerning and justification in computerized
typography do not use these characters. However, where they are used (for example, in
typesetting mathematical formulae), their width is generally font-specified, and they typi-

Writing Systems and Punctuation 269 6.2 General Punctuation

cally do not expand during justification. The exception is U+2009 THIN SPACE, which
sometimes gets adjusted.

In addition to the various fixed-width space characters, there are a few script-specific space
characters in the Unicode Standard. U+1680 0OGHAM SPACE MARK is unusual in that it is
generally rendered with a visible horizontal line, rather than being blank.

No-Break Space. U+00A0 No-BREAK SPACE (NBSP) is the non-breaking counterpart of
U+0020 spack. It has the same width, but behaves differently for line breaking. For more
information, see Unicode Standard Annex #14, “Unicode Line Breaking Algorithm.”

Unlike U+0020, U+00A0 NO-BREAK SPACE behaves as a numeric separator for the purposes
of bidirectional layout. See Unicode Standard Annex #9, “Unicode Bidirectional Algo-
rithm,” for a detailed discussion of the Unicode Bidirectional Algorithm.

U+00A0 NO-BREAK SPACE has an additional, important function in the Unicode Standard.
It may serve as the base character for displaying a nonspacing combining mark in apparent
isolation. Versions of the standard prior to Version 4.1 indicated that U+0020 spack could
also be used for this function, but spAcE is no longer recommended, because of potential
interactions with the handling of space in XML and other markup languages. See
Section 2.11, Combining Characters, for further discussion.

Narrow No-Break Space. U+202F NARROW NO-BREAK SPACE (NNBSP) is a narrow version
of U+00A0 NO-BREAK SPACE, which except for its display width behaves exactly the same in
its line breaking behavior. It is regularly used in Mongolian in certain grammatical contexts
(before a particle), where it also influences the shaping of the glyphs for the particle. In
Mongolian text, the NNBSP is typically displayed with 1/3 the width of a normal space
character. The NNBSP can be used to represent the narrow space occurring around punc-
tuation characters in French typography, which is called an “espace fine insécable.”

Dashes and Hyphens

Because of its prevalence in legacy encodings, U+002D HYPHEN-MINUS is the most com-
mon of the dash characters used to represent a hyphen. It has ambiguous semantic value
and is rendered with an average width. U+2010 HYPHEN represents the hyphen as found in
words such as “left-to-right.” It is rendered with a narrow width. When typesetting text,
U+2010 HYPHEN is preferred over U+002D HYPHEN-MINUS. U4+2011 NON-BREAKING
HYPHEN has the same semantic value as U+2010 HYPHEN, but should not be broken across
lines.

U+2012 FIGURE DASH has the same (ambiguous) semantic as the U+002D HYPHEN-MINUS,
but has the same width as digits (if they are monospaced). U+2013 EN DASH is used to indi-
cate a range of values, such as 1973-1984, although in some languages hyphen is used for
that purpose. The en dash should be distinguished from the U+2212 MINUS SIGN, which is
an arithmetic operator. Although it is not preferred in mathematical typesetting, typogra-
phers sometimes use U+2013 EN DASH to represent the minus sign, particularly a unary
minus. When interpreting formulas, U+002D HYPHEN-MINUS, U+2012 FIGURE DASH, and

Writing Systems and Punctuation 270 6.2 General Punctuation

U+2212 mMINUSs SIGN should each be taken as indicating a minus sign, as in “x = a - b”, unless
a higher-level protocol precisely defines which of these characters serves that function.

U+2014 EM DpAsH is used to make a break—Ilike this—in the flow of a sentence. (Some
typographers prefer to use U+2013 EN DASH set off with spaces — like this — to make the
same kind of break.) Like many other conventions for punctuation characters, such usage
may depend on language. This kind of dash is commonly represented with a typewriter as
a double hyphen. In older mathematical typography, U+2014 EM pASH may also used to
indicate a binary minus sign. U+2015 HORIZONTAL BAR is used to introduce quoted text in
some typographic styles.

Dashes and hyphen characters may also be found in other character blocks in the Unicode
Standard. A list of dash and hyphen characters appears in Table 6-3. For a description of the
line breaking behavior of dashes and hyphens, see Unicode Standard Annex #14, “Unicode
Line Breaking Algorithm.”

Table 6-3. Unicode Dash Characters

Code Name

U+002D HYPHEN-MINUS

U+007E TILDE (when used as swung dash)
U+058A ARMENIAN HYPHEN

U+05BE HEBREW PUNCTUATION MAQAF
U+1400 CANADIAN SYLLABICS HYPHEN
U+1806 MONGOLIAN TODO SOFT HYPHEN
U+2010 HYPHEN

U+2011 NON-BREAKING HYPHEN

U+2012 FIGURE DASH

U+2013 EN DASH

U+2014 EM DASH

U+2015 HORIZONTAL BAR (= quotation dash)
U+2053 SWUNG DASH

U+207B SUPERSCRIPT MINUS

U+208B SUBSCRIPT MINUS

U+2212 MINUS SIGN

U+2E17 DOUBLE OBLIQUE HYPHEN

U+301C WAVE DASH

U+3030 WAVY DASH

U+30A0 KATAKANA-HIRAGANA DOUBLE HYPHEN
U+FE31 PRESENTATION FORM FOR VERTICAL EM DASH
U+FE32 PRESENTATION FORM FOR VERTICAL EN DASH
U+FE58 sSMALL EM DASH

U+FE63 SMALL HYPHEN-MINUS

U+FFOD FULLWIDTH HYPHEN-MINUS

Soft Hyphen. Despite its name, U+00AD sorr HYPHEN is not a hyphen, but rather an
invisible format character used to indicate optional intraword breaks. As described in
Section 23.2, Layout Controls, its effect on the appearance of the text depends on the lan-
guage and script used.

Writing Systems and Punctuation 271 6.2 General Punctuation

« »

Tilde. Although several shapes are commonly used to render U+007E “~” TILDE, modern
fonts generally render it with a center line glyph, as shown here and in the code charts.
However, it may also appear as a raised, spacing tilde, serving as a spacing clone of U+0303
“7” COMBINING TILDE (see “Spacing Clones of Diacritical Marks” in Section 7.9, Combining
Marks). This is a form common in older implementations, particularly for terminal emula-

tion and typewriter-style fonts.

Some of the common uses of a tilde include indication of alternation, an approximate
value, or, in some notational systems, indication of a logical negation. In the latter context,
it is really being used as a shape-based substitute character for the more precise U+00AC
“=” NOT SIGN. A tilde is also used in dictionaries to repeat the defined term in examples. In
that usage, as well as when used as punctuation to indicate alternation, it is more appropri-
ately represented by a wider form, encoded as U+2053 “~” swuNG pasH. U+02DC
SMALL TILDE is a modifier letter encoded explicitly as the spacing form of the combining
tilde as a diacritic. For mathematical usage, U+223C “~” TILDE OPERATOR should be used

to unambiguously encode the operator.

«~»

Dictionary Abbreviation Symbols. In addition to the widespread use of tilde in dictionar-
ies, more specialized dictionaries may make use of symbols consisting of hyphens or tildes
with dots or circles above or below them to abbreviate the representation of inflected or
derived forms (plurals, case forms, and so on) in lexical entries. U+2E1A HYPHEN WITH
DIAERESIS, for example, is typically used in German dictionaries as a short way of indicat-
ing that the addition of a plural suffix also causes placement of an umlaut on the main stem
vowel. U+2E1B TILDE WITH RING ABOVE indicates a change in capitalization for a derived
form, and so on. Such conventions are particularly widespread in German dictionaries, but
may also appear in other dictionaries influenced by German lexicography.

Paired Punctuation

Mirroring of Paired Punctuation. Paired punctuation marks such as parentheses
(U+0028, U+0029), square brackets (U+005B, U+005D), and braces (U+007B, U+007D)
are interpreted semantically rather than graphically in the context of bidirectional or verti-
cal texts; that is, the orientation of these characters toward the enclosed text is maintained
by the software, independent of the writing direction. In a bidirectional context, the glyphs
are adjusted as described in Unicode Standard Annex #9, “Unicode Bidirectional Algo-
rithm.” (See also Section 4.7, Bidi Mirrored.) During display, the software must ensure that
the rendered glyph is the correct one in the context of bidirectional or vertical texts.

Paired punctuation marks containing the qualifier “LEFT” in their name are taken to denote
opening; characters whose name contains the qualifier “RiGHT” are taken to denote closing.
For example, U+0028 LEFT PARENTHESIS and U+0029 RIGHT PARENTHESIS are interpreted
as opening and closing parentheses, respectively. In a right-to-left directional run, U+0028
is rendered as “)”. In a left-to-right run, the same character is rendered as “(”. In some
mathematical usage, brackets may not be paired, or may be deliberately used in the
reversed sense, such as Ja,b[. Mirroring assures that in a right-to-left environment, such

Writing Systems and Punctuation 272 6.2 General Punctuation

specialized mathematical text continues to read]b,a[and not [b, a]. See also “Language-
Based Usage of Quotation Marks” later in this section.

Quotation Marks and Brackets. Like brackets, quotation marks occur in pairs, with some
overlap in usage and semantics between these two types of punctuation marks. For exam-
ple, some of the CJK quotation marks resemble brackets in appearance, and they are often
used when brackets would be used in non-CJK text. Similarly, both single and double guil-
lemets may be treated more like brackets than quotation marks. Unlike brackets, quotation
marks are not mirrored in a bidirectional context.

Some of the editing marks used in annotated editions of scholarly texts exhibit features of
both quotation marks and brackets. The particular convention employed by the editors
determines whether editing marks are used in pairs, which editing marks form a pair, and
which is the opening character.

Horizontal brackets—for example, those used in annotating mathematical expressions—
are not paired punctuation, even though the set includes both top and bottom brackets. See
“Horizontal Brackets” in Section 22.7, Technical Symbols, for more information.

Language-Based Usage of Quotation Marks

U+0022 QUOTATION MARK is the most commonly used character for quotation mark. How-
ever, it has ambiguous semantics and direction. Most keyboard layouts support only
U+0022 QUOTATION MARK, but software commonly offers a facility for automatically con-
verting the U+0022 QUOTATION MARK to a contextually selected curly quote glyph.

European Usage. The use of quotation marks differs systematically by language and by
medium. In European typography, it is common to use guillemets (single or double angle
quotation marks) for books and, except for some languages, curly quotation marks in
office automation. Single guillemets may be used for quotes inside quotes. The following
description does not attempt to be complete, but intends to document a range of known
usages of quotation mark characters. Some of these usages are also illustrated in Figure 6-3.
In this section, the words single and double are omitted from character names where there is
no conflict or both are meant.

Dutch, English, Italian, Portuguese, Spanish, and Turkish use a left quotation mark and a
right quotation mark for opening and closing quotations, respectively. It is typical to alter-
nate single and double quotes for quotes within quotes. Whether single or double quotes
are used for the outer quotes depends on local and stylistic conventions.

Czech, German, and Slovak use the low-9 style of quotation mark for opening instead of
the standard open quotes. They employ the left quotation mark style of quotation mark for
closing instead of the more common right quotation mark forms. When guillemets are used
in German books, they point to the quoted text. This style is the inverse of French usage.

Danish, Finnish, Norwegian, and Swedish use the same right quotation mark character for
both the opening and closing quotation character. This usage is employed both for office

Writing Systems and Punctuation 273 6.2 General Punctuation

automation purposes and for books. Books sometimes use the guillemet, U+00BB RIGHT-
POINTING DOUBLE ANGLE QUOTATION MARK, for both opening and closing.

Hungarian and Polish usage of quotation marks is similar to the Scandinavian usage,
except that they use low double quotes for opening quotations. Presumably, these lan-
guages avoid the low single quote so as to prevent confusion with the comma.

French, Greek, Russian, and Slovenian, among others, use the guillemets, but Slovenian
usage is the same as German usage in their direction. Of these languages, at least French
inserts space between text and quotation marks. In the French case, U+00A0 NO-BREAK
SPACE can be used for the space that is enclosed between quotation mark and text; this
choice helps line breaking algorithms.

Figure 6-3. European Quotation Marks
Single right quote = apostrophe

‘quote’ don’t

Usage depends on language

“English” « French »
,German®“ »Slovenian«

”Swedish” »Swedish books»

Glyph Variation in Curly Quotes. The glyphs for the quotation marks in the range
U+2018..U+201F may vary significantly across fonts. The two most typical styles use curly
or wedge-shaped glyphs. See Table 6-4.

Table 6-4. Models of Visual Relationship between Quote Glyphs

Model 2018 2019 | 201A | 201B | 201C | 201D | 201E | 201F
Rotated model ¢ 9 e (14 29 ee
(curly glyph style) ° 99

Rotated model /1 14 \ s 1/4 \\
(wedge glyph style) 7 77

Mirrored model \ ! 1 \ ” 11
(Tahoma, Verdana) 14 ”

Writing Systems and Punctuation 274 6.2 General Punctuation

The Unicode code charts use a curly style in a serifed, Times-like font. Because quotation
marks are used in pairs, glyphs within a single style are expected to be in a certain visual
relationship, and that relationship stands regardless of glyph style. The visual relationship
follows either a rotated or a mirrored model. The rotated model is predominant in both
curly and wedge glyph style fonts. These two models are illustrated in Table 6-4 using sam-
ple fonts with different glyph styles. The glyphs are enlarged for clarity.

In the rotated model, turning the ink of the glyph for U+201D RIGHT DOUBLE QUOTATION
MARK 180 degrees results in the glyph for U+201C LEFT DOUBLE QUOTATION MARK; flip-
ping it horizontally results in the glyph for U+201F DOUBLE HIGH-REVERSED-9 QUOTATION
MARK. The same symmetries apply to the raised single quotation marks. Similarly, the
glyphs for the low double quotation marks, U+201E DOUBLE LOW-9 QUOTATION MARK and
U+2E42 DOUBLE LOW-REVERSED-9 QUOTATION MARK, are horizontally flipped images of
each other.

Some fonts in widespread use instead follow the mirrored model, in which the glyph for
U+201C looks like a mirrored image of the glyph for U+201D instead of a rotated image of
it. Most fonts that follow the mirrored model use wedge style glyphs for quotation marks.
In particular, in fonts such as Tahoma and Verdana, the glyph for U+201F is a rotated
image of the glyph for U+201D, which makes the glyphs for U+201C and U+201F appear
swapped compared to the typical design of wedge style quote glyphs using the rotated
model. The sets of glyphs which show these swapped appearances are highlighted by a light
background in Table 6-4.

East Asian Usage. The glyph for each quotation mark character for an Asian character set
occupies predominantly a single quadrant of the character cell. The quadrant used depends
on whether the character is opening or closing and whether the glyph is for use with hori-
zontal or vertical text.

The pairs of quotation characters are listed in Table 6-5.

Table 6-5. East Asian Quotation Marks

Style Opening | Closing
Corner bracket 300C 300D
White corner bracket 300E 300F
Double prime 301D 301F

Glyph Variation in East Asian Usage. In East Asian usage, the glyphs for “double-prime”
quotation marks U+301D REVERSED DOUBLE PRIME QUOTATION MARK and U+301F Low
DOUBLE PRIME QUOTATION MARK consist of a pair of wedges, slanted either forward or
backward, with the tips of the wedges pointing either up or down. In a pair of double-
prime quotes, the closing and the opening character of the pair slant in opposite directions.
Two common variations exist, as shown in Figure 6-4. To confuse matters more, another
form of double-prime quotation marks is used with Western-style horizontal text, in addi-
tion to the curly single or double quotes.

Writing Systems and Punctuation 275 6.2 General Punctuation

Figure 6-4. Asian Quotation Marks

=1

Horizontal and vertical ;; glyphs
[T L
Glyphs for overloaded character codes

\ == 4
T “Text”
Font style-based glyph alternates

VA s \ ——
TN, FIN

Three pairs of quotation marks are used with Western-style horizontal text, as shown in
Table 6-6.

Table 6-6. Opening and Closing Forms

Style Opening | Closing Comment

Single 2018 2019 Rendered as “wide” character
Double 201C 201D Rendered as “wide” character
Double prime 301D 301E

Overloaded Character Codes. The character codes for standard quotes can refer to regular
narrow quotes from a Latin font used with Latin text as well as to wide quotes from an
Asian font used with other wide characters. This situation can be handled with some suc-
cess where the text is marked up with language tags. For more information on narrow and
wide characters, see Unicode Standard Annex #11, “East Asian Width.”

Consequences for Semantics. The semantics of U+00AB LEFT-POINTING DOUBLE ANGLE
QUOTATION MARK, U+00BB RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK, and
U+201D RIGHT DOUBLE QUOTATION MARK are context dependent. By contrast, the seman-
tics of U+201A SINGLE LOW-9 QUOTATION MARK and U+201B SINGLE HIGH-REVERSED-9
QUOTATION MARK are always opening. That usage is distinct from that of U+301F Low
DOUBLE PRIME QUOTATION MARK, which is unambiguously closing. All other quotation
marks may represent opening or closing quotation marks depending on the usage.

Writing Systems and Punctuation 276 6.2 General Punctuation

Apostrophes

U+0027 APOSTROPHE is the most commonly used character for apostrophe. For historical
reasons, U+0027 is a particularly overloaded character. In ASCII, it is used to represent a
punctuation mark (such as right single quotation mark, left single quotation mark, apos-
trophe punctuation, vertical line, or prime) or a modifier letter (such as apostrophe modi-
fier or acute accent). Punctuation marks generally break words; modifier letters generally
are considered part of a word.

When text is set, U+2019 RIGHT SINGLE QUOTATION MARK is preferred as apostrophe, but
only U+0027 is present on most keyboards. Software commonly offers a facility for auto-
matically converting the U+0027 APoSTROPHE to a contextually selected curly quotation
glyph. In these systems, a U+0027 in the data stream is always represented as a straight ver-
tical line and can never represent a curly apostrophe or a right quotation mark.

Letter Apostrophe. U+02BC MODIFIER LETTER APOSTROPHE is preferred where the apos-
trophe is to represent a modifier letter (for example, in transliterations to indicate a glottal
stop). In the latter case, it is also referred to as a letter apostrophe.

Punctuation Apostrophe. U+2019 RIGHT SINGLE QUOTATION MARK is preferred where the
character is to represent a punctuation mark, as for contractions: “We’ve been here before.”
In this latter case, U+2019 is also referred to as a punctuation apostrophe.

An implementation cannot assume that users’ text always adheres to the distinction
between these characters. The text may come from different sources, including mapping
from other character sets that do not make this distinction between the letter apostrophe
and the punctuation apostrophe/right single quotation mark. In that case, all of them will
generally be represented by U+20109.

The semantics of U+2019 are therefore context dependent. For example, if surrounded by
letters or digits on both sides, it behaves as an in-text punctuation character and does not
separate words or lines.

Other Punctuation

Hyphenation Point. U+2027 HYPHENATION POINT is a raised dot used to indicate correct
word breaking, as in dic-tion-ar-es. It is a punctuation mark, to be distinguished from
U+00B7 mipDpLE DOT, which has multiple semantics.

Word Separator Middle Dot. Historic texts in many scripts, especially those that are hand-
written (manuscripts), sometimes use a raised dot to separate words. Such word-separating
punctuation is comparable in function to the use of space to separate words in modern

typography.

U+2E31 WORD SEPARATOR MIDDLE DOT is a middle dot punctuation mark which is analo-
gous in function to the script-specific character U+16EB RUNIC SINGLE PUNCTUATION, but
is for use with any script that needs a raised dot for separating words. For example, it can be
used for the word-separating dot seen in Avestan or Samaritan texts.

Writing Systems and Punctuation 277 6.2 General Punctuation

Fraction Slash. U+2044 FRACTION SLASH is used between digits to form numeric fractions,
such as 2/3 and 3/9. The standard form of a fraction built using the fraction slash is defined
as follows: any sequence of one or more decimal digits (General Category = Nd), followed
by the fraction slash, followed by any sequence of one or more decimal digits. Such a frac-
tion should be displayed as a unit, such as % or }. The precise choice of display can depend
on additional formatting information.

If the displaying software is incapable of mapping the fraction to a unit, then it can also be
displayed as a simple linear sequence as a fallback (for example, 3/4). If the fraction is to be
separated from a previous number, then a space can be used, choosing the appropriate
width (normal, thin, zero width, and so on). For example, 1 + THIN SPACE + 3 + FRACTION
SLASH + 4 is displayed as 1%.

Spacing Overscores and Underscores. U+203E OVERLINE is the above-the-line counterpart
to U+005F Low LINE. It is a spacing character, not to be confused with U+0305 COMBINING
OVERLINE. As with all overscores and underscores, a sequence of these characters should
connect in an unbroken line. The overscoring characters also must be distinguished from
U+0304 COMBINING MACRON, which does not connect horizontally in this way.

Doubled Punctuation. Several doubled punctuation characters that have compatibility
decompositions into a sequence of two punctuation marks are also encoded as single char-
acters: U+203C DOUBLE EXCLAMATION MARK, U+2048 QUESTION EXCLAMATION MARK, and
U+2049 EXCLAMATION QUESTION MARK. These doubled punctuation marks are included as
an implementation convenience for East Asian and Mongolian text, when rendered verti-
cally.

Period or Full Stop. The period, or U+002E FULL sTOP, can be circular or square in appear-
ance, depending on the font or script. The hollow circle period used in East Asian texts is
separately encoded as U+3002 IDEOGRAPHIC FULL sTOP. Likewise, Armenian, Arabic, Ethi-
opic, and several other script-specific periods are coded separately because of their signifi-
cantly different appearance.

In contrast, the various functions of the period, such as its use as sentence-ending punctu-
ation, an abbreviation mark, or a decimal point, are not separately encoded. The specific
semantic therefore depends on context.

In old-style numerals, where numbers vary in placement above and below the baseline, a
decimal or thousands separator may be displayed with a dot that is raised above the base-
line. Because it would be inadvisable to have a stylistic variation between old-style and
new-style numerals that actually changes the underlying representation of text, the Uni-

code Standard considers this raised dot to be merely a glyphic variant of U+002E “” FuLL
STOP.

« »

Ellipsis. The omission of text is often indicated by a sequence of three dots “..”, a punctua-
tion convention called ellipsis. Typographic traditions vary in how they lay out these dots.
In some cases the dots are closely spaced; in other cases the dots are spaced farther apart.
U+2026 HORIZONTAL ELLIPSIS is the ordinary Unicode character intended for the represen-
tation of an ellipsis in text and typically shows the dots separated with a moderate degree of

Writing Systems and Punctuation 278 6.2 General Punctuation

spacing. A sequence of three U+002E FuLL sToP characters can also be used to indicate an
ellipsis, in which case the space between the dots will depend on the font used for render-
ing. For example, in a monowidth font, a sequence of three full stops will be wider than the
horizontal ellipsis, but in a typical proportional font, a full stop is very narrow and a
sequence of three of them will be more tightly spaced than the dots in horizontal ellipsis.

Conventions that use four dots for an ellipsis in certain grammatical contexts should repre-
sent them either as a sequence of <full stop, horizontal ellipsis> or <horizontal ellipsis, full
stop> or simply as a sequence of four full stop characters, depending on the requirements of
those conventions.

In East Asian typographic traditions, particularly in Japan, an ellipsis is raised to the center
line of text. When an ellipsis is represented by U+2026 HORIZONTAL ELLIPSIS Or by
sequences of full stops, this effect requires specialized rendering support. In practice, it is
relatively common for authors of East Asian text to substitute U+22EF MIDLINE HORIZON-
TAL ELLIPSIS for this. Because the midline ellipsis is a mathematical symbol, intended to
represent column elision in matrix notation, it is typically used with layout on a mathemat-
ical center line. With appropriate font design to harmonize with East Asian typography,
this midline ellipsis can produce the desired appearance without having to support contex-
tual shifting of the baseline for U+2026 HORIZONTAL ELLIPSIS.

Vertical Ellipsis. When text is laid out vertically, the ellipsis is normally oriented so that the
dots run from top to bottom. Most commonly, an East Asian font will contain a vertically
oriented glyph variant of U+2026 for use in vertical text layout. U+FE19 PRESENTATION
FORM FOR VERTICAL HORIZONTAL ELLIPSIS is a compatibility character for use in mapping
to the GB 18030 standard; it would not usually be used for an ellipsis except in systems that
cannot handle the contextual choice of glyph variants for vertical rendering.

U+22EE verTicaL ELLIPSIS and U+22EF MIDLINE HORIZONTAL ELLIPSIS are part of a set of
special ellipsis characters used for row or column elision in matrix notation. Although their
primary use is for a mathematical context, U+22EF MIDLINE HORIZONTAL ELLIPSIS has also
become popular for the midline ellipsis in East Asian typography. When U+22EF is used
this way, an East Asian font will typically contain a rotated glyph variant for use in vertical
text layout. If an appropriate mechanism for glyph variant substitution (such as the “vert”
GSUB feature in the Open Font Format) in vertically rendered text is not available,
U+FE19 PRESENTATION FORM FOR VERTICAL HORIZONTAL ELLIPSIS is the preferred charac-
ter substitution to represent a vertical ellipsis, instead of the mathematical U+22EE vErTI-
CAL ELLIPSIS.

U+205D trIcoLON has a superficial resemblance to a vertical ellipsis, but is part of a set of
dot delimiter punctuation marks for various manuscript traditions. As for the colon, the
dots in the tricolon are always oriented vertically.

Leader Dots. Leader dots are typically seen in contexts such as a table of contents or in
indices, where they represent a kind of style line, guiding the eye from an entry in the table
to its associated page number. Usually leader dots are generated automatically by page for-
matting software and do not require the use of encoded characters. However, there are
occasional plain text contexts in which a string of leader dots is represented as a sequence of

Writing Systems and Punctuation 279 6.2 General Punctuation

characters. U+2024 oNE DOT LEADER and U+2025 TWO DOT LEADER are intended for such
usage. U+2026 HORIZONTAL ELLIPSIS can also serve as a three-dot version of leader dots.
These leader dot characters can be used to control, to a certain extent, the spacing of leader
dots based on font design, in contexts where a simple sequence of full stops will not suffice.

U+2024 ONE DOT LEADER also serves as a “semicolon” punctuation in Armenian, where it
is distinguished from U+002E ruLL sTop. See Section 7.6, Armenian.

Other Basic Latin Punctuation Marks. The interword punctuation marks encoded in the
Basic Latin block are used for a variety of other purposes. This can complicate the tasks of
parsers trying to determine sentence boundaries. As noted later in this section, some can be
used as numeric separators. Both period and U+003A “:” coroN can be used to mark
abbreviations as in “etc.” or as in the Swedish abbreviation “S:ta” for “Sankta”. U+0021 “!”
EXCLAMATION MARK is used as a mathematical operator (factorial). U+003F “?” QUESTION
MARK is often used as a substitution character when mapping Unicode characters to other
character sets where they do not have a representation. This practice can lead to unex-
pected results when the converted data are file names from a file system that supports “?” as
a wildcard character.

Several punctuation marks, such as colon, middle dot and solidus closely resemble mathe-
matical operators, such as U+2236 rat10, U+22C5 DOT OPERATOR and U+2215 DIVISION
sLasH. The latter are the preferred characters, but the former are often substituted because
they are more easily typed.

Canonical Equivalence Issues for Greek Punctuation. Some commonly used Greek punc-
tuation marks are encoded in the Greek and Coptic block, but are canonical equivalents to
generic punctuation marks encoded in the CO Controls and Basic Latin block, because they
are indistinguishable in shape. Thus, U+037E “;” GREEK QUESTION MARK is canonically
equivalent to U+003B “;” semicoroN, and U+0387 GREEK ANO TELEIA is canonically
equivalent to U+00B7 “-” MIDDLE DOT. In these cases, as for other canonical singletons, the
preferred form is the character that the canonical singletons are mapped to, namely
U+003B and U+00B7 respectively. Those are the characters that will appear in any normal-
ized form of Unicode text, even when used in Greek text as Greek punctuation. Text seg-
mentation algorithms need to be aware of this issue, as the kinds of text units delimited by
a semicolon or a middle dot in Greek text will typically differ from those in Latin text.

« »

The character properties for U+00B7 MIDDLE DOT are particularly problematical, in part
because of identifier issues for that character. There is no guarantee that all of its properties
align exactly with U+0387 GREEK ANO TELEIA, because the latter’s properties are based on
the limited function of the middle dot in Greek as a delimiting punctuation mark.

Bullets. U+2022 BULLET is the typical character for a bullet. Within the general punctua-
tion, several alternative forms for bullets are separately encoded: U+2023 TRIANGULAR
BULLET, U+204C BLACK LEFTWARDS BULLET, and so on. U+00B7 MIDDLE DOT also often
functions as a small bullet. Bullets mark the head of specially formatted paragraphs, often
occurring in lists, and may use arbitrary graphics or dingbat forms as well as more conven-
tional bullet forms. U+261E WHITE RIGHT POINTING INDEX, for example, is often used to
highlight a note in text, as a kind of gaudy bullet.

Writing Systems and Punctuation 280 6.2 General Punctuation

Paragraph Marks. U+00A7 secTION SIGN and U+00B6 pPILCROW SIGN are often used as
visible indications of sections or paragraphs of text, in editorial markup, to show format
modes, and so on. Which character indicates sections and which character indicates
paragraphs may vary by convention. U+204B REVERSED PILCROW SIGN is a fairly common
alternate representation of the paragraph mark.

Numeric Separators. Any of the characters U+002C comma, U+002E FuLL sTop, and the
Arabic characters U+060C, U+066B, or U+066C (and possibly others) can be used as
numeric separator characters, depending on the locale and user customizations.

Obelus. Originally a punctuation mark to denote questionable passages in manuscripts,
U+00F7 + DIVISION SIGN is now most commonly used as a symbol indicating division.
However, modern use is not limited to that meaning. The character is sometimes used to
indicate a range (similar to the en-dash) or as a form of minus sign. The former use is
attested for Russian, Polish and Italian, and latter use is still widespread in Scandinavian
countries in some contexts, but may occur elsewhere as well. (See also the following text on
“Commercial Minus.”)

Commercial Minus. U+2052 /. COMMERCIAL MINUS SIGN is used in commercial or tax-
related forms or publications in several European countries, including Germany and Scan-
dinavia. The string “/.” is used as a fallback representation for this character.

The symbol may also appear as a marginal note in letters, denoting enclosures. One varia-
tion replaces the top dot with a digit indicating the number of enclosures.

An additional usage of the sign appears in the Uralic Phonetic Alphabet (UPA), where it
marks a structurally related borrowed element of different pronunciation. In Finland and a
number of other European countries, the dingbats 7 and v are always used for “correct”
and “incorrect,” respectively, in marking a student’s paper. This contrasts with American
practice, for example, where v and X might be used for “correct” and “incorrect,” respec-
tively, in the same context.

At Sign. U+0040 coMMERCIAL AT has acquired a prominent modern use as part of the syn-
tax for e-mail addresses. As a result, users in practically every language community sud-
denly needed to use and refer to this character. Consequently, many colorful names have
been invented for this character. Some of these contain references to animals or even pas-
tries. Table 6-7 gives a sample.

Table 6-7. Names for the @

Language Name and Comments

Chinese = xiao laoshu (means “little mouse” in Mandarin Chinese), laoshu
hao (means “mouse mark” in Mandarin Chinese)

Danish = grishale, snabel-a (common, humorous slang)

Dutch = apenstaartje (common, humorous slang)

Finnish = 4t, at-merkki (Finnish standard)

= kissanhintd, miukumauku (common, humorous slang)

French = arobase, arrobe, escargot, a crolle (common, humorous slang)

Writing Systems and Punctuation 281 6.2 General Punctuation

Table 6-7. Names for the @ (Continued)

Language Name and Comments
German = Klammeraffe
Hebrew = shtrudl (“Strudel”, modern Hebrew)
= krukhit (more formal Hebrew)
Hungarian = kukac (common, humorous slang)
Italian = chiocciola
Polish = atka, malpa, malpka (common, humorous slang)
Portuguese = arroba
Russian = sobachka (common, humorous slang)
Slovenian = afna (common, humorous slang)
Spanish = arroba
Swedish = snabel-a, kanelbulle (common, humorous slang)

Archaic Punctuation and Editorial Marks

Archaic Punctuation. Many archaic scripts use punctuation marks consisting of a set of
multiple dots, such as U+2056 THREE DOT PUNCTUATION. The semantics of these marks
can vary by script, and some of them are also used for special conventions, such as the use
of U+205E VERTICAL FOUR DOTs in modern dictionaries. U+205B FOUR DOT MARK and
U+205C poTTED cross were used by scribes in the margin to highlight a piece of text.
More of these multiple-dot archaic punctuation marks are encoded in the range
U+2E2A..U+2E2D.

These kinds of punctuation marks occur in ancient scripts and are also common in medi-
eval manuscripts. Their specific functions may be different in each script or manuscript
tradition. However, encoding only a single set in the Unicode Standard simplifies the task
of deciding which character to use for a given mark.

There are some exceptions to this general rule. Archaic scripts with script-specific punctu-
ation include Runic, Aegean Numbers, and Cuneiform. In particular, the appearance of
punctuation written in the Cuneiform style is sufficiently different that no unification was
attempted.

Editorial Marks. In addition to common-use editorial marks such as U+2041 CARET
INSERTION POINT encoded in the General Punctuation block, there are a number of edito-
rial marks encoded in the Supplemental Punctuation block (U+2E00..U+2E7F). Editorial
marks differ from ordinary punctuation marks, in that their primary purpose is to allow
editors to mark up a scholarly publication of a text to show the location and contents of
insertions, omissions, variant readings, and other such information about the text.

The half brackets encoded in the range U+2E22..U+2E25 are widely used as editorial
marks in critical editions of ancient and medieval texts. They appear, for example, in edi-
tions of transliterated Cuneiform and ancient Egyptian texts. U+2E26 LEFT SIDEWAYS U
BRACKET and U+2E27 RIGHT SIDEWAYS U BRACKET are a specialized bracket pair used in

Writing Systems and Punctuation 282 6.2 General Punctuation

some traditions, and should be distinguished from mathematical set symbols of similar
appearance. The double parentheses are employed by Latinists.

New Testament Editorial Marks. The Greek text of the New Testament exists in a large
number of manuscripts with many textual variants. The most widely used critical edition
of the New Testament, the Nestle-Aland edition published by the United Bible Societies
(UBS), introduced a set of editorial characters that are regularly used in a number of jour-
nals and other publications. As a result, these editorial marks have become the recognized
method of annotating the New Testament.

U+2E00 RIGHT ANGLE SUBSTITUTION MARKER is placed at the start of a single word when
that word is replaced by one or more different words in some manuscripts. These alterna-
tive readings are given in the apparatus criticus. If there is a second alternative reading in
one verse, U+2E0]1 RIGHT ANGLE DOTTED SUBSTITUTION MARKER is used instead.

U+2E02 LEFT SUBSTITUTION BRACKET is placed at the start of a sequence of words where an
alternative reading is given in the apparatus criticus. This bracket is used together with the
U+2E03 RIGHT SUBSTITUTION BRACKET. If there is a second alternative reading in one
verse, the dotted forms at U+2E04 and U+2E05 are used instead.

U+2E06 RAISED INTERPOLATION MARKER is placed at a point in the text where another ver-
sion has additional text. This additional text is given in the apparatus criticus. If there is a
second piece of interpolated text in one verse, the dotted form U+2E07 RAISED DOTTED
INTERPOLATION MARKER is used instead.

U+2E08 DOTTED TRANSPOSITION MARKER is placed at the start of a word or verse that has
been transposed. The transposition is explained in the apparatus criticus. When the words
are preserved in different order in some manuscripts, U+2E09 LEFT TRANSPOSITION
BRACKET is used. The end of such a sequence of words is marked by U+2E0OA RIGHT TRANS-
POSITION BRACKET.

The characters U+2E0B ra1SED SQUARE and U+2E0C LEFT RAISED OMISSION BRACKET are
conventionally used in pairs to bracket text, with RAISED sQUARE marking the start of a pas-
sage of omitted text and LEFT RAISED OMISSION BRACKET marking its end. In other editorial
traditions, U+2EO0C LEFT RAISED OMISSION BRACKET may be paired with U+2E0D RiGHT
RAISED OMISSION BRACKET. Depending on the conventions used, either may act as the
starting or ending bracket.

Two other bracket characters, U+2E1C LEFT LOW PARAPHRASE BRACKET and U+2E1D
RIGHT LOW PARAPHRASE BRACKET, have particular usage in the N’Ko script, but also may
be used for general editorial punctuation.

Ancient Greek Editorial Marks. Ancient Greek scribes generally wrote in continuous
uppercase letters without separating letters into words. On occasion, the scribe added
punctuation to indicate the end of a sentence or a change of speaker or to separate words.
Editorial and punctuation characters appear abundantly in surviving papyri and have been
rendered in modern typography when possible, often exhibiting considerable glyphic vari-
ation. A number of these editorial marks are encoded in the range U+2EOE..U+2E16.

Writing Systems and Punctuation 283 6.2 General Punctuation

The punctuation used in Greek manuscripts can be divided into two categories: marginal
or semi-marginal characters that mark the end of a section of text (for example, coronis,
paragraphos), and characters that are mixed in with the text to mark pauses, end of sense,
or separation between words (for example, stigme, hypodiastole). The hypodiastole is used
in contrast with comma and is not a glyph variant of it.

A number of editorial characters are attributed to and named after Aristarchos of Samo-
thrace (circa 216-144 BcE), fifth head of the Library at Alexandria. Aristarchos provided a
major edition of the works of Homer, which forms the basis for modern editions.

A variety of Ancient Greek editorial marks are shown in the text of Figure 6-5, including
the editorial coronis and upwards ancora on the left. On the right are illustrated the dotted
obelos, capital dotted lunate sigma symbol, capital reversed lunate sigma symbol, and a glyph
variant of the downards ancora. The numbers on the left indicate text lines. A paragraphos
appears below the start of line 12. The opening brackets “[” indicate fragments, where text
is illegible or missing in the original. These examples are slightly adapted and embellished
from editions of the Oxyrhynchus Papyri and Homer’s Iliad.

Figure 6-5. Examples of Ancient Greek Editorial Marks

5. 7 adber | C ov wév mwg
TaVai0 .
i’ [[C ok ayalbov moA <
oY - .
wme eic Bagihete, ® ...
< [V kal . by T T
== , n /. TKYTTOO0V T 7M0E€ ...
< TioT wmoyl
10 ermyl
2\
mapeoked ol D alploy MY GPETNY ...
’ b ’
__ Ogupov avauTiol O WEIVY ETIELYOWEVOY ...
devovTogouder]|

U+2EOF PARAGRAPHOS is placed at the beginning of the line but may refer to a break in the
text at any point in the line. The paragraphos should be a horizontal line, generally stretch-
ing under the first few letters of the line it refers to, and possibly extending into the margin.
It should be given a no-space line of its own and does not itself constitute a line or para-
graph break point for the rest of the text. Examples of the paragraphos, forked paragraphos,
and reversed forked paragraphos are illustrated in Figure 6-6.

Figure 6-6. Use of Greek Paragraphos

dotpova... dapova... dotpova...
r O - <
dEVOVTOCOV... 0EVOVTOCOV... dEVOVTOCOV...

Writing Systems and Punctuation 284 6.2 General Punctuation

Double Oblique Hyphen. U+2E17 “2” DOUBLE OBLIQUE HYPHEN is used in ancient Near
Eastern linguistics to indicate certain morphological boundaries while continuing to use
the ordinary hyphen to indicate other boundaries. This symbol is also semantically distinct
from U+003D “=” eQuUALS SIGN. Fraktur fonts use an oblique glyph of similar appearance
for the hyphen, but that is merely a font variation of U+002D HYPHEN-MINUS or U+2010
HYPHEN, not the distinctly encoded DOUBLE OBLIQUE HYPHEN.

Indic Punctuation

Dandas. Dandas are phrase-ending punctuation common to the scripts of South and
South East Asia. The Devanagari danda and double danda characters are intended for
generic use across the scripts of India. They are also occasionally used in Latin translitera-
tion of traditional texts from Indic scripts.

There are minor visual differences in the appearance of the dandas, which may require
script-specific fonts or a font that can provide glyph alternates based on script environ-
ment. For the four Philippine scripts, the analogues to the dandas are encoded once in
Hanundo and shared across all four scripts. The other Brahmi-derived scripts have sepa-
rately encoded equivalents for the danda and double danda. In some scripts, as for Tibetan,
multiple, differently ornamented versions of dandas may occur. The dandas encoded in the
Unicode Standard are listed in Table 6-8.

Table 6-8. Unicode Danda Characters

Code Name

U+0964 DEVANAGARI DANDA

U+0965 DEVANAGARI DOUBLE DANDA

U+0E5A THAI CHARACTER ANGKHANKHU

U+0F08 TIBETAN MARK SBRUL SHAD

U+0FOD TIBETAN MARK SHAD

U+0FOE TIBETAN MARK NYIS SHAD

U+0FOF TIBETAN MARK TSHEG SHAD

U+0F10 TIBETAN MARK NYIS TSHEG SHAD

U+0F11 TIBETAN MARK RIN CHEN SPUNGS SHAD

U+0F12 TIBETAN MARK RGYA GRAM SHAD

U+104A MYANMAR SIGN LITTLE SECTION

U+104B MYANMAR SIGN SECTION

U+1735 PHILIPPINE SINGLE PUNCTUATION

U+1736 PHILIPPINE DOUBLE PUNCTUATION

U+17D4 KHMER SIGN KHAN

U+17D5 KHMER SIGN BARIYOOSAN

U+1AA8 TAI THAM SIGN KAAN

U+1AA9 TAI THAM SIGN KAANKUU

U+1B5E BALINESE CARIK SIKI

U+1B5F BALINESE CARIK PAREREN

Writing Systems and Punctuation 285 6.2 General Punctuation

Table 6-8. Unicode Danda Characters (Continued)

Code

Name

U+1C3B

LEPCHA PUNCTUATION TA-ROL

U+1C3C

LEPCHA PUNCTUATION NYET THYOOM TA-ROL

U+1C7E

OL CHIKI PUNCTUATION MUCAAD

U+1C7F

OL CHIKI PUNCTUATION DOUBLE MUCAAD

U+A876

PHAGS-PA MARK SHAD

U+A877

PHAGS-PA MARK DOUBLE SHAD

U+A8CE

SAURASHTRA DANDA

U+A8CF

SAURASHTRA DOUBLE DANDA

U+A92F

KAYAH LI SIGN SHYA

U+A9C8

JAVANESE PADA LINGSA

U+A9C9

JAVANESE PADA LUNGSI

U+AA5D

CHAM PUNCTUATION DANDA

U+AA5E

CHAM PUNCTUATION DOUBLE DANDA

U+AASF

CHAM PUNCTUATION TRIPLE DANDA

U+AAFO0

MEETEI MAYEK CHEIKHAN

U+ABEB

MEETEI MAYEK CHEIKHEI

U+10A56

KHAROSHTHI PUNCTUATION DANDA

U+10A57

KHAROSHTHI PUNCTUATION DOUBLE DANDA

U+11047

BRAHMI DANDA

U+11048

BRAHMI DOUBLE DANDA

U+110C0

KAITHI DANDA

U+110C1

KAITHI DOUBLE DANDA

U+11141

CHAKMA DANDA

U+11142

CHAKMA DOUBLE DANDA

U+111C5

SHARADA DANDA

U+111C6

SHARADA DOUBLE DANDA

U+11238

KHOJKI DANDA

U+11239

KHOJKI DOUBLE DANDA

U+1144B

NEWA DANDA

U+1144C

NEWA DOUBLE DANDA

U+115C2

SIDDHAM DANDA

U+115C3

SIDDHAM DOUBLE DANDA

U+11641

MODI DANDA

U+11642

MODI DOUBLE DANDA

U+1173C

AHOM SIGN SMALL SECTION

U+1173D

AHOM SIGN SECTION

U+11C41

BHAIKSUKI DANDA

U+11C42

BHAIKSUKI DOUBLE DANDA

U+11C71

MARCHEN MARK SHAD

U+16A6E

MRO DANDA

U+16A6F

MRO DOUBLE DANDA

Writing Systems and Punctuation 286 6.2 General Punctuation

The Bidirectional Class of the dandas matches that for the scripts they are intended for.
Kharoshthi, which is written from right to left, has Bidirectional Class R for U+10A56
KHAROSHTHI PUNCTUATION DANDA. For more on bidirectional classes, see Unicode Stan-
dard Annex #9, “Unicode Bidirectional Algorithm.”

Note that the name of the danda in Hindi is viram, while the different Unicode character
named virama is called halant in Hindi. If this distinction is not kept in mind, it can lead to
confusion as to which character is meant.

CJK Punctuation

CJK Punctuation comprises punctuation marks and symbols used by writing systems that
employ Han ideographs. Most of these characters are found in East Asian standards. Typi-
cal for many of these wide punctuation characters is that the actual image occupies only the
left or the right half of the normal square character cell. The extra whitespace is frequently
removed in a kerning step during layout, as shown in Figure 6-7. Unlike ordinary kerning,
which uses tables supplied by the font, the character space adjustment of wide punctuation
characters is based on their character code.

Figure 6-7. CJK Parentheses

[d+ [d - [k

FF08 FF08 After Kerning

U+3000 IDEOGRAPHIC SPACE is provided for compatibility with legacy character sets. It is a
fixed-width wide space appropriate for use with an ideographic font. For more informa-
tion about wide characters, see Unicode Standard Annex #11, “East Asian Width.”

U+3030 wavy pasH is a special form of a dash found in East Asian character standards.
(For a list of other space and dash characters in the Unicode Standard, see Table 6-2 and
Table 6-3.)

U+3037 IDEOGRAPHIC TELEGRAPH LINE FEED SEPARATOR SYMBOL is a visible indicator of
the line feed separator symbol used in the Chinese telegraphic code. It is comparable to the
pictures of control codes found in the Control Pictures block.

U+3005 IDEOGRAPHIC ITERATION MARK is used to stand for the second of a pair of identical
ideographs occurring in adjacent positions within a document.

U+3006 IDEOGRAPHIC CLOSING MARK is used frequently on signs to indicate that a store or
booth is closed for business. The Japanese pronunciation is shime, most often encountered
in the compound shime-kiri.

The U+3008 and U+3009 angle brackets are unambiguously wide, as are other bracket
characters in this block, such as double angle brackets, tortoise shell brackets, and white
square brackets. Where mathematical and other non-CJK contexts use brackets of similar
shape, the Unicode Standard encodes them separately.

Writing Systems and Punctuation 287 6.2 General Punctuation

U+3012 POSTAL MARK is used in Japanese addresses immediately preceding the numerical
postal code. It is also used on forms and applications to indicate the blank space in which a
postal code is to be entered. U+3020 posTAL MARK FACE and U+3036 CIRCLED POSTAL
MARK are properly glyphic variants of U+3012 and are included for compatibility.

U+3031 VERTICAL KANA REPEAT MARK and U+3032 VERTICAL KANA REPEAT WITH VOICED
SOUND MARK are used only in vertically written Japanese to repeat pairs of kana characters
occurring immediately prior in a document. The voiced variety U+3032 is used in cases
where the repeated kana are to be voiced. For instance, a repetitive phrase like toki-doki
could be expressed as <U+3068, U+304D, U+3032> in vertical writing. Both of these char-
acters are intended to be represented by “double-height” glyphs requiring two ideographic
“cells” to print; this intention also explains the existence in source standards of the charac-
ters representing the top and bottom halves of these characters (that is, the characters
U+3033, U+3034, and U+3035). In horizontal writing, similar characters are used, and
they are separately encoded. In Hiragana, the equivalent repeat marks are encoded at
U+309D and U+309E; in Katakana, they are U+30FD and U+30FE.

Wave Dash. U+301C WAVE DASH is a compatibility character that was originally encoded
to represent the character in the JIS C 6226-1978 standard and all subsequent revisions and
extensions with the kuten code: 1-33 (0x8160 in Shift-JIS encoding). The mapping of this
character has been problematical. Some major implementations originally mapped, and
continue to map for compatibility purposes, that JIS character to U+FF5E rFuLLWIDTH
TILDE, instead. The mapping issue has been documented in the Unicode Standard since
Version 3.0.

From Version 2.0 through Version 7.0 of the Unicode Standard, U+301C was shown in the
code charts with a representative glyph that had a wide reversed tilde shape. Starting with
Version 8.0, however, the representative glyph has been corrected to a wide tilde shape, to
reflect predominant practice in commercial fonts. For most purposes, U+301C WAVE DASH
should be treated simply as a duplicate representation of U+FF5E FULLWIDTH TILDE.

Sesame Dots. U+FE45 sesaME poT and U+FE46 WHITE SESAME DOT are used in vertical
text, where a series of sesame dots may appear beside the main text, as a sidelining to pro-
vide visual emphasis. In this respect, their usage is similar to such characters as U+FE34
PRESENTATION FORM FOR VERTICAL WAVY LOW LINE, which are also used for sidelining ver-
tical text for emphasis. Despite being encoded in the block for CJK compatibility forms, the
sesame dots are not compatibility characters. They are in general typographic use and are
found in the Japanese standard, JIS X 0213.

U+FE45 sesaME DoT is historically related to U+3001 IDEOGRAPHIC COMMA, but is not
simply a vertical form variant of it. The function of an ideographic comma in connected text
is distinct from that of a sesame dot.

Unknown or Unavailable Ideographs

U+3013 GETA MARK is used to indicate the presence of, or to hold a place for, an ideograph
that is not available when a document is printed. It has no other use. Its name comes from

Writing Systems and Punctuation 288 6.2 General Punctuation

its resemblance to the mark left by traditional Japanese sandals (geta). A variety of light and
heavy glyphic variants occur.

U+303E IDEOGRAPHIC VARIATION INDICATOR is a graphic character that is to be rendered
visibly. It alerts the user that the intended character is similar to, but not equal to, the char-
acter that follows. Its use is similar to the existing character U+3013 GETA MARK. A GETA
MARK substitutes for the unknown or unavailable character, but does not identify it. The
IDEOGRAPHIC VARIATION INDICATOR is the head of a two-character sequence that gives
some indication about the intended glyph or intended character. Ultimately, the 1DEO-
GRAPHIC VARIATION INDICATOR and the character following it are intended to be replaced
by the correct character, once it has been identified or a font resource or input resource has
been provided for it.

U+303F IDEOGRAPHIC HALF FILL SPACE is a visible indicator of a display cell filler used
when ideographic characters have been split during display on systems using a double-byte
character encoding. It is included in the Unicode Standard for compatibility.

See also “Ideographic Description Sequences” in Section 18.2, Ideographic Description
Characters.

CJK Compatibility Forms

Vertical Forms. CJK vertical forms are compatibility characters encoded for compatibility
with legacy implementations that encode these characters explicitly when Chinese text is
being set in vertical rather than horizontal lines. The preferred Unicode approach to repre-
sentation of such text is to simply use the nominal characters that correspond to these ver-
tical variants. Then, at display time, the appropriate glyph is selected according to the line
orientation.

The Unicode Standard contains two blocks devoted primarily to these CJK vertical forms.
The CJK Vertical Forms block, U+FE10..U+FELF, contains compatibility characters
needed for round-trip mapping to the Chinese standard, GB 18030. The CJK Compatibil-
ity Forms block, U+FE30..U+FE4F, contains forms found in the Chinese standard, CNS
11643.

Styled Overscores and Underscores. The CJK Compatibility Forms block also contains a
number of compatibility characters from CNS 11643, which consist of different styles of
overscores or underscores. They were intended, in the Chinese standard, for the represen-
tation of various types of overlining or underlining, for emphasis of text when laid out hor-
izontally. Except for round-trip mapping with legacy character encodings, the use of these
characters is discouraged; use of styles is the preferred way to handle such effects in modern
text rendering.

Small Form Variants. CNS 11643 also contains a number of small variants of ASCII punc-
tuation characters. The Unicode Standard encodes those variants as compatibility charac-
ters in the Small Form Variants block, U+FE50..U+FE6F. Those characters, while
construed as fullwidth characters, are nevertheless depicted using small forms that are set

Writing Systems and Punctuation 289 6.2 General Punctuation

in a fullwidth display cell. (See the discussion in Section 18.4, Hiragana and Katakana.)
These characters are provided for compatibility with legacy implementations.

Two small form variants from CNS 11643/plane 1 were unified with other characters out-
side the ASCII block: 21314 was unified with U+00B7 MIDDLE DOT, and 2261, was uni-
fied with U+2215 DIVISION SLASH.

Fullwidth and Halfwidth Variants. For compatibility with East Asian legacy character
sets, the Unicode Standard encodes fullwidth variants of ASCII punctuation and halfwidth
variants of CJK punctuation. See Section 18.5, Halfwidth and Fullwidth Forms, for more
information.

Writing Systems and Punctuation 290 6.2 General Punctuation

291

Chapter 7

Europe-1
Modern and Liturgical Scripts

Modern European alphabetic scripts are derived from or influenced by the Greek script,
which itself was an adaptation of the Phoenician alphabet. A Greek innovation was writing
the letters from left to right, which is the writing direction for all the scripts derived from or
inspired by Greek.

The alphabetic scripts and additional characters described in this chapter are:

Latin Cyrillic Georgian
Greek Glagolitic Modifier letters

Coptic Armenian Combining marks

Some scripts whose geographic area of primary usage is outside Europe are included in this
chapter because of their relationship with Greek script. Coptic is used primarily by the
Coptic church in Egypt and elsewhere; Armenian and Georgian are primarily associated
with countries in the Caucasus (which is often not included as part of Europe), although
Armenian in particular is used by a large diaspora.

These scripts are all written from left to right. Many have separate lowercase and uppercase
forms of the alphabet. Spaces are used to separate words. Accents and diacritical marks are
used to indicate phonetic features and to extend the use of base scripts to additional lan-
guages. Some of these modification marks have evolved into small free-standing signs that
can be treated as characters in their own right.

The Latin script is used to write or transliterate texts in a wide variety of languages. The
International Phonetic Alphabet (IPA) is an extension of the Latin alphabet, enabling it to
represent the phonetics of all languages. Other Latin phonetic extensions are used for the
Uralic Phonetic Alphabet and the Teuthonista transcription system.

The Latin alphabet is derived from the alphabet used by the Etruscans, who had adopted a
Western variant of the classical Greek alphabet (Section 8.5, Old Italic). Originally it con-
tained only 24 capital letters. The modern Latin alphabet as it is found in the Basic Latin
block owes its appearance to innovations of scribes during the Middle Ages and practices of
the early Renaissance printers.

The Cyrillic script was developed in the ninth century and is also based on Greek. Like
Latin, Cyrillic is used to write or transliterate texts in many languages. The Georgian and
Armenian scripts were devised in the fifth century and are influenced by Greek. Modern
Georgian does not have separate uppercase and lowercase forms.

Europe-1 292

The Coptic script was the last stage in the development of Egyptian writing. It represented
the adaptation of the Greek alphabet to writing Egyptian, with the retention of forms from
Demotic for sounds not adequately represented by Greek letters. Although primarily used
in Egypt from the fourth to the tenth century, it is described in this chapter because of its
close relationship to the Greek script.

Glagolitic is an early Slavic script related in some ways to both the Greek and the Cyrillic
scripts. It was widely used in the Balkans but gradually died out, surviving the longest in
Croatia. Like Coptic, however, it still has some modern use in liturgical contexts.

This chapter also describes modifier letters and combining marks used with the Latin script
and other scripts.

The block descriptions for other archaic European alphabetic scripts, such as Gothic,
Ogham, Old Italic, and Runic, can be found in Chapter 8, Europe-I1.

Europe-1 293 7.1 Latin

7.1 Latin

The Latin script was derived from the Greek script. Today it is used to write a wide variety
of languages all over the world. In the process of adapting it to other languages, numerous
extensions have been devised. The most common is the addition of diacritical marks. Fur-
thermore, the creation of digraphs, inverse or reverse forms, and outright new characters
have all been used to extend the Latin script.

The Latin script is written in linear sequence from left to right. Spaces are used to separate
words and provide the primary line breaking opportunities. Hyphens are used where lines
are broken in the middle of a word. (For more information, see Unicode Standard Annex
#14, “Unicode Line Breaking Algorithm.”) Latin letters come in uppercase and lowercase
pairs.

Languages. Some indication of language or other usage is given for many characters within
the names lists accompanying the character charts.

Diacritical Marks. Speakers of different languages treat the addition of a diacritical mark
to a base letter differently. In some languages, the combination is treated as a letter in the
alphabet for the language. In others, such as English, the same words can often be spelled
with and without the diacritical mark without implying any difference. Most languages
that use the Latin script treat letters with diacritical marks as variations of the base letter,
but do not accord the combination the full status of an independent letter in the alphabet.
Widely used accented character combinations are provided as single characters to accom-
modate interoperation with pervasive practice in legacy encodings. Combining diacritical
marks can express these and all other accented letters as combining character sequences.

In the Unicode Standard, all diacritical marks are encoded in sequence after the base char-
acters to which they apply. For more details, see the subsection “Combining Diacritical
Marks” in Section 7.9, Combining Marks, and also Section 2.11, Combining Characters.

Alternative Glyphs. Some characters have alternative representations, although they have
a common semantic. In such cases, a preferred glyph is chosen to represent the character in
the code charts, even though it may not be the form used under all circumstances. Some
Latin examples to illustrate this point are provided in Figure 7-1 and discussed in the text
that follows.

Figure 7-1. Alternative Glyphs in Latin

®@aa gg

\4

oddd i Il
Oggg O

Europe-1 294 7.1 Latin

Common typographical variations of basic Latin letters include the open- and closed-loop
forms of the lowercase letters “a” and “g’, as shown in the first example in Figure 7-1. In
ordinary Latin text, such distinctions are merely glyphic alternates for the same characters;
however, phonetic transcription systems, such as IPA and Pinyin, often make systematic

distinctions between these forms.

Variations in Diacritical Marks. The shape and placement of diacritical marks can be sub-
ject to considerable variation that might surprise a reader unfamiliar with such distinc-
tions. For example, when Czech is typeset, U+010F LATIN SMALL LETTER D WITH CARON
and U+0165 LATIN SMALL LETTER T WITH CARON are often rendered by glyphs with an
apostrophe instead of with a caron, commonly known as a ha¢ek. See the second example
in Figure 7-1. In Slovak, this use also applies to U+013E LATIN SMALL LETTER L WITH
caroON and U+013D LATIN CAPITAL LETTER L WITH CARON. The use of an apostrophe can
avoid some line crashes over the ascenders of those letters and so result in better typogra-
phy. In typewritten or handwritten documents, or in didactic and pedagogical material,
glyphs with hédceks are preferred.

Characters with cedillas, commas or ogoneks below often are subject to variable typo-
graphical usage, depending on the availability and quality of fonts used, the technology, the
era and the geographic area. Various hooks, cedillas, commas, and squiggles may be substi-
tuted for the nominal forms of these diacritics below, and even the directions of the hooks
may be reversed.

The character U+0327 cOMBINING CEDILLA can be displayed by a wide variety of forms,
including cedillas and commas below. This variability also occurs for the precomposed
characters whose decomposition includes U+0327. For text in some languages, a specific
form is typically preferred. In particular, Latvian and Romanian prefer a comma below,
while a cedilla is preferred in Turkish and Marshallese. These language-specific preferences
are discussed in more detail in the text that follows.

Also, as a result of legacy encodings and practices, and the mapping of those legacy encod-
ings to Unicode, some particular shapes for U+0327 COMBINING CEDILLA are preferred in
the absence of language or locale context. A rendering as cedilla is preferred for the letters
listed in the first column, while rendering as comma below is preferred for those listed in
the second column of Table 7-1.

Table 7-1. Preferred Rendering of Cedilla versus Comma Below

Cedilla Comma Below
ceh,s dgklLnrt

Latvian Cedilla. There is specific variation involved in the placement and shapes of cedillas
on Latvian characters. This is illustrated by the Latvian letter U+0123 LATIN SMALL LETTER
G WITH CEDILLA, as shown in example 3 in Figure 7-1. In good Latvian typography, this
character is always shown with a rotated comma over the g, rather than a cedilla below the
g, because of the typographical design and layout issues resulting from trying to place a
cedilla below the descender loop of the g. Poor Latvian fonts may substitute an acute accent

Europe-1 295 7.1 Latin

for the rotated comma, and handwritten or other printed forms may actually show the
cedilla below the g. The uppercase form of the letter is always shown with a cedilla, as the
rounded bottom of the G poses no problems for attachment of the cedilla.

Other Latvian letters with a cedilla below (U+0137 LATIN SMALL LETTER K WITH CEDILLA,
U+0146 LATIN SMALL LETTER N WITH CEDILLA, and U+0157 LATIN SMALL LETTER R WITH
CEDILLA) always prefer a glyph with a floating comma below, as there is no proper attach-
ment point for a cedilla at the bottom of the base form.

Cedilla and Comma Below in Turkish and Romanian. The Latin letters s and t with
comma below or with cedilla diacritics pose particular interpretation issues for Turkish and
Romanian data, both in legacy character sets and in the Unicode Standard. Legacy charac-
ter sets generally include a single form for these characters. While the formal interpretation
of legacy character sets is that they contain only one of the forms, in practice this single
character has been used to represent any of the forms. For example, 0xBA in ISO 8859-2 is
formally defined as a lowercase s with cedilla, but has been used to represent a lowercase s
with comma below for Romanian.

The Unicode Standard provides unambiguous representations for all of the forms, for
example, U+0219 § LATIN SMALL LETTER S WITH COMMA BELOW versus U+015F § LATIN
SMALL LETTER S WITH CEDILLA. In modern usage, the preferred representation of Roma-
nian text is with U+0219 $ LATIN SMALL LETTER S WITH COMMA BELOW, while Turkish data
is represented with U+015F § LATIN SMALL LETTER S WITH CEDILLA.

However, due to the prevalence of legacy implementations, a large amount of Romanian
data will contain U+015F § LATIN SMALL LETTER S WITH CEDILLA or the corresponding
code point 0xBA in ISO 8859-2. When converting data represented using ISO 8859-2,
0xBA should be mapped to the appropriate form. When processing Romanian Unicode
data, implementations should treat U+0219 § LATIN SMALL LETTER S WITH COMMA BELOW
and U+015F § LATIN SMALL LETTER S WITH CEDILLA as equivalent.

Exceptional Case Pairs. The characters U+0130 LATIN CAPITAL LETTER I WITH DOT ABOVE
and U+0131 LATIN SMALL LETTER DOTLESS I (used primarily in Turkish) are assumed to
take ASCII “i” and “T”, respectively, as their case alternates. This mapping makes the corre-
sponding reverse mapping language-specific; mapping in both directions requires special
attention from the implementer (see Section 5.18, Case Mappings).

Diacritics oniandj. A dotted (normal) 7 or j followed by a nonspacing mark above loses
the dot in rendering. Thus, in the word naive, the 7 could be spelled with i + diaeresis. A dot-
ted-i is not equivalent to a Turkish dotless-i + overdot, nor are other cases of accented dot-
ted-i equivalent to accented dotless-i (for example, i + * # 1+ 7). The same pattern is used
for j. Dotless-j is used in the Landsmadlsalfabet, where it does not have a case pair.

To express the forms sometimes used in the Baltic (where the dot is retained under a top
accent in dictionaries), use i + overdot + accent (see Figure 7-2).

All characters that use their dot in this manner have the Soft_Dotted property in Unicode.

Europe-1 296 7.1 Latin

Figure 7-2. Diacritics oniand j

1+ - 1 1+o+0 > 1

- - . ’

j + >] 1 + & + {f:} —>

S

Vietnamese. In the modern Vietnamese alphabet, there are 12 vowel letters and 5 tone
marks (see Figure 7-3). Normalization Form C represents the combination of vowel letter
and tone mark as a single unit—for example, U+1EA8 A LATIN CAPITAL LETTER A WITH
CIRCUMFLEX AND HOOK ABOVE. Normalization Form D decomposes this combination into
the combining character sequence, such as <U+0041, U+0302, U+0309>. Some widely
used implementations prefer storing the vowel letter and the tone mark separately.

Figure 7-3. Vietnamese Letters and Tone Marks

aaaeéiodouuy

N\ ?

The Vietnamese vowels and other letters are found in the Basic Latin, Latin-1 Supplement,
and Latin Extended-A blocks. Additional precomposed vowels and tone marks are found in
the Latin Extended Additional block.

The characters U+0300 COMBINING GRAVE ACCENT, U+0309 COMBINING HOOK ABOVE,
U+0303 COMBINING TILDE, U+0301 COMBINING ACUTE ACCENT, and U+0323 cOMBINING
poT BELOW should be used in representing the Vietnamese tone marks. The characters
U+0340 COMBINING GRAVE TONE MARK and U+0341 COMBINING ACUTE TONE MARK have
canonical equivalences to U+0300 COMBINING GRAVE ACCENT and U+0301 COMBINING
ACUTE ACCENT, respectively; they are not recommended for use in representing Vietnamese
tones, despite the presence of tone mark in their character names.

Standards. Unicode follows ISO/IEC 8859-1 in the layout of Latin letters up to U+00FF.
ISO/IEC 8859-1, in turn, is based on older standards—among others, ASCII (ANSI X3.4),
which is identical to ISO/IEC 646:1991-IRV. Like ASCII, ISO/IEC 8859-1 contains Latin
letters, punctuation signs, and mathematical symbols. These additional characters are
widely used with scripts other than Latin. The descriptions of these characters are found in
Chapter 6, Writing Systems and Punctuation, and Chapter 22, Symbols.

The Latin Extended-A block includes characters contained in ISO/IEC 8859—Part 2. Latin
alphabet No. 2, Part 3. Latin alphabet No. 3, Part 4. Latin alphabet No. 4, and Part 9. Latin
alphabet No. 5. Many of the other graphic characters contained in these standards, such as
punctuation, signs, symbols, and diacritical marks, are already encoded in the Latin-1 Sup-
plement block. Other characters from these parts of ISO/IEC 8859 are encoded in other
blocks, primarily in the Spacing Modifier Letters block (U+02B0..U+02FF) and in the

Europe-1 297 7.1 Latin

character blocks starting at and following the General Punctuation block. The Latin
Extended-A block also covers additional characters from ISO/IEC 6937.

The Latin Extended-B block covers, among others, characters in ISO 6438
Documentation—African coded character set for bibliographic information interchange,
Pinyin Latin transcription characters from the People’s Republic of China national stan-
dard GB 2312 and from the Japanese national standard JIS X 0212, and Sami characters
from ISO/IEC 8859 Part 10. Latin alphabet No. 6.

The characters in the IPA block are taken from the 1989 revision of the International Pho-
netic Alphabet, published by the International Phonetic Association. Extensions from later
IPA sources have also been added.

Related Characters. For other Latin-derived characters, see Letterlike Symbols
(U+2100..U+214F), Currency Symbols (U+20A0..U+20CF), Number Forms
(U+2150..U+218F), Enclosed Alphanumerics (U+2460..U+24FF), CJK Compatibility
(U+3300..U+33FF), Fullwidth Forms (U+FF21..U+FF5A), and Mathematical Alphanu-
meric Symbols (U+1D400..U+1D7FF).

Letters of Basic Latin: U+0041-U+007A

Only a small fraction of the languages written with the Latin script can be written entirely
with the basic set of 26 uppercase and 26 lowercase Latin letters contained in this block.
The 26 basic letter pairs form the core of the alphabets used by all the other languages that
use the Latin script. A stream of text using one of these alphabets would therefore intermix
characters from the Basic Latin block and other Latin blocks.

Occasionally a few of the basic letter pairs are not used to write a language. For example,

«:» «_ »

Italian does not use “j” or “w”.

Letters of the Latin-1 Supplement: U+00C0-U+00FF

The Latin-1 supplement extends the basic 26 letter pairs of ASCII by providing additional
letters for the major languages of Europe listed in the next paragraph.

Languages. The languages supported by the Latin-1 supplement include Catalan, Danish,
Dutch, Faroese, Finnish, Flemish, German, Icelandic, Irish, Italian, Norwegian, Portu-
guese, Spanish, and Swedish.

Ordinals. U+00AA FEMININE ORDINAL INDICATOR and U+00BA MASCULINE ORDINAL
INDICATOR can be depicted with an underscore, but many modern fonts show them as
superscripted Latin letters with no underscore. In sorting and searching, these characters
should be treated as weakly equivalent to their Latin character equivalents.

Latin Extended-A: U+0100-U+017F

The Latin Extended-A block contains a collection of letters that, when added to the letters
contained in the Basic Latin and Latin-1 Supplement blocks, allow for the representation of

Europe-1 298 7.1 Latin

most European languages that employ the Latin script. Many other languages can also be
written with the characters in this block. Most of these characters are equivalent to precom-
posed combinations of base character forms and combining diacritical marks. These com-
binations may also be represented by means of composed character sequences. See
Section 2.11, Combining Characters, and Section 7.9, Combining Marks.

Compatibility Digraphs. The Latin Extended-A block contains five compatibility
digraphs, encoded for compatibility with ISO/IEC 6937:1984. Two of these characters,
U+0140 LATIN SMALL LETTER L WITH MIDDLE DOT and its uppercase version, were origi-
nally encoded in ISO/IEC 6937 for support of Catalan. In current conventions, the repre-
sentation of this digraphic sequence in Catalan simply uses a sequence of an ordinary “1”
and U+00B7 MIDDLE DOT.

Another pair of characters, U+0133 LATIN SMALL LIGATURE IJ and its uppercase version,

«:s»

was provided to support the digraph “ij” in Dutch, often termed a “ligature” in discussions
of Dutch orthography. When adding intercharacter spacing for line justification, the “ij” i

kept as a unit, and the space between the i and j does not increase. In titlecasing, both the i
and the j are uppercased, as in the word “IJsselmeer.” Using a single code point might sim-
plify software support for such features; however, because a vast amount of Dutch data is
encoded without this digraph character, under most circumstances one will encounter an

<i, j> sequence.

Finally, U+0149 LATIN SMALL LETTER N PRECEDED BY APOSTROPHE was encoded for use in
Afrikaans. The character is deprecated, and its use is strongly discouraged. In nearly all

«_ _»

cases it is better represented by a sequence of an apostrophe followed by “n”

Languages. Most languages supported by this block also require the concurrent use of
characters contained in the Basic Latin and Latin-1 Supplement blocks. When combined
with these two blocks, the Latin Extended-A block supports Afrikaans, Basque, Breton,
Croatian, Czech, Esperanto, Estonian, French, Frisian, Greenlandic, Hungarian, Latin, Lat-
vian, Lithuanian, Maltese, Polish, Provencal, Rhaeto-Romanic, Romanian, Romany, Sdmi,
Slovak, Slovenian, Sorbian, Turkish, Welsh, and many others.

Latin Extended-B: U+0180-U+024F

The Latin Extended-B block contains letterforms used to extend Latin scripts to represent
additional languages. It also contains phonetic symbols not included in the International
Phonetic Alphabet (see the IPA Extensions block, U+0250..U+02AF).

Arrangement. The characters are arranged in a nominal alphabetical order, followed by a
small collection of Latinate forms. Uppercase and lowercase pairs are placed together where
possible, but in many instances the other case form is encoded at some distant location and
so is cross-referenced. Variations on the same base letter are arranged in the following
order: turned, inverted, hook attachment, stroke extension or modification, different style,
small cap, modified basic form, ligature, and Greek derived.

Croatian Digraphs Matching Serbian Cyrillic Letters. Serbo-Croatian is a single language
with paired alphabets: a Latin script (Croatian) and a Cyrillic script (Serbian). A set of

Europe-1 299 7.1 Latin

compatibility digraph codes is provided for one-to-one transliteration. There are two
potential uppercase forms for each digraph, depending on whether only the initial letter is
to be capitalized (titlecase) or both (all uppercase). The Unicode Standard offers both
forms so that software can convert one form to the other without changing font sets. The
appropriate cross references are given for the lowercase letters.

Pinyin Diacritic—Vowel Combinations. The Chinese standard GB 2312, the Japanese stan-
dard JIS X 0212, and some other standards include codes for Pinyin, which is used for Latin
transcription of Mandarin Chinese. Most of the letters used in Pinyin romanization are
already covered in the preceding Latin blocks. The group of 16 characters provided here
completes the Pinyin character set specified in GB 2312 and JIS X 0212.

Case Pairs. A number of characters in this block are uppercase forms of characters whose
lowercase forms are part of some other grouping. Many of these characters came from the
International Phonetic Alphabet; they acquired uppercase forms when they were adopted
into Latin script-based writing systems. Occasionally, however, alternative uppercase forms
arose in this process. In some instances, research has shown that alternative uppercase
forms are merely variants of the same character. If so, such variants are assigned a single
Unicode code point, as is the case of U+01B7 LATIN CAPITAL LETTER EzH. But when
research has shown that two uppercase forms are actually used in different ways, then they
are given different codes; such is the case for U+018E LATIN CAPITAL LETTER REVERSED E
and U+018F LATIN CAPITAL LETTER SCHWA. In this instance, the shared lowercase form is
copied to enable unique case-pair mappings: U+01DD LATIN SMALL LETTER TURNED E is a
copy of U+0259 LATIN SMALL LETTER SCHWA.

For historical reasons, the names of some case pairs differ. For example, U+018E rATIN
CAPITAL LETTER REVERSED E is the uppercase of U+01DD LATIN SMALL LETTER
TURNED E—not of U+0258 LATIN SMALL LETTER REVERSED E. For default case mappings of
Unicode characters, see Section 4.2, Case.

Caseless Letters. A number of letters used with the Latin script are caseless—for example,
the caseless glottal stop at U+0294 and U+01BB LATIN LETTER TWO WITH STROKE, and the
various letters denoting click sounds. Caseless letters retain their shape when uppercased.
When titlecasing words, they may also act transparently; that is, if they occur in the leading
position, the next following cased letter may be uppercased instead.

Over the last several centuries, the trend in typographical development for the Latin script
has tended to favor the eventual introduction of case pairs. See the following discussion of
the glottal stop. The Unicode Standard may encode additional uppercase characters in such
instances. However, for reasons of stability, the standard will never add a new lowercase
form for an existing uppercase character. See also “Caseless Matching” in Section 5.18, Case
Mappings.

Glottal Stop. There are two patterns of usage for the glottal stop in the Unicode Standard.
U+0294 ? LATIN LETTER GLOTTAL STOP is a caseless letter used in IPA. It is also widely seen
in language orthographies based on IPA or Americanist phonetic usage, in those instances
where no casing is apparent for glottal stop. Such orthographies may avoid casing for glottal

Europe-1 300 7.1 Latin

stop to the extent that when titlecasing strings, a word with an initial glottal stop may have
its second letter uppercased instead of the first letter.

In a small number of orthographies for languages of northwestern Canada, and in particu-
lar, for Chipewyan, Dogrib, and Slavey, case pairs have been introduced for glottal stop. For
these orthographies, the cased glottal stop characters should be used: U+0241 ? LATIN CAP-
ITAL LETTER GLOTTAL STOP and U+0242 2 LATIN SMALL LETTER GLOTTAL STOP.

The glyphs for the glottal stop are somewhat variable and overlap to a certain extent. The
glyph shown in the code charts for U+0294 ? LATIN LETTER GLOTTAL STOP is a cap-height
form as specified in IPA, but the same character is often shown with a glyph that resembles
the top half of a question mark and that may or may not be cap height. U+0241 ? LaTIN
CAPITAL LETTER GLOTTAL STOP, while shown with a larger glyph in the code charts, often
appears identical to U+0294. U+0242 2 LATIN SMALL LETTER GLOTTAL STOP is a small form
of U+0241.

Various small, raised hook- or comma-shaped characters are often substituted for a glottal
stop—for instance, U+02BC * MODIFIER LETTER APOSTROPHE, U+02BB ¢ MODIFIER LETTER
TURNED COMMA, U+02C0 ? MODIFIER LETTER GLOTTAL STOP, or U+02BE ° MODIFIER LET-
TER RIGHT HALF RING. U+02BB, in particular, is used in Hawaiian orthography as the
‘okina.

IPA Extensions: U+0250-U+02AF

The IPA Extensions block contains primarily the unique symbols of the International Pho-
netic Alphabet, which is a standard system for indicating specific speech sounds. The IPA
was first introduced in 1886 and has undergone occasional revisions of content and usage
since that time. The Unicode Standard covers all single symbols and all diacritics in the last
published IPA revision (1999) as well as a few symbols in former IPA usage that are no lon-
ger currently sanctioned. A few symbols have been added to this block that are part of the
transcriptional practices of Sinologists, Americanists, and other linguists. Some of these
practices have usages independent of the IPA and may use characters from other Latin
blocks rather than IPA forms. Note also that a few nonstandard or obsolete phonetic sym-
bols are encoded in the Latin Extended-B block.

An essential feature of IPA is the use of combining diacritical marks. IPA diacritical mark
characters are coded in the Combining Diacritical Marks block, U+0300..U+036F. In IPA,
diacritical marks can be freely applied to base form letters to indicate the fine degrees of
phonetic differentiation required for precise recording of different languages.

Standards. The International Phonetic Association standard considers IPA to be a separate
alphabet, so it includes the entire Latin lowercase alphabet a—z, a number of extended Latin
letters such as U+0153 ce LATIN SMALL LIGATURE OE, and a few Greek letters and other sym-
bols as separate and distinct characters. In contrast, the Unicode Standard does not dupli-
cate either the Latin lowercase letters a—z or other Latin or Greek letters in encoding IPA.
Unlike other character standards referenced by the Unicode Standard, IPA constitutes an

Europe-1 301 7.1 Latin

extended alphabet and phonetic transcriptional standard, rather than a character encoding
standard.

Unifications. The IPA characters are unified as much as possible with other letters, albeit
not with nonletter symbols such as U+222B | INTEGRAL. The IPA characters have also
been adopted into the Latin-based alphabets of many written languages, such as some used
in Africa. It is futile to attempt to distinguish a transcription from an actual alphabet in
such cases. Therefore, many IPA characters are found outside the IPA Extensions block. IPA
characters that are not found in the IPA Extensions block are listed as cross references at the
beginning of the character names list for this block.

IPA Alternates. In a few cases IPA practice has, over time, produced alternate forms, such

as U+0269 LATIN SMALL LETTER IO0TA “1” versus U+026A LATIN LETTER SMALL CAPITAL I
«w_»

1. The Unicode Standard provides separate encodings for the two forms because they are
used in a meaningfully distinct fashion.

Case Pairs. IPA does not sanction case distinctions; in effect, its phonetic symbols are all
lowercase. When IPA symbols are adopted into a particular alphabet and used by a given
written language (as has occurred, for example, in Africa), they acquire uppercase forms.
Because these uppercase forms are not themselves IPA symbols, they are generally encoded
in the Latin Extended-B block (or other Latin extension blocks) and are cross-referenced
with the IPA names list.

Typographic Variants. IPA includes typographic variants of certain Latin and Greek letters
that would ordinarily be considered variations of font style rather than of character iden-
tity, such as sMALL CAPITAL letterforms. Examples include a typographic variant of the
Greek letter phi ¢ and the borrowed letter Greek iota 1, which has a unique Latin uppercase
form. These forms are encoded as separate characters in the Unicode Standard because
they have distinct semantics in plain text.

Affricate Digraph Ligatures. IPA officially sanctions six digraph ligatures used in tran-
scription of coronal affricates. These are encoded at U+02A3..U+02A8. The IPA digraph
ligatures are explicitly defined in IPA and have possible semantic values that make them not
simply rendering forms. For example, while U+02A6 LATIN SMALL LETTER TS DIGRAPH is a
transcription for the sounds that could also be transcribed in IPA as “ts” <U+0074,
U+0073>, the choice of the digraph ligature may be the result of a deliberate distinction
made by the transcriber regarding the systematic phonetic status of the affricate. The
choice of whether to ligate cannot be left to rendering software based on the font available.
This ligature also differs in typographical design from the “ts” ligature found in some old-
style fonts.

Arrangement. The IPA Extensions block is arranged in approximate alphabetical order
according to the Latin letter that is graphically most similar to each symbol. This order has
nothing to do with a phonetic arrangement of the IPA letters.

Europe-1 302 7.1 Latin

Phonetic Extensions: U+1D00-U+1DBF

Most of the characters in the first of the two adjacent blocks comprising the phonetic
extensions are used in the Uralic Phonetic Alphabet (UPA; also called Finno-Ugric Tran-
scription, FUT), a highly specialized system that has been used by Uralicists globally for
more than 100 years. Originally, it was chiefly used in Finland, Hungary, Estonia, Germany,
Norway, Sweden, and Russia, but it is now known and used worldwide, including in North
America and Japan. Uralic linguistic description, which treats the phonetics, phonology,
and etymology of Uralic languages, is also used by other branches of linguistics, such as
Indo-European, Turkic, and Altaic studies, as well as by other sciences, such as archaeology.

A very large body of descriptive texts, grammars, dictionaries, and chrestomathies exists,
and continues to be produced, using this system.

The UPA makes use of approximately 258 characters, some of which are encoded in the
Phonetic Extensions block; others are encoded in the other Latin blocks and in the Greek
and Cyrillic blocks. The UPA takes full advantage of combining characters. It is not uncom-
mon to find a base letter with three diacritics above and two below.

Typographic Features of the UPA. Small capitalization in the UPA means voicelessness of a
normally voiced sound. Small capitalization is also used to indicate certain either voiceless
or half-voiced consonants. Superscripting indicates very short schwa vowels or transition
vowels, or in general very short sounds. Subscripting indicates co-articulation caused by
the preceding or following sound. Rotation (turned letters) indicates reduction; sideways
(that is, 90 degrees counterclockwise) rotation is used where turning (180 degrees) might
result in an ambiguous representation.

UPA phonetic material is generally represented with italic glyphs, so as to separate it from
the surrounding text.

Other Phonetic Extensions. The remaining characters in the phonetics extension range
U+1D6C..U+1DBF are derived from a wide variety of sources, including many technical
orthographies developed by SIL linguists, as well as older historic sources.

All attested phonetic characters showing struckthrough tildes, struckthrough bars, and ret-
roflex or palatal hooks attached to the basic letter have been separately encoded here.
Although separate combining marks exist in the Unicode Standard for overstruck diacritics
and attached retroflex or palatal hooks, earlier encoded IPA letters such as U+0268 LATIN
SMALL LETTER I WITH STROKE and U+026D LATIN SMALL LETTER L WITH RETROFLEX HOOK
have never been given decomposition mappings in the standard. For consistency, all newly
encoded characters are handled analogously to the existing, more common characters of
this type and are not given decomposition mappings. Because these characters do not have
decompositions, they require special handling in some circumstances. See the discussion of
single-script confusables in Unicode Technical Standard #39, “Unicode Security Mecha-
nisms.

The Phonetic Extensions Supplement block also contains 37 superscript modifier letters.
These complement the much more commonly used superscript modifier letters found in
the Spacing Modifier Letters block.

Europe-1 303 7.1 Latin

U+1D77 LATIN SMALL LETTER TURNED G and U+1D78 MODIFIER LETTER CYRILLIC EN are
used in Caucasian linguistics. U+1D79 LATIN SMALL LETTER INSULAR G is used in older
Irish phonetic notation. It is to be distinguished from a Gaelic style glyph for U+0067
LATIN SMALL LETTER G.

Digraph for th. U+1D7A LATIN SMALL LETTER TH WITH STRIKETHROUGH is a digraphic
notation commonly found in some English-language dictionaries, representing the voice-
less (inter)dental fricative, as in thin. While this character is clearly a digraph, the obliga-
tory strikethrough across two letters distinguishes it from a “th” digraph per se, and there is
no mechanism involving combining marks that can easily be used to represent it. A com-
mon alternative glyphic form for U+1D7A uses a horizontal bar to strike through the two
letters, instead of a diagonal stroke.

Latin Extended Additional: U+1E00-U+1EFF

The characters in this block are mostly precomposed combinations of Latin letters with
one or more general diacritical marks. With the exception of U+1E9A LATIN SMALL LETTER
A WITH RIGHT HALF RING, each of the precomposed characters contained in this block is a
canonical decomposable character and may alternatively be represented with a base letter
followed by one or more general diacritical mark characters found in the Combining Dia-
critical Marks block.

The non-decomposable characters in this block, particularly in the range
U+1EFA..U+1EFF, are mostly specialized letters used in Latin medieval manuscript tradi-
tions. These characters complement the larger set of medieval manuscript characters
encoded in the Latin Extended-D block.

Capital Sharp S. U+1E9E LATIN CAPITAL LETTER SHARP S is for use in German. It is limited
to specialized circumstances, such as uppercased strings in shop signage and book titles.
The casing behavior of this character is unusual, as the recommended uppercase form for
most casing operations on U+00DF 3 LATIN SMALL LETTER SHARP S continues to be “SS”.
See the discussion of tailored casing in Section 3.13, Default Case Algorithms, for more
about the casing of this character.

Vietnamese Vowel Plus Tone Mark Combinations. A portion of this block (U+1EAO..
U+1EF9) comprises vowel letters of the modern Vietnamese alphabet (qudc ngiz) com-
bined with a diacritical mark that denotes the phonemic tone that applies to the syllable.

Latin Extended-C: U+2C60-U+2C7F

This small block of additional Latin characters contains orthographic Latin additions for
minority languages, a few historic Latin letters, and further extensions for phonetic nota-
tions, particularly UPA.

Uyghur. The Latin orthography for the Uyghur language was influenced by widespread
conventions for extension of the Cyrillic script for representing Central Asian languages. In
particular, a number of Latin characters were extended with a Cyrillic-style descender dia-
critic to create new letters for use with Uyghur.

Europe-1 304 7.1 Latin

Claudian Letters. The Roman emperor Claudius invented three additional letters for use
with the Latin script. Those letters saw limited usage during his reign, but were abandoned
soon afterward. The half h letter is encoded in this block. The other two letters are encoded
in other blocks: U+2132 TURNED CAPITAL F and U+2183 ROMAN NUMERAL REVERSED ONE
HUNDRED (unified with the Claudian letter reversed c¢). Claudian letters in inscriptions are
uppercase only, but may be transcribed by scholars in lowercase.

Latin Extended-D: U+A720-U+A7FF

This block contains a variety of historic letters for the Latin script and other uncommon
phonetic and orthographic extensions to the script.

Egyptological Transliteration. The letters in the range U+A722..U+A725 are specialized
letters used for the Latin transliteration of alef and ain in ancient Egyptian texts. Their
forms are related to the modifier letter half rings (U+02BE..U+02BF) which are sometimes
used in Latin transliteration of Arabic.

Historic Mayan Letters. The letters in the range U+A726..U+A72F are obsolete historic
letters seen only in a few early Spanish manuscripts of Mayan languages. They are not used
in modern Mayan orthographies.

European Medievalist Letters. The letters in the range U+A730..U+A778 occur in a variety
of European medievalist manuscript traditions. None of these have any modern ortho-
graphic usage. A number of these letterforms constitute abbreviations, often for common
Latin particles or suffixes.

Insular and Celticist Letters. The Insular manuscript tradition was current in Anglo-
Saxon England and Gaelic Ireland throughout the early Middle Ages. The letters d, f, g, 1, s,
and t had unique shapes in that tradition, different from the Carolingian letters used in the
modern Latin script. Although these letters can be considered variant forms of ordinary
Latin letters, they are separately encoded because of their use by antiquarian Edward Lhuyd
in his 1707 work Archeeologia Britannica, which described the Late Cornish language in a
phonetic alphabet using these Insular characters. Other specialists may make use of these
letters contrastively in Old English or Irish manuscript contexts or in secondary material
discussing such manuscripts.

Orthographic Letter Additions. The letters and modifier letters in the range
U+A788..U+A78C occur in modern orthographies of a few small languages of Africa, Mex-
ico, and New Guinea. Several of these characters were based on punctuation characters
originally, so their shapes are confusingly similar to ordinary ASCII punctuation. Because
of this potential confusion, their use is not generally recommended outside the specific
context of the few orthographies already incorporating them.

Sinological Dot. U+A78F LATIN LETTER SINOLOGICAL DOT is a middle dot used in the sino-
logical tradition to represent a glottal stop. This convention of representing a glottal stop
with a middle dot was introduced by Bernhard Karlgren in the early 20th century for Mid-
dle Chinese reconstructions, and was adopted by other influential sinologists and Tang-
utologists. This dot is also used in Latin transliterations of Phags-pa text.

Europe-1 305 7.1 Latin

The representative glyph for U+A78F is larger than a typical middle dot used as punctua-
tion, to avoid visual confusion with U+00B7 MIDDLE DOT. Use of the sinological dot should
be limited to the appropriate scholarly contexts; it is not intended as a letter substitution for
other functions of U+00B7 MIDDLE DOT.

Latvian Letters. The letters with strokes in the range U+A7A0..U+A7A9 are for use in the
pre-1921 orthography of Latvian. During the 19th century and early 20th century, Latvian
was usually typeset in a Fraktur typeface. Because Fraktur typefaces do not work well with
detached diacritical marks, the extra letters required for Latvian were formed instead with
overstruck bars. The new orthography introduced in 1921 replaced these letters with the
current Latvian letters with cedilla diacritics. The barred s letters were also used in Fraktur
representation of Lower Sorbian until about 1950.

Ancient Roman Epigraphic Letters. There are a small number of additional Latin epi-
graphic letters known from Ancient Roman inscriptions. These letters only occurred as
monumental capitals in the inscriptions, and were not part of the regular Latin alphabet
which later developed case distinctions.

Latin Extended-E: U+AB30-U+ABG6F

This block contains a number of Latin letters and modifier letters for phonetic transcrip-
tion systems. The majority of these are letters specifically associated with the Bohmer-
Ascoli transcription system, more generally known as “Teuthonista.” The Teuthonista sys-
tem was extensively used in the 20th century to transcribe Germanic dialects. Teuthonista
or closely related systems were also used in Switzerland and Italy to transcribe Romance
dialects. For related characters, see the Combining Diacritical Marks Extended block,
which contains a number of specialized combining diacritics for use in Teuthonista.

The Latin Extended-E block also contains a few rarely used letters from other transcription
systems.

Latin Ligatures: U+FB00-U+FB06

This range in the Alphabetic Presentation Forms block (U+FB00..U+FB4F) contains sev-
eral common Latin ligatures, which occur in legacy encodings. Whether to use a Latin liga-
ture is a matter of typographical style as well as a result of the orthographical rules of the
language. Some languages prohibit ligatures across word boundaries. In these cases, it is
preferable for the implementations to use unligated characters in the backing store and
provide out-of-band information to the display layer where ligatures may be placed.

Some format controls in the Unicode Standard can affect the formation of ligatures. See
“Cursive Connection and Ligatures” in Section 23.2, Layout Controls.

Europe-1 306 7.2 Greek

7.2 Greek

Greek: U+0370-U+03FF

The Greek script is used for writing the Greek language. The Greek script had a strong
influence on the development of the Latin, Cyrillic, and Coptic scripts.

The Greek script is written in linear sequence from left to right with the frequent use of
nonspacing marks. There are two styles of such use: monotonic, which uses a single mark
called tonos, and polytonic, which uses multiple marks. Greek letters come in uppercase
and lowercase pairs. Spaces are used to separate words and provide the primary line break-
ing opportunities. Archaic Greek texts do not use spaces.

Standards. The Unicode encoding of Greek is based on ISO/IEC 8859-7, which is equiva-
lent to the Greek national standard ELOT 928, designed for monotonic Greek. A number of
variant and archaic characters are taken from the bibliographic standard ISO 5428.

Polytonic Greek. Polytonic Greek, used for ancient Greek (classical and Byzantine) and
occasionally for modern Greek, may be encoded using either combining character
sequences or precomposed base plus diacritic combinations. For the latter, see the follow-
ing subsection, “Greek Extended: U+1F00-U+1FFE”

Nonspacing Marks. Several nonspacing marks commonly used with the Greek script are
found in the Combining Diacritical Marks range (see Table 7-2).

Table 7-2. Nonspacing Marks Used with Greek

Code | Name Alternative Names
U+0300 |COMBINING GRAVE ACCENT varia
U+0301 |COMBINING ACUTE ACCENT tonos, oxia

U+0304 |COMBINING MACRON

U+0306 |COMBINING BREVE

U+0308 | COMBINING DIAERESIS dialytika

U+0313 |COMBINING COMMA ABOVE psili, smooth breathing mark
U+0314 | COMBINING REVERSED COMMA ABOVE dasia, rough breathing mark
U+0342 |COMBINING GREEK PERISPOMENI circumflex, tilde, inverted breve
U+0343 | COMBINING GREEK KORONIS comma above

U+0345 |COMBINING GREEK YPOGEGRAMMENI iota subscript

Because the characters in the Combining Diacritical Marks block are encoded by shape, not
by meaning, they are appropriate for use in Greek where applicable. The character U+0344
COMBINING GREEK DIALYTIKA TONOS should not be used. The combination of dialytika
plus tonos is instead represented by the sequence <U+0308 COMBINING DIAERESIS, U+0301
COMBINING ACUTE ACCENT>.

Europe-1 307 7.2 Greek

Multiple nonspacing marks applied to the same baseform character are encoded in inside-
out sequence. See the general rules for applying nonspacing marks in Section 2.11, Combin-
ing Characters.

The basic Greek accent written in modern Greek is called tonos. It is represented by an
acute accent (U+0301). The shape that the acute accent takes over Greek letters is generally
steeper than that shown over Latin letters in Western European typographic traditions, and
in earlier editions of this standard was mistakenly shown as a vertical line over the vowel.
Polytonic Greek has several contrastive accents, and the accent, or tonos, written with an
acute accent is referred to as oxia, in contrast to the varia, which is written with a grave
accent.

U+0342 COMBINING GREEK PERISPOMENI may appear as a circumflex %, an inverted breve
&, a tilde 7, or occasionally a macron Z. Because of this variation in form, the perispomeni
was encoded distinctly from U+0303 COMBINING TILDE.

U+0313 COMBINING COMMA ABOVE and U+0343 COMBINING GREEK KORONIS both take the
form of a raised comma over a baseform letter. U+0343 COMBINING GREEK KORONIS was
included for compatibility reasons; U+0313 COMBINING COMMA ABOVE is the preferred
form for general use. Greek uses guillemets for quotation marks; for Ancient Greek, the
quotations tend to follow local publishing practice. Because of the possibility of confusion
between smooth breathing marks and curly single quotation marks, the latter are best
avoided where possible. When either breathing mark is followed by an acute or grave
accent, the pair is rendered side-by-side rather than vertically stacked.

Accents are typically written above their base letter in an all-lowercase or all-uppercase
word; they may also be omitted from an all-uppercase word. However, in a titlecase word,
accents applied to the first letter are commonly written to the left of that letter. This is a
matter of presentation only—the internal representation is still the base letter followed by
the combining marks. It is not the stand-alone version of the accents, which occur before
the base letter in the text stream.

Iota. The nonspacing mark ypogegrammeni (also known as iota subscript in English) can be
applied to the vowels alpha, eta, and omega to represent historic diphthongs. This mark
appears as a small iota below the vowel. When applied to a single uppercase vowel, the iota
does not appear as a subscript, but is instead normally rendered as a regular lowercase iota
to the right of the uppercase vowel. This form of the iota is called prosgegrammeni (also
known as iota adscript in English). In completely uppercased words, the iota subscript
should be replaced by a capital iota following the vowel. Precomposed characters that con-
tain iota subscript or iota adscript also have special mappings. (See Section 5.18, Case Map-
pings.) Archaic representations of Greek words, which did not have lowercase or accents,
use the Greek capital letter iota following the vowel for these diphthongs. Such archaic rep-
resentations require special case mapping, which may not be automatically derivable.

Variant Letterforms. U+03A5 GREEK CAPITAL LETTER UPSILON has two common forms:
one looks essentially like the Latin capital Y, and the other has two symmetric upper
branches that curl like rams’ horns, “I”. The Y-form glyph has been chosen consistently for
use in the code charts, both for monotonic and polytonic Greek. For mathematical usage,

Europe-1 308 7.2 Greek

the rams’” horn form of the glyph is required to distinguish it from the Latin Y. A third form
is also encoded as U+03D2 GREEK UPSILON WITH HOOK SYMBOL (see Figure 7-4). The pre-
composed characters U+03D3 GREEK UPSILON WITH ACUTE AND HOOK SYMBOL and
U+03D4 GREEK UPSILON WITH DIAERESIS AND HOOK SYMBOL should not normally be
needed, except where necessary for backward compatibility for legacy character sets.

Figure 7-4. Variations in Greek Capital Letter Upsilon

YTT

Variant forms of several other Greek letters are encoded as separate characters in this block.
Often (but not always), they represent different forms taken on by the character when it
appears in the final position of a word. Examples include U+03C2 GREEK SMALL LETTER
FINAL SIGMA used in a final position and U+03D0 GREEK BETA SYMBOL, which is the form
that U+03B2 GREEK SMALL LETTER BETA would take on in a medial or final position.

Of these variant letterforms, only final sigma should be used in encoding standard Greek
text to indicate a final sigma. It is also encoded in ISO/IEC 8859-7 and ISO 5428 for this
purpose. Because use of the final sigma is a matter of spelling convention, software should
not automatically substitute a final form for a nominal form at the end of a word. However,
when performing lowercasing, the final form needs to be generated based on the context.
See Section 3.13, Default Case Algorithms.

In contrast, U+03D0 GREEK BETA SYMBOL, U+03D1 GREEK THETA symMBoL, U+03D2
GREEK UPSILON WITH HOOK SYMBOL, U+03D5 GREEK PHI SYMBOL, U+03F0 GREEK KAPPA
symBoL, U+03F1 GREEK RHO SYMBOL, U+03F4 GREEK CAPITAL THETA SYMBOL, U+03F5
GREEK LUNATE EPSILON SYMBOL, and U+03F6 GREEK REVERSED LUNATE EPSILON SYMBOL
should be used only in mathematical formulas—never in Greek text. If positional or other
shape differences are desired for these characters, they should be implemented by a font or
rendering engine.

Representative Glyphs for Greek Phi. Starting with The Unicode Standard, Version 3.0, and
the concurrent second edition of ISO/IEC 10646-1, the representative glyphs for U+03C6
© GREEK SMALL LETTER PHI and U+03D5 ¢ GREEK PHI SYMBOL were swapped compared to
earlier versions. In ordinary Greek text, the character U+03C6 is used exclusively, although
this character has considerable glyphic variation, sometimes represented with a glyph more
like the representative glyph shown for U+03C6 ¢ (the “loopy” form) and less often with a
glyph more like the representative glyph shown for U+03D5 ¢ (the “straight” form).

For mathematical and technical use, the straight form of the small phi is an important sym-
bol and needs to be consistently distinguishable from the loopy form. The straight-form
phi glyph is used as the representative glyph for the symbol phi at U+03D5 to satisfy this
distinction.

The representative glyphs were reversed in versions of the Unicode Standard prior to Uni-
code 3.0. This resulted in the problem that the character explicitly identified as the mathe-

Europe-1 309 7.2 Greek

matical symbol did not have the straight form of the character that is the preferred glyph
for that use. Furthermore, it made it unnecessarily difficult for general-purpose fonts sup-
porting ordinary Greek text to add support for Greek letters used as mathematical symbols.
This resulted from the fact that many of those fonts already used the loopy-form glyph for
U+03C6, as preferred for Greek body text; to support the phi symbol as well, they would
have had to disrupt glyph choices already optimized for Greek text.

When mapping symbol sets or SGML entities to the Unicode Standard, it is important to
make sure that codes or entities that require the straight form of the phi symbol be mapped
to U+03D5 and not to U+03C6. Mapping to the latter should be reserved for codes or enti-
ties that represent the small phi as used in ordinary Greek text.

Fonts used primarily for Greek text may use either glyph form for U+03C6, but fonts that
also intend to support technical use of the Greek letters should use the loopy form to
ensure appropriate contrast with the straight form used for U+03D5.

Greek Letters as Symbols. The use of Greek letters for mathematical variables and opera-
tors is well established. Characters from the Greek block may be used for these symbols.

For compatibility purposes, a few Greek letters are separately encoded as symbols in other
character blocks. Examples include U+00B5 L M1cRro SIGN in the Latin-1 Supplement char-
acter block and U+2126 Q ouwMm siGN in the Letterlike Symbols character block. The ohm
sign is canonically equivalent to the capital omega, and normalization would remove any
distinction. Its use is therefore discouraged in favor of capital omega. The same equivalence
does not exist between micro sign and mu, and use of either character as a micro sign is
common. For Greek text, only the mu should be used.

Symbols Versus Numbers. The characters stigma, koppa, and sampi are used only as
numerals, whereas archaic koppa and digamma are used only as letters.

Compatibility Punctuation. Two specific modern Greek punctuation marks are encoded
in the Greek and Coptic block: U+037E “;” GREEK QUESTION MARK and U+0387 “” GREEK
ANO TELEIA. The Greek question mark (or erotimatiko) has the shape of a semicolon, but
functions as a question mark in the Greek script. The ano teleia has the shape of a middle
dot, but functions as a semicolon in the Greek script.

These two compatibility punctuation characters have canonical equivalences to U+003B
semicoLoN and U+00B7 MIDDLE DoT, respectively; as a result, normalized Greek text will
lose any distinctions between the Greek compatibility punctuation characters and the com-
mon punctuation marks. Furthermore, ISO/IEC 8859-7 and most vendor code pages for
Greek simply make use of semicolon and middle dot for the punctuation in question.
Therefore, use of U+037E and U+0387 is not necessary for interoperating with legacy
Greek data, and their use is not generally encouraged for representation of Greek punctua-
tion.

Historic Letters. Historic Greek letters have been retained from ISO 5428.

Coptic-Unique Letters. In the Unicode Standard prior to Version 4.1, the Coptic script was
regarded primarily as a stylistic variant of the Greek alphabet. The letters unique to Coptic

Europe-1 310 7.2 Greek

were encoded in a separate range at the end of the Greek character block. Those characters
were to be used together with the basic Greek characters to represent the complete Coptic
alphabet. Coptic text was supposed to be rendered with a font using the Coptic style of
depicting the characters it shared with the Greek alphabet. Texts that mixed Greek and
Coptic languages using that encoding model could be rendered only by associating an
appropriate font by language.

The Unicode Technical Committee and ISO/IEC JTC1/SC2 determined that Coptic is bet-
ter handled as a separate script. Starting with Unicode 4.1, a new Coptic block added all the
letters formerly unified with Greek characters as separate Coptic characters. (See
Section 7.3, Coptic.) Implementations that supported Coptic under the previous encoding
model may, therefore, need to be modified. Coptic fonts may need to continue to support
the display of both the Coptic and corresponding Greek character with the same shape to
facilitate their use with older documents.

Related Characters. For math symbols, see Section 22.5, Mathematical Symbols. For addi-
tional punctuation to be used with this script, see CO Controls and ASCII Punctuation
(U+0000..U+007F).

Greek Extended: U+1F00-U+1FFF

The characters in this block constitute a number of precomposed combinations of Greek
letters with one or more general diacritical marks; in addition, a number of spacing forms
of Greek diacritical marks are provided here. In particular, these characters can be used for
the representation of polytonic Greek texts without the use of combining marks. Because
they do not cover all possible combinations in use, some combining character sequences
may be required for a given text.

Each of the letters contained in this block may be alternatively represented with a base letter
from the Greek block followed by one or more general diacritical mark characters found in
the Combining Diacritical Marks block.

Spacing Diacritics. Sixteen additional spacing diacritical marks are provided in this char-
acter block for use in the representation of polytonic Greek texts. Each has an alternative
representation for use with systems that support nonspacing marks. The nonspacing alter-
natives appear in Table 7-3. The spacing forms are meant for keyboards and pedagogical
use and are not to be used in the representation of titlecase words. The compatibility
decompositions of these spacing forms consist of the sequence U+0020 spack followed by
the nonspacing form equivalents shown in Table 7-3.

Europe-1 311 7.2 Greek

Table 7-3. Greek Spacing and Nonspacing Pairs

Spacing Form Nonspacing Form

1FBD GREEK KORONIS 0313 COMBINING COMMA ABOVE

037A GREEK YPOGEGRAMMENT 0345 COMBINING GREEK YPOGEGRAMMENI
1FBF GREEK PSILI 0313 COMBINING COMMA ABOVE

1FCO GREEK PERISPOMENI 0342 COMBINING GREEK PERISPOMENI

0308 COMBINING DIAERESIS

1FC1 GREEK DIALYTIKA AND PERISPOMENI
+ 0342 COMBINING GREEK PERISPOMENI

0313 COMBINING COMMA ABOVE

1FCD GREEK PSILI AND VARIA
+ 0300 COMBINING GRAVE ACCENT

0313 COMBINING COMMA ABOVE

1FCE GREEK PSILI AND OXIA
+ 0301 COMBINING ACUTE ACCENT

0313 COMBINING COMMA ABOVE

1FCF GREEK PSILI AND PERISPOMENI
+ 0342 COMBINING GREEK PERISPOMENI

0314 COMBINING REVERSED COMMA ABOVE

1FDD GREEK DASIA AND VARIA
+ 0300 COMBINING GRAVE ACCENT

0314 COMBINING REVERSED COMMA ABOVE

1FDE GREEK DASIA AND OXIA
+ 0301 COMBINING ACUTE ACCENT

0314 COMBINING REVERSED COMMA ABOVE

1FDF GREEK DASIA AND PERISPOMENI
+ 0342 COMBINING GREEK PERISPOMENI

0308 COMBINING DIAERESIS

1FED GREEK DIALYTIKA AND VARIA
+ 0300 COMBINING GRAVE ACCENT

0308 COMBINING DIAERESIS

1FEE GREEK DIALYTIKA AND OXIA
+ 0301 COMBINING ACUTE ACCENT

1FEF GREEK VARIA 0300 COMBINING GRAVE ACCENT
1FFD GREEK OXIA 0301 COMBINING ACUTE ACCENT
1FFE GREEK DASIA 0314 COMBINING REVERSED COMMA ABOVE

Ancient Greek Numbers: U+10140-U+1018F

Ancient Greeks primarily used letters of the Greek alphabet to represent numbers. How-
ever, some extensions to this usage required quite a few nonalphabetic symbols or symbols
derived from letters. Those symbols are encoded in the Ancient Greek Numbers block.

Acrophonic Numerals. Greek acrophonic numerals are found primarily in ancient inscrip-
tions from Attica and other Greek regions. Acrophonic means that the character used to
represent each number is the initial letter of the word by which the number is called—for
instance, H for “HEcATON” = 100.

The Attic acrophonic system, named for the greater geographic area that includes the city
of Athens, is the most common and well documented. The characters in the Ancient Greek
Numbers block cover the Attic acrophonic numeral system as well as non-Attic characters
that cannot be considered glyph variants of the Attic acrophonic repertoire. They are the
standard symbols used to represent weight or cost, and they appear consistently in modern

Europe-1 312 7.2 Greek

editions and scholarly studies of Greek inscriptions. Uppercase Greek letters from the
Greek block are also used for acrophonic numerals.

The Greek acrophonic number system is similar to the Roman one in that it does not use
decimal position, does not require a placeholder for zero, and has special symbols for 5, 50,
500, and so on. The system is language specific because of the acrophonic principle. In
some cases the same symbol represents different values in different geographic regions. The
symbols are also differentiated by the unit of measurement—for example, talents versus
staters.

Other Numerical Symbols. Other numerical symbols encoded in the range
U+10175..U+1018A appear in a large number of ancient papyri. The standard symbols
used for the representation of numbers, fractions, weights, and measures, they have consis-
tently been used in modern editions of Greek papyri as well as various publications related
to the study and interpretation of ancient documents. Several of these characters have con-
siderable glyphic variation. Some of these glyph variants are similar in appearance to other
characters.

Symbol for Zero. U+1018A GREEK ZERO SIGN occurs whenever a sexagesimal notation is
used in historical astronomical texts to record degrees, minutes and seconds, or hours,
minutes and seconds. The most common form of zero in the papyri is a small circle with a
horizontal stroke above it, but many variations exist. These are taken to be scribal varia-
tions and are considered glyph variants.

Europe-1 313 7.3 Coptic

7.3 Coptic

Coptic: U+2C80-U+2CFF

The Coptic script is the final stage in the development of the Egyptian writing system. Cop-
tic was subject to strong Greek influences because Greek was more identified with the
Christian tradition, and the written demotic Egyptian no longer matched the spoken lan-
guage. The Coptic script was based on the Greek uncial alphabets with several Coptic addi-
tional letters unique to Coptic. The Coptic language died out in the fourteenth century, but
it is maintained as a liturgical language by Coptic Christians. Coptic is written from left to
right in linear sequence; in modern use, spaces are used to separate words and provide the
primary line breaking opportunities.

Prior to Version 4.1, the Unicode Standard treated Coptic as a stylistic variant of Greek.
Seven letters unique to Coptic (14 characters with the case pairs) were encoded in the
Greek and Coptic block. In addition to these 14 characters, Version 4.1 added a Coptic
block containing the remaining characters needed for basic Coptic text processing. This
block also includes standard logotypes used in Coptic text as well as characters for Old
Coptic and Nubian.

Development of the Coptic Script. The best-known Coptic dialects are Sahidic and
Bohairic. Coptic scholarship recognizes a number of other dialects that use additional
characters. The repertoires of Sahidic and Bohairic reflect efforts to standardize the writing
of Coptic, but attempts to write the Egyptian language with the Greek script preceded that
standardization by several centuries. During the initial period of writing, a number of dif-
ferent solutions to the problem of representing non-Greek sounds were made, mostly by
borrowing letters from Demotic writing. These early efforts are grouped by Copticists
under the general heading of Old Coptic.

Casing. Coptic is considered a bicameral script. Historically, it was caseless, but it has
acquired case through the typographic developments of the last centuries. Already in Old
Coptic manuscripts, letters could be written larger, particularly at the beginning of para-
graphs, although the capital letters tend to have the most distinctive shapes in the Bohairic
tradition. To facilitate scholarly and other modern casing operations, Coptic has been
encoded as a bicameral script, including uniquely Old Coptic characters.

Font Styles. Bohairic Coptic uses only a subset of the letters in the Coptic repertoire. It also
uses a font style distinct from that for Sahidic. Prior to Version 5.0, the Coptic letters
derived from Demotic, encoded in the range U+03E2..U+03EF in the Greek and Coptic
block, were shown in the code charts in a Bohairic font style. Starting from Version 5.0, all
Coptic letters in the standard, including those in the range U+03E2..U+03EF, are shown in
the code charts in a Sahidic font style, instead.

Characters for Cryptogrammic Use. U+2CB7 COPTIC SMALL LETTER CRYPTOGRAMMIC EIE
and U+2CBD cOPTIC SMALL LETTER CRYPTOGRAMMIC NI are characters for cryptogram-
mic use. A common Coptic substitution alphabet that was used to encrypt texts had the
disadvantageous feature whereby three of the letters (eie, ni, and fi) were substituted by

Europe-1 314 7.3 Coptic

themselves. However, because eie and ni are two of the highest-frequency characters in
Coptic, Copts felt that the encryption was not strong enough, so they replaced those letters
with these cryptogrammic ones. Two additional cryptogrammic letters in less frequent use
are also encoded: U+2CEC COPTIC SMALL LETTER CRYPTOGRAMMIC SHEI and U+2CEE
COPTIC SMALL LETTER CRYPTOGRAMMIC GANGIA. Copticists preserve these letter substitu-
tions in modern editions of these encrypted texts and do not consider them to be glyph
variants of the original letters.

U+2CCO COPTIC CAPITAL LETTER SAMPI has a numeric value of 900 and corresponds to
U+03E0 GREEK LETTER SAMPI. It is not found in abecedaria, but is used in cryptogrammic
contexts as a letter.

Crossed Shei. U+2CC3 (D copPTIC SMALL LETTER CROSSED SHEI is found in Dialect I of Old
Coptic, where it represents a sound /¢/. It is found alongside U+03E3 (1 COPTIC SMALL LET-
TER SHEI, which represents /[/. The diacritic is not productive.

Supralineation. In Coptic texts, a line is often drawn across the top of two or more charac-
ters in a row. There are two distinct conventions for this supralineation, each of which is
represented by different sequences of combining marks.

The first of these is a convention for abbreviation, in which words are shortened by removal
of certain letters. A line is then drawn across the tops of all of the remaining letters, extend-
ing from the beginning of the first to the end of the last letter of the abbreviated form. This
convention is represented by following each character of the abbreviated form with
U+0305 coMBINING OVERLINE. When rendered together, these combining overlines should
connect into a continuous line.

The other convention is to distinguish the spelling of certain common words or to high-
light proper names of divinities and heroes—a convention related to the use of cartouches
in hieroglyphic Egyptian. In this case the supralineation extends from the middle of the first
character in the sequence to the middle of the last character in the sequence. Instead of
using U+0305 COMBINING OVERLINE for the entire sequence, one uses U+FE24 COMBINING
MACRON LEFT HALF after the first character, U+FE25 COMBINING MACRON RIGHT HALF after
the last character, and U+FE26 COMBINING CONJOINING MACRON after any intervening
characters. This gives the effect of a line starting and ending in the middle of letters, rather
than at their edges.

Combining Diacritical Marks. Bohairic text uses a mark called jinkim to represent syllabic
consonants, which is indicated by either U+0307 cOMBINING DOT ABOVE or U+0300 com-
BINING GRAVE ACCENT. Other dialects, including Sahidic, use U+0304 COMBINING MACRON
for the same purpose. A number of other generic diacritical marks are used with Coptic.

U+2CEF copTIC COMBINING NI above is a script-specific combining mark, typically used at
the end of a line to indicate a final ni after a vowel. In rendering, this mark typically hangs
over the space to the right of its base character.

The characters U+2CF0 coPTIC COMBINING SPIRITUS ASPER and U+2CF1 COPTIC COMBIN-
ING SPIRITUS LENIS are analogues of the Greek breathing marks. They are used rarely in
Coptic. When used, they typically occur over the letter U+2C8F COPTIC SMALL LETTER

Europe-1 315 7.3 Coptic

HATE, sometimes to indicate that it is the borrowed Greek conjunction “or”, written with
the cognate Greek letter eta.

Punctuation. Coptic texts use common punctuation, including colon, full stop, semicolon
(functioning, as in Greek, as a question mark), and middle dot. Quotation marks are found
in edited texts. In addition, Coptic-specific punctuation occurs: U+2CFE copTiC FULL
stop and U+2CFF cOPTIC MORPHOLOGICAL DIVIDER. Several other historic forms of punc-
tuation are known only from Old Nubian texts.

Numerical Use of Letters. Numerals are indicated with letters of the alphabet, as in Greek.
Sometimes the numerical use is indicated specifically by marking a line above, represented
with U+0305 COMBINING OVERLINE. U+0375 GREEK LOWER NUMERAL SIGN or U+033F
COMBINING DOUBLE OVERLINE can be used to indicate multiples of 1,000, as shown in
Figure 7-5.

Figure 7-5. Coptic Numerals

Coptic Value
A 1
aorX 1,000
&WrH 1,888
U+0374 GREEK NUMERAL SIGN is used to indicate fractions. For example, I indicates the

fractional value 1/3. There is, however, a special symbol for 1/2: U+2CFD coPTIC FRAC-
TION ONE HALF.

Europe-1 316 7.4 Cyrillic

7.4 Cyrillic

The Cyrillic script is one of several scripts that were ultimately derived from the Greek
script. The details of the history of that development and of the relationship between early
forms of writing systems for Slavic languages has been lost. Cyrillic has traditionally been
used for writing various Slavic languages, among which Russian is predominant. The earli-
est attestations of Cyrillic are for Old Church Slavonic manuscripts, dating to the 10th cen-
tury ce. Old Church Slavonic is also commonly referred to as Old Church Slavic, and is
abbreviated as OCS.

In the nineteenth and early twentieth centuries, Cyrillic was extended to write the non-
Slavic minority languages of Russia and neighboring countries.

Structure. The Cyrillic script is written in linear sequence from left to right with the occa-
sional use of nonspacing marks. Cyrillic letters have uppercase and lowercase pairs. Spaces
are used to separate words and provide the primary line breaking opportunities.

Historic Letterforms. The historic form of the Cyrillic alphabet—most notably that seen in
Old Church Slavonic manuscripts—is treated as a font style variation of modern Cyrillic.
The historic forms of the letters are relatively close to their modern appearance, and some
of the historic letters are still in modern use in languages other than Russian. For example,
U+0406 “I’CYRILLIC CAPITAL LETTER BYELORUSSIAN-UKRAINIAN I is used in modern
Ukrainian and Byelorussian, and is encoded amidst other modern Cyrillic extensions.
Some of the historic letterforms were used in modern typefaces in Russian and Bulgarian.
Prior to 1917, Russian made use of yat, fita, and izhitsa; prior to 1945, Bulgaria made use of
these three as well as big yus.

Glagolitic. The particular early Slavic writing known as Glagolitic is treated as a distinct
script from Cyrillic, rather than as a font style variation. The letterforms for Glagolitic,
even though historically related, appear unrecognizably different from most modern Cyril-
lic letters. Glagolitic was also limited to a certain historic period; it did not grow to match
the repertoire expansion of the Cyrillic script. See Section 7.5, Glagolitic.

Cyrillic: U+0400-U+04FF
Standards. The Cyrillic block of the Unicode Standard is based on ISO/IEC 8859-5.

Extended Cyrillic. These letters are used in alphabets for Turkic languages such as Azerbai-
jani, Bashkir, Kazakh, and Tatar; for Caucasian languages such as Abkhasian, Avar, and
Chechen; and for Uralic languages such as Mari, Khanty, and Kildin Sami. The orthogra-
phies of some of these languages have often been revised in the past; some of them have
switched from Arabic to Latin to Cyrillic, and back again. Azerbaijani, for instance, is now
officially using a Turkish-based Latin script.

Abkhasian. The Cyrillic orthography for Abkhasian has been updated fairly frequently
over the course of the 20th and early 21st centuries. Some of these revisions involved
changes in letterforms, often for the diacritic descenders used under extended Cyrillic let-
ters for Abkhasian. The most recent such reform has been reflected in glyph changes for

Europe-1 317 7.4 Cyrillic

Abkhaz-specific Cyrillic letters in the code charts. In particular, U+04BF CYRILLIC SMALL
LETTER ABKHASIAN CHE WITH DESCENDER, is now shown with a straight descender dia-
critic. In code charts for Version 5.1 and earlier, that character was displayed with a repre-
sentative glyph using an ogonek-type hook descender, more typical of historic
orthographies for Abkhasian. The glyph for U+04A9 CYRILLIC SMALL LETTER ABKHASIAN
HA was also updated.

Other changes for Abkhasian orthography represent actual respellings of text. Of particular
note, the character added in Version 5.2, U+0525 CYRILLIC SMALL LETTER PE WITH
DESCENDER, is intended as a replacement for U+04A7 CYRILLIC SMALL LETTER PE WITH
MIDDLE HOOK, which was used in older orthographies.

Palochka. U+04C0 “I” CYRILLIC LETTER PALOCHKA is used in Cyrillic orthographies for a
number of Caucasian languages, such as Adyghe, Avar, Chechen, and Kabardian. The name
palochka itself is based on the Russian word for “stick,” referring to the shape of the letter.
The glyph for palochka is usually indistinguishable from an uppercase Latin “I” or U+0406
“I” CYRILLIC CAPITAL LETTER BYELORUSSIAN-UKRAINIAN I; however, in some serifed fonts
it may be displayed without serifs to make it more visually distinct.

In use, palochka typically modifies the reading of a preceding letter, indicating that it is an
ejective. The palochka is generally caseless and should retain its form even in lowercased
Cyrillic text. However, there is some evidence of distinctive lowercase forms; for those
instances, U+04CF CYRILLIC SMALL LETTER PALOCHKA may be used.

Broad Omega. The name of U+047D CYRILLIC SMALL LETTER OMEGA WITH TITLO is
anomalous. It does not actually have a titlo, but instead represents a broad omega with a
great apostrof diacritic. (See U+A64D CYRILLIC SMALL LETTER BROAD OMEGA.) The great
apostrof is a stylized diacritical mark consisting of the soft breathing mark (see U+0486
COMBINING CYRILLIC PSILI PNEUMATA) and the Cyrillic kamora (see U+0311 COMBINING
INVERTED BREVE). Functionally, U+047D is analogous to the Greek character U+1F66
GREEK SMALL LETTER OMEGA WITH PSILI AND PERISPOMENI. Both the Greek and the
Church Slavonic characters have identical functions—to record the exclamation “Oh!”
U+047D is also known as the Cyrillic beautiful omega.

Digraph Onik and Monograph Uk. U+0479 CYRILLIC SMALL LETTER UK was intended for
representation of the Church Slavonic uk vowel, which sometimes is rendered as a digraph
onik form and sometimes as a monograph uk form. However, that ambiguity of rendering
is not optimal for the representation of Church Slavonic text. The current recommendation
is to avoid the use of U+0479, as well as its corresponding uppercase U+0478. The digraph
onik has the preferred spelling consisting of the letter sequence <U+043E CYRILLIC SMALL
LETTER 0, U+0443 CYRILLIC SMALL LETTER U>. The monograph uk should be represented
instead by an unambiguous letter intended specifically for that form: U+A64B cYRILLIC
SMALL LETTER MONOGRAPH UK.

Palatalization. U+0484 COMBINING CYRILLIC PALATALIZATION is a diacritical mark used in
ancient manuscripts and in academic work to indicate that a consonant is softened, a phe-
nomenon called palatalization in Cyrillic studies. Although the shape of the diacritic is
similar, this should not be confused with the use of U+0311 COMBINING INVERTED BREVE

Europe-1 318 7.4 Cyrillic

to represent the Cyrillic kamora (circumflex accent). Palatalization is also represented in
some manuscripts and in academic publications with U+02BC MODIFIER LETTER APOS-
TROPHE or occasionally U+02B9 MODIFIER LETTER PRIME.

Combining Titlo. U+0483 COMBINING CYRILLIC TITLO is used in modern Church Slavonic
to indicate that a letter or letters have been omitted from the spelling of a word (either in
nomina sacra or in abbreviations). It also is used in numeral notation. In modern Church
Slavonic it is not used to “cover” superscripted (titlo) letters; instead, U+0487 COMBINING
CYRILLIC POKRYTIE is used as a cap over titlo letters. In Old Church Slavonic manuscripts,
on the other hand, pokrytie, titlo, and its archaic typographical alternate U+A66F coMBIN-
ING CYRILLIC VZMET are all used more or less interchangeably.

COyrillic Supplement: U+0500-U+052F

Komi. The characters in the range U+0500..U+050F are found in ISO 10754; they were
used in Komi Cyrillic orthography from 1919 to about 1940. These letters use glyphs that
differ structurally from other characters in the Unicode Standard that represent similar
sounds—namely, Serbian . and #, which are ligatures of the base letters 2 and # with a pal-
atalizing soft sign &. The Molodtsov orthography made use of a different kind of palataliza-
tion hook for Komi «, ®, B, dr, and so on.

Kurdish Letters. Although the Kurdish language is almost always written in either the Ara-
bic script or the Latin script, there also exists a Cyrillic orthography which saw some usage
for Kurdish in the former Soviet Union. The Cyrillic letters qa and we in this block are
encoded to enable the representation of Cyrillic Kurdish entirely in the Cyrillic script, with-
out use of the similar Latin letters q and w, from which these Kurdish letters were ultimately
derived.

Cyrillic Extended-A: U+2DEO-U+2DFF

Titlo Letters. This block contains a set of superscripted (written above), or titlo, letters,
used in manuscript Old Church Slavonic texts and in modern Church Slavonic, usually to
indicate abbreviations of words in the text. They can be found alone or in pairs that typi-
cally form digraphs or ligatures above one base character. These characters may be followed
by U+0487 COMBINING CYRILLIC POKRYTIE in both old and modern texts. In Old Church
Slavonic texts they may also be followed by U+0483 COMBINING CYRILLIC TITLO O its typo-
graphical alternate form, U+A66F coOMBINING cYRILLIC VZMET. Modern Church Slavonic
never uses the titlo mark to “cover” superscripted letters, and does not use the vzmet mark
at all.

When used in combination, two titlo letters normally form a composite combining letter,
in which the components appear side-by-side or ligated, a behavior which deviates from
the default vertical stacking of multiple combining characters. Occasionally, titlo letters can
also be found vertically stacked in Old Church Slavonic texts, in this case exhibiting default
stacking behavior. As there is no semantic distinction associated with the two presenta-
tions, both are handled at the font level, without requiring the use of format characters.
The usual ligated form and the less common vertical stacking of titlo letters are contrasted

Europe-1 319 7.4 Cyrillic

in Figure 7-6 for the sequence <U+2DE3 COMBINING CYRILLIC LETTER DE, U+A675 COM-
BINING CYRILLIC LETTER I>.

Figure 7-6. Combination of Titlo Letters

a2 n as
S
2DE3 A675 Ligated

A}
A m 2

S A R A
DE3 AGTS Stacked

A wide variety of composite titlo letters can be encountered in Old Church Slavonic manu-
scripts, including such combinations as ghe-o, de-ie, de-i, de-o, de-uk, el-i, em-i, es-te, and
many others. One of these combinations has been encoded atomically in Unicode as
U+2DF5 COMBINING CYRILLIC LETTER ES-TE. However, the preferred representation of a
composite titlo es-te is the sequence <U+2DED COMBINING CYRILLIC LETTER ES, U+2DEE
COMBINING CYRILLIC LETTER TE>.

The glyphs in the code chart for the Cyrillic Extended-A block are based on the modern
Cyrillic letters to which these titlo letters correspond, but in Old Church Slavonic manu-
scripts, the actual glyphs used are related to the older forms of Cyrillic letters.

Cyrillic Extended-B: U+A640-U+A69F

This block contains an extended set of historic Cyrillic characters used in Old Cyrillic man-
uscript materials, particularly Old Church Slavonic.

Numeric Enclosing Signs. The combining numeric signs in the range U+A670..U+A672
extend the series of such combining signs from the main Cyrillic block. These enclosing
signs were used around letters to indicate high decimal multiples of the basic numeric val-
ues of the letters.

Titlo Letters. Several additional titlo letters based on manuscript sources are encoded in
the ranges U+A674..U+A67B and U+A69E..U+A69E For a description of titlo letters, see
the subsection “Cyrillic Extended-A: U+2DE0-U+2DFF” earlier in this section.

Old Abkhasian Letters. The letters in the range U+A680..U+A697 are obsolete letters for
an old orthography of the Abkhaz language. These characters are no longer in use, and the

Abkhaz language is currently represented using various Cyrillic extensions in the main
Cyrillic block.

Europe-1 320 7.5 Glagolitic

7.5 Glagolitic

Glagolitic: U+2C00-U+2C5F

Glagolitic, from the Slavic root glagol, meaning “word,” is an alphabet considered to have
been devised by Saint Cyril in or around 862 ck for his translation of the Scriptures and
liturgical books into Slavonic. The relatively few Glagolitic inscriptions and manuscripts
that survive from this early period are of great philological importance. Glagolitic was
eventually supplanted by the alphabet now known as Cyrillic.

Like Cyrillic, the Glagolitic script is written in linear sequence from left to right with no
contextual modification of the letterforms. Spaces are used to separate words and provide
the primary line breaking opportunities.

In parts of Croatia where a vernacular liturgy was used, Glagolitic continued in use until
modern times: the last Glagolitic missal was printed in Rome in 1893 with a second edition
in 1905. In these areas Glagolitic is still occasionally used as a decorative alphabet.

Glyph Forms. Glagolitic exists in two styles, known as round and square. Round Glagolitic
is the original style and more geographically widespread, although surviving examples are
less numerous. Square Glagolitic (and the cursive style derived from it) was used in Croatia
from the thirteenth century. There are a few documents written in a style intermediate
between the two. The letterforms used in the charts are round Glagolitic. Several of the let-
ters have variant glyph forms, which are not encoded separately.

Ordering. The ordering of the Glagolitic alphabet is largely derived from that of the Greek
alphabet, although nearly half the Glagolitic characters have no equivalent in Greek and
not every Greek letter has its equivalent in Glagolitic.

Punctuation and Diacritics. Glagolitic texts use common punctuation, including comma,
full stop, semicolon (functioning, as in Greek, as a question mark), and middle dot. In addi-
tion, several forms of multiple-dot, archaic punctuation occur, including U+2056 THREE
DOT PUNCTUATION, U+2058 FOUR DOT PUNCTUATION, and U+2059 FIVE DOT PUNCTUA-
TION. Quotation marks are found in edited texts. Glagolitic also used numerous diacritical
marks, many of them shared in common with Cyrillic.

Numerical Use of Letters. Glagolitic letters have inherent numerical values. A letter may be
rendered with a line above or a tilde above to indicate the numeric usage explicitly. Alterna-
tively, U+00B7 MIpDLE DOT may be used, flanking a letter on both sides, to indicate
numeric usage of the letter.

Europe-1 321 7.6 Armenian

7.6 Armenian

Armenian: U+0530-U+058F

The Armenian script is used primarily for writing the Armenian language. It is written
from left to right. Armenian letters have uppercase and lowercase pairs. Spaces are used to
separate words and provide the primary line breaking opportunities.

The Armenian script was devised about 406 ce by Mesrop Mastoc® to give Armenians
access to Christian scriptural and liturgical texts, which were otherwise available only in
Greek and Syriac. The script has been used to write Classical or Grabar Armenian, Middle
Armenian, and both of the literary dialects of Modern Armenian: East and West Armenian.

Orthography. Mesrop’s original alphabet contained 30 consonants and 6 vowels in the fol-
lowing ranges:

U+0531..U+0554 U....R Ayb to K'e
U+0561..U+0584 w..p ayb to k'e

Armenian spelling was consistent during the Grabar period, from the fifth to the tenth cen-
turies CE; pronunciation began to change in the eleventh century. In the twelfth century,
the letters 0 and fé were added to the alphabet to represent the diphthong [aw] (previously
written we aw) and the foreign sound [f], respectively. The Soviet Armenian government
implemented orthographic reform in 1922 and again in 1940, creating a difference between
the traditional Mesropian orthography and what is known as Reformed orthography. The
1922 reform limited the use of w to the digraph ow (or u) and treated this digraph as a sin-
gle letter of the alphabet.

User Community. The Mesropian orthography is presently used by West Armenian speak-
ers who live in the diaspora and, rarely, by East Armenian speakers whose origins are in
Armenia but who live in the diaspora. The Reformed orthography is used by East Arme-
nian speakers living in the Republic of Armenia and, occasionally, by West Armenian
speakers who live in countries formerly under the influence of the former Soviet Union.
Spell-checkers and other linguistic tools need to take the differences between these orthog-
raphies into account, just as they do for British and American English.

Punctuation. Armenian makes use of a number of punctuation marks also used in other
European scripts. Armenian words are delimited with spaces and may terminate on either a
space or a punctuation mark. U+0589 : ARMENIAN FULL STOP, called verjakét in Armenian,
is used to end sentences. A shorter stop functioning like the semicolon (like the ano teleia in
Greek, but normally placed on the baseline like U+002E ruLL sTop) is called mijaket; it is
represented by U+2024 . oNE DOT LEADER. U+055D * ARMENIAN COMMA is actually used
more as a kind of colon than as a comma; it combines the functionality of both elision and
pause. Its Armenian name is bowt’

In Armenian it is possible to differentiate between word-joining and word-splitting
hyphens. To join words, the miowt‘jan gic - is used; it can be represented by either U+002D

Europe-1 322 7.6 Armenian

HYPHEN-MINUS or U+2010 - HYPHEN. At the end of the line, to split words across lines, the
ent'amna U+058A _ ARMENIAN HYPHEN may also be used. This character has a curved
shape in some fonts, but a hyphen-like shape in others. Both the word-joiner and the word-
splitter can also break at word boundaries, but the two characters have different semantics.

Several other punctuation marks are unique to Armenian, and these function differently
from other kinds of marks. The tonal punctuation marks (U+055B ARMENIAN EMPHASIS
MARK, U+055C ARMENIAN EXCLAMATION MARK, and U+055E ARMENIAN QUESTION MARK)
are placed directly above and slightly to the right of the vowel whose sound is modified,
instead of at the end of the sentence, as European punctuation marks are. Because of the
mechanical limitations of some printing technologies, these punctuation marks have often
been typographically rendered as spacing glyphs above and to the right of the modified
vowel, but this practice is not recommended. Depending on the font, the kerning some-
times presents them as half-spacing glyphs, which is somewhat more acceptable. The place-
ment of the Armenian tonal mark can be used to distinguish between different questions.

U+055F ARMENIAN ABBREVIATION MARK, Or patiw, is one of four abbreviation marks
found in manuscripts to abbreviate common words such as God, Jesus, Christos, Lord,
Saint, and so on. It is placed above the abbreviated word and spans all of its letters.

Preferred Characters. The apostrophe at U+055A has the same shape and function as the
Latin apostrophe at U+2019, which is preferred. There is no left half ring in Armenian.
Unicode character U+0559 is not used. It appears that this character is a duplicate charac-
ter, which was encoded to represent U+02BB MODIFIER LETTER TURNED COMMA, used in
Armenian transliteration. U+02BB is preferred for this purpose.

Ligatures. Five Armenian ligatures are encoded in the Alphabetic Presentation Forms
block in the range U+FB13..U+FB17. These shapes (along with others) are typically found
in handwriting and in traditional fonts that mimic the manuscript ligatures. Of these, the
men-now ligature is the one most useful for both traditional and modern fonts.

Europe-1 323 7.7 Georgian

7.7 Georgian

Georgian: U+10A0-U+10FF, U+2D00-U+2D2F

The Georgian script is used primarily for writing the Georgian language and its dialects. It
is also used for the Svan and Mingrelian languages and in the past was used for Abkhaz and
other languages of the Caucasus. It is written from left to right. Spaces are used to separate
words and provide the primary line breaking opportunities.

Script Forms. The script name “Georgian” in the Unicode Standard is used for what are
really two closely related scripts. The original Georgian writing system was an inscriptional
form called Asomtavruli, from which a manuscript form called Nuskhuri was derived.
Together these forms are categorized as Khutsuri (ecclesiastical), in which Asomtavruli is
used as the uppercase and Nuskhuri as the lowercase. This development of a bicameral
script parallels the evolution of the Latin alphabet, in which the original linear monumen-
tal style became the uppercase and manuscript styles of the same alphabet became the low-
ercase. The Khutsuri script is still used for liturgical purposes, but was replaced, through a
history now uncertain, by an alphabet called Mkhedruli (military), which is now the form
used for nearly all modern Georgian writing.

Both the Mkhedruli alphabet and the Asomtavruli inscriptional form are encoded in the
Georgian block. The Nuskhuri script form is encoded in the Georgian Supplement block.

Case Forms. The Georgian Mkhedruli alphabet is fundamentally caseless. The scholar
Akaki Shanidze attempted to introduce a casing practice for Georgian in the 1950s, but this
system failed to gain popularity. In his typographic departure, he used the Asomtavruli
forms to represent uppercase letters, alongside “lowercase” Mkhedruli. This practice is
anomalous—the Unicode Standard instead provides case mappings between the two Khut-
suri forms: Asomtavruli and Nuskhuri. Figure 7-7 uses Akaki Shanidze’s name to illustrate
the various forms of Georgian and its case usage.

Figure 7-7. Georgian Scripts and Casing

Asomtavruli majuscule CAQCO19CRH1d"

Nuskhuri minuscule chol yohivdm
Casing Khutsuri Chul1 Juhi-idm
Mkhedruli 53530 Bsbodg
Mtavruli style 9304() ‘89603

Shanidze’s orthography C 3530 Jobodg

Mtavruli Style. Mtavruli is a particular style of Mkhedruli in which the distinction between
letters with ascenders and descenders is not maintained. All letters appear with an equal
height standing on the baseline; Mtavruli-style letters are never used as capitals. A word is
always entirely presented in Mtavruli or not. Mtavruli is a font style, similar to SMALL cAPS
in the Latin script.

Europe-1 324 7.7 Georgian

Punctuation. Modern Georgian text uses generic European conventions for punctuation.
See the common punctuation marks in the Basic Latin and General Punctuation blocks.

Historic Punctuation. Historic Georgian manuscripts, particularly text in the older, eccle-
siastical styles, use manuscript punctuation marks common to the Byzantine tradition.
These include single, double, and multiple dot punctuation. For a single dot punctuation
mark, U+00B7 MIipDLE DOT or U+2E31 WORD SEPARATOR MIDDLE DOT may be used. His-
toric double and multiple dot punctuation marks can be found in the U+2056..U+205E
range in the General Punctuation block and in the U+2E2A..U+2E2D range in the Supple-
mental Punctuation block.

U+10FB GEORGIAN PARAGRAPH SEPARATOR is a historic punctuation mark commonly used
in Georgian manuscripts to delimit text elements comparable to a paragraph level.
Although this punctuation mark may demarcate a paragraph in exposition, it does not
force an actual paragraph termination in the text flow. To cause a paragraph termination,
U+10FB must be followed by a newline character, as described in Section 5.8, Newline
Guidelines.

Prior to Version 6.0 the Unicode Standard recommended the use of U+0589 ARMENIAN
FULL STOP as the two dot version of the full stop for historic Georgian documents. This is
no longer recommended because designs for Armenian fonts may be inconsistent with the
display of Georgian text, and because other, generic two dot punctuation characters are
available in the standard, such as U+205A Two poT PUNCTUATION or U+003A coLoN.

For additional punctuation to be used with this script, see CO Controls and ASCII Punctu-
ation (U+0000..U+007F) and General Punctuation (U+2000..U+206F).

Europe-1 325 7.8 Modifier Letters

7.8 Modifier Letters

Modifier letters, in the sense used in the Unicode Standard, are letters or symbols that are
typically written adjacent to other letters and which modify their usage in some way. They
are not formally combining marks (gc=Mn or gc=Mc) and do not graphically combine
with the base letter that they modify. They are base characters in their own right. The sense
in which they modify other letters is more a matter of their semantics in usage; they often
tend to function as if they were diacritics, indicating a change in pronunciation of a letter,
or otherwise distinguishing a letter’s use. Typically this diacritic modification applies to the
character preceding the modifier letter, but modifier letters may sometimes modify a fol-
lowing character. Occasionally a modifier letter may simply stand alone representing its
own sound.

Modifier letters are commonly used in technical phonetic transcriptional systems, where
they augment the use of combining marks to make phonetic distinctions. Some of them
have been adapted into regular language orthographies as well. For example, U+02BB
MODIFIER LETTER TURNED COMMA is used to represent the ‘kina (glottal stop) in the
orthography for Hawaiian.

Many modifier letters take the form of superscript or subscript letters. Thus the IPA modi-
fier letter that indicates labialization (U+02B7) is a superscript form of the letter w. As for
all such superscript or subscript form characters in the Unicode Standard, these modifier
letters have compatibility decompositions.

Case and Modifier Letters. Most modifiers letters are derived from letters in the Latin
script, although some modifier letters occur in other scripts. Latin-derived modifier letters
may be based on either minuscule (lowercase) or majuscule (uppercase) forms of the let-
ters, but never have case mappings. Modifier letters which have the shape of capital or small
capital Latin letters, in particular, are used exclusively in technical phonetic transcriptional
systems. Strings of phonetic transcription are notionally lowercase—all letters in them are
considered to be lowercase, whatever their shapes. In terms of formal properties in the Uni-
code Standard, modifier letters based on letter shapes are Lowercase=True; modifier letters
not based on letter shapes are simply caseless. All modifier letters, regardless of their
shapes, are operationally caseless; they need to be unaffected by casing operations, because
changing them by a casing operation would destroy their meaning for the phonetic tran-
scription. Only those superscript or subscript forms that have specific usage in IPA, the
Uralic Phonetic Alphabet (UPA), or other major phonetic transcription systems are
encoded.

General Category. Modifier letters in the Unicode Standard are indicated by either one of
two General_Category values: gc=Lm or gc=Sk. The General_Category Lm is given to
modifier letters derived from regular letters. It is also given to some other characters with
more punctuation-like shapes, such as raised commas, which nevertheless have letterlike
behavior and which occur on occasion as part of the orthography for regular words in one
language or another. The General_Category Sk is given to modifier letters that typically
have more symbol-like origins and which seldom, if ever, are adapted to regular orthogra-

Europe-1 326 7.8 Modifier Letters

phies outside the context of technical phonetic transcriptional systems. This subset of
modifier letters is also known as “modifier symbols.”

This distinction between gc=Lm and gc=Sk is reflected in other Unicode specifications rel-
evant to identifiers and word boundary determination. Modifier letters with gc=Lm are
included in the set definitions that result in the derived properties ID_Start and
ID_Continue (and XID_Start and XID_Continue). As such, they are considered part of the
default definition of Unicode identifiers. Modifier symbols (gc=Sk), on the other hand, are
not included in those set definitions, and so are excluded by default from Unicode identifi-
ers.

Modifier letters (gc=Lm) have the derived property Alphabetic, while modifier symbols
(gc=Sk) do not. Modifier letters (gc=Lm) also have the word break property value
(wb=ALetter), while modifier symbols (gc=Sk) do not. This means that for default deter-
mination of word break boundaries, modifier symbols will cause a word break, while mod-
ifier letters proper will not.

Blocks. Most general use modifier letters (and modifier symbols) were collected together in
the Spacing Modifier Letters block (U+02B0..U+02FF), the UPA-related Phonetic Exten-
sions block (U+1D00..U+1D7F), the Phonetic Extensions Supplement block
(U+1D80..U+1DBF), and the Modifier Tone Letters block (U+A700..U+A71F). However,
some script-specific modifier letters are encoded in the blocks appropriate to those scripts.
They can be identified by checking for their General Category values.

Character Names. There is no requirement that the Unicode character names for modifier
letters contain the label “MoDIFIER LETTER”, although most of them do.

Spacing Modifier Letters: U+02B0-U+02FF

Phonetic Usage . The majority of the modifier letters in this block are phonetic modifiers,
including the characters required for coverage of the International Phonetic Alphabet. In
many cases, modifier letters are used to indicate that the pronunciation of an adjacent letter
is different in some way—hence the name “modifier.” They are also used to mark stress or
tone, or may simply represent their own sound. Many of these modifiers letters correspond
to separate, nonspacing diacritical marks; the specific cross-references can be found in the
code charts.

Encoding Principles. This block includes characters that may have different semantic val-
ues attributed to them in different contexts. It also includes multiple characters that may
represent the same semantic values—there is no necessary one-to-one relationship. The
intention of the Unicode encoding is not to resolve the variations in usage, but merely to
supply implementers with a set of useful forms from which to choose. The list of usages
given for each modifier letter should not be considered exhaustive. For example, the glottal
stop (Arabic hamza) in Latin transliteration has been variously represented by the charac-
ters U+02BC MODIFIER LETTER APOSTROPHE, U+02BE MODIFIER LETTER RIGHT HALF
RING, and U+02C0 MODIFIER LETTER GLOTTAL sTOP. Conversely, an apostrophe can have
several uses; for a list, see the entry for U+02BC MODIFIER LETTER APOSTROPHE in the

Europe-1 327 7.8 Modifier Letters

character names list. There are also instances where an IPA modifier letter is explicitly
equated in semantic value to an IPA nonspacing diacritic form.

Superscript Letters. Some of the modifier letters are superscript forms of other letters. The
most commonly occurring of these superscript letters are encoded in this block, but many
others, particularly for use in UPA, can be found in the Phonetic Extensions block
(U+1D00..U+1D7F) and in the Phonetic Extensions Supplement block
(U+1D80..U+1DBF). The superscript forms of the i and n letters can be found in the
Superscripts and Subscripts block (U+2070..U+209F). The fact that the latter two letters
contain the word “superscript” in their names instead of “modifier letter” is an historical
artifact of original sources for the characters, and is not intended to convey a functional
distinction in the use of these characters in the Unicode Standard.

Superscript modifier letters are intended for cases where the letters carry a specific mean-
ing, as in phonetic transcription systems, and are not a substitute for generic styling mech-
anisms for superscripting of text, as for footnotes, mathematical and chemical expressions,
and the like.

The superscript modifier letters are spacing letters, and should be distinguished from
superscripted combining Latin letters. The superscripted combining Latin letters, as for
example those encoded in the Combining Diacritical Marks block in the range
U+0363..U+036F, are associated with the Latin historic manuscript tradition, often repre-
senting various abbreviatory conventions in text.

Spacing Clones of Diacritics. Some corporate standards explicitly specify spacing and
nonspacing forms of combining diacritical marks, and the Unicode Standard provides
matching codes for these interpretations when practical. A number of the spacing forms
are included in the Basic Latin and Latin-1 Supplement blocks. The six common European
diacritics that do not have spacing forms encoded in those blocks are encoded as spacing
characters in the Spacing Modifier Letters block instead. These forms can have multiple
semantics, such as U+02D9 pot ABOVE, which is used as an indicator of the Mandarin Chi-
nese fifth (neutral) tone.

Rhotic Hook. U+02DE MODIFIER LETTER RHOTIC HOOK is defined in IPA as a free-standing
modifier letter. In common usage, it is treated as a ligated hook on a baseform letter. Hence
U+0259 LATIN SMALL LETTER SCHWA + U+02DE MODIFIER LETTER RHOTIC HOOK may be
treated as equivalent to U+025A LATIN SMALL LETTER SCHWA WITH HOOK.

Tone Letters. U+02E5..U+02E9 comprises a set of basic tone letters defined in IPA and
commonly used in detailed tone transcriptions of African and other languages. Each tone
letter refers to one of five distinguishable tone levels. To represent contour tones, the tone
letters are used in combinations. The rendering of contour tones follows a regular set of
ligation rules that results in a graphic image of the contour (see Figure 7-8).

For example, the sequence “1 + 5” in the first row of Figure 7-8 indicates the sequence of
the lowest tone letter, U+02E9 MODIFIER LETTER EXTRA-LOW TONE BAR, followed by the
highest tone letter, U+02E5 MODIFIER LETTER EXTRA-HIGH TONE BAR. In that sequence, the
tone letter is drawn with a ligation from the iconic position of the low tone to that of the

Europe-1 328 7.8 Modifier Letters

Figure 7-8. Tone Letters

1+5 — / (rising contour)

5+1 — \ (falling contour)

345 — /1 (high rising contour)
1+3 — A (low rising contour)
1+3+1 — A (rising-falling contour)

high tone to indicate the sharp rising contour. A sequence of three tone letters may also be
ligated, as shown in the last row of Figure 7-8, to indicate a low rising-falling contour tone.

Modifier Tone Letters: U+A700-U+A71F

The Modifier Tone Letters block contains modifier letters used in various schemes for
marking tones. These supplement the more commonly used tone marks and tone letters
found in the Spacing Modifier Letters block (U+02B0..U+02FF).

The characters in the range U+A700..U+A707 are corner tone marks used in the transcrip-
tion of Chinese. They were invented by Bridgman and Wells Williams in the 1830s. They
have little current use, but are seen in a number of old Chinese sources.

The tone letters in the range U+A708..U+A716 complement the basic set of IPA tone letters
(U+02E5..U+02E9) and are used in the representation of Chinese tones for the most part.
The dotted tone letters are used to represent short (“stopped”) tones. The left-stem tone
letters are mirror images of the IPA tone letters; like those tone letters, they can be ligated in
sequences of two or three tone letters to represent contour tones. Left-stem versus right-
stem tone letters are sometimes used contrastively to distinguish between tonemic and
tonetic transcription or to show the effects of tonal sandhi.

The modifier letters in the range U+A717..U+A71A indicate tones in a particular orthog-
raphy for Chinantec, an Oto-Manguean language of Mexico. These tone marks are also
spacing modifier letters and are not meant to be placed over other letters.

Europe-1 329 7.9 Combining Marks

7.9 Combining Marks

Combining marks are a special class of characters in the Unicode Standard that are
intended to combine with a preceding character, called their base. They have a formal syn-
tactic relationship—or dependence—on their base, as defined by the standard. This rela-
tionship is relevant to the definition of combining character sequences, canonical
reordering, and the Unicode Normalization Algorithm. For formal definitions, see
Section 3.6, Combination.

Combining marks usually have a visible glyphic form, but some of them are invisible.
When visible, a combining mark may interact graphically with neighboring characters in
various ways. Visible combining marks are divided roughly into two types: nonspacing
marks and spacing marks. In rendering, the nonspacing marks generally have no baseline
advance of their own, but instead are said to apply to their grapheme base. Spacing marks
behave more like separate letters, but in some scripts they may have complex graphical
interactions with other characters. For an extended discussion of the principles for the
application of combining marks, see Section 3.6, Combination.

Nonspacing marks come in two types: diacritic and other. The diacritics are exemplified by
such familiar marks as the acute accent or the macron, which are applied to letters of the
Latin script (or similar scripts). They tend to indicate a change in pronunciation or a par-
ticular tone or stress. They may also be used to derive new letters. However, in some scripts,
such as Arabic and Hebrew, other kinds of nonspacing marks, such as vowel points, repre-
sent separate sounds in their own right and are not considered diacritics.

Sequence of Base Letters and Combining Marks. In the Unicode character encoding, all
combining marks are encoded after their base character. For example, the Unicode charac-
ter sequence U+0061 “a” LATIN SMALL LETTER A, U+0308 “”COMBINING DIAERESIS,
U+0075 “u” LATIN SMALL LETTER U unambiguously encodes “4u”, not “aii”, as shown in

Figure 2-18.

The Unicode Standard convention is consistent with the logical order of other nonspacing
marks in Semitic and Indic scripts, the great majority of which follow the base characters
with respect to which they are positioned. This convention is also in line with the way mod-
ern font technology handles the rendering of nonspacing glyphic forms, so that mapping
from character memory representation to rendered glyphs is simplified. (For more infor-
mation on the formal behavior of combining marks, see Section 2.11, Combining Charac-
ters, and Section 3.6, Combination.)

Multiple Semantics. Because nonspacing combining marks have such a wide variety of
applications, they may have multiple semantic values. For example, U+0308 = diaeresis =
trema = umlaut = double derivative. Such multiple functions for a single combining mark
are not separately encoded in the standard.

Glyphic Variation. When rendered in the context of a language or script, like ordinary let-
ters, combining marks may be subjected to systematic stylistic variation, as discussed in
Section 7.1, Latin. For example, when used in Polish, U+0301 COMBINING ACUTE ACCENT
appears at a steeper angle than when it is used in French. When it is used for Greek (as

Europe-1 330 7.9 Combining Marks

oxia), it can appear nearly upright. U+030C COMBINING CARON is commonly rendered as
an apostrophe when used with certain letterforms. U+0326 COMBINING COMMA BELOW is
sometimes rendered as a turned comma above on a lowercase “g” to avoid conflict with the
descender. In many fonts, there is no clear distinction made between U+0326 COMBINING

coMMA BELOW and U+0327 COMBINING CEDILLA.

Combining accents above the base glyph are usually adjusted in height for use with upper-
case versus lowercase forms. In the absence of specific font protocols, combining marks are
often designed as if they were applied to typical base characters in the same font. However,
this will result in suboptimal appearance in rendering and may cause security problems.
See Unicode Technical Report #36, “Unicode Security Considerations.”

For more information, see Section 5.13, Rendering Nonspacing Marks.

Overlaid Diacritics. A few combining marks are encoded to represent overlaid diacritics
such as U+0335 COMBINING SHORT STROKE OVERLAY (= “bar”) or hooks modifying the
shape of base characters, such as U+0322 COMBINING RETROFLEX HOOK BELOW. Such over-
laid diacritics are not used in decompositions of characters in the Unicode Standard. Over-
laid combining marks for the indication of negation of mathematical symbols are an
exception to this rule and are discussed later in this section.

One should use the combining marks for overlaid diacritics sparingly and with care, as ren-
dering them on letters may create opportunities for spoofing and other confusion.
Sequences of a letter followed by an overlaid diacritic or hook character are not canonically
equivalent to any preformed encoded character with diacritic even though they may appear
the same. See “Non-decomposition of Certain Diacritics” in Section 2.12, Equivalent
Sequences for more discussion of the implications of overlaid diacritics for normalization
and for text matching operations.

Marks as Spacing Characters. By convention, combining marks may be exhibited in
(apparent) isolation by applying them to U+00AO No-BREAK sPACE. This approach might
be taken, for example, when referring to the diacritical mark itself as a mark, rather than
using it in its normal way in text. Prior to Version 4.1 of the Unicode Standard, the standard
also recommended the use of U+0020 spack for display of isolated combining marks. This
is no longer recommended, however, because of potential conflicts with the handling of
sequences of U+0020 spack characters in such contexts as XML.

In charts and illustrations in this standard, the combining nature of these marks is illustrated
by applying them to a dotted circle, as shown in the examples throughout this standard.

In a bidirectional context, using any character with neutral directionality (that is, with a
Bidirectional Class of ON, CS, and so on) as a base character, including U+00A0 NO-BREAK
SPACE, a dotted circle, or any other symbol, can lead to unintended separation of the base
character from certain types of combining marks during bidirectional ordering. The result
is that the combining mark will be graphically applied to something other than the correct
base. This affects spacing combining marks (that is, with a General Category of Mc) but
not nonspacing combining marks. The unintended separation can be prevented by brack-
eting the combining character sequence with RLM or LRM characters as appropriate. For

Europe-1 331 7.9 Combining Marks

more details on bidirectional reordering, see Unicode Standard Annex #9, “Unicode Bidi-
rectional Algorithm.”

Spacing Clones of Diacritical Marks. The Unicode Standard separately encodes clones of
many common European diacritical marks, primarily for compatibility with existing char-
acter set standards. These cloned accents and diacritics are spacing characters and can be
used to display the mark in isolation, without application to a NO-BREAK SPACE. They are
cross-referenced to the corresponding combining mark in the names list in the Unicode
code charts. For example, U+02D8 BREVE is cross-referenced to U+0306 COMBINING
BREVE. Most of these spacing clones also have compatibility decomposition mappings
involving U+0020 spacg, but implementers should be cautious in making use of those
decomposition mappings because of the complications that can arise from replacing a
spacing character with a sPAce + combining mark sequence.

Relationship to ISO/IEC 8859-1. ISO/IEC 8859-1 contains eight characters that are ambig-
uous regarding whether they denote combining characters or separate spacing characters.
In the Unicode Standard, the corresponding code points (U+005E A CIRCUMFLEX ACCENT,
U+005F _ Low LINE, U+0060 ° GRAVE ACCENT, U+007E ~ TiLDE, U+00A8 ~ DIAERESIS,
U+00AF ~ MacroN, U+00B4 * ACUTE AcCENT, and U+00B8 , CEDILLA) are used only as
spacing characters. The Unicode Standard provides unambiguous combining characters in
the Combining Diacritical Marks block, which can be used to represent accented Latin let-
ters by means of composed character sequences.

U+00B0 ° DEGREE SIGN is also occasionally used ambiguously by implementations of ISO/
IEC 8859-1 to denote a spacing form of a diacritic ring above a letter; in the Unicode Stan-
dard, that spacing diacritical mark is denoted unambiguously by U+02DA ° RING ABOVE.
U+007E “~” TILDE is ambiguous between usage as a spacing form of a diacritic and as an
operator or other punctuation; it is generally rendered with a center line glyph, rather than
as a diacritic raised tilde. The spacing form of the diacritic tilde is denoted unambiguously
by U+02DC “~” SMALL TILDE.

Diacritics Positioned Over Two Base Characters. IPA, pronunciation systems, some trans-
literation systems, and a few languages such as Tagalog use diacritics that are applied to a
sequence of two letters. This display of diacritics over two letters, also known as the use of
double diacritics, is most often noted for the Latin script, which is widely used for transcrip-
tion and transliteration. However, the use of double diacritics is not limited to the Latin
script.

In rendering, these marks of unusual size appear as wide diacritics spanning across the top
(or bottom) of the two base characters. The Unicode Standard contains a set of double-dia-
critic combining marks to represent such forms. Like all other combining nonspacing
marks, these marks apply to the previous base character, but they are intended to hang over
the following letter as well. For example, the character U+0360 COMBINING DOUBLE TILDE
is intended to be displayed as depicted in Figure 7-9.

The Unicode Standard also contains a set of combining half diacritical marks, which can be
used as an alternative, but not generally recommended, way of representing diacritics over

Europe-1 332 7.9 Combining Marks

Figure 7-9. Double Diacritics

n+ > - o
006E 0360
n+-+¢g - ﬁg

006E 0360 0067

a sequence of two (or more) letters. See “Combining Half Marks” later in this section and
Figure 7-15.

The double-diacritical marks have a very high combining class—higher than all other non-
spacing marks except U+0345 iota subscript—and so always are at or near the end of a com-
bining character sequence when canonically reordered. In rendering, the double diacritic
will float above other diacritics above (or below other diacritics below)—excluding sur-
rounding diacritics—as shown in Figure 7-10.

Figure 7-10. Positioning of Double Diacritics

a+ o4+ o+ C+ > ac
0061 0302 0360 0063 0308
T~

—~~ A s A oo
a +x+ 4+ C + i = ac
0061 0360 0302 0063 0308

In Figure 7-10, the first line shows a combining character sequence in canonical order, with
the double-diacritic tilde following a circumflex accent. The second line shows an alterna-
tive order of the two combining marks that is canonically equivalent to the first line.
Because of this canonical equivalence, the two sequences should display identically, with
the double diacritic floating above the other diacritics applied to single base characters.

Occasionally one runs across orthographic conventions that use a dot, an acute accent, or
other simple diacritic above a ligature tie—that is, U+0361 COMBINING DOUBLE INVERTED
BREVE. Because of the considerations of canonical order just discussed, one cannot repre-
sent such text simply by putting a combining dot above or combining acute directly after
U+0361 in the text. Instead, the recommended way of representing such text is to place
U+034F COMBINING GRAPHEME JOINER (CGJ) between the ligature tie and the combining
mark that follows it, as shown in Figure 7-11.

Figure 7-11. Use of CGJ with Double Diacritics

/

u + <+ + 7+ 1 — Ul
0075 0361 034F 0301 0069

Europe-1 333 7.9 Combining Marks

Because CGJ has a combining class of zero, it blocks reordering of the double diacritic to
follow the second combining mark in canonical order. The sequence of <CGJ, acute> is
then rendered with default stacking, placing it centered above the ligature tie. This conven-
tion can be used to create similar effects with combining marks above other double diacrit-
ics (or below double diacritics that render below base characters).

For more information on the combining grapheme joiner, see “Combining Grapheme
Joiner” in Section 23.2, Layout Controls.

Diacritics Positioned Over Three or More Base Characters. Some transcriptional systems
extend the convention of double-diacritic display and show diacritics above (or below)
three or more base letters. There are no characters encoded in the Unicode Standard which
are specifically designated for plain text representation of triple diacritics. Instead, the rec-
ommendation of the Unicode Standard is to use text markup for such representation. The
application of modifying text marks to arbitrary spans of text exceeds the normal scope of
plain text and is usually better dealt with by conventions designed for rich text. In some
limited circumstances, the combining half mark diacritics can be used in combinations to
represent triple diacritics, but the display of half mark diacritics used in this way often is
unsatisfactory in plain text rendering.

Subtending Marks. An additional class of marks called subtending marks is positioned
under (or occasionally over or surrounding) a sequence of several other characters. For-
mally, these marks are not treated as combining marks (gc=M), but instead as format char-
acters (gc=Cf). In the text representation, they precede the sequence of characters they
subtend, rather than follow a single base character, as combining marks do.

Although the terms subtending marks and prefixed format control characters have been used
for these special marks for a number of versions of the Unicode Standard, as of Version 9.0
another more precise but equivalent term has been introduced for them: prepended concat-
enation marks. That terms focuses on the order of occurrence of the marks (prepended to
the sequence following them in the backing store), rather than the graphical positioning of
the visible mark in the final displayed rendering of the sequences. A binary character prop-
erty has also been introduced to refer to this class of marks as a whole:
Prepended_Concatenation_Mark. Proper display of these marks requires specialized ren-
dering support, as the shapes of the marks may adjust depending on the length of the fol-
lowing sequence of characters.

The use of subtending marks is most notably associated with the Arabic script. They typi-
cally occur before a sequence of digits and are then displayed with different styles of
extended swashes underneath the digits. In Arabic, these marks often indicate whether the
sequence of digits is to be interpreted as a number or a date, for example. Similar subtend-
ing marks are encoded for other scripts, including Syriac and Kaithi. (See Section 9.2, Ara-
bic, Section 9.3, Syriac, and Section 15.2, Kaithi for a number of examples and further
discussion.)

Combining Marks with Ligatures. According to Section 3.6, Combination, for a simple
combining character sequence such as <i, >, the nonspacing mark £ both applies to and

Europe-1 334 7.9 Combining Marks

depends on the base character i. If the i is preceded by a character that can ligate with it,
additional considerations apply.

Figure 7-12 shows typical examples of the interaction of combining marks with ligatures.
The sequence <f, i, 7> is canonically equivalent to <f, i>. This implies that both sequences
should be rendered identically, if possible. The precise way in which the sequence is ren-
dered depends on whether the fand i of the first sequence ligate. If so, the result of applying
£ should be the same as ligating an fwith an 7. The appearance depends on whatever typo-
graphical rules are established for this case, as illustrated in the first example of Figure 7-12.
Note that the two characters fand 7 may not ligate, even if the sequence <f, i> does.

Figure 7-12. Interaction of Combining Marks with Ligatures

o f+i+t=f+i > fi, f1, fi
o f+3+i+2 - fi, fi

A

@ f+2+1+73 - fi)
@@ f+7+1+24 =2 f+2+1+7

The second and third examples show that by default the sequence <f, %, 1, 2> s visually
distinguished from the sequence <f, D1, T by the relative placement of the accents. This is
true whether or not the <f, 7> and the <i, &> ligate. Example 4 shows that the two
sequences are not canonically equivalent.

In some writing systems, established typographical rules further define the placement of
combining marks with respect to ligatures. As long as the rendering correctly reflects the
identity of the character sequence containing the marks, the Unicode Standard does not
prescribe such fine typographical details.

Compatibility characters such as the fi-ligature are not canonically equivalent to the
sequence of characters in their compatibility decompositions. Therefore, sequences like
<fi-ligature, ©> may legitimately differ in visual representation from <f, i, ©>, just as the
visual appearance of other compatibility characters may be different from that of the
sequence of characters in their compatibility decompositions. By default, a compatibility
character such as fi-ligature is treated as a single base glyph.

Combining Diacritical Marks: U+0300-U+036F

The combining diacritical marks in this block are intended for general use with any script.
Diacritical marks specific to a particular script are encoded with that script. Diacritical
marks that are primarily used with symbols are defined in the Combining Diacritical
Marks for Symbols character block (U+20D0..U+20FF).

Europe-1 335 7.9 Combining Marks

Standards. The combining diacritical marks are derived from a variety of sources, includ-
ing IPA, ISO 5426, and I1SO 6937.

Underlining and Overlining. The characters U+0332 COMBINING LOW LINE, U+0333
COMBINING DOUBLE LOW LINE, U+0305 COMBINING OVERLINE, and U+033F COMBINING
DOUBLE OVERLINE are intended to connect on the left and right. Thus, when used in com-
bination, they could have the effect of continuous lines above or below a sequence of char-
acters. However, because of their interaction with other combining marks and other layout
considerations such as intercharacter spacing, their use for underlining or overlining of text
is discouraged in favor of using styled text.

Combining Diacritical Marks Extended: U+1AB0-U+1AFF

This block contains a set of combining diacritical marks used primarily in phonetic tran-
scription for German dialectology.

Combining Parentheses. The combining diacritical marks U+1ABB COMBINING PAREN-
THESES ABOVE, U+1ABC COMBINING DOUBLE PARENTHESES ABOVE, and U+1ABD com-
BINING PARENTHESES BELOW are used in German dialectology to indicate that the effect of
a modifier on pronunciation is weakened.

The positioning of these three combining parentheses diacritics deviates from the default
stacking behavior of nonspacing marks. Instead of stacking vertically, they are placed side-
by-side, surrounding the preceding diacritic above or below the base character. U+1ABB
COMBINING PARENTHESES ABOVE and U+1ABC COMBINING DOUBLE PARENTHESES ABOVE
are intended to be used with diacritics placed above, and U+1ABD COMBINING PARENTHE-
SES BELOW is intended to be used with diacritics placed below. Correct positioning is illus-
trated in Figure 7-13.

Figure 7-13. Positioning of Combining Parentheses

e+ o+ —e
0065 0323 1ABD
e+ o —>e

1EB9 1ABD

In contrast with the three combining parentheses diacritical marks above or below, which
combine with other diacritics, U+1ABE COMBINING PARENTHESES OVERLAY is a regular
enclosing mark, intended to surround a base character. The exact placement of the overlay
U+1ABE with respect to a base character is not specified by the Unicode Standard, but may
be adjusted for a particular base character as needed in fonts. For example, in the context
of phonetic transcription for German dialectology, the combining character sequence
<U+014B LATIN SMALL LETTER ENG, U+1ABE COMBINING PARENTHESES OVERLAY> could
be rendered with the parentheses placed lower to surround the descender of the letter eng.

Europe-1 336 7.9 Combining Marks

Combining Diacritical Marks Supplement: U+1DC0-U+1DFF

This block is the supplement to the Combining Diacritical Marks block in the range
U+0300..U+036F. It contains lesser-used combining diacritical marks.

U+1DCO COMBINING DOTTED GRAVE ACCENT and U+1DC1l COMBINING DOTTED ACUTE
ACCENT are marks occasionally seen in some Greek texts. They are variant representations
of the accent combinations dialytika varia and dialytika oxia, respectively. They are, how-
ever, encoded separately because they cannot be reliably formed by regular stacking rules
involving U+0308 coMBINING DIAERESIS and U+0300 COMBINING GRAVE ACCENT Of
U+0301 COMBINING ACUTE ACCENT.

U+1DC3 COMBINING SUSPENSION MARK is a combining mark specifically used in
Glagolitic. It is not to be confused with a combining breve.

Combining Marks for Symbols: U+20D0-U+20FF

The combining marks in this block are generally applied to mathematical or technical sym-
bols. They can be used to extend the range of the symbol set. For example, U+20D2 : com-
BINING LONG VERTICAL LINE OVERLAY can be used to express negation, as shown in
Figure 7-14. Its presentation may change in those circumstances—changing its length or
slant, for example. That is, U+2261 = 1pENTICAL TO followed by U+20D2 is equivalent to
U+2262 = NOT IDENTICAL TO. In this case, there is a precomposed form for the negated
symbol. However, this statement does not always hold true, and U+20D2 can be used with
other symbols to form the negation. For example, U+2258 correEsPoNDs TO followed by
U+20D2 can be used to express does not correspond to, without requiring that a precom-
posed form be part of the Unicode Standard.

Figure 7-14. Use of Vertical Line Overlay for Negation

=+ - =

2261 20D2

Other nonspacing characters are used in mathematical expressions. For example, a U+0304
COMBINING MACRON is commonly used in propositional logic to indicate logical negation.

Enclosing Marks. These nonspacing characters are supplied for compatibility with existing
standards, allowing individual base characters to be enclosed in several ways. For example,
U+2460 () CIRCLED DIGIT ONE can be expressed as U+0031 pigitT oNE “1” + U+20DD ©
COMBINING ENCLOSING CIRCLE. For additional examples, see Figure 2-17.

The combining enclosing marks surround their grapheme base and any intervening non-
spacing marks. These marks are intended for application to free-standing symbols. See
“Application of Combining Marks” in Section 3.6, Combination.

Users should be cautious when applying combining enclosing marks to other than free-
standing symbols—for example, when using a combining enclosing circle to apply to a let-

Europe-1 337 7.9 Combining Marks

ter or a digit. Most implementations assume that application of any nonspacing mark will
not change the character properties of a base character. This means that even though the
intent might be to create a circled symbol (General Category=So), most software will con-
tinue to treat the base character as an alphabetic letter or a numeric digit. Note that there is
no canonical equivalence between a symbolic character such as U+24B6 CIRCLED LATIN
CAPITAL LETTER A and the sequence <U+0041 LATIN CAPITAL LETTER A, U+20DD cOMBIN-
ING ENCLOSING CIRCLE>, partly because of this difference in treatment of properties.

Combining Half Marks: U+FE20-U+FE2F

This block consists of a number of presentation form (glyph) encodings that may be used
to visually encode certain combining marks that apply to multiple base letterforms. These
characters are intended to facilitate the support of such marks in legacy implementations.

Unlike other compatibility characters, these half marks do not correspond directly to a sin-
gle character or a sequence of characters; rather, a discontiguous sequence of the combin-
ing half marks corresponds to a single combining mark, as depicted in Figure 7-15. The
preferred forms are the double diacritics, such as U+0360 COMBINING DOUBLE TILDE. See
the earlier discussion of “Diacritics Positioned Above Two Base Characters.”

Figure 7-15. Double Diacritics and Half Marks

Using Combining Half Marks
n+=- + g+7> - ng

006E FE22 0067 FE23

Using Double Diacritics
n+=- +¢g —> ng

006E 0360 0067

This block also contains half marks for macrons and conjoining macrons, both above and
below. These marks can be used in combinations on successive letters to support particular
styles of supralineation or sublineation in some historic scripts. See, for example,
Section 7.3, Coptic. However, lines which extend across more than two letters may be better
rendered if expressed in terms of explicit text styles, rather than by a series of combining
half marks, applied one letter at a time in the plain text sequence.

Combining Marks in Other Blocks

In addition to the blocks of characters in the standard specifically set aside for combining
marks, many combining marks are associated with particular scripts or occasionally with
groups of scripts. Thus the Arabic block contains a large collection of combining marks
used to indicate vowelling of Arabic text as well as another collection of combining marks

Europe-1 338 7.9 Combining Marks

used in annotation of Koranic text. Such marks are mostly intended for use with the Arabic
script, but in some instances other scripts, such as Syriac, may use them as well.

Nearly every Indic script has its own collection of combining marks, notably including sets
of combining marks to represent dependent vowels, or matras.

In some instances a combining mark encoded specifically for a given script, and located in
the code chart for that script, may look very similar to a diacritical mark from one of the
blocks dedicated to generic combining marks. In such cases, a variety of reasons, including
rendering behavior in context or patterning considerations, may have led to separate
encoding. The general principle is that if a correctly identified script-specific combining
mark of the appropriate shape is available, that character is intended for use with that
script, in lieu of a generic combining mark that might look similar. If a combining mark of
the appropriate shape is not available in the relevant script block or blocks, then one should
make use of whichever generic combining mark best suits the intended purpose.

For example, in representing Syriac text, to indicate a dot above a letter that was identified
as a qushshaya, one would use U+0741 sYRIAC QUSHSHAYA rather than the generic U+0307
COMBINING DOT ABOVE . When attempting to represent a hamza above a Syriac letter, one
would use U+0654 ARABIC HAMZA ABOVE, which is intended for both Arabic and Syriac,
because there is no specifically Syriac hamza combining mark. However, if marking up Syr-
iac text with diacritics such as a macron to indicate length or some other feature, one would
then make use of U+0304 cOMBINING MACRON from the generic block of combining dia-
critical marks.

339

Chapter 8

Europe-11
Ancient and Other Scripts

This chapter describes ancient scripts of Europe, as well as other historic and limited-use
scripts of Europe not covered in Chapter 7, Europe-1. This includes the various ancient
Mediterranean scripts, other early alphabets and sets of runes, some poorly attested his-
toric scripts of paleographic interest, and more recently devised constructed scripts with
significant usage. In particular, these include:

Linear A Old Italic Caucasian Albanian
Linear B Runic Old Permic
Cypriot Syllabary Old Hungarian Ogham
Anatolian Alphabets Gothic Shavian
Elbasan

Unicode encodes a number of ancient scripts, which have not been in normal use for a mil-
lennium or more, as well as historic scripts, whose usage ended in recent centuries.
Although they are no longer used to write living languages, documents and inscriptions
using these scripts exist, both for extinct languages and for precursors of modern lan-
guages. The primary user communities for these scripts are scholars interested in studying
the scripts and the languages written in them. Some of the historic scripts are related to
each other as well as to modern alphabets.

The Linear A script is an ancient writing system used from approximately 1700-1450 BCE
on and around the island of Crete. The script contains more than 90 signs in regular use
and a host of logograms. Surviving examples are inscribed on clay tablets, stone tables, and
metals. The language of the inscriptions has not yet been deciphered.

Both Linear B and Cypriot are syllabaries that were used to write Greek. Linear B is the
older of the two scripts, and there are some similarities between a few of the characters that
may not be accidental. Cypriot may descend from Cypro-Minoan, which in turn may
descend from Linear B.

The ancient Anatolian alphabets Lycian, Carian, and Lydian all date from the first millen-
nium BCE, and were used to write various ancient Indo-European languages of western and
southwestern Anatolia. All are closely related to the Greek script.

Old Italic was derived from Greek and was used to write Etruscan and other languages in
Italy. It was borrowed by the Romans and is the immediate ancestor of the Latin script now
used worldwide. Old Italic had other descendants, as well. The North Italic alphabets seem

Europe-11 340

to have been influential in devising the Runic script, which has a distinct angular appear-
ance owing to its use in carving inscriptions in stone and wood.

Old Hungarian is another historical runiform script, used to write the Hungarian language
in Central Europe. In recent decades it has undergone a significant revival in Hungary. It
has developed casing, and is now used with modern typography to print significant
amounts of material in the modern Hungarian language. It is laid out right-to-left.

The Ogham script is indigenous to Ireland. While its originators may have been aware of
the Latin or Greek scripts, it seems clear that the sound values of Ogham letters were suited
to the phonology of a form of Primitive Irish.

The Gothic script, like Cyrillic, was developed on the basis of Greek at a much later date
than Old Italic.

Elbasan, Caucasian Albanian, and Old Permic are all simple alphabetic scripts. Elbasan is
an historic alphabetic script invented in the middle of the eighteenth-century to write
Albanian. It is named after the city where it originated. Caucasian Albanian dates from the
early fith century and is related to the modern Udi language. Old Permic was devised in the
fourteenth century to write the Uralic languages Komi and Komi-Permyak. Its use for
Komi extended into the seventeenth century.

Shavian is a phonemic alphabet invented in the 1950s to write English. It was used to pub-
lish one book in 1962, but remains of some current interest.

Europe-11 341 8.1 LinearA

8.1 Linear A

Linear A: U+10600-U+1077F

The Linear A script was used from approximately 1700-1450 BcE. It was mainly used on
the island of Crete and surrounding areas to write a language which has not yet been iden-
tified. Unlike the later Linear B, which was used to write an early form of Greek, Linear A
appears on a variety of media, such as clay tablets, stone offering tables, gold and silver hair
pins, and pots.

Encoding. The repertoire of characters in the Unicode encoding of the Linear A script is
broadly based on the GORILA catalog by Godart and Olivier (1976-1985), which is the
basic set of signs used in decipherment efforts. All simple signs in that catalog are encoded
as single characters. Composite signs consisting of vertically stacked parts or touching
pieces are also encoded as single characters. Composite signs in the catalog which consist of
side-by-side pieces that are not touching are treated as digraphs; the parts are individually
encoded as characters, but the composite sign is not separately encoded.

Structure. Linear A contains more than 90 syllabic signs in regular use and a host of logo-
grams. Some Linear A signs are also found in Linear B, although about 80% of the logo-
grams in Linear A do not appear in Linear B.

Character Names. The Linear A character names are based on the GORILA catalog num-
bers.

Directionality. Linear A was written from left to right, though occasionally it appears right
to left and, rarely, boustrophedon.

Numbers. Numbers in Linear A inscriptions are represented by characters in the Aegean
Numbers block. Numbers are usually arranged in sets of five or fewer that are stacked ver-
tically. The largest number recorded is 3,000. Linear A seems to use a series of unit frac-
tions. Seven fractions are regularly used and are included in the Linear A block.

Europe-11 342 8.2 LinearB

8.2 Linear B

Linear B Syllabary: U+10000-U+1007F

The Linear B script is a syllabic writing system that was used on the island of Crete and
parts of the nearby mainland to write the oldest recorded variety of the Greek language.
Linear B clay tablets predate Homeric Greek by some 700 years; the latest tablets date from
the mid- to late thirteenth century Bce. Major archaeological sites include Knossos, first
uncovered about 1900 by Sir Arthur Evans, and a major site near Pylos. The majority of
currently known inscriptions are inventories of commodities and accounting records.

Early attempts to decipher the script failed until Michael Ventris, an architect and amateur
decipherer, came to the realization that the language might be Greek and not, as previously
thought, a completely unknown language. Ventris worked together with John Chadwick,
and decipherment proceeded quickly. The two published a joint paper in 1953.

Linear B was written from left to right with no nonspacing marks. The script mainly con-
sists of phonetic signs representing the combination of a consonant and a vowel. There are
about 60 known phonetic signs, in addition to a few signs that seem to be mainly free vari-
ants (also known as Chadwick’s optional signs), a few unidentified signs, numerals, and a
number of ideographic signs, which were used mainly as counters for commodities. Some
ligatures formed from combinations of syllables were apparently used as well. Chadwick
gives several examples of these ligatures, the most common of which are included in the
Unicode Standard. Other ligatures are the responsibility of the rendering system.

Standards. The catalog numbers used in the Unicode character names for Linear B sylla-
bles are based on the Wingspread Convention, as documented in Bennett (1964). The letter
“B” is prepended arbitrarily, so that name parts will not start with a digit, thus conforming
to ISO/IEC 10646 naming rules. The same naming conventions, using catalog numbers
based on the Wingspread Convention, are used for Linear B ideograms.

Linear B Ideograms: U+10080-U+100FF

The Linear B Ideograms block contains the list of Linear B signs known to constitute ideo-
grams (logographs), rather than syllables. When generally agreed upon, the names include
the meaning associated with them—for example, U+10080 A LINEAR B IDEOGRAM B100
MAN. In other instances, the names of the ideograms simply carry their catalog number.

Aegean Numbers: U+10100-U+1013F

The signs used to denote Aegean whole numbers (U+10107..U+10133) derive from the
non-Greek Linear A script. The signs are used in Linear B. The Cypriot syllabary appears to
use the same system, as evidenced by the fact that the lower digits appear in extant texts.
For measurements of agricultural and industrial products, Linear B uses three series of
signs: liquid measures, dry measures, and weights. No set of signs for linear measurement
has been found yet. Liquid and dry measures share the same symbols for the two smaller

Europe-11 343 8.2 LinearB

subunits; the system of weights retains its own unique subunits. Though several of the signs
originate in Linear A, the measuring system of Linear B differs from that of Linear A. Lin-
ear B relies on units and subunits, much like the imperial “quart,” “pint,” and “cup,”
whereas Linear A uses whole numbers and fractions. The absolute values of the measure-

ments have not yet been completely agreed upon.

Europe-1I 344 8.3 CypriotSyllabary

8.3 Cypriot Syllabary

Cypriot Syllabary: U+10800-U+1083F

The Cypriot syllabary was used to write the Cypriot dialect of Greek from about 800 to 200
BCE. It is related to both Linear B and Cypro-Minoan, a script used for a language that has
not yet been identified. Interpretation has been aided by the fact that, as use of the Cypriot
syllabary died out, inscriptions were carved using both the Greek alphabet and the Cypriot
syllabary. Unlike Linear B and Cypro-Minoan, the Cypriot syllabary was usually written
from right to left, and accordingly the characters in this script have strong right-to-left
directionality.

Word breaks can be indicated by spaces or by separating punctuation, although separating
punctuation is also used between larger word groups.

Although both Linear B and the Cypriot syllabary were used to write Greek dialects, Linear
B has a more highly abbreviated spelling. Structurally, the Cypriot syllabary consists of
combinations of up to 12 initial consonants and 5 different vowels. Long and short vowels
are not distinguished. The Cypriot syllabary distinguishes among a different set of initial
consonants than Linear B; for example, unlike Linear B, Cypriot maintained a distinction
between [1] and [r], though not between [d] and [t], as shown in Table 8-1. Not all of the 60
possible consonant-vowel combinations are represented. As is the case for Linear B, the
Cypriot syllabary is well understood and documented.

Table 8-1. Similar Characters in Linear B and Cypriot

Linear B | Cypriot
da |— ta F
na Y| na T
pa ¥ pa ¥
ot o 1t
se [e M
i N 4 7
o 1| to T

For Aegean numbers, see the subsection “Aegean Numbers: U+10100-U+1013F” in
Section 8.2, Linear B.

Europe-1I 345 8.4 Ancient Anatolian Alphabets

8.4 Ancient Anatolian Alphabets

Lycian: U+10280-U+1029F
Carian: U+102A0-U+102DF
Lydian: U+10920-U+1093F

The Anatolian scripts described in this section all date from the first millennium BcE, and
were used to write various ancient Indo-European languages of western and southwestern
Anatolia (now Turkey). All are closely related to the Greek script and are probably adapta-
tions of it. Additional letters for some sounds not found in Greek were probably either
invented or drawn from other sources. However, development parallel to, but independent
of, the Greek script cannot be ruled out, particularly in the case of Carian.

Lycian. Lycian was used from around 500 BCE to about 200 BCE. The term “Lycian” is now
used in place of “Lycian A” (a dialect of Lycian, attested in two texts in Anatolia, is called
“Lycian B”, or “Milyan”, and dates to the first millennium Bce). The Lycian script appears
on some 150 stone inscriptions, more than 200 coins, and a few other objects.

Lycian is a simple alphabetic script of 29 letters, written left-to-right, with frequent use of
word dividers. The recommended word divider is U+205A TWO DOT PUNCTUATION. Scrip-
tio continua (a writing style without spaces or punctuation) also occurs. In modern edi-
tions U+0020 sPACE is sometimes used to separate words.

Carian. The Carian script is used to write the Carian language, and dates from the first
millennium Bce. While a few texts have been found in Caria, most of the written evidence
comes from Carian communities in Egypt, where they served as mercenaries. The reper-
toire of the Carian texts is well established. Unlike Lycian and Lydian, Carian does not use a
single standardized script, but rather shows regional variation in the repertoire of signs
used and their form. Although some of the values of the Carian letters remain unknown or
in dispute, their distinction from other letters is not. The Unicode encoding is based on the
standard “Masson set” catalog of 45 characters, plus 4 recently-identified additions. Some
of the characters are considered to be variants of others—and this is reflected in their
names—but are separately encoded for scholarly use in discussions of decipherment.

The primary direction of writing is left-to-right in texts from Caria, but right-to-left in
Egyptian Carian texts. However, both directions occur in the latter, and left-to-right is
favored for modern scholarly usage. Carian is encoded in Unicode with left-to-right direc-
tionality. Word dividers are not regularly employed; scriptio continua is common. Word
dividers which are attested are U+00B7 MiDDLE DOT (or U+2E31 WORD SEPARATOR MIDDLE
poT), U+205A TwO DOT PUNCTUATION, and U+205D TricoroN. In modern editions
U+0020 spact may be found.

Lydian. While Lydian is attested from inscriptions and coins dating from the end of the
eighth century (or beginning of the seventh) until the third century Bcg, the longer well-
preserved inscriptions date to the fifth and fourth centuries Bck.

Europe-1I 346 8.4 Ancient Anatolian Alphabets

Lydian is a simple alphabetic script of 26 letters. The vast majority of Lydian texts have
right-to-left directionality (the default direction); a very few texts are left-to-right and one
is boustrophedon. Most Lydian texts use U+0020 sPaCE as a word divider. Rare examples
have been found which use scriptio continua or which use dots to separate the words. In the
latter case, U+003A coLoN and U+00B7 MIDDLE DOT (or U+2E31 WORD SEPARATOR MID-
DLE DOT) can be used to represent the dots. U+1093F LYDIAN TRIANGULAR MARK i$
thought to indicate quotations, and is mirrored according to text directionality.

Europe-1I 347 8.5 OldItalic

8.5 Old Italic

Old Italic: U+10300-U+1032F

The Old Italic script is used to represent a number of related historical alphabets located on
the Italian peninsula. Some of these were used for non-Indo-European languages (Etruscan
and probably North Picene), and some for various Indo-European languages belonging to
the Italic branch (Faliscan and members of the Sabellian group, including Oscan, Umbrian,
and South Picene) or the Celtic branch (Cisalpine Celtic). The ultimate source for the
alphabets in ancient Italy is Euboean Greek used at Ischia and Cumae in the bay of Naples
in the eighth century Bce. Unfortunately, no Greek abecedaries from southern Italy have
survived. The native alphabets of Faliscan, Oscan, Umbrian, North Picene, and South
Picene all derive from an Etruscan form of the alphabet.

There are some 10,000 inscriptions in Etruscan. By the time of the earliest Etruscan
inscriptions, circa 700 BCE, local distinctions are already found in the use of the alphabet.
Three major stylistic divisions are identified: the Northern, Southern, and Caere/Veii. Use
of Etruscan can be divided into two stages, owing largely to the phonological changes that
occurred: the “archaic Etruscan alphabet,” used from the seventh to the fifth centuries BCE,
and the “neo-Etruscan alphabet,” used from the fourth to the first centuries Bce. Glyphs for
eight of the letters differ between the two periods; additionally, neo-Etruscan abandoned
the letters kA, KU, and EKS.

The unification of these alphabets into a single Old Italic script requires language-specific
fonts because the glyphs most commonly used may differ somewhat depending on the lan-
guage being represented.

Most of the languages have added characters to the common repertoire: Etruscan and Falis-
can add LETTER EF; Oscan adds LETTER EF, LETTER II, and LETTER UU; Umbrian adds LET-
TER EF, LETTER ERS, and LETTER CHE; North Picene adds LETTER UU; and South Picene
adds LETTER II, LETTER UU, and LETTER ESS.

The Latin script itself derives from a south Etruscan model, probably from Caere or Veii,
around the mid-seventh century BCE or a bit earlier. However, because there are significant
differences between Latin and Faliscan of the seventh and sixth centuries BCE in terms of
formal differences (glyph shapes, directionality) and differences in the repertoire of letters
used, this warrants a distinctive character block. Fonts for early Latin should use the upper-
case code positions U+0041..U+005A.

The North Italic alphabets, which include Venetic, Raetic, and Cisalpine Celtic (Lepontic
and Cisalpine Gaulish) contain additional local variants of the Old Italic letters. The Runic
script, in turn, is historically derived from the North Italic alphabets, possibly from Raetic.
(See Section 8.6, Runic.)

Character names assigned to the Old Italic block are unattested but have been recon-
structed according to the analysis made by Sampson (1985). While the Greek character
names (ALPHA, BETA, GAMMA, and so on) were borrowed directly from the Phoenician

Europe-1I 348 8.5 OldItalic

names (modified to Greek phonology), the Etruscans are thought to have abandoned the
Greek names in favor of a phonetically based nomenclature, where stops were pronounced
with a following -e sound, and liquids and sibilants (which can be pronounced more or less
on their own) were pronounced with a leading e- sound (so [k], [d] became [ke:], [de:],
while [1], [m] became [el], [em]). It is these names, according to Sampson, which were bor-
rowed by the Romans when they took their script from the Etruscans.

Directionality. Most Etruscan texts from the seventh to six centuries BCE were written
from right-to-left, but left-to-right was not uncommon, and is found in approximately ten
percent of the texts from this period. From the fifth to the first centuries BCE, right-to-left
was the standard, and left-to-right directionality was extremely rare. The other local variet-
ies of Old Italic also generally have right-to-left directionality. Boustrophedon appears
rarely, and not especially early (for instance, the Forum inscription dates to 550-500 BCE).
Despite this, for reasons of implementation simplicity, many scholars prefer left-to-right
presentation of texts, as this is also their practice when transcribing the texts into Latin
script. Accordingly, the Old Italic script has a default directionality of strong left-to-right in
this standard. If the default directionality of the script is overridden to produce a right-to-
left presentation, the glyphs in Old Italic fonts should also be mirrored from the represen-
tative glyphs shown in the code charts. This kind of behavior is not uncommon in archaic
scripts; for example, archaic Greek letters may be mirrored when written from right to left
in boustrophedon.

Punctuation. The earliest inscriptions are written with no space between words in what is
called scriptio continua. There are numerous Etruscan inscriptions with dots separating
word forms, attested as early as the second quarter of the seventh century Bce. This punc-
tuation is sometimes, but only rarely, used to mark certain types of syllables and not to sep-
arate words. From the sixth century BCE, words were often separated by one, two, or three
dots spaced vertically above each other.

Numerals. Etruscan numerals are not well attested in the available materials, but are
employed in the same fashion as Roman numerals. Several additional numerals are
attested, but as their use is at present uncertain, they are not yet encoded in the Unicode
Standard.

Glyphs. The default glyphs in the code charts are based on the most common shapes
found for each letter. Most of these are similar to the Marsiliana abecedary (mid-seventh
century BCE). Note that the phonetic values for U+10317 oLD ITALIC LETTER EKS [ks] and
U+10319 OLD ITALIC LETTER KHE [kh] show the influence of western, Euboean Greek; east-
ern Greek has U+03A7 GREEK CAPITAL LETTER CHI [kh] and U+03A8 GREEK CAPITAL LET-
TER PSI [ps] instead.

The geographic distribution of the Old Italic script is shown in Figure 8-1. In the figure, the
approximate distribution of the ancient languages that used Old Italic alphabets is shown
in white. Areas for the ancient languages that used other scripts are shown in gray, and the
labels for those languages are shown in italics. In particular, note that the ancient Greek
colonies of the southern Italian and Sicilian coasts used the Greek script proper. Rome, of

Europe-1I 349 8.5 OldItalic

course, is shown in gray, because Latin was written with the Latin alphabet, now encoded
in the Latin script.

Figure 8-1. Distribution of Old Italic

Raetic

Cisalpine Celti
isalpine Celtic Venetic

Central
Sabellian

Umbrian languages
S. Picene

Oscan

Elymian

Sicanian Siculan

Europe-11 350 8.6 Runic

8.6 Runic

Runic: U+16A0-U+16F0

The Runic script was historically used to write the languages of the early and medieval soci-
eties in the German, Scandinavian, and Anglo-Saxon areas. Use of the Runic script in vari-
ous forms covers a period from the first century to the nineteenth century. Some 6,000
Runic inscriptions are known. They form an indispensable source of information about the
development of the Germanic languages.

The Runic script is an historical script, whose most important use today is in scholarly and
popular works about the old Runic inscriptions and their interpretation. The Runic script
illustrates many technical problems that are typical for this kind of script. Unlike many
other scripts in the Unicode Standard, which predominantly serve the needs of the modern
user community—with occasional extensions for historic forms—the encoding of the
Runic script attempts to suit the needs of texts from different periods of time and from dis-
tinct societies that had little contact with one another.

The Runic Alphabet. Present-day knowledge about runes is incomplete. The set of graphe-
mically distinct units shows greater variation in its graphical shapes than most modern
scripts. The Runic alphabet changed several times during its history, both in the number
and the shapes of the letters contained in it. The shapes of most runes can be related to some
Latin capital letter, but not necessarily to a letter representing the same sound. The most
conspicuous difference between the Latin and the Runic alphabets is the order of the letters.

The Runic alphabet is known as the futhark from the name of its first six letters. The origi-
nal old futhark contained 24 runes:

PNPFR<XP HNtIloTDYE TBMHTe MR

They are usually transliterated in this way:

fuparkgw hnij ipzs tbemlpgpdo

In England and Friesland, seven more runes were added from the fifth to the ninth century.

In the Scandinavian countries, the futhark changed in a different way; in the eighth century,
the simplified younger futhark appeared. It consists of only 16 runes, some of which are
used in two different forms. The long-branch form is shown here:

FPNP+RY *x+1 +h TBYTA
f upork hnias t bmlRgr
The use of runes continued in Scandinavia during the Middle Ages. During that time, the

futhark was influenced by the Latin alphabet and new runes were invented so that there was
full correspondence with the Latin letters.

Europe-11 351 8.6 Runic

Direction. Like other early writing systems, runes could be written either from left to right
or from right to left, or moving first in one direction and then the other (boustrophedon),
or following the outlines of the inscribed object. At times, characters appear in mirror
image, or upside down, or both. In modern scholarly literature, Runic is written from left
to right. Therefore, the letters of the Runic script have a default directionality of strong left-
to-right in this standard.

Representative Glyphs. The known inscriptions can include considerable variations of
shape for a given rune, sometimes to the point where the nonspecialist will mistake the
shape for a different rune. There is no dominant main form for some runes, particularly for
many runes added in the Anglo-Friesian and medieval Nordic systems. When transcribing
a Runic inscription into its Unicode-encoded form, one cannot rely on the idealized repre-
sentative glyph shape in the character charts alone. One must take into account to which of
the four Runic systems an inscription belongs and be knowledgeable about the permitted
form variations within each system. The representative glyphs were chosen to provide an
image that distinguishes each rune visually from all other runes in the same system. For
actual use, it might be advisable to use a separate font for each Runic system. Of particular
note is the fact that the glyph for U+16C4 ¢ RUNIC LETTER GER is actually a rare form, as
the more common form is already used for U+16E1 ¥ RUNIC LETTER IOR.

Unifications. When a rune in an earlier writing system evolved into several different runes
in a later system, the unification of the earlier rune with one of the later runes was based on
similarity in graphic form rather than similarity in sound value. In cases where a substan-
tial change in the typical graphical form has occurred, though the historical continuity is
undisputed, unification has not been attempted. When runes from different writing sys-
tems have the same graphic form but different origins and denote different sounds, they
have been coded as separate characters.

Long-Branch and Short-Twig. Two sharply different graphic forms, the long-branch and
the short-twig form, were used for 9 of the 16 Viking Age Nordic runes. Although only one
form is used in a given inscription, there are runologically important exceptions. In some
cases, the two forms were used to convey different meanings in later use in the medieval
system. Therefore the two forms have been separated in the Unicode Standard.

Staveless Runes. Staveless runes are a third form of the Viking Age Nordic runes, a kind of
Runic shorthand. The number of known inscriptions is small and the graphic forms of
many of the runes show great variability between inscriptions. For this reason, staveless
runes have been unified with the corresponding Viking Age Nordic runes. The correspond-
ing Viking Age Nordic runes must be used to encode these characters—specifically the
short-twig characters, where both short-twig and long-branch characters exist.

Punctuation Marks. The wide variety of Runic punctuation marks has been reduced to
three distinct characters based on simple aspects of their graphical form, as very little is
known about any difference in intended meaning between marks that look different. Any
other punctuation marks have been unified with shared punctuation marks elsewhere in
the Unicode Standard.

Europe-11 352 8.6 Runic

Golden Numbers. Runes were used as symbols for Sunday letters and golden numbers on
calendar staves used in Scandinavia during the Middle Ages. To complete the number series
1-19, three more calendar runes were added. They are included after the punctuation marks.

Encoding. A total of 81 characters of the Runic script are included in the Unicode Standard.
Of these, 75 are Runic letters, 3 are punctuation marks, and 3 are Runic symbols. The order
of the Runic characters follows the traditional futhark order, with variants and derived
runes being inserted directly after the corresponding ancestor.

Runic character names are based as much as possible on the sometimes several traditional
names for each rune, often with the Latin transliteration at the end of the name.

Europe-1I 353 8.7 Old Hungarian

8.7 Old Hungarian
Old Hungarian: U+10C80-U+10CFF

The Old Hungarian script is a runiform script that is used to write the Hungarian language.
Old Hungarian is mentioned in a written account of the late 13th century and has been
found on short stone-carved inscriptions. The script was probably developed and in use
earlier. Modern use has increased dramatically in the last two decades, with some uses
being simply decorative. There are also currently publications of books, magazines, and
teaching materials.

Structure. Old Hungarian is an alphabetic script. The consonants traditionally bore an
inherent vowel. Vowel signs were only explicitly written in final position, where vowels
were long, and for disambiguation. In later phases of script usage, all vowels were written
explicitly. The script is rendered linearly, but often uses a large set of ligatures and conso-
nant clusters.

Casing is not part of the traditional Old Hungarian script. However, modern practice has
introduced casing into many publications. Uppercase letters appear as larger size variants
of lowercase letters.

Directionality. The primary direction of writing is right-to-left both in historical sources
and in modern use. Conformant implementations of Old Hungarian script must use the
Unicode Bidirectional Algorithm (see Unicode Standard Annex #9, “Unicode Bidirectional
Algorithm”).

Punctuation and Numbers. Traditional texts separate words with spaces or with one, two,
or four dots. Modern users punctuate Old Hungarian with U+0020 sprace, U+2E41
REVERSED COMMA, and U+2E42 DOUBLE LOW-REVERSED-9 QUOTATION MARK, with some
use of U+2E31 WORD SEPARATOR MIDDLE DOT, U+205A TWO DOT PUNCTUATION, U+205D
TRICOLON, and U+205E VERTICAL FOUR DOTS as well.

Old Hungarian numbers have their origin in a tally system which was widely used through-
out Hungary until the nineteenth century. Since the twentieth century, these numbers have
been used regularly with Old